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ABSTRACT

With the advent of deep learning-based facial forgeries, also called
"deepfakes", the field of accurately detecting forged videos has become a quickly
growing area of research. For this endeavor, remote photoplethysmography, the
process of extracting biological signals such as the blood volume pulse and heart
rate from facial videos, offers an interesting avenue for detecting fake videos that
appear utterly authentic to the human eye.

This thesis presents an end-to-end system for deepfake video classification using
remote photoplethysmography. The minuscule facial pixel colour changes are
used to extract the rPPG signal, from which various features are extracted and
used to train an XGBoost classifier. The classifier is then tested using various
colour-to-blood volume pulse methods (OMIT, POS, LGI and CHROM) and
three feature extraction window lengths of two, four and eight seconds.

The classifier was found effective at detecting deepfake videos with an accuracy
of 85 %, with minimal performance difference found between the window lengths.
The GREEN channel signal was found to be important for this classification.
Keywords: Deepfakes, Remote Photoplethysmography, Deepfake Detection
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TIIVISTELMÄ

Syväväärennösten eli syväoppimiseen perustuvien kasvoväärennöksien
yleistyessä väärennösten tarkasta tunnistamisesta koneellisesti on tullut nopeasti
kasvava tutkimusalue. Etäfotoplethysmografia (rPPG) eli biologisten signaalien
kuten veritilavuuspulssin tai sykkeen mittaaminen videokuvasta tarjoaa
kiinnostavan keinon tunnistaa väärennöksiä, jotka vaikuttavat täysin aidoilta
ihmissilmälle.

Tässä diplomityössä esitellään etäfotoplethysmografiaan perustuva
syväväärennösten tunnistusmetodi. Kasvojen minimaalisia värimuutoksia
hyväksikäyttämällä mitataan fotoplethysmografiasignaali, josta lasketuilla
ominaisuuksilla koulutetaan XGBoost-luokittelija. Luokittelijaa testataan
usealla eri värisignaalista veritilavuussignaaliksi muuntavalla metodilla sekä
kolmella eri ominaisuuksien ikkunapituudella.

Luokittelija pystyy tunnistamaan väärennetyn videon aidosta 85 %
tarkkuudella. Eri ikkunapituuksien välillä oli minimaalisia eroja, ja vihreän
värin signaalin havaittiin olevan luokittelun suorituskyvyn kannalta merkittävä.

Avainsanat: Syväväärennökset, etäfotopletysmografia, syväväärennösten
tunnistaminen
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1. INTRODUCTION

The invention of deep learning-based image and video manipulation techniques,
also known as deepfakes, has shaken up the field of multimedia forensics [1]. The
manipulation of multimedia assets, especially videos, has previously been an arduous
and time-consuming task, requiring the skills of an experienced video editor. However,
deepfakes have shifted the manipulation process to machines, bringing the tools to
create believable fake media to everyone with access to a computer. While widely
available deepfake technology is excellent for purposes like digital art, photography,
and movie production, it can also be used for malicious purposes, like fake news
campaigns and blackmailing. An example of malicious use of deepfakes is the case
of European politicians duped into a video conference with a deepfake impersonation
of Vitali Klitschko, the mayor of Kyiv at the time [2]. The inability to trust the
authenticity of media assets also can reduce the public trust in journalism, including
credible and reliable sources.

The problems caused by the progression of deepfake technology have caught a lot of
media attention and have resulted in a rise of interest in multimedia forensics research
from both the academy and from major information technology (IT) companies and
agencies [1]. Various methods of deepfake detection have been developed, and
deepfake reference datasets have been composed.

This thesis concerns the use of remote photoplethysmography in deepfakes and
deepfake detection. Photoplethysmography (PPG) is an optical measurement system
for detecting blood volume changes in the microvascular bed of tissue. [3]. Basic
PPG technology utilizes a few optoelectronic components: a light source and a
photodetector to measure the variations in light intensity of the tissue. This variation
can be used to extract signals such as the blood volume pulse (BVP). These signals and
their features can be used to classify the video as real or fake using signal processing
and machine learning techniques.

This thesis reviews state-of-the art research on deep learning-based and conventional
rPPG extraction methods, with a special focus on conventional methods. A standard
methodology for a conventional rPPG extraction scheme is explained in detail, briefly
examining the current research and standard methods on each step. A brief review of
deepfakes and deepfake generation methods is conducted. Deepfake detection research
is studied, including deepfake detection datasets and deepfake detection methods,
with a focus on rPPG-based detection methods. Finally, current research on PPG
modification and synthetic generation of PPG signals is studied.

Additionally, an end-to-end system for classifying videos using rPPG signals is
introduced, using the Face2PPG [4] rPPG extraction pipeline to extract the signals,
then using a gradient boosting library XGBoost [5] to classify the features extracted
from the signals. The performance of the classifier is evaluated using three different
window lengths and nine different feature sets using different rPPG to BVP conversion
schemes. The results are analyzed and compared to other relevant research results.
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2. RELATED WORK

This chapter includes the necessary background of rPPG-based deepfake detection
technology. First, explanations of concepts in photoplethysmography (PPG),
especially remote photoplethysmography (rPPG), are given, and state-of-the-art
research in the area is reviewed. Second, research on deepfake technology and
generation methods is reviewed. Third, the various state-of-the-art methods of
detecting deepfakes are studied, particularly in rPPG-based studies. Finally, the current
work on modifying the PPG signals and generating synthetic PPG signals are explored.

2.1. Photoplethysmography

Photoplethysmography is an optical technique for measuring blood volume changes
in tissue. Due to its non-invasive, wearable implementation, the PPG method has
gained popularity over traditional electrocardiogram (ECG) technology for measuring
blood volume pulse (BVP) and heart rate (HR). Basic PPG technology utilizes a light
source and a photodetector to measure the absorption of light by the blood in the tissue.
The light source is emitted into the tissue and the reflected light is measured. The
blood flow in the arteries and capillary bed network cause variance in the intensity of
the absorbed light. From the measured BVP signal, HR information can be extracted
from the peripheral pulse. Figure 1 shows

Figure 1. Light propagation in skin.

PPG measurement can be a valuable tool for monitoring BVP and HR as it is non-
invasive, and the implementation can be small and lightweight. While the origins of
the different components of the PPG signal are not fully understood, they can provide
valuable information on the cardiovascular system [3][6].

The PPG waveform can be split into two components [3]. The pulsating component,
often called the ’AC’ component, has a frequency linked to the heart rate. The AC
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component is superimposed onto a ’DC’ component originating from the tissues and
average blood volume. The DC component varies slowly due to various characteristics,
including respiration and vasomotor activity. The AC and DC components can be
extracted from the PPG with filtering and amplification.

2.2. Remote PPG Extraction

Remote PPG (rPPG) extraction refers to methods of extracting biosignals from
the human body without physical contact, utilizing remote sensors such as cameras
or radars. Classic rPPG methods use image and signal processing techniques for
analyzing video, looking for slight color and illumination changes related to the BVP
[7]. More recently, learning-based alternatives have been used to train models capable
of heart rate estimation from a video containing a face [8].

Figure 2. Example of a remotely extracted PPG signal.

Due to not needing direct contact to skin like common PPG or ECG systems, rPPG
has found applications in many fields, such as fitness monitoring [9], stress monitoring
[10], driver state monitoring [11][12] and more [13]. The pressure of contact PPG
(cPPG) sensors on the skin is also shown to significantly impact the pulse arrival time
detected by the sensor [14]. This could lead to detection of erroneous blood pressure
variation when the pressure of the sensor is not constant. Remote PPG sensors can also
alleviate the possible skin irritation caused by long term use of contact PPG sensors. As
digital cameras are inexpensive and widely available, rPPG technique is easily scalable
compared to traditional cPPG.

While having the advantage of not needing contact to the skin, rPPG has its
challenges compared to the contact PPG methods. The signal-to-noise ratio (SNR)
of the rPPG signal is much lower than that of a cPPG signal. While cPPG utilizes
dedicated light sources and contact probes to enhance the signal quality, rPPG can
only utilize ambient light. In addition, the camera used in rPPG measurement is
usually located further away from the measured tissue, resulting in less accurate color
measurement. Increased melanin content also decreases the diffusely reflected light
from the skin, reducing the SNR of the rPPG signal [15]. This results in worse
performance when extracting rPPG from subjects with darker skin tones.
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Nowadays, there are two ways to extract physiological signals from videos: non-
learning-based techniques that use signal processing, and deep learning approaches.
Non-learning-based methods aim to extract physiological signals using computer
vision and signal processing without learning from prior data. They usually follow a
standard pipeline, which includes several steps, as shown in Figure 3. Learning-based
methods try to learn how to extract physiological signals or parameters using deep
learning models. They can try to extract the signals directly from the videos or replace
some of the steps in the convolutional rPPG pipeline with deep learning methods.

Figure 3. Example of a conventional rPPG method working principle (Face2PPG [4]).

Generally, the non-learning-based rPPG methods work in a few steps: face detection
and alignment, region of interest (ROI) detection and selection, BVP extraction and
calculation of vital parameters, such as heart rate.

A standard non-learning-based pipeline for recovering physiological signals from
videos comprises of six sequentially connected main modules. The first module, Face
detection and alignment, involves the detection and alignment of the face in every
frame. This step includes face detection to locate the face coordinates in the frame
and face alignment to detect several facial points in the detected face. The second
module is the ROI selection, which selects the regions of interest of the face based
on a color skin segmentation or selection of patches based on face location or the
coordinates of the landmarks. The third module, RGB extraction, extracts the raw
signal from a window of several RGB frames, where the value at every sample is
computed using the mean value of the pixels contained in the mask or patches selected
in the previous step. The fourth module, Pre-processing, filters the extracted raw RGB
signal to adequately prepare it for the band of interest. Filtering is a critical factor in
properly recovering the BVP signal, as remote PPG signals usually present trends and
noise in the frequency spectrum of the camera sample rate. The fifth module, RGB
to PPG transformation (rPPG), is where the RGB filtered signal is transformed to
a PPG signal using a transformation method. This module is one of the core blocks
in this topic since it is the component that transforms RBG signals into physiological
signals. The last module, Frequency analysis, performs spectrum analysis of the rPPG
and reference ground-truth (BVP or ECG) signals to estimate the heart rate.
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2.2.1. Face Detection

Face detection is a crucial task in computer vision that aims to locate the presence
of human faces in digital images or videos. It is an essential component of many
facial analysis tasks, such as face recognition, facial expression recognition, head pose
estimation, and anti-spoofing. The primary goal of face detection is to determine
whether there are any faces in an image and estimate their locations and sizes
accurately [16].

Over the past few decades, the study of face detection has been a topic of
intense research. The complexity of face detection arises from the vast variations
in scale, orientation, skin color, facial expression, lighting conditions, occlusions,
complex background, and other factors that can impede the accuracy of face detection
algorithms [16].

Significant advances have been made in the field of face detection, with the earliest
face detection methods being rule-based and relying on hand-crafted features to find
faces [17]. These methods were highly dependent on the quality of the input images
and performed poorly in challenging environments. One of the earliest and most
influential methods for face detection is the Viola-Jones algorithm, which uses a
cascade of boosted classifiers to detect faces efficiently [17].

These methods paved the way for numerous other algorithms, such as Haar-
like features, Local Binary Patterns (LBP) [18], Histogram of Oriented Gradients
(HOG) [19], or Convolutional Neural Networks (CNN) [20]. These algorithms have
been highly successful in detecting faces in images and videos, although numerous
challenges still remain to increase the robustness in real-world scenarios.

While any face detection algorithm can be used in rPPG implementations, a
frequently used method is the Viola-Jones algorithm, particularly because of its long-
time availability in the OpenCV [21] computer vision library [22]. Alternative methods
include an algorithm to detect skin regions [23] using a neural network-based classifier.
More recent approaches [4] make use of more modern face detection algorithms, such
as the single shot multibox detector (SSD) [24].

2.2.2. Face Alignment

Face alignment is an essential step in the field of computer vision that has gained
significant attention in the past few decades. This process involves the detection
of facial landmarks, which are predefined key points of a face in a given image or
video, as shown in Figure 4. Facial alignment is critical for various applications, such
as face recognition, facial expression recognition, face modeling, and facial attribute
computing and others [25][26]. Face alignment has become a popular research topic
because it plays a vital role in improving the accuracy and robustness of facial analysis
systems. With accurate facial landmark detection, facial features can be extracted,
and specific regions of interest (ROIs) can be selected for analysis. This is especially
important in rPPG systems, as it allows for more accurate and robust tracking of the
ROI, even in motion.

The majority of face alignment methods use machine learning to predict facial
landmarks. In recent years, deep learning has emerged as the state-of-the-art method
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Figure 4. Facial detection and landmarks detection performed with Face2PPG [4]).

for facial alignment. This technique has shown superior performance compared to
traditional machine learning approaches, as it can learn complex patterns and features
from large amounts of training data. However, deep learning requires computationally
intensive inference.

For use cases that require faster computation times, Ensemble of Regression
Trees (ERT) [27] and Local Binary Features (LBF) [28] can achieve an impressive
performance of more than 1000 frames per second with 194 points [25]. In time
critical applications, such as potential real-time rPPG systems, fast face alignment is
necessary.

Face alignment methods can be classified into two categories: generative and
discriminative methods [25].

Generative methods formulate facial alignment as an optimization problem to
find the shape and appearance parameters that generate an appearance model
that best fits the test face. Examples of a generative method are active appearance
models (AAM) [29].

Discriminative methods, on the other hand, directly infer the target location
from the facial appearance. These methods teach independent local detectors
or regressors for each facial point and employ a global shape model to regularize
their predictions. Alternatively, they teach a vectorial regression function to infer
the entire face shape, where the shape constraint is implicitly encoded. A few
examples of discriminative methods include discriminative response map fitting
(DRMF) [30], Ensemble of Regression Trees (ERT) [27], Local Binary Features
(LBF) [28], and deep learning-based methods such as Deep Alignment Network
(DAN) [31].

2.2.3. ROI Selection

ROI detection is generally accomplished by color-based and patch-based selection
methods. The thickness of the skin differs across the face, and so measures from
different areas give differing diffusion reflection information [32]. A common method
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is to select and track a preselected region or multiple regions of the face [4].
Choosing only suitable regions of the face improves the performance of the extraction
over selecting the entire face [33]. Some implementations choose the whole face
[34][35], but as the forehead and cheek regions usually provide stronger rPPG signals
compared to other regions of the face [32], many methods only select them as the ROI
[36][37][4].

Some methods use skin detection to discard non-skin regions, as they do not usually
contain rPPG information [38]. Skin detection is particularly effective in removing
noise caused by head rotations [39].

When selecting rectangular regions of a face in their study, Wang [40] concluded
that selecting the best 1/4 to 1/2 of total regions is favorable for heart rate extraction.
Selecting too few regions will be subject to quantization noise and too many will suffer
from uneven illumination interference.

Po et al. [38] propose an adaptive ROI (AROI) approach for dynamically selecting
ROI. In their method, the face is divided into regions and the rPPG signal of each
region is extracted. Each regions signals SNR is then calculated and applied to a SNR
map indicating the quality of the rPPG signal in the region. Suitable regions are then
selected by applying mean-shift clustering and adaptive thresholding to the SNR maps.
Kumar et. al. [41] use a similar method of ROI selection based on a "goodness"
metric. Po et al. also explore a method that uses skin detection masking to select
the skin regions of the full face. In their experiments, they compare the methods to
conventional fixed ROI methods and report that the AROI method improved the rPPG
signal quality and achieved better HR measurement accuracy than the other methods
of ROI selection.

Figure 5 shows the different approaches for ROI selection in literature.

Figure 5. Different ROI selection approaches.

2.2.4. RGB Extraction

The core principle of rPPG methods is to extract color information from the face. A
common method to achieve this is to extract the RGB signal from the skin by averaging
the skin pixel values of the ROI. This method can be done separately for every ROI.
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Some methods use a window of several frames over which the mean RGB is calculated
[4].

2.2.5. Pre- and Post-Processing

Proper pre- or post-processing of the RGB signal is essential for accurate extraction
of BVP signals in remote PPG. Filtering is a critical factor in preparing the raw RGB
signal for the band of interest, which is typically between 0.75 and 4.0 Hz for heart-
related signals. The raw RGB signal often presents trends and noise in the frequency
spectrum of the camera sample rate, and filtering helps remove these artifacts. Some
common filtering methods used for RGB processing include detrending, bandpass
filtering, or a moving average filter. Additionally, some methods also normalize the
RGB values over a temporal interval to further enhance signal quality [15]. Overall,
proper RGB signal preprocessing can significantly improve the accuracy and reliability
of remote PPG systems [4].

For some RGB to PPG transformation methods, Unakafov [42] suggests filtering
after the RGB to PPG conversion. In the study, postprocessing instead of
preprocessing performed better with GREEN, GRD, CHROM, and POS methods,
while preprocessing was preferred for aGRD and ICA. The RGB to PPG conversion
methods are explained in the next section.

2.2.6. RGB to PPG Transformation

Multiple methods of transforming the RGB signal to PPG have been proposed in
scientific literature. This section contains brief descriptions of the methods and results
of several comparisons.

The GREEN [36] method estimates the rPPG by the green signal alone. The
green signal is chosen as it contains the strongest plethysmographic signal,
corresponding to an absorption peak of oxyhaemoglobin [43]. This is a popular
approach due to its simplicity.

The Green-red difference (GRD) [44] method uses the difference of the PPG-
favoured green signal and the red signal, which is considered to contain artefacts.

Adaptive green-red difference (AGRD) [45] is an improved version of GRD with
adaptive color difference operation applied to improve motion robustness.

Principal Component Analysis (PCA) [46][47] is a blind source separation
(BSS) method, which finds the components that explain the maximum amount of
variance possible, called principal components. These components are obtained
by first computing the covariance matrix of the RGB vector, then calculating
the eigenvectors and eigenvalues of the covariance matrix. These eigenvectors
correspond to the principal components and eigenvalues to the amount of
variance explained by the component, i.e., the significance of the principal
component. The principal components are sorted in the order of significance,
and the RGB data is then cast to the principal components.
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Independent Component Analysis (ICA) [48][34] is a BSS method that tries to
find independent sub-parts that make up the set of original signals. ICA assumes
that the RGB data is a mixture of different sources and aims to find a demixing
matrix W that maximizes the non-gaussianity of each source [35]. ICA aims to
solve the equation:

x̂(t) = Wc(t), (1)

where x̂(t) is the estimation of the underlying source signals that make up the
RGB signal. In practice, iterative methods are used, a common method being
the JADE algorithm [49].

Laplacian Eigenmap (LE) [50] uses the Laplacian-Beltrami operator in manifold
to discover the embedded low-dimensional data from the three-dimensional
RGB signal, while maintaining the distance relation of any two points.

Stochastic proximity embedding (SPE) [51] generates an one-dimensional
Euclidean embedding out of the RGB signal, where the similarities between the
related observations are preserved. It achieves this by using a self-organizing
scheme that attempts to bring each sum-of-squares error function to zero.

Normalized Blood-Volume Pulse Vector (PBV) [52] uses the characteristic
wavelength dependency of the PPG signal to estimate the pulse signal from time-
sequential RGB data.

Singular Spectrum Analysis (SSA) [40] is a spectrum estimation method for
extracting oscillatory components, such as heart rate, from time series.

CHROM [15] removes the specular reflection component from the RGB data,
leaving only the color difference, i.e., the chrominance signals. The rPPG is
then estimated from the chrominance signals.

Spatial Subspace Rotation (2SR) [53] constructs a spatial subspace in the
RGB space and measures the rotation angle of the spatial subspaces between
subsequent frames for pulse extraction.

Plane Orthogonal-to Skin (POS) [54] uses a plane orthogonal to the skin-tone in
the temporally normalized RGB space for rPPG extraction.

Local Group Invariance (LGI) [55] uses features invariant with respect to the
action of a differentiable local group of local transformations to re-arrange the
signal to a more concentrated distribution.

Orthogonal Matrix Image Transformation (OMIT) [4] uses matrix
decomposition techniques. It leverages reduced QR factorization and
Householder Reflections to generate an orthogonal matrix capturing variations
in RGB data. By projecting the input data onto a subspace orthogonal to the
dominant variations, OMIT extracts the PPG signal.
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Projection vector based on Spectral Characteristics (PSC) [13] defines a
projection vector to exploit the spectral characteristics of rPPG signals and limit
the projection vector to a constraint plane, similar to the POS method.

In their study, Van Es et al. [56] compared different rPPG methods including GRD,
AGRD, PCA, ICA, LE, SPE, CHROM, and POS in terms of pulse rate (PR) and
pulse rate variability (PRV). They recommended using POS or CHROM. However,
the OMIT or LGI methods were not included in the comparison.

Similarly, de Haan et al. [15] compare CHROM based methods to BSS methods and
a method roughly equivalent to GRD, in videos containing motion. They conclude that
the chrominance-based methods work better, and that the BSS methods suffer from not
being able to distinguish the pulse signal from periodic motion distortion.

In another study on the effectiveness of rPPG methods, Haugg et al. [57] evaluated
the performance of POS, LGI, CHROM, OMIT, GREEN, ICA, PCA, and PBV. They
found LGI, POS, and OMIT to be the best methods overall. POS had the best results in
a gym video activity with a lot of movement and indoor lighting, as well as in a video
with a rotating face. In natural lighting and a relatively static video of a person talking,
CHROM provided the best results. For BPM estimation, POS was concluded to be the
best rPPG method in the study.

2.2.7. Frequency Analysis

One of the main goals of rPPG signal processing is to estimate the heart rate. To
achieve this, frequency analysis is commonly used to analyze the spectrum of the rPPG
signal. One straightforward method is to calculate the Fourier transform or spectral
density of the signal and detect peaks from it.

A common way to perform Fourier transform is to use the Short Time Fourier
Transform (STFT) which calculates the Fourier transform over successive overlapping
windows of the signal, allowing for a more localized frequency analysis. On the other
hand, spectral density estimation is often done using Welch’s method, which divides
the signal into overlapping segments and computes the periodogram of each segment,
resulting in a smoothed estimate of the power spectrum.

2.2.8. Deep Learning-Based Remote Photoplethysmography Methods

Deep learning-based rPPG methods, especially CNN-based methods have started to
gain attention since 2018. Deep learning is common in face detection and alignment
methods. This section briefly reviews the rPPG approaches where deep learning is
also applied in other steps of the process, such as PPG or HRV feature extraction.
Deep learning-based methods can be categorized into two groups: combinations of
conventional and deep learning methods, and end-to-end deep learning methods [8].

Combination of Conventional and Deep learning methods

EVM-CNN [58], uses conventional methods for tracking facial landmarks (LBF)
and ROI selection. Then the RGB signals extracted from the ROIs are fed to a spatial
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decomposition and temporal filtering module, to obtain so-called feature images.
These features imagers are then fed to a CNN that is used to estimate heart rate.

Luguev et al. [59] developed a method for HRV measurements, where a 3D
convolutional neural network (3D-CNN) is used for pulse signal extraction. Raw
video sequences are fed to the 3D-CNN without any face detection, face alignment,
preprocessing or ROI selection. The mean absolute error of the signal is used as the
loss function for the model. The HRV features are then extracted from the output signal
using conventional methods.

In their work, Zhan et al. [60] study CNN-based PPG signal extraction. They
address four questions:

Does the CNN learn PPG, ballistocardiographic motion caused by blood
pulsation (BCG) or a combination of both?

Can the finger oximeter be used as the reference for CNN training?

Does CNN learn the spatial context information of the measured skin?

Is CNN robust to motion and how is this motion-robustness achieved?

A CNN-PPG model and four experiments are used to answer these questions. From
their experiments, they conclude that the trained model does indeed measure PPG
instead of BCG. The results on the finger oximeter indicate that because of the
physiological delay between the reference finger oximeter and video data, the CNN
may not learn the correct match between the video and the reference PPG signal.
This can be somewhat alleviated with phase correction, but even then the results are
worse than when using a rPPG signal extracted with a conventional rPPG method
as reference. However, by filtering out the high-frequency harmonics of the phase-
corrected finger-PPG signal, the signal outperforms the conventional rPPG signal as
a reference signal. However, they note that there is no motion in the used PURE and
HNU datasets, which can affect the results. They also conclude that the training of the
CNN on different objects (e.g., face or palm) does not make a difference, confirming
that the spatial context information is not exploited by the CNN. The experiments
on motion robustness of the CNN show that the accuracy of the CNN trained on
clean videos is close to 0% when tested on noisy videos. However, when trained on
noisy data, the accuracy is close to 100%, suggesting that the CNN can differentiate
between the intensity variations caused by blood absorption and motion. Additionally,
they experiment and present results that prior-knowledge, such as POS method, in
combination with the CNN can improve the CNN-PPG.

End-to-end Deep learning methods

Chen et al. [61] developed an end-to-end method for heart rate extraction using deep
CNN named DeepPhys. DeepPhys uses a motion representation algorithm based on
skin reflection model and an attention mechanism based on appearance information to
guide the motion estimation.

Deep PPG [62] by Reiss et al. uses a CNN-model to estimate the heart rate from
PPG. The PPGs are first segmented into sliding windows and fast Fourier transform
(FFT) is applied to each window. The resulting time-frequency spectra are the cut to
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the 0-4 Hz band of interest and z-normalization is performed. The resulting spectra are
used as input for the deep learning model.

Meta-rPPG [63] is an end-to-end deep learning approach for rPPG estimation. It
consists of a convolutional encoder for feature extractor, a bidirectional LSTM for
rPPG estimation and a shallow Hourglass network as synthetic gradient generator for
transductive learning. Transductive learning is a method of coping with unforeseeable
distributional changes during deployment by taking unlabeled samples during testing
for a self-supervised weight adjustment. This provides fast adaptation to the
distributional changes.

Špetlík et al. [64] proposed a two-step CNN to estimate the heart rate. The first step
extracts the rPPG signal from a sequence of images using a CNN, and the second step
estimates the HR from the signal using another CNN.

Yu et al. [65] propose a two-stage end-to-end method for recovering a rPPG from
highly compressed videos. It uses a spatio-temporal video enhancement network
(STVEN) for enhancing the video, then an rPPG network (rPPGNet) for extracting
the rPPG signal. The rPPGNet can function independently for extracting rPPGs from
videos.

PhysNet by Yu et al. [66] uses spatio-temporal networks for reconstructing
rPPG signals from videos. They experiment on different spatio-temporal models,
such as 3DCNN, temporal encoder-decoder 3DCNN (3DCNN-ED), 2DCNN, LSTM,
bidirectional LSTM and convolutional LSTM. Of these models 3DCNN-ED is found
to give the best performance.

HeartTrack [67] uses a spatio-temporal attention CNN that takes a time-domain
discrete derivative of the video in ROI, a ROI mask, and the frames of the video in
the ROI area to extract a rPPG signal. The heart rate is then estimated using a one-
dimensional CNN. HeartTrack also uses synthetic PPG signals to pre-train the heart
rate estimator CNN.

Boutsefsaf et al. [68] also use synthetic PPG for training set augmentation, but they
try to apply the signals to videos. A 3D-CNN structure used to extract the heart rate
was then trained on the augmented dataset.

DeeprPPG by Liu et al. [69] is a lightweight rPPG estimation network based on
spatiotemporal convolutions. Additionally it uses an adaptive spatiotemporal rPPG
aggregation strategy to obtain robust rPPG signal from multiple input skin regions.

Shortcomings of deep learning-based methods

Deep learning-based methods show exceptional results in extracting the rPPG signal
and heart rate from videos. They are often complete end-to-end systems with minimal
intermediate steps. However, this black-box behavior presents challenges when a
clear understanding of the underlying mechanisms is preferred, such as in critical
applications like healthcare. Furthermore, the need for massive amounts of diverse
training data required to train robust and generalized solutions is an important problem
for deep learning-based methods.
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2.3. Deepfakes

Deepfakes are images and videos manipulated using advanced deep learning tools.
They are a type of synthetic media created using machine learning algorithms,
particularly generative adversarial networks (GAN) or autoencoders (AE), which can
create hyper-realistic media that appears to be genuine. In recent years, deepfakes have
become a central problem due to the ease with which they can be generated, distributed
and used to manipulate public opinion [70].

Deepfake technology enables easy creation of realistic manipulated media, provided
one can access large amounts of data. This is because deepfakes rely on training
algorithms on large datasets of genuine media in order to generate fake media
that convincingly resembles the real thing. The quality of deepfakes has improved
significantly in recent years, making it difficult to distinguish them from authentic
media. Figure 6 shows an example of a fabricated deepfake video.

Deepfakes have non-malicious use cases, for example in movie production,
photography, and video games. In these fields, deepfakes can be used to create new
content or enhance existing media. For instance, deepfakes can be used to create
realistic special effects or to modify scenes that are otherwise difficult or impossible to
film.

(a) Original (b) Deepfake

Figure 6. Example of a deepfake from the FaceForensics++ [71]) dataset.

2.3.1. Problems of Deepfakes

Deepfakes can also be used for malicious purposes, such as blackmailing and fake-
news campaigns to manipulate public opinion. Deepfakes can be used to create fake
political speeches, interviews, or endorsements, which can then be circulated on social
media platforms to spread misinformation. This can have serious consequences, as it
can undermine public trust in political institutions and the media.

Inability to trust the authenticity of media may also reduce trust in journalism,
including serious and reliable sources. As deepfake technology becomes more
sophisticated, it becomes easier to create fake news stories that look and sound
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convincing. This can make it difficult for people to distinguish between genuine and
fake news, leading to a loss of trust in the media as a whole.

2.3.2. Historical Context

Media manipulation is not a new problem. Image manipulation has been carried
out since photography was born. One well-known example is the iconic portrait
of Abraham Lincoln, which was revealed to be two pictures stitched together [72].
Research of multimedia forensics has been going on for at least 15 years as well. With
the advent of photo-editing software, manipulation of videos and photos has become
commonplace. However, deepfake technology has made manipulation easier and
faster, increasing the availability of malicious manipulation. Deepfake applications,
such as FakeApp [73], FaceSwap [74], and ZAO [75] are easily accessible and usable
by people with no major technological skillset required.

2.3.3. The Race Between Manipulation and Forensics

Deepfakes have gained a lot of attention, which has resulted in more attention
in research of multimedia forensics. Multimedia manipulation and forensics are in
a continuous race, and deep learning based deepfakes require multimedia forensics
research to come up with new solutions. As the technology used to create deepfakes
becomes more advanced, so must the technology used to detect and prevent them.

2.4. Deepfake Generation Methods

Deepfake generation is achieved through the utilization of deep neural networks
that reconstruct entirely new, yet convincingly realistic, faces based on the underlying
characteristics of the original face [1]. There are three common models used in
deepfake creation: autoregressive models, autoencoders, and generative adversarial
networks (GANs), with GANs being the most prominent approach. Visual deepfake
methods can be categorized into different types, including reenactment, face synthesis,
face attribute manipulation, and face-swapping [76].

Face synthesis methods aim to synthesize entire faces without having a specific
target subject in mind. Essentially, the generated persona does not exist in the real
world. This technique can have significant implications in industries such as video
games and modeling. An example of a state-of-the-art face synthesis method is
StyleGAN [77].

Facial attribute manipulation involves modifying various facial characteristics
such as hairstyles, eye color, wrinkles, skin color, age, and gender. There are
several methods available for face attribute manipulation, including StarGAN [78],
BeautyGAN [79], and SC-FEGAN [80]. A popular tool for face attribute manipulation
is FakeApp [73].

Face-swapping techniques involve switching faces from one individual to another
while preserving the expression of the original face. State-of-the-art face-swapping
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methods include FSNET [81] and FaceShifter [82]. Multiple face-swapping
applications, such as ZAO [75], DeepFaceLab [83], and FaceSwap [74], are readily
available for users.

Reenactment techniques involve transferring facial expressions or body motion from
one person to another. This technique was popular even before the advent of deepfakes.
Reenactment methods can be further categorized into facial expression transfer with
neural textures, typical facial expression reenactment (Face2Face), and body motion
reenactment (puppet-master). An example of a well-known Face2Face reenactment
method is FaceSwapNet [84].

2.5. Deepfake Detection

In recent years, various approaches have been developed to combat the threat
deepfakes [85]. To achieve this, deepfake detection methods and datasets have been
developed. Deepfake detection aims to distinguish between real and manipulated
video content, relying on the use of deep learning and computer vision algorithms
to detect inconsistencies in videos that may indicate that they are deepfakes.
Additionally, deepfake datasets have been composed for training these methods and
for benchmarking their performance.

The importance of deepfake detection has not gone unnoticed, with large
technological companies such as Amazon, Meta, and Microsoft hosting deepfake
detection challenges (DFDC) [86][87] to push forward the innovation of deepfake
detection technology.

Development of deepfake detection technology is critical: in 2020, Korshunov et al.
[88] found that human subjects classified 75.5% of good quality deepfakes incorrectly.
However, human subjects were more accurate in classifying videos correctly than the
deepfake detection algorithms. This highlights the need for continued research and
development in this field. The use of deepfake detection methods in conjunction with
human evaluation is the surest way to detect fakes, as deepfake detection algorithms
may have trouble with videos that humans can easily distinguish as fake, while
performing well on videos that are difficult for humans. With the ever-improving
quality of deepfakes, deepfake detection is a constant race to stay on top of upcoming
deepfake technologies [89].

2.5.1. Deepfake Detection Datasets

In recent years, various approaches have been developed to combat the threat of
deepfakes [85]. To achieve this, deepfake detection methods and datasets have been
developed. It is imperative to have a good and representative dataset for evaluating
detection performance [1]. The dataset should contain subjects of varying gender,
ethnicity, pose, synthesis method, and more to evaluate as comprehensively as possible.

To aid in the research and development of better deepfake detection methods, various
deepfake detection datasets have been composed. These datasets consist of a large
number of labeled videos featuring numerous individuals, with some of the videos
modified using deepfake technology. The videos are used to train machine learning
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or deep learning models that aim to classify them correctly. For evaluating deepfake
detection performance, it is recommended to validate across multiple datasets. This
approach takes into account the generalization ability of the detection methods.

The current video deepfake detection datasets are summarized in Table 1.

Database Name Real Fake Actors
UADFV (2018) [90] 49 49 -
Deepfake-TIMIT (DF-TIMIT) (2018) [91] 320 620 32
Fake Faces in the Wild (FFW) (2018) [92] 0 150 -
FaceForensics (2018) [93] 1,004 1,004 1,004
FaceForensics++ (2019) [71] 1,000 4,000 977
Google DeepfakeDetection (DFD) (2019) [94] 363 3,068 28
DFDC preview (2019) [86] 1,131 4,113 66
Celeb-DF (2019) [95] 408 795 13+250
FakeET (FE) (2020) [96] 331 480 40
Deep Fakes (DFS) (2020) [97] 142 142 142
Celeb-DF v2 (2020) [95] 890 5,639 13+59
Deepfake Detection Chal. (DFDC) (2020) [87] 23,654 104,500 960
DeeperForensics-1.0 (DF-1.0) (2020) [98] 50,000 10,000 100
WildDeepFake (WDF) (2021) [99] 3,805 3,509 -
ForgeryNet (2021) [100] 99,630 121,617 5,400+
KoDF (2021) [101] 62,166 175,776 403
FakeAVCeleb (2021) [102] 500 19,500 500

Table 1. List of deepfake video datasets [1][85][89].

2.6. Deepfake Detection Methods

Deepfake detection can be classified into five different categories: general network-
based methods, temporal consistency-based methods, visual artefacts-based methods,
camera fingerprints-based methods, and biological signals-based methods [89]. This
section reviews the five different categories, with a special focus on biological signals-
based methods, particularly photoplethysmography-based methods.

2.6.1. General Network-Based Methods

The first category of deepfake detection methods is general network-based methods.
These methods use face images extracted from the detected video to train a detection
network. The trained network is then applied to all frames of the video, and predictions
are calculated by averaging or voting strategies. These methods are highly dependent
on neural networks and do not require specific distinguishable features. However, the
downside of these methods is that they tend to overfit on specific datasets.
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2.6.2. Temporal Consistency-Based Methods

Temporal consistency-based methods exploit the unique feature of time continuity
in videos. Deepfake algorithms tend to cause inconsistencies between adjacent
frames, which can be exploited in detecting deepfakes. Temporal inconsistency can
be especially noticed in the shift of face position and video flickering. Compared
to general network-based approaches, temporal consistency methods improve the
detection performance by taking the continuity of the video into account. However,
many temporal consistency models tend to destroy the spatial structure of the original
frames when extracting temporal features. Some models avoid destroying the spatial
features, but instead have excessive parameters that make it easier to overfit on the
training dataset.

2.6.3. Visual Artefacts-Based Methods

Visual artefacts-based methods identify discrepancies caused by the blending
operation of the deepfake generation process. These methods detect artefacts such as
face warping, blending boundary artefacts, and head pose inconsistency. As they target
more general artefacts, they tend to have better generalization performance than other
methods. However, as deepfake technology progresses, these artefacts are gradually
disappearing, making these methods less effective.

2.6.4. Camera Fingerprints-Based Methods

Camera fingerprints-based methods aim to recognize when face and background
images are recorded with different devices. Different cameras leave different traces
in the captured images, and these traces can be used for detection. However, camera
fingerprint estimation requires a large number of images captured by different types of
cameras, and there would be a decrease in accuracy when detecting images captured by
unknown cameras. Image postprocessing can also negatively affect the performance
of these methods. Recent research also shows that images can be generated with
simulated camera fingerprints, deceiving methods that rely on camera fingerprints.

2.6.5. Biological Signals-Based Methods

Biological signals-based methods use the hidden biological signals of faces to detect
deepfakes. Deepfake forgery algorithms have a hard time synthesizing these signals,
making them a promising avenue for detection. There are two main approaches to
detect deepfakes with biological signals: eye blinking-based and heart rate-based.
Eye blinking methods use the abnormal blinking frequency of fake videos to detect
them. However, recent deepfake technology has solved the problem of blink frequency,
rendering this method no longer applicable for current deepfake detection tasks.

In the following section, we will focus on photoplethysmography-based methods,
and discuss their potential as a reliable and accurate method for detecting deepfakes.
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2.6.6. Photoplethysmography-Based Methods

Current deepfake technology has trouble fabricating the hidden heart rate of the
face. Photoplethysmography-based approaches use the heart rate from the BVP signal
extracted by rPPG methods to detect deepfake videos. In recent years, there have been
several studies regarding deepfake detection using rPPG signal data.

Fernandes et al. [103] predict the heart rate of deepfakes by using neural ordinary
differential equations [104]. However, no actual deepfake detection was explored.

FakeCatcher [97], uses a combination of the green channel and chrominance-based
PPG, both taken from three face regions: forehead, the left cheek and and the right
cheek. From these signals two classifiers are trained: A support vector machine (SVM)
classifier, and a convolutional neural network (CNN) classifier. For the SVM classifier,
transformations are applied to the PPGs and then signal characteristic feature sets are
extracted from these transformed signals. The CNN is trained on PPG maps. The PPG
maps are created from the green PPG extracted from the forehead region of interest,
mapped into 32 subsections. The subsections are then combined into a single column
of the PPG map, with each column representing a frame of the signal. The results of the
SVM classifier and CNN classifier are then aggregated for a final result. FakeCatcher
reports high detection accuracy even for low-quality videos, with 94,65% accuracy on
the FaceForensics++ [71] dataset and 91,50% on the Celeb-DF [95] dataset.

DeepRhythm [105], uses a motion-magnified spatial-temporal representation
(MMSTR) of the videos and classifies them with a dual-spatial-temporal attentional
network. The MMSTR-method first removes the eyes and the background via
landmark detection. Second, it performs a motion magnification algorithm on the
resulting face. Finally, the motion magnified face is divided into ROI blocks and the
RGB values of each block are averaged. In the resulting motion-magnified spatial-
temporal (MMST) map, each column represents a frame of the video, and each row
represents the motion-magnified temporal variation of one ROI block of the frame.
The dual-spatial attention combines pre-selected ROI selection with an adaptive ROI
selection CNN model. The dual-temporal attention uses a Long short-term memory
(LSTM) model to predict the significance of the frame in fake detection from the
MMST map, and combines it with a per-frame classification of the frame significance
using the Meso-4 [106] architecture. The combined frame significances are used
to weigh the frames contribution to the final classification, with more significant
frames having a higher contribution. Finally, the attentions are combined to create
an attentional MMST map, which is fed to the final deepfake detection model, which
uses ResNet18 [107] for classification. DeepRhythm reports a 98% accuracy on the
FaceForensics++ dataset, and a 64.1 % accuracy on the DFDC dataset.

DeepFakesON-Phys [108] inspired by DeepPhys [61] combines two CNN branches,
a motion model and an appearance model, into a Convolutional Attention Network
(CAN). For the motion model, the difference of the frame and the previous frame
are normalized and fed as input. For the appearance model, the input is the frame
normalized to zero mean and unitary standard deviation. The attention mask coming
from the appearance model is shared with the motion model at two different points of
the CAN. The final output layer of the motion model is the final output of the entire
CAN, depicting the probability of the face being real. The DeepFakesON-Phys reports
accuracy results of 98.7% for the Celeb-DF dataset, and 94.4% for the DFDC dataset.
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Boccignone et al. [109] detect deepfakes by extracting the PPG from 100 ROI
patches in the videos, in overlapping time-windows. From the PPG windows, 12 intra-
patch BVP complexity measures and 8 inter-patch coherence measures are extracted
as features. Using sequential floating forward selection (SFFS) [110] these features
are reduced to 4 complexity features and 2 inter-patch coherence features. A SVM
classifier is then used to classify the features into real or fake, with video-level
predictions made by picking the most predicted label. Boccignone et al. report an
accuracy of 94.45% on the FaceForensics++ dataset.

Liang et al. [111] propose a two-stage network for deepfake detection. They
use a three-dimensional spatial-temporal map to represent the PPG signal, with one
axis corresponding to the frames of the video, one to the combination of ROIs used,
and one to the color channels. The videos are fed into the model in overlapping
windows. The spatial-temporal maps are then filtered in the spatial-temporal filter
module (STFM) to produce a one-dimensional PPG signal. Finally, in their adjacency
interaction module, they measure the linear similarity error of the overlapping parts
of the windows as additional supervisory information to help the STFM filter out the
interference. use a convolutional feature extraction network and a bidirectional LSTM
model to transfer information from adjacent windows to each other. Lian et al. report
a multi-category deepfake categorization accuracy of 98.33% on the six categories
of the FaceForensics++ dataset, showing an impressive ability to categorize the used
deepfake method due to the unique rhythmic patterns of the different methods.

Wu et al. [112], use a similar spatial-temporal maps as Liang et al. [111] to represent
the PPGs. They however improve on their method by Using a mask-guided local
attention module that guides the attention of the spatial-temporal map by using a mask
to select more significant parts of the map. The attention focused spatial-temporal
maps are then fed to a temporal transformer module which exploits the long-distance
information between adjacent video clips. Wu et al. report their method to have
results of 99,38% in multi-category deepfake categorization on the six categories of
the FaceForensics++ dataset.

Jeon et al. [113] explore a method of extracting rPPG signal from both the face and
the neck region and using the band of interest (0-4 Hz) of the discrete fourier transform
(DFT) of the two signals as feature vectors. L2 norm calculation is then performed
on the DFT feature vectors. They report that the L2 norm distributions vary greatly
between real and fake videos, giving a d-prime value of 2.32, showing clear difference
in the distributions. However, the experiment was conducted using a small database
(50 real, 50 fake) of high-resolution (1920x1080) videos, diminishing the reliability of
the results.

Remote photoplethysmography-based detection methods show a good performance
on various datasets, with fairly good generalization. However, the problem with
rPPG methods is that the quality of the rPPG signal suffers in bad quality videos.
Current deepfake algorithms do not account for biological signals. However, research
of biologically plausible generative models is considered FakeCatcher. In the
future, deepfake technology may accomplish realistic synthesized biological signals.
Additionally, methods for modifying the rPPG signal of videos have been researched
[114][115], or even completely synthesizing videos from an image and a rPPG signal
[116], opening the door for spoofing the rPPG deepfake detectors.
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2.6.7. Summary of Deepfake Detection

As the field of deepfakes and deepfake detection evolves, numerous different
solutions are developed, each with their own strengths and weaknesses. It is therefore
beneficial to look into using multiple methods in conjunction, to achieve better
generalized results. A mix of different detectors will have a better result than a single
detector, with the drawback of processing power and complexity. It is important to note
that there is no be-all end-all solution for deepfake detection. Instead, the solutions
must be carefully considered for each use case.

2.7. PPG Modification and Synthetic PPG Generation

Remote PPG systems, especially deep learning-based systems require large amounts
of data for training the models. Moreover, the data needs to have some sort of reference
PPG signals for the loss function. While various datasets such as the COHFACE [117]
dataset exist, some research has been made in artifically modifying the PPG signals of
existing videos. This method would enable the creation of artificial training videos with
accurate rPPG signals. These systems could also be used to mask the heart rate from
videos, for privacy reasons. However, the more nefarious use case of PPG modification
would be to fool rPPG-based deepfake detection systems.

Bousefsaf et al. [68] propose a generation method of synthetic rPPG videos for
creating training data for their model. They use a five-step procedure: A waveform
model that is fitted to real rPPG signals using Fourier series, is used to construct a
generic PPG wave. This wave is then used to create a two-second signal. A linear,
cubic or quadratic tendency is added to the signal, with controlled frequency and
amplitude. The resulting signal is then added to the video using vector repetition.
Finally, random noise simulating the natural fluctuations due to camera noise is added
to the video.

PulseEdit by Chen et al. [114] extracts the rPPG signal from the video, edits it
by detrending and optimizing the similarity to the target rPPG signal, then adjusts
the skin pixels of the face area. PulseEdit greatly increases the mean average error
(MAE) on multiple rPPG methods when removing the rPPG signal. Additionally,
PulseEdit was used to apply real PPG signals into deepfake videos, successfully
reducing the accuracy of the FakeCatcher [97] rPPG-based deepfake detection system
on the modified Celeb-DFv1 [95] dataset.

HeartTrack by Perepelkina et al. [67] is a rPPG extraction model that uses
mathematically generated synthetic PPG signals to augment the training data of the
heart rate estimation CNN. The mathematical model used to generate the signal
considers the heart rate, heart cycle phase, breath cycle phase, magnitude of pulse
signal, dicrotic pulse magnitude, breath signal magnitude, white noise, abd a standard
deviation of the noise as parameters.

Wang et al. [116] generate entire synthetic faces as a means of rPPG dataset creation.
They use real rPPGs that are applied into completely synthetic face videos generated
from images. Results from experiments show that augmenting training data with
synthetic videos can improve the performance on existing datasets.
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Sun et al. present PrivacyPhys [115], a 3D-CNN based method to modify rPPG
signals in facial videos. The method uses a visual fidelity term to ensure that the
video is visually identical to the original, and a rPPG measurement term to ensure
that rPPG measurement methods only capture the new rPPG signal, not the original
one. The video is then updated using projected gradient descent to ensure that only
the skin pixels are changed. Sun et al. report improved results and faster performance
compared to PulseEdit.

While there are multiple studies on modifying the existing PPG of the videos, there
are no studies which explicitly insert synthetic PPGs. However, it can be assumed that
the process is as simple as changing the inserted PPG signals to synthetic ones.
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3. IMPLEMENTATION

The implementation aims to create a classifier that can detect deepfake videos from
authentic, using rPPG signals. The implemented classifier pipeline consists of a few
steps, shown in Figure 7: signal extraction and preprocessing, windowing, feature
extraction, training and finally validation. In this chapter the different steps of the
implementation are explained in detail.

Figure 7. General working principle of the classifier.

3.1. Training Dataset

Training the classifier requires a sufficient amount of data, i. e. videos with real
and fake faces. FaceForensics++ [71] was chosen as the dataset because of the unique
actor per video, making it easier to avoid accidentally classifying by actor.

FaceForensics++ [71] is a dataset of facial forgeries consisting of five different face
forgery methods, applied to 1000 video clips collected from 977 YouTube videos. The
video quality varies from 480p to 1080p. The manipulation methods applied to these
clips are Face2Face [118], FaceSwap [74], FaceShifter [82], DeepFakes [119] and
NeuralTextures [120].

(a) Original (b) Deepfake

Figure 8. Example from the used FaceForensics++ [71]) dataset.

The complete dataset consists of a 1000 video clips for each forgery method, with a
total of 6000 videos. This equal distribution of videos is ideal for comparing classifier
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performance against different forgery methods. However, for reduced processing times
the dataset is reduced to only 250 real videos and 250 videos from the "DeepFakes"
forgery method, with a total of 500 videos. The framerate of the videos is constant, so
there is no need for standardization. Figure 8 shows an example from the used dataset.

3.2. PPG Extraction

In order to extract the rPPG signals from the facial videos, an unsupervised
methodological pipeline called Face2PPG [4] was used. The unsupervised nature of
the pipeline is beneficial, as the supervised rPPG extraction methods are not usually
trained with faces that do not contain rPPG information and may hypothetically extract
rPPG signals from faces where there are none, making classification of signals more
difficult.

The Face2PPG pipeline follows the conventional rPPG method steps: face detection
and alignment, ROI detection and selection, BVP extraction and finally spectral
analysis and postprocessing to calculate parameters such as heart rate. However, for
deepfake detection only the BVP pulse is needed, so the later steps are left out.

Face2PPG implements a robust deep-learning face detection method with the Single
Shot Multibox Detection (SSD) network [24] and a deep learning facial landmark
detector called Deep Alignment Network (DAN) [31]. These algorithms demonstrate a
high performance even in challenging conditions [121]. These landmarks are used for
a geometrical skin segmentation and normalization scheme using 85 facial landmark
points for creating a facial mesh composed of 131 triangles. This facial mesh is then
normalized to a frontal pose.

Figure 9. Example of the extracted rPPG signals using OMIT.

After the face normalization, the RGB signals are averaged from the entire face and
the left and right sides of the face. To the three RGB signals, detrending and bandpass
filtering is then applied to eliminate artifacts and to confine the signal to the frequency
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band of interest. These filtered signals are then transformed to rPPG signals using
Orthogonal Matrix Image Transform (OMIT) [4]. The resulting signals are then used
for the classification and no further filtering is applied, to preserve the differing signal
artifacts extracted from real and deepfake videos.

The resulting signals that are extracted are the green channel averages from the full
face and the left and right sides (gF, gL and gR) and the transformed rPPG signals for
the whole face and both sides using OMIT, POS, CHROM, or LGI method. This totals
to six rPPG signals for each video. Figure 9 shows an example of the extracted signals
when using OMIT.

3.3. Feature Extraction

To train the classifier model, various features are extracted from the rPPG signals,
with 100 from the GREEN channel and 167 from the extracted rPPG signals.
Additionally, the classifier was trained with features from every rPPG method, totaling
768 features. The extracted rPPG signals are first split into overlapping windows. The
overlap for all scenarios is 10 frames, or 0.33 seconds, and the window length is tested
with 4 and 8 seconds.

The extracted features can be classified into intra-patch and inter-patch features,
depending on whether the features are computed from a single ROI patch or from
multiple.

3.3.1. Intra-Patch Features

From each of the windowed signals, intra-patch features were extracted.
The statistical features were computed using the Numpy Python [122] library, and

they include min, max, mean, root mean square (RMS), variance (VAR), standard
deviation (STD), power, peak, peak-to-peak (PTP), crest factor. Additionally, the
SciPy [123] library was used to compute the skew and kurtosis of the signal.

For computing the complexity of the time-series and to extract entropy and
fractal features, AntroPy [124] package was used. The time-series and entropy
features include the zero-crossing rate, Hjorth mobility and complexity, spectral
entropy, approximate entropy, sample entropy, permutation entropy, singular value
decomposition entropy [109]. The fractal features include detrended fluctuation
information, Katz fractal dimension, Petrosian fractal dimension and Higuchi fractal
dimension of the window [109].

For the non-GREEN signals, Neurokit2 [125] and HeartPy [126] were used to
compute various heart related features, including heart rate (HR), breathing rate (BR),
interbeat interval (IBI), standard deviation of NN intervals and differences (SDNN,
SDSD), Poincaré plot information (SD1, SD2, SD1SD2), difference between RR
intervals (pNN20 and pNN50), frequency domain components (VLF, LF, HF, UHF),
and heart rate mean absolute deviation (HR_MAD) [127][128].
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3.3.2. Inter-Patch Features

The difference of the right and left sides of the intra-patch features are then computed
as additional inter-patch features. Additionally, the spectral similarity and mutual
information of the right and left signals are calculated using Scikit-learn [129] and
SciPy. The mean and standard deviation of these values are then used as additional
features [109].

3.4. PPG Classifier

For the classification of the feature set a Python library XGBoost [5] was used,
along with the Scikit-learn [129] library. XGBoost is a gradient boosted decision
tree (GBDT) machine learning library. GBDT is a decision tree ensemble learning
algorithm for classification, meaning it combines multiple machine learning algorithms
to obtain better results. In gradient boosting, the process of additively generating
weak models is formalized as a gradient descent algorithm over an objective function.
Each model is trained to correct the errors of previous models, gradually increasing
prediction accuracy. In the implementation, the XGBoost classifier is used with the
default parameters of the library.
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4. EVALUATION

The classifier is evaluated by cross-validation, with the 500-video dataset split by
stratified group k-fold split into six folds. The windows of a single video make up one
group of the split. Each split, one fold is left as test data and others are used for training.
The resulting window predictions are then pooled for each video to determine the per-
video prediction by majority vote. The percentage of windows agreeing with the result
is the video prediction confidence. For each rPPG method and window length, cross-
validation is performed separately.

The results of the classifier are graphed on a receiver operating characteristic
(ROC) curve, to illustrate the ability of the classifier. The ROC curve consists of
the true positive rate (TPR) plotted against the false positive rate (FPR) at various
threshold settings. From the ROC curve, the area under the curve (AUC) is calculated
for a numerical metric of performance, invariant of the classification threshold.
Additionally, the balanced accuracy of the system is calculated. All the metrics are
averaged over the six folds of the cross-validation.

All of the ROC curves for the results listed are included in the appendix.

4.1. Results

This section lists all of the results for each window length.

4.1.1. 8 Second Window

With the 8 second windows, the total number of windows in the dataset was 13291
windows. The results are listed in Table 2. The best results for each category are
marked bold, excluding "All methods" and average file confidence.

rPPG method window
AUC %

window
ACC %

video
AUC %

video
ACC

video
conf. %

ALL 90 ±2 % 82 % 85 ±4 % 85 % 94 %
OMIT+GREEN 89 ±5 % 82 % 83 ±6 % 87 % 95 %
POS+GREEN 90 ±3 % 81 % 81 ±4 % 81 % 94 %
LGI+GREEN 90 ±2 % 82 % 85 ±4 % 85 % 95 %
CHROM+GREEN 89 ±5 % 81 % 83 ±4 % 83 % 94 %
GREEN 89 ±4 % 81 % 84 ±4 % 84 % 95 %
OMIT 62 ±4 % 59 % 60 ±6 % 60 % 84 %
POS 64 ±5 % 61 % 64 ±5 % 64 % 85 %
LGI 73 ±2 % 66 % 68 ±4 % 68 % 89 %
CHROM 58 ±3 % 57 % 61 ±2 % 61 % 83 %

Table 2. Results for 8 second windows cross validation.

Figure 10 shows the ROC curves for the LGI + GREEN and LGI methods using 8
second windowing.
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Figure 10. 8 second window ROC curve for LGI + GREEN and LGI

(a) 8 seconds, LGI + GREEN (b) 8 seconds, LGI

4.1.2. 4 Second Window

With the 4 second windows, the total number of windows in the dataset was 19251
windows. The results are listed in Table 3. The best results for each category are
marked bold, excluding "All methods" and average file confidence.

rPPG method window
AUC %

window
ACC %

video
AUC %

video
ACC

video
conf. %

ALL 89 ±3 % 81 % 86 ±4 % 86 % 93 %
OMIT+GREEN 88 ±3 % 81 % 85 ±4 % 85 % 92 %
POS+GREEN 88 ±3 % 80 % 84 ±5 % 84 % 91 %
LGI+GREEN 88 ±3 % 81 % 86 ±5 % 86 % 88 %
CHROM+GREEN 86 ±4 % 78 % 83 ±4 % 83 % 91 %
GREEN 85 ±3 % 78 % 81 ±4 % 81 % 94 %
OMIT 58 ±6 % 55 % 58 ±7 % 58 % 74 %
POS 63 ±2 % 59 % 61 ±4 % 61 % 73 %
LGI 73 ±7 % 67 % 69 ±6 % 69 % 81 %
CHROM 58 ±5 % 56 % 61 ±6 % 61 % 74 %

Table 3. Results for 4 second windows cross validation.

Figure 11 shows the ROC curves for the LGI + GREEN and LGI methods using 4
second windowing.

4.1.3. 2 Second Window

With the 2 second windows, the total number of windows in the dataset was 22225
windows. The results are listed in Table 4. The best results for each category are
marked bold, excluding "All methods" and average file confidence.
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Figure 11. 4 second window ROC curve for LGI + GREEN and LGI

(a) 4 seconds, LGI + GREEN (b) 4 seconds, LGI

rPPG method window
AUC %

window
ACC %

video
AUC %

video
ACC

video
conf. %

ALL 88 ±2 % 80 % 86 ±3 % 86 % 89 %
OMIT+GREEN 86 ±2 % 78 % 85 ±5 % 85 % 88 %
POS+GREEN 87 ±3 % 79 % 84 ±2 % 84 % 88 %
LGI+GREEN 87 ±2 % 79 % 83 ±5 % 83 % 88 %
CHROM+GREEN 85 ±3 % 76 % 83 ±4 % 83 % 87 %
GREEN 85 ±3 % 77 % 82 ±4 % 82 % 86 %
OMIT 59 ±3 % 57 % 61 ±4 % 61 % 72 %
POS 62 ±4 % 58 % 63 ±7 % 63 % 70 %
LGI 73 ±4 % 66 % 72 ±4 % 72 % 77 %
CHROM 58 ±4 % 56 % 62 ±7 % 62 % 71 %

Table 4. Results for 2 second windows cross validation.

Figure 12 shows the ROC curves for the LGI + GREEN and LGI methods using 2
second windowing.

4.2. Analysis

From the results we can see that the classification accuracy is fairly similar for all the
methods that include GREEN, especially OMIT, POS and LGI. Notable, the GREEN
method alone is able to classify the videos with decent accuracy and the addition
of a more sophisticated method does not make much of a difference. In contrast,
the rPPG methods without GREEN perform significantly worse than the GREEN
signal. This would suggest that the rPPG conversion methods remove relevant features
from the signals that can be used by the classification. It can be noted that the LGI
method performs better than the other conversion methods, hinting that it preserves the
classifiable features of the signal better.
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Figure 12. 2 second window ROC curve for LGI + GREEN and LGI

(a) 2 seconds, LGI + GREEN (b) 2 seconds, LGI

It can also be noted that as the heart related features are not extracted from the
GREEN signal, the classifier is not able to use them efficiently for the classification.
This is an unexpected resolution, as the heart rate and other heart related features are
expected to contain valuable information for classification. By observing the feature
importances given by the XGBoost classifier, we find that the features with the highest
importances often contain the Hjorth mobility and complexity, various entropies
(approximate, SVD, permutation, sample) and the fractal dimensions (Petrosian,
Higuchi, Katz). The most important features are often intra-patch features, with ROI
difference features rarely having high effect in the classification. These results are
in consensus with the results obtained by Boccignone et. al. [109], who also report
intra-patch complexity parameters to have high significance.

Remarkably, tests with two second windows have almost as good performance as
with four or eight seconds. This can be assumed to be the cause of a larger training
dataset due to the larger number of windows. However, the benefit of a shorter window
length and especially shorter video length can be substantial in many use cases, making
the results interesting. It should be noted that the average file classification confidence
decreases with the window length.

One large shortcoming of this work is the small dataset and the usage of only
one deepfake method, making the classifier unlikely to be able to generalize to other
methods. Testing with larger datasets and other methods is a clear future development
path of this work.

It might also be beneficial to prune out unnecessary features that have less or no
effect on the classification result, to improve the performance and speed of the model.
Additionally, the computational performance of the system and other rPPG-based
deepfake detection methods could be an interesting and beneficial area of research.
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4.2.1. Comparison with Other Research

As shown by Table 5, the resulting classifier performs worse compared to
Boccignone et. al. [109], on the FaceForensics++ "DeepFakes" dataset. The result is
expected, as the amount of training data is less than the full 1000 videos used by [109].
It should be noted that the AUC comparison is only for the K-fold cross-validation of
the "DeepFakes" set, not the whole dataset. The classifier has adequate performance
for the small training dataset. The worse performance of the can potentially be because
of the small number of "patches", as the difference of patch features is diminished by
the already largely averaged patch of half a face, bringing the averages closer to the
average of the whole face. Inversely, the Face2PPG is a more sophisticated system for
extracting the rPPG signals, and the quality of the actual signal is more likely closer to
the actual heart rate.

Method AUC %
Ours 85 ±4 %
[109] 90.68 ±0.61 %

Table 5. Comparison of the classifier with another purely rPPG signal features-based
work by Boccignone et. al. [109].
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5. SUMMARY

The objective of this thesis was to design a classifier for deepfake videos using
remote photoplethysmography as the main classification metric, and to study the effect
of different RGB to BVP methods and of different feature window lengths on the
classification performance. The existing literature of remote photoplethysmography,
deepfakes and deepfake detection was studied and an implementation based on
Face2PPG and XGBoost was developed. The resulting classifier was tested with
different RGB to BVP methods including GREEN, OMIT, POS, LGI and CHROM,
and with window lengths of 2, 4 and 8 seconds.

The results showed that the implementation is capable of classifying deepfake videos
with 85 % accuracy, somewhat comparable to another similar method trained on a
larger dataset. Of the tested RGB to BVP methods, OMIT, POS and LGI were found
to be mostly identical in performance. However, the GREEN signal was found to be
important for classification. LGI was also found to be slightly better than the other
methods when the GREEN signal was not present. For window length, no minimal
difference was found in the classification accuracy even with a window length of only
two seconds. All results point out that the actual heart rate extracted from the signal
is not significant in the performance of the developed classifier, instead it focuses on
other features of the extracted signal.

The developed classifier was trained with a small dataset of only one deepfake
method, making it likely not very good at generalization. The classifier works as a
proof-of-concept for later development of similar, better models.
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7. APPENDICES

Figure 13. 8 second window ROC curves with no GREEN

(a) 8 seconds, OMIT (b) 8 seconds, POS

(c) 8 seconds, LGI (d) 8 seconds, CHROM
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Figure 14. 8 second window ROC curves

(a) 8 seconds, All methods (b) 8 seconds, OMIT+GREEN

(c) 8 seconds, POS+GREEN (d) 8 seconds, LGI+GREEN

(e) 8 seconds, CHROM+GREEN (f) 8 seconds, GREEN
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Figure 15. 4 second window ROC curves with no GREEN

(a) 4 seconds, OMIT (b) 4 seconds, POS

(c) 4 seconds, LGI (d) 4 seconds, CHROM
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Figure 16. 4 second window ROC curves

(a) 4 seconds, All methods (b) 4 seconds, OMIT+GREEN

(c) 4 seconds, POS+GREEN (d) 4 seconds, LGI+GREEN

(e) 4 seconds, CHROM+GREEN (f) 4 seconds, GREEN
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Figure 17. 8 second window per-video ROC curves with no GREEN

(a) 8 seconds, OMIT (b) 8 seconds, POS

(c) 8 seconds, LGI (d) 8 seconds, CHROM
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Figure 18. 8 second window per-video ROC curves

(a) 8 seconds, All methods (b) 8 seconds, OMIT+GREEN

(c) 8 seconds, POS+GREEN (d) 8 seconds, LGI+GREEN

(e) 8 seconds, CHROM+GREEN (f) 8 seconds, GREEN
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Figure 19. 4 second window per-video ROC curves with no GREEN

(a) 4 seconds, OMIT (b) 4 seconds, POS

(c) 4 seconds, LGI (d) 4 seconds, CHROM
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Figure 20. 4 second window per-video ROC curves

(a) 4 seconds, All methods (b) 4 seconds, OMIT+GREEN

(c) 4 seconds, POS+GREEN (d) 4 seconds, LGI+GREEN

(e) 4 seconds, CHROM+GREEN (f) 4 seconds, GREEN


	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	

	
	
	
	
	
	
	
	

	

	
	
	
	
	
	

	

	
	
	
	
	

	
	


	
	REFERENCES
	

