15 research outputs found

    The Pheromone-Based Harmony Search Algorithm for the Asymmetric Traveling Salesman Problem

    Get PDF
    This paper presents a modification of the Harmony Search algorithm (HS) adjusted to an effective solving of instances of the Asymmetric Traveling Salesman Problem. The improvement of the technique spans the application of a pheromone, which, by serving the role of long-term memory, enables the improvement of the quality of determined results, especially for tasks characterized by a significant number of vertices. The publication includes the results of tests that suggest the achievement of effectiveness improvement through the modification of the HS and recommendations concerning the proper configuration of the algorithm

    Multiple probabilistic traveling salesman problem in the coordination of drug transportation - In the context of sustainability goals and Industry 4.0

    Get PDF
    Improving the effectiveness of route planning, especially in road transport deliveries is a challenge we need to face in the context of advancing climate change and the sustainable development goals. The main aim of the paper is to demonstrate the above average and utilitarian significance of the multiple probabilistic traveling salesman problem (MPTSP) in the coordination and modeling of sustainable product transportation, which is a novelty at the theoretical, conceptual, methodological and empirical level. We propose a new, hybrid algorithm of solving MPTSP instances (it connects harmony search, k-means and 2-opt), which can be successfully used in economic practice for coordination and modeling of Industry 4.0. The effectiveness of proposed approach is tested using a case study of drugs distribution services and datasets obtained from the transportation enterprise located in Poland. The study focuses on the issue of planning routes, with particular emphasis on the changing demand of customers. It should be stressed that this work may be of interest to researchers but also to management practitioners. The value added of this research lies in the innovative modeling the coordination of sustainable drug transportation as an instance of MPTSP and proposing an effective method to solve it. The main research results confirm that proposed method contributes to overall sustainability of studied supply chain

    An evolutionary approach to the vehicle route planning in e-waste mobile collection on demand

    Get PDF
    The article discusses the utilitarian problem of the mobile collection of waste electrical and electronic equipment. Due to its NP-hard nature, implies the application of approximate methods to discover suboptimal solutions in an acceptable time. The paper presents the proposal of a novel method of designing the Evolutionary and Memetic Algorithms, which determine favorable route plans. The recommended methods are determined using quality evaluation indicators for the techniques applied herein, subject to the limits characterizing the given company. The proposed Memetic Algorithm with Tabu Search provides much better results than the metaheuristics described in the available literature

    Reactive approach for automating exploration and exploitation in ant colony optimization

    Get PDF
    Ant colony optimization (ACO) algorithms can be used to solve nondeterministic polynomial hard problems. Exploration and exploitation are the main mechanisms in controlling search within the ACO. Reactive search is an alternative technique to maintain the dynamism of the mechanics. However, ACO-based reactive search technique has three (3) problems. First, the memory model to record previous search regions did not completely transfer the neighborhood structures to the next iteration which leads to arbitrary restart and premature local search. Secondly, the exploration indicator is not robust due to the difference of magnitudes in distance matrices for the current population. Thirdly, the parameter control techniques that utilize exploration indicators in their feedback process do not consider the problem of indicator robustness. A reactive ant colony optimization (RACO) algorithm has been proposed to overcome the limitations of the reactive search. RACO consists of three main components. The first component is a reactive max-min ant system algorithm for recording the neighborhood structures. The second component is a statistical machine learning mechanism named ACOustic to produce a robust exploration indicator. The third component is the ACO-based adaptive parameter selection algorithm to solve the parameterization problem which relies on quality, exploration and unified criteria in assigning rewards to promising parameters. The performance of RACO is evaluated on traveling salesman and quadratic assignment problems and compared with eight metaheuristics techniques in terms of success rate, Wilcoxon signed-rank, Chi-square and relative percentage deviation. Experimental results showed that the performance of RACO is superior than the eight (8) metaheuristics techniques which confirmed that RACO can be used as a new direction for solving optimization problems. RACO can be used in providing a dynamic exploration and exploitation mechanism, setting a parameter value which allows an efficient search, describing the amount of exploration an ACO algorithm performs and detecting stagnation situations

    Evolving comprehensible and scalable solvers using CGP for solving some real-world inspired problems

    Get PDF
    My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative Cartesian Genetic Programming can encode loops and nested loop with their termination criteria, making susceptible to evolutionary modification the whole programming construct. This newly developed extension and its application to metaheuristics are demonstrated to discover effective solvers for NP-hard and discrete problems. This thesis also extends Cartesian Genetic Programming and Iterative Cartesian Genetic Programming to adapt a hyper-heuristic reproductive operator at the same time of exploring the automatic design space. It is demonstrated the exploration of an automated design space can be improved when specific types of active and non-active genes are mutated. \\ A series of rigorous empirical investigations demonstrate that lowering the comprehension barrier of automatically designed algorithms can help communicating and identifying an effective and ineffective pattern of primitives. The complete evolution of loops and nested loops without imposing a hard limit on the number of recursive calls is shown to broaden the automatic design space. Finally, it is argued the capability of a learning objective function to assess the scalable potential of a generated algorithm can be beneficial to a generative hyper-heuristic

    Power transmission planning using heuristic optimisation techniques: Deterministic crowding genetic algorithms and Ant colony search methods

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The goal of transmission planning in electric power systems is a robust network which is economical, reliable, and in harmony with its environment taking into account the inherent uncertainties. For reasons of practicality, transmission planners have normally taken an incremental approach and tended to evaluate a relatively small number of expansion alternatives over a relatively short time horizon. In this thesis, two new planning methodologies namely the Deterministic Crowding Genetic Algorithm and the Ant Colony System are applied to solve the long term transmission planning problem. Both optimisation techniques consider a 'green field' approach, and are not constrained by the existing network design. They both identify the optimal transmission network over an extended time horizon based only on the expected pattern of electricity demand and generation sources. Two computer codes have been developed. An initial comparative investigation of the application of Ant Colony Optimisation and a Genetic Algorithm to an artificial test problem has been undertaken. It was found that both approaches were comparable for the artificial test problem.EPRSC and National Grid Company pl

    Sine Cosine Algorithm for Optimization

    Get PDF
    This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA
    corecore