
SpringerBriefs in Applied Sciences and Technology
Computational Intelligence

Jagdish Chand Bansal · Prathu Bajpai ·
Anjali Rawat · Atulya K. Nagar

Sine Cosine Algorithm
for Optimization

SpringerBriefs in Applied Sciences and Technology

Computational Intelligence

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

SpringerBriefs in Computational Intelligence are a series of slim high-quality
publications encompassing the entire spectrum of Computational Intelligence.
Featuring compact volumes of 50 to 125 pages (approximately 20,000–45,000
words), Briefs are shorter than a conventional book but longer than a journal article.
ThusBriefs serve as timely, concise tools for students, researchers, and professionals.

Jagdish Chand Bansal · Prathu Bajpai ·
Anjali Rawat · Atulya K. Nagar

Sine Cosine Algorithm
for Optimization

Jagdish Chand Bansal
Department of Mathematics
South Asian University
New Delhi, Delhi, India

Anjali Rawat
Department of Mathematics
National Institute of Technology
Aizawl, Mizoram, India

Prathu Bajpai
Department of Mathematics
South Asian University
New Delhi, Delhi, India

Atulya K. Nagar
School of Mathematics, Computer Science
and Engineering
Liverpool Hope University
Liverpool, UK

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2625-3704 ISSN 2625-3712 (electronic)
SpringerBriefs in Computational Intelligence
ISBN 978-981-19-9721-1 ISBN 978-981-19-9722-8 (eBook)
https://doi.org/10.1007/978-981-19-9722-8

© The Author(s) 2023. This book is an open access publication.
OpenAccess This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-9722-8
http://creativecommons.org/licenses/by/4.0/

Foreword

How to solve real-world complex optimization problems is important in applied
systems analysis. In such applications, one often wants an algorithm which is easy
to implement, uses fewer parameters, and has an efficient optimization capability;
all of this makes sine cosine algorithm a good candidate for such scenarios.

The area of meta-heuristics has an abundance of swarm intelligence and evolu-
tionary algorithms in the literature. As a population-based meta-heuristic sine cosine
algorithm, although relatively nascent, is becoming popular in the research commu-
nity. This monograph is an outcome of the constant efforts from the side of Dr.
Jagdish Chand Bansal and Professor Atulya K. Nagar. The idea behind this book is
to present a very focused volume discussing the sine cosine algorithm in a variety of
optimization problems, like single objective optimization problems, multi-objective
optimization problems, and combinatorial or discrete optimization problems. This
book attempts to capture the attentionof the research communities, engaged in diverse
disciplines, who wish to incorporate the robust and dynamic nature of the meta-
heuristic algorithms and are ready to celebrate the inherent randomness of these
modern optimization tools.

I have many years of academic association, and joint publications, with Professor
Nagar, and our work has always been on novel as well as well-focused research
themes. Continuing in the same vein, it has been a real delight as I embarked on the
pleasant journey of reading through this interesting book and have been convinced
that this is one of the niche sources of introductory material on this topic to be
found. The book’s title, “Sine Cosine Algorithm for Optimization,” aptly describes
its aim and objectives, and the authors have achieved their motivation remarkably
successfully providing a good coverage of theory and applications. The chapters are
exemplary in giving useful insights for applications of the framework covered. Those
of us who have devoted a substantial portion of our academic life and energies to
the study and elaboration of optimization methods and mathematical sciences often
wish we had a simple way of communicating and passing along the core concepts
to newcomers and researchers to the topic area. I highly recommend this book for
students and researchers who want to get into the basics of sine cosine optimization
technique and who have an interest in equipping themselves to probe more deeply

v

vi Foreword

into this topic for a variety of application interests. If my reckoning is not completely
amiss, those who read this monograph will find abundant reasons for sharing my
conviction that we owe its authors a true debt of gratitude for putting this work
together.

Prof. Kumbakonam Govindarajan
Subramanian

Formerly Professor at the Department
of Mathematics

Madras Christian College
Chennai, India

Distinguished Senior Visiting Professor
at the School of Mathematics

Computer Science and Engineering at
Liverpool Hope University, Hope Park

Liverpool, UK

Preface

Meta-heuristic algorithms are gaining popularity in various disciplines of science and
engineering. In recent years, the need for robust optimization algorithms has drawn
significant attention from the research community in developing new intelligent opti-
mization techniques. Sine cosine algorithm is a relatively new algorithm in the field
of meta-heuristic algorithms. Easy implementation, fewer parameters, and efficient
optimization capabilities make sine cosine algorithm a good candidate for solving
real-world complex optimization problems. Therefore, this book presents the latest
developments in the sine cosine algorithm. The book emphasizes introducing sine
cosine algorithm in the arena of the single-objective optimization problem, multi-
objective optimization problems, and discrete optimization problems. The book also
discusses the practical applications of the sine cosine algorithm. It includes recent
research by various researchers and authors to give an overview of the latest develop-
ments to the readers. The book’s content follows a logical order, and utmost care has
been taken to make this book appealing to readers of various disciplines of science
and engineering. This book is intended to serve as an important reference for post-
graduate level students and researchers who wish to utilize sine cosine algorithm as
a tool for optimization in their academic and research work.

New Delhi, India
New Delhi, India
Aizawl, India
Liverpool, UK
October 2022

Jagdish Chand Bansal
Prathu Bajpai
Anjali Rawat

Atulya K. Nagar

Acknowledgements The idea of presenting this particular book would not be possible without
the financial support of Liverpool Hope University, Liverpool, UK. We would like to thank our
publisher Springer Nature for constantly motivating us for writing this volume. We acknowledge
the support of Shitu Singh, A. M. Mohiuddin, and Probhat Pouchang for their useful comments and
discussions to present this book in a more reader friendly manner.

vii

Contents

1 Introduction . 1
References . 11

2 Sine Cosine Algorithm . 15
2.1 Description of the Sine Cosine Algorithm (SCA) 16
2.2 Parameters Associated with the SCA . 19
2.3 Biases of Sine Cosine Algorithm . 23

2.3.1 Experimental Setup . 24
2.4 Numerical Example . 25
2.5 Source Code . 30
Reference . 33

3 Sine Cosine Algorithm for Multi-objective Optimization 35
3.1 Multi-objective Optimization Problems (MOOP) 36
3.2 Multi-objective Optimization Techniques (MOOT) 37

3.2.1 Some Concepts and Terminologies . 38
3.2.2 Different Approaches of Solving MOOP 40

3.3 Multi-objective SCA . 44
3.3.1 Aggregation-Based Multi-objective Sine Cosine

Algorithm and Their Applications . 46
3.3.2 Non-dominance Diversity-Based Multi-objective

SCA and Its Applications . 49
3.4 Conclusion . 61
References . 61

4 Sine Cosine Algorithm for Discrete Optimization Problems 65
4.1 Discrete Optimization Models . 66
4.2 Discrete Optimization Methods . 69
4.3 Binary Versions of Sine Cosine Algorithm . 70

4.3.1 Binary Sine Cosine Algorithm Using Round-Off
Method . 71

ix

x Contents

4.3.2 Binary Sine Cosine Algorithm Using Transfer
Functions . 73

4.3.3 Binary Sine Cosine Algorithm Using Percentile
Concept . 76

4.4 Discrete Versions of Sine Cosine Algorithm . 78
References . 83

5 Advancements in the Sine Cosine Algorithm . 87
5.1 Modifications in the Position Update Mechanism 88
5.2 Opposition-Based Learning Inspired Sine Cosine Algorithm 92
5.3 Quantum-Inspired Sine Cosine Algorithm . 93
5.4 Covariance Guided Sine Cosine Algorithm . 97
5.5 Hybridization of SCA with Other Meta-heuristics 98
References . 101

6 Conclusion and Further Research Directions . 105
References . 106

Index . 107

Chapter 1
Introduction

Decision-making is a difficult task, and it requires careful analysis of the underlying
problem at hand. The presence of various alternative solutions makes the decision-
making problem even more difficult as all the available solutions are not optimal.
Since resources, time, and money are limited, or even sometimes scarce, the quest
for optimal choices is of paramount importance for the welfare of the mankind.
Optimization is amathematical tool and an indispensable part of the decision-making
process which assists in finding optimal (or near optimal) solutions from the set
of available solutions. Optimization as a subject spans over almost every field of
science and engineering and ismainly concernedwith planning and design problems.
For instance, in industrial design, corporate planning, budget planning, or holiday
planning, optimization plays an important part in the decision-making. The need
of optimization as a technique cannot be separated from different fields, such as
computer science, engineering, medicine science, economics, and many more others
disciplines. Advancements in the computational capabilities and availability of high-
speed processors in modern computers have made optimization techniques more
user friendly to tackle real-world optimization problems. In addition, easy access
to advanced computer simulation techniques has prompted researchers to look for
more generalized optimization methods which involve high computations, and are
capable of handling more complex real-world optimization problems.

A general optimization problem can be expressed in the following general form1:

Minimize Fi (X̄) i = 1, 2, . . . ,M

subject to g j (X̄) ≤ 0 j = 1, 2, . . . , J

hk(X̄) = 0 k = 1, 2, . . . , K

(1.1)

1 Optimization problems can be maximization problems also with the inequalities expressed as the
other way around.

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_1&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_1

2 1 Introduction

where Fi (X̄) is referred as objective function or cost function in Eq. (1.1) and M
denotes the number of objective functions in given optimization problem. When
M = 1, optimization problem is termed as single-objective optimization problem,
and when M > 1, optimization problem is referred as multi-objective optimization
problem. g j (X̄) is called inequality constraints, s.t. 1 ≤ j ≤ J , and J denotes the
number of inequality constraints. hk(X̄) is equality constraints, s.t. 1 ≤ k ≤ K , and
K denotes the number of equality constraints.

Fi (X̄), g j (X̄), and hk(X̄) are functions of the vector X̄ = (x1, x2, . . . xn) ∈ S. X̄
is called decision (or design) vector, and the components xi ∈ X̄ are called decision
(or design) variables. S is referred as decision space (or design space), and it can be
discrete, continuous, or combination of both. Based on the underlying applications,
the term design or decision (vector, variable, and space) is used interchangeably. In
this book, the terms decision vector, decision variables, and decision space will be
used in all further discussions.

The optimization problem given by Eq. (1.1) describes a decision problem, where
we are required to find the “optimal” decision vector X out of all possible vectors
in the decision space (S). The process of optimizing (maximizing or minimizing)
the objective function of an optimization problem by determining the optimal values
of the decision variables involved in it is called optimization. There are different
categories of optimization problems. This categorization of optimization problems
can be done in several ways, e.g., based on the number of objective functions, the
nature of the objective functions, and the nature of the constraints. For instance,
if a problem involves exactly one objective function, it is called a single-objective
optimization problem. If the number of objective functions is at least two or more
than two, it is referred as a multi-objective optimization problem. An optimization
problem can also be categorized as a real, discrete, or mixed-integer problem based
onwhether the underlying decision variables are real, discrete, ormixed-integer type,
respectively.When there are no conditions or constraints on the decision variables, the
optimization problem is called unconstrained; otherwise, it is termed as constrained
optimization problem. A detailed categorization of various optimization problems is
presented in Table 1.1. For more specialized discussions of thementioned categories,
an interested reader can refer to two textbooks, Optimization for Engineering Design
Algorithms and Examples by [1] and Operations research: an introduction by [2].

Different optimization methods (or techniques) are available in the literature to
address various types of optimization problems as mentioned in Table 1.1. How-
ever, selecting a suitable optimization method for an optimization problem is a chal-
lenging task, as there are no general guidelines for algorithm selection for a given
optimization problem. Moreover, there is no efficient general algorithm for solving
non-deterministic polynomial time hard or NP-hard problems. In general, optimiza-
tion methods can be classified into the following two types:

1. Traditional (deterministic) methods: Traditional optimization methods start
from a randomly chosen initial solution and use specific deterministic rules for
changing the solutions’ position in the search space.Most of thesemethods utilize
the gradient information of the objective function. The initial solutions always

1 Introduction 3

Table 1.1 Classification of optimization problems

Classification criterion Optimization problem Features

Nature of objective function
and/or constraints

Linear Linear objective function and
constraints

Nonlinear Nonlinear objective unction
and/or constraints

Convex Convex objective function and
feasible set

Quadratic Quadratic objective function
and linear constraints

Stochastic Probabilistically determined
problem variables and/or
parameters

Deterministic Decision variables and/or
parameters are known
accurately

Non smooth Either objective function or the
constraints, or both, are not
differentiable

Nature of the search space Discrete Discrete decision variables

Continuous Real decision variables

Mixed integer Both real and integer decision
variables

Nature of the optimization
problem

Dynamic Objective function varying
with time

Multi-objective More than one objective
function

Single-objective Exactly one objective function

Existence of constraints Constrained At least one constraint is
involved

Unconstrained No constraints

follow the same path for the same starting position and converge to the fixed final
position, irrespective of the number of runs. These methods provide a mathemat-
ical guarantee that a given optimization problem can be solved with a required
level of accuracy within a finite number of steps. There exist sufficient litera-
ture on traditional optimization methods where different methods are capable of
handling various types of optimization problems. Based on the type of problem,
traditional optimization techniques may be identified as methods for solving the
linear programming problems (LPP), nonlinear programming problems (NLPP),
and specialized programming problems. However, traditionalmethods sometimes
fail to handle optimization problems. Usually, these methods rely on the proper-
ties like continuity, differentiability, smoothness, and convexity of the objective
function and constraints (if any). The absence of any of these properties makes

4 1 Introduction

traditional methods incapable of handling such optimization problems. More-
over, there are optimization problems for which no information is available about
the objective function; these problems are referred as the black-box optimization
problem. Traditional optimization methods or deterministic methods also fail to
handle such black-box problems.
Combinatorial optimization problems such as traveling salesman problem, N-
vortex problem, and halting problem are non-deterministic polynomial hard (or
NP-hard) problems. Traditional optimization methods are incapable of solving
these NP-hard problems within a polynomial-bound time and require an expo-
nential time. The time complexity of the traditional methods makes these meth-
ods impractical to use. The failure of the deterministic or conventional methods
inspired researchers to look for some non-deterministic or unconventional meth-
ods, which are statistically reliable, fast, and robust in dealing with a larger class
of optimization problems. Stochastic methods are part of these unconventional
methods, which have partially proven their superiority over traditional methods
in terms of robustness, computational cost-effectiveness, and speed. However, the
wide applicability of stochasticmethods comes at the core of reliability. Stochastic
methods are discussed in detail in the next section.

2. Stochastic (non-deterministic) methods: Stochastic or non-deterministic opti-
mization methods contain inherent components of randomness and are iterative
in nature. These methods utilize stochastic equations which are based on different
stochastic processes and utilize different probability distributions. The stochastic
nature of these equations governs the path of the solutions in the search space. In
different runs of these algorithms, a solution can follow different paths, despite
having a fixed initial position.
Stochastic optimization methods do not always guarantee convergence to a fixed
optimal position in the search space. In fact, these methods look for near optimal
solution in a predefined fixed number of iterations. N number of independent runs
are simulated to ensure a statistical reliability to thesemethods, and in general, the
number of runs N = 30 or 51 is used to support the claim of near optimal solution.
The trade-off for sacrificing the optimal solution by stochastic methods is the fast
convergence speed, low computational cost, and less time complexity. Random
number generators or pseudo-random number generators play an important role
in the success of the stochastic methods. A brief classification of optimization
techniques and their methods are illustrated in the (Fig. 1.1).

Stochastic methods are a broad area of study. These methods are based on differ-
ent stochastic processes, and discussing about all these methods and techniques is
beyond the scope of this book. An interested reader can refer to any advanced book
like stochastic optimization by [3] for strengthening their knowledge about the sub-
ject. However, this book provides a piece of decent information about the stochastic
techniques and focuses on the meta-heuristic algorithms, particularly the sine cosine
algorithm (SCA) [4]. Meta-heuristic algorithms are one class of the stochastic meth-
ods. But before discussing about meta-heuristic algorithms, let us discuss first about
heuristic algorithms.

1 Introduction 5

Fig. 1.1 Classification of optimization technique

The word heuristic means ‘to find’ or ‘to discover by trial and error’. A heuristic
technique or simply a heuristic is an experience-based approach that compromises
accuracy, optimality, or precision for speed to solve a problem faster and more effi-
ciently. In layman’s language, a thumb rule, an intelligent guess, an intuitive judg-
ment, or common sense can be considered as metaphors for the word heuristics.
Random search algorithms, divide and conquer algorithm, nearest neighbor heuris-
tic, savings algorithm, and best first search method are some examples of heuristic
algorithms. The heuristic algorithms are known to be very specific in their search
process for the solutions and are problem specific.

Thewordmeta—means ‘beyond’ or ‘higher level’, andmeta-heuristics algorithms
are higher versions of heuristics algorithms. Meta-heuristic algorithms are advanced
optimization algorithms and also known as modern optimization techniques. These
algorithms utilize more information of the search process and less or no information
of the problem; i.e., these algorithms are actually problem independent. Because
of their negligible dependency on the objective function in an optimization prob-
lems, meta-heuristic algorithms are well-equipped in handling complex optimiza-
tion problems and are applicable to a wider class of problems. Meta-heuristics or

6 1 Introduction

meta-heuristic algorithms are fast, efficient, and robust in handling highly nonlinear,
non-differentiable, and even black-box optimization problems. Inexpensive compu-
tational cost or less computational complexity is one of themajor advantages of using
meta-heuristic algorithms.

The basic idea behind the working of meta-heuristic algorithms is simple and
easy to implement. Meta-heuristic algorithms start the search process by randomly
initializing a finite set of representative solutions in the search space. These solutions
are also referred as particles, search agents, or individuals and will be used inter-
changeably throughout the text depending upon the context. The finite set containing
the representative solutions is referred as the ‘population’. The initial position of the
search agents is evaluated using the given objective function. The population itera-
tively updates the positions of its search agents to look for the optimal solution in
the search space. The position update mechanism of search agents during the search
can be considered as the soul of the meta-heuristic algorithm.

In random search algorithms, search agents update their position randomly and
do not utilize any information from each other. But, in meta-heuristic algorithms,
information sharing between search agents is one of the most important components.
The algorithm evaluates the position of search agents in the search space using
objective function value, and a fitness value is assigned. The fitness of a search agent
is the value of the objective function at its position. Search agents lying near to
optimum location have better fitnesses, and agents far from the optimum have poor
fitness values. Better search agents communicate about the their position to other
agents, and other agents try to follow the direction of better agents to improve their
fitness values.

Mathematically speaking, suppose S ⊆ R
D is a D-dimensional subspace of the

R
D , and the population size is N . If Xi = (x1, x2, . . . , xD) ∈ S is the current position

vector of the i th (1 ≤ i ≤ N) search agent in the search space S, then a simple position
update mechanism can be described by Eq. (1.2);

Xnew
i = X curr.

i + hi (1.2)

where hi is a D-dimensional step vector determining themagnitude of the step length
and direction of the position update for i th agent. The addition (+) in Eq. (1.2) is
vector addition or component-wise addition. Step vector h is produced by meta-
heuristic algorithms may contain components of best search agent’s position, worst
search agent’s position, the mean of the positions, and some random scaling factors.
For instance, particle swarm optimizer (PSO) utilizes a position update mechanism
similar to that mentioned in Eq. (1.2).

Onemoremajor position update mechanism can be realized by changing the com-
ponents of the position vector in the search space. Suppose Xi = (xi,1, xi,2, . . . , xi,D)
is the position vector of the i th search agent in the search space S. If we replace some
components xi, j , where 1 ≤ j ≤ D, by different values, say ui, j , such that ui, j �= xi, j ,
the position of Xi will be changed. Similarly, if a nontrivial permutation operator is
applied on the components of Xi , the position of Xi can be updated. Genetic algo-
rithms are one class of algorithms utilizing similar technique to update the position of

1 Introduction 7

search agents in the search space. A hybrid of these two position update mechanisms
can also be employed by some available meta-heuristic algorithms. For example, dif-
ferential evolution (DE) exploits the combination of both these techniques. The latest
development in the field of meta-heuristic algorithms is utilizing more advanced ver-
sions of these position update mechanisms, although the underlying idea is the same
as discussed above.

In meta-heuristic algorithms, position update mechanisms are dynamic in nature
and utilize the information from the ongoing optimization process. In these algo-
rithms, using any large step sizes (or large changes in the position) of the search
agents can hamper the convergence of the algorithm, and very small step sizes (or
very small changes in the position) of the search agents lead to stagnation and slow
speed. Stagnation is the phase of any meta-heuristic algorithm, when search agents
in the search space lose their diversity and converge to a local optimal solution. Both
of these extreme situations are not good for any optimization algorithm. So, in any
meta-heuristic algorithm achieving a fine balance between the large steps and small
steps is of paramount importance. This process of achieving a fine balance between
step sizes is referred as ‘exploitation versus exploration’ or ‘intensification versus
diversification’.

In the exploitation phase, the algorithm utilizes very small step sizes to extensively
cover the local region of the search space where the optimum can lie. Search agents
make very small changes in their position to scan the local region of the search space
thoroughly. However, its disadvantage is that it makes the convergence speed slow.
On the other hand, exploration refers to the capability of the algorithm to cover the
large size of search space efficiently and maintain the diversity in the population of
the search agents. Therefore, exploration can be considered as a searching process
on a global scale. Large step sizes make exploration less prone to stuck in the local
optimum locations and help in finding the region of the global optimum. The major
disadvantage of high exploration rate is that it can skip the global optima and converge
prematurely. So, the optimal balance between exploration and exploitation is a very
critical component of the algorithm.

The advancements in the literature of meta-heuristic algorithms have grown sig-
nificantly in the recent past. There are various classifications available. For instance,
meta-heuristic algorithms can be categorized based on their source of inspiration,
their country of origin, whether they originate from natural or some artificial phe-
nomenon, and whether they start with multiple solutions or single solutions [5].
For a good overview of the classification of meta-heuristic algorithms, an interested
reader can refer [6–8]. Based on the number of representative solutions in the search
space, i.e., multiple solutions and single solutions, meta-heuristic algorithms can
be classified into two categories: population-based and single solution-based. The
population-based meta-heuristic algorithms begin with a set of random representa-
tive solutions, which are then improved iteratively until the termination criterion is
satisfied. Some of the popularmeta-heuristic algorithms are particle swarm optimiza-
tion (PSO) [9], artificial bee colony (ABC) [10], sine cosine algorithm (SCA) [4], ant
colony optimization (ACO) [11], differential evolution (DE) [12], genetic algorithms
(GA) [13], gravitational search algorithm (GSA) [14], teaching–learning-based opti-

8 1 Introduction

mization (TLBO) [15], gray wolf optimization algorithm (GWO) [16], spider mon-
key optimization (SMO) [17], and many others. Single-solution-based algorithms
generate a single solution and improve the solution until the termination condition is
satisfied.Methods like simulated annealing (SA) [18], noisingmethod (NM) [19], the
tabu search (TS) [20], variable neighborhood search (VNS) [21], and the greedy ran-
domized adaptive search procedure (GRASP) [22] method fall under this category.
Population-based meta-heuristic algorithms are preferred over single-solution-based
algorithms because of their robust exploration capabilities, i.e., checking multiple
points in the search space simultaneously saving time and resources and improving
the probability of reaching the global optima.

Population-based meta-heuristic algorithms can be studied under two major cat-
egories of evolutionary algorithms (EAs) and swarm intelligence (SI)-based algo-
rithms. The underlying principles and working of these algorithms are similar but
their source of inspiration is different. Brief detail about these algorithms is men-
tioned below:

1. Evolutionary Algorithms: Evolutionary algorithms (EAs) are inspired by the
natural evolutionary process. The structure of the evolutionary algorithm is based
on the Darwinian theory related to the biological evolution of species and the
survival of the fittest principle. In EAs, search agents or solutions evolve itera-
tively using three major operators—selection, mutation, and crossover (or recom-
bination). The family of evolutionary algorithms comprises genetic algorithms
(GA), evolution strategies, differential evolution (DE), genetic programming
(GP), biogeography-based optimization [23], evolutionary programming, etc.

2. Swarm Intelligence (SI)-Based Algorithms: Beni and Wang [24] coined the
phrase “swarm intelligence” (SI) in 1993 to describe the cooperative behavior of
robotic systems. SI is an important branch of artificial intelligence in which com-
plex, autonomous, and decentralized systems are studied. Swarm can be described
as a collection of simple entities which corporate with each other to execute com-
plex tasks, for example the collective behaviors of social ants, cooperation of
honey bees, etc. Swarm of simple autonomous agents interact with each other
and demonstrate intelligent traits such as the ability to make decisions and adapt-
ability to change when aggregated together. Meta-heuristic algorithms in which
the autonomous agents work together to find the optimal solution and do not
involve evolutionary operators are termed as swarm intelligence (SI)-based algo-
rithms. Some well-known algorithms under this category are PSO, ABC, ACO,
GSA, SCA, and TSA.

In the mid-90s, EA and SI algorithms were studied under the single category of
evolutionary computing, because of their similarities, such as using a population of
the solution and their stochastic nature. Although the underlying motivation of these
algorithms is different. In evolutionary algorithms, new solutions emerge and old
solutions die in the optimization process, while in SI algorithms, old solutions are
improved iteratively, and no old solution die in the optimization process. Researchers
noticed this difference, and consequently, more academic research on swarm intel-

1 Introduction 9

ligence was published in the international academic journals, making the field of
SI-based algorithms more popular and applied.

Meta-heuristic algorithms can also be further categorized based on their source of
inspiration from different fields of sciences like life science, physics, mathematics,
etc. Some of the major categories of the algorithms falling in these categories are
discussed below:

1. Life Science-Based Algorithms: Life science concerns with the study of living
organisms, from single cells to human beings, plants, microorganisms, and ani-
mals.Meta-heuristic algorithms that take inspiration from the species of birds, ani-
mals, fishes, bacteria, microorganisms and viruses, plants, trees, fungi, and human
organs, like kidney, heart, or disease treatment methods, such as chemotherapy,
come under this category. This category can be further classified as fauna-based,
flora-based, and organ-based [25]. A few examples of meta-heuristic algorithms
that fall under this category are GWO, PSO, ABC, ACO, artificial plant optimiza-
tion algorithm [26], root tree optimization algorithm [27], chemotherapy science
algorithm [28], kidney-inspired algorithm [29], and heart algorithm [30].

2. Physical Science-Based Algorithms: Physical science includes physics, chem-
istry, astronomy, and earth science. Algorithms that imitate the behavior of physi-
cal or chemical phenomena, such as electromagnetism, water movement, electric
charges/ions, chemical reactions, gaseous particle movement, celestial bodies,
and gravitational forces are grouped under this category. Some popular physical
science-based algorithms are black hole optimization [31], crystal energy opti-
mization algorithm [32], ions motion optimization algorithm [33], galaxy-based
search algorithm [34], gravitational search algorithm, simulated annealing, and
atmosphere clouds model [35].

3. Social Science-Based Algorithms: Social science deals with the behavior of
humans and the functioning of human colonies. It covers exciting fields like
human geography, psychology, economics, political science, history, and sociol-
ogy. Meta-heuristic algorithms under this category have drawn inspiration from
humans’ social and individual conduct. The principles of leadership, decision-
making, economics, and political or competitive ideologies are some of the con-
cepts that have served as the sources of inspiration. Some have even borrowed
metaphors from how humans rule territories and economic systems. Some of the
algorithms that fall under this category are ideology algorithm [36], greedypolitics
optimization algorithm [37], parliamentary optimization algorithm [38], imperi-
alist competitive algorithm [39], social emotional optimization algorithm [40],
anarchic society optimization [41], brain storm optimization algorithm [42], and
teaching–learning-based optimization (TLBO) [15]. This category also includes
algorithms that are inspired by the activities or events introduced by humans, such
as the soccer league competition algorithm [43], league championship algorithm
[44], and tug of war optimization [45].

4. Mathematics-Based Algorithms: This category includes algorithms inspired by
mathematical models and mathematical equations. Some of the examples of the
mathematics-based algorithms are gradient-based optimizer (GBO) [46], Runge–

10 1 Introduction

Kutta optimization (RUN) [47], tangent search algorithm (TSA) [48], sine cosine
algorithm (SCA), differential evolution (DE), and stochastic fractal search (SFS)
[49].

Population-based meta-heuristic methods are gaining increasing attention from
researchers in the scientific community over the recent past. These methods are more
efficient and cost-effective in solving complex problems. The major advantages of
population-based meta-heuristic algorithms are summarized here:

(1) Population-basedmeta-heuristics are easy to implement and enable better explo-
ration of the search space than single-solution-based algorithms.

(2) They initiate the search process with multiple randomly generated solutions in
the search space. The presence of multiple solutions in the search space enables
solutions to share information about the search space with other solutions and
prevents premature convergence in a local optimal region.

(3) Since meta-heuristic frameworks follow general principles, which makes
population-based meta-heuristic algorithms easily applicable on a wide variety
of real-life optimization problems.

(4) In general, meta-heuristics do not rely on the information about the optimization
problem formulation (such as the requirement of constraints or objective func-
tions to be linear, continuous, differentiable, convex, etc.), they are more robust
and optimization-friendly.

Modern optimization techniques like particle swarm optimization (PSO) [9], arti-
ficial bee colony (ABC) [10], differential evolution (DE) [12], firefly algorithm (FA)
[50], ant colony optimization (ACO) [11], black hole optimization (BHO) [31],
teaching–learning-based optimization (TLBO) [15], genetic algorithm (GA) [13],
spider monkey optimization (SMO) [17], gravitational search algorithm (GSA) [14],
graywolf optimization algorithm (GWO) [16], sine cosine algorithm (SCA) [4], have
emerged as popular methods for tackling challenging problems in both industries and
academic research. Sine cosine algorithm (SCA) is a new mathematical concept-
based meta-heuristic algorithm. SCA uses trigonometric functions (sine and cosine)
to update the position of the search agents in the search space. It has shown promising
results in solving various optimization problems. SCAwas introduced byMirjalili [4]
to develop a user-friendly, robust, effective, efficient, and easy-to-implement algo-
rithm that demonstrates decent capabilities in exploring and exploiting the search
space. This book is dedicated to the study of sine cosine algorithm (SCA) and its
applications. The motive of this book is to discuss and present a fair amount of infor-
mation about the sine cosine algorithm, which might be helpful for fellow readers
whowish to work in the field of meta-heuristic algorithms. The basic SCA algorithm,
its variants, and its applications are discussed in the subsequent chapters of the book.

References 11

Practice Exercises

1. Discuss the difference between traditional optimization algorithms and meta-
heuristic algorithms.

2. Describe the shortcomings of traditional optimization techniques.
3. Write a short note on challenges in the meta-heuristic algorithms.
4. Discuss the difference between evolutionary algorithms and swarm intelligence

algorithms.

References

1. K. Deb, Optimization for Engineering Design: Algorithms and Examples (PHI Learning Pvt.
Ltd., 2012)

2. H.A. Taha, Operations Research: An Introduction, vol. 790 (Pearson/Prentice Hall, Upper
Saddle River, NJ, 2011)

3. S.K.J. Schneider, Stochastic Optimization (Springer, 2006)
4. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based

Syst. 96, 120–133 (2016)
5. H.R. Moshtaghi, A.T. Eshlaghy, M.R. Motadel, A comprehensive review on meta-heuristic

algorithms and their classification with novel approach. J. Appl. Res. Ind. Eng. 8(1), 63–89
(2021)

6. A.E. Ezugwu et al., Metaheuristics: a comprehensive overview and classification along with
bibliometric analysis. Artif. Intell. Rev. 54(6), 4237–4316 (2021)

7. D. Molina et al., Comprehensive taxonomies of nature- and bio-inspired optimization: inspi-
ration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 12(5),
897–939 (2020)

8. H. Stegherr, M. Heider, J. Hähner, Classifying metaheuristics: towards a unified multi-level
classification system. Nat. Comput. 1–17 (2020)

9. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-
International Conference on Neural Networks, vol. 4 (IEEE, 1995), pp. 1942–1948

10. D. Karaboga, An idea based on honey bee swarm for numerical optimization (Technical
report-tr06). Erciyes University, Engineering Faculty, Computer, 2005

11. M.D.L.M.Gambardella,M.B.A.Martinoli, R.P.T. Stützle,Ant colonyoptimization and swarm
intelligence, in 5th International Workshop (Springer, 2006)

12. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

13. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1998)
14. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf.

Sci. 179(13), 2232–2248 (2009)
15. R. Venkata Rao, V.J. Savsani, D.P. Vakharia, Teaching-learning-based optimization: an opti-

mizationmethod for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)
16. S. Mirjalili, S.M.Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
17. J.C. Bansal et al., Spider monkey optimization algorithm for numerical optimization. Memet.

Comput. 6(1), 31–47 (2014)
18. S. Kirkpatrick, C. Daniel Gelatt, Jr., M.P. Vecchi, Optimization by simulated annealing. Sci-

ence 220(4598), 671–680 (1983)
19. I. Charon, O. Hudry, The noisingmethod: a newmethod for combinatorial optimization. Oper.

Res. Lett. 14(3), 133–137 (1993)

12 1 Introduction

20. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533–549 (1986)

21. N. Mladenovic, A variable neighborhood algorithm—a new metaheuristic for combinatorial
optimization. Papers presented at Optimization Days, vol. 112 (1995)

22. T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6(2), 109–133 (1995)

23. D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713
(2008)

24. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in Robots and Biological
Systems: Towards a New Bionics? (Springer, 1993), pp. 703–712

25. A. Tzanetos, G. Dounias, A comprehensive survey on the applications of swarm intelligence
and bio-inspired evolutionary strategies, inMachine Learning Paradigms (2020), pp. 337–378

26. Z. Zhao, Artificial plant optimization algorithm for constrained optimization problems, in
2011 Second International Conference on Innovations in Bio-Inspired Computing and Appli-
cations (IEEE, 2011), pp. 120–123

27. Y. Labbi et al., A new rooted tree optimization algorithm for economic dispatch with valve-
point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016)

28. M.H. Salmani, K. Eshghi, A metaheuristic algorithm based on chemotherapy science: CSA.
J. Optim. 2017 (2017)

29. N.S. Jaddi, J.Alvankarian, S.Abdullah,Kidney-inspired algorithm for optimization problems.
Commun. Nonlinear Sci. Numer. Simul. 42, 358–369 (2017)

30. A. Hatamlou, Heart: a novel optimization algorithm for cluster analysis. Prog. Artif. Intell.
2(2), 167–173 (2014)

31. A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering. Inf. Sci.
222, 175–184 (2013)

32. X. Feng,M.Ma,H.Yu,Crystal energy optimization algorithm.Comput. Intell. 32(2), 284–322
(2016)

33. B. Javidy, A.Hatamlou, S.Mirjalili, Ionsmotion algorithm for solving optimization problems.
Appl. Soft Comput. 32, 72–79 (2015)

34. H. Shah-Hosseini, Principal components analysis by the galaxy-based search algorithm: a
novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140
(2011)

35. G.-W. Yan, Z. Hao, J. Xie, A novel atmosphere clouds model optimization algorithm. J.
Comput. (Taiwan) 24(3), 26–39 (2013)

36. T.T. Huan et al., Ideology algorithm: a socio-inspired optimization methodology. Neural
Comput. Appl. 28(1), 845–876 (2017)

37. J.S.M. LenordMelvix, Greedy politics optimization:metaheuristic inspired by political strate-
gies adopted during state assembly elections, in 2014 IEEE International Advance Computing
Conference (IACC) (IEEE, 2014), pp. 1157–1162

38. A. Borji, M. Hamidi, A new approach to global optimization motivated by parliamentary
political competitions. Int. J. Innov. Comput. Inf. Control 5(6), 1643–1653 (2009)

39. E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimiza-
tion inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Compu-
tation (IEEE, 2007), pp. 4661–4667

40. Y. Xu, Z. Cui, J. Zeng, Social emotional optimization algorithm for nonlinear constrained
optimization problems, in International Conference on Swarm, Evolutionary, and Memetic
Computing (Springer, 2010), pp. 583–590

41. A. Ahmadi-Javid, Anarchic society optimization: a human-inspired method, in 2011 IEEE
Congress of Evolutionary Computation (CEC) (IEEE, 2011), pp. 2586–2592

42. Y. Shi, Brain storm optimization algorithm, in International Conference in Swarm Intelligence
(Springer, 2011), pp. 303–309

43. N. Moosavian, B.K. Roodsari, Soccer league competition algorithm: a novel metaheuristic
algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24
(2014)

References 13

44. A.H. Kashan, League championship algorithm: a new algorithm for numerical function opti-
mization, in 2009 InternationalConference of Soft Computing andPatternRecognition (IEEE,
2009), pp. 43–48

45. A. Kaveh, A. Zolghadr, A novel meta-heuristic algorithm: tug of war optimization. Iran Univ.
Sci. Technol. 6(4), 469–492 (2016)

46. I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: a new metaheuristic
optimization algorithm. Inf. Sci. 540, 131–159 (2020)

47. I. Ahmadianfar et al., RUN beyond the metaphor: an efficient optimization algorithm based
on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)

48. A. Layeb, Tangent search algorithm for solving optimization problems. Neural Comput. Appl.
34(11), 8853–8884 (2022)

49. H. Salimi, Stochastic fractal search: a powerful metaheuristic algorithm. Knowl.-Based Syst.
75, 1–18 (2015)

50. X.-S. Yang, Firefly algorithms for multimodal optimization, in International Symposium on
Stochastic Algorithms (Springer, 2009), pp. 169–178

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Sine Cosine Algorithm

Sine cosine algorithm (SCA) [1] is relatively a new algorithm, in the field of meta-
heuristic algorithms. SCA is a population-based probabilistic search method that
updates the position of search agents in the population using simple concept of
trigonometric functions sine and cosine. SCA algorithm is inspired from the periodic
property of the sine and cosine functions. The periodicity of the sine and cosine
function in the range [−1, 1] provides great capacity to exploit the search space
and helps in maintaining a fine balance between exploration and exploitation. In
previous Chap. 1, we have already discussed about the criticality of the exploration
and exploitation capabilities of any meta-heuristic algorithm.

Trigonometric functions sine and cosine are periodic functions with a period of
2π . The range of both the functions is [−1, 1]. The variation of these functions
between −1 and +1 offers a great capacity to scan the local regions in the search
space containing global optima and provides the required diversity to the search
agents in the search space. Like any other meta-heuristic algorithm, SCA is a ran-
dom search technique that is not a problem-dependent technique, and it does not
require gradient information of the objective function. SCA is a population-based
probabilistic search technique, it starts the search process with multiple randomly
initialized representative solutions or search agents in the search space, and updates
the position of search agents toward or away from the best candidate solution using
a mathematical model based on the sine and cosine functions.

Sine cosine algorithm (SCA) is becoming increasingly popular over the past few
years. The SCA’s popularity is evident from the SCA-related papers published in
several reputed journals over the time. Figure 2.1 gives a fair idea about the number
of research publications in the last six years. All these research publications contain
the sine cosine algorithm in their title, abstract, and keywords. The upward trend
of increasing interest in the SCA is due to its robust optimization capabilities and
simplicity in implementation. It has successfully been applied to tackle the complex
real-world optimization problems of different scientific disciplines, such as elec-
trical engineering, control engineering, combinatorial problems, machine learning,

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_2&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_2

16 2 Sine Cosine Algorithm

Fig. 2.1 Number of papers published on sine cosine algorithm in the title, abstract and keywords.
Source SCOPUS database, till July 2022

robotics, supply chain problems, and environmental science problems, to name a few.
The spectrum of SCA applications is broad and spans over diverse fields of science
and technology.

The purpose of this chapter is to serve the readers about the insights of the basic
sine cosine algorithm. The present chapter covers the fundamentals of the sine cosine
algorithm with a step-by-step implementation of the algorithm. A simple numerical
example with a MATLAB code is added for the readers to fully understand the
procedure involved in the working of the sine cosine algorithm. The strengths and
weaknesses of the SCA algorithm are also discussed in this chapter to give readers
a fair idea on the utility of the algorithm in the different fields of scientific research.
The present chapter will encourage the researchers to modify the original SCA and
implement it to solve various optimization problems.

The chapter is organized as follows: Sect. 2.1 describes the basic principles of the
SCA algorithm and its pseudo-code. The control parameters involved in the SCA
algorithm and the impact of these control parameters on the performance of the
algorithm are discussed in Sect. 2.2. A simple numerical example explaining the
computational procedure of the basic SCA algorithm is described in Sect. 2.3. The
MATLAB code of the SCA algorithm handling the numerical example mentioned in
Sect. 2.4, and for summarizing the chapter, concluding remarks are given in Sect. 2.5.

2.1 Description of the Sine Cosine Algorithm (SCA)

Similar to any other population-based optimizers, sine cosine optimization process
begins with randomly initializing a set of representative solutions or search agents in
the search space. The set containing all search agents is also referred as the population.

2.1 Description of the Sine Cosine Algorithm (SCA) 17

In the population, each search agent can be treated as a vector in a d-dimensional
search space. Search agents in the search space update their position with the help
of stochastic equations containing the trigonometric sine and cosine functions.

The population in the search space is randomly initialized within the search space
bounds using Eq. (2.1). The i th search agent Xi = (Xi1, Xi2 . . . Xid) is initialized
using the following equation:

Xi j = X lb
i j + rand() ∗ (

Xub
i j − X lb

i j

)
, j = 1 : d, i = 1 : Np (2.1)

where Xi j represents the j th dimension of the i th solution, X lb
i j and Xub

i j denote
the lower bound and upper bound of the i th solution in the j th dimension of the
search space, respectively. The function rand() generates uniformly distributed ran-
dom numbers in the range [0, 1], and Np denotes the number of the search agents in
the population, i.e., the population size.

The next step after initializing the population in the search space is to update the
position of each search agent to look for the optimal solution. For this purpose, the
position of the each agent is evaluated using the underlying objective function, and
based on the optimization criteria, a fitness value or a goodness value is assigned
to each agent. The search agent with the highest fitness is considered as the best
search agent, and the position of the best search agent is referred as the destination
point. After locating the destination point, other search agents update their position
in the search space (or design space) using the destination point as a reference. The
following equations are position update equations:

Xt+1
i j = Xt

i j + r1 × sin(r2) × ∣∣r3 × Pt
g − Xt

i j

∣∣ (2.2)

Xt+1
i j = Xt

i j + r1 × cos(r2) × ∣∣r3 × Pt
g − Xt

i j

∣∣ (2.3)

where, j = 1 : d, and i = 1 : Np.
Xt
i = (Xt

i1, X
t
i2 . . . Xt

id) denotes the position of the i th search agent in the t th
iteration. Pt

g = (Pt
g1, P

t
g2, . . . P

t
gd) is the gth search agent having the best fitness and

considered as the destination point at t th iteration. |.| represents themodulus operator.
r1 is a function of iteration counter t, calculated using Eq. (2.4), here b is a constant
parameter and T denotes the maximum number of iterations. r2 and r3 are uniformly
distributed random numbers generated using Eqs. (2.5) and (2.6), respectively:

r1 = b − b ×
(
t

T

)
(2.4)

r2 = 2 × π × rand() (2.5)

r3 = 2 × rand() (2.6)

18 2 Sine Cosine Algorithm

Fig. 2.2 Trajectory of r1 sin(r2) and r1 cos(r2) considering c = 2

A proper balance between exploration and exploitation is of paramount impor-
tance in any population-based optimization algorithm. At the initial phase of the
optimization process or in early iterations, an algorithm should focus on the explo-
ration process to sufficiently scan the design space. At a later stage or in later itera-
tions, the algorithm should use the exploitation process to search the promising local
regions to find the global optimal location in the search space and guarantee con-
vergence. So with the increasing number of iterations, the exploration ability of the
algorithm should decrease, while exploitation capabilities should increase. In sine
cosine algorithm, the control parameter r1 is responsible for maintaining the balance
between the exploration and exploitation process. This parameter ensures a smooth
transition from the exploration phase to exploitation phase during the search. The
control parameter r1 is linearly decreasing function of iteration counter t , which a
linearly reduces the value of the constant parameter b. The trigonometric functions
sine and cosine in Eqs. (2.2) and (2.3) aremultiplied by the control parameter r1. That
means, the range of these terms is dependent on the value of the control parameter
r1. The value of r1 is dependent on the constant parameter b, whose value is linearly
decreasing with the increasing number of iterations. So, by controlling the value of
the constant parameter b, SCA algorithm controls the range of the terms r1 · sin(r2)
and r1 · cos(r2). The trajectory of the range of r1 · sin(r2) and r1 · cos(r2) during the
search process is illustrated in Fig. 2.2.

Moreover, it is not a difficult observation to make for a reader that the control
parameter r1 works as a scaling factor for the step size in the position update equations
given by Eqs. (2.2) and (2.3). In early iterations, larger values of r1 is used by
the SCA algorithm to perform larger movements by the search agents to explore
the search space, and at later iterations, value of r1 will decrease to perform small
movements by the search agents to ensure exploitation in the potential local regions
of the search space. So, the control parameter is a critical component in the SCA
algorithm for maintaining a fine-tune balance between exploration and exploitation.

2.2 Parameters Associated with the SCA 19

Adetailed discussion about the control parameters associatedwith theSCAalgorithm
is presented in subsequent Sect. 2.2.

To increase the robustness of the sine cosine algorithm, two position update equa-
tions, or in other words two separate mechanisms, are used in the SCA algorithm.
To determine whether Eqs. (2.2) or (2.3) should be used to update the position of the
search agents, a switch probability p(p = 0.5) is used, depending on a generated
random number r4 ∈ [0, 1]. If r4 < p, Eq. (2.2) is used to update the position of the
search agents, otherwise Eq. (2.3) is used. The following equation summarizes the
above mechanism,

Xt+1
i j =

⎧
⎪⎪⎨

⎪⎪⎩

Xt
i j + r1 × sin(r2) ×

∣∣∣r3 × Pt
g j − Xt

i j

∣∣∣ if r4 < p

Xt
i j + r1 × cos(r2) ×

∣∣∣r3 × Pt
g j − Xt

i j

∣∣∣ if r4 ≥ p

(2.7)

It is evident from Eq. (2.7) that it gives 50% chance to each update equation.
The search agents in the SCA algorithm follow a nonlinear search route because

of the presence of the absolute value term and the trigonometric functions sine cosine
in the position update equations. Figure 2.3 illustrates the movement of the search
agents with respect to the destination point (Pg) in a two-dimensional search space.
It demonstrates that the search agents follow a circular path, with the best solution
or destination point in the center and all other search agents positioned around it.
The value of constant parameter b is taken to be 2 in the SCA algorithm that means
the sine and cosine functions will operate in the range [−2, 2]. Each search agent
updates its position either in the direction opposite to the destination point or toward
anywhere between its current position and the destination point. The potential local
regions where search agent Xi canmove are described by dividing the circular search
domain into sub-regions as shown in Fig. 2.3. The value of r1 controls the movement
of Xi , if r1 < 1, then Xi moves toward destination point Pg (exploitation step),
and when r1 ≥ 1, the search agent moves far away from the destination point Pg
(exploration step).

The pseudo-code for the basic sine cosine algorithm is given in Algorithm 1, and
the flowchart is shown in Fig. 2.4 to provide a concise description of the underlying
working procedure of the SCA algorithm.

2.2 Parameters Associated with the SCA

The convergence speed and optimization capabilities of a population-based meta-
heuristic algorithm are greatly influenced by the associated parameters. The choice
of the parameters’ values determines the convergence rate of an algorithm. The
control parameters associated with the sine cosine algorithm are r1, r2, r3, and r4.

20 2 Sine Cosine Algorithm

Fig. 2.3 Impact of the parameter r1 on the sine and cosine function or decreasing pattern

Algorithm 1 Sine cosine algorithm (SCA)
Initialize the population {X1, X2, . . . , XN } randomly in the search space
Initialize the parameters associated with SCA
Calculate the objective function value for each search agent in the population
Identify the best solution obtained so far as the destination point Pg
initialize t = 0, where t is iteration counter
while Termination criteria is met do
Calculate r1, using Eq. (2.4) and generate the parameters r2, r3, r4 randomly
for each search agent do
Update the position of search agents using Eq. (2.7)

end for
Update the current best solution (or destination point) Pg
t = t + 1

end while
Return the best solution Pg

In SCA algorithm, the control parameter r1 regulates both the global and local
search operations. It determines whether to advance the search agents in the direction
of the best solution (destination point (r1 > 1)) or move the search agents away from
the destination point (r1 < 1) in the search space. With the increasing number of
iterations, its value declines linearly from the initial parameter value ‘b’ to 0. This
adaptive behavior of r1 assists theSCAalgorithm in ensuring the exploration behavior
in early iterations and controls the exploitation behavior at later iterations.

The control parameter r2 determines how far the search agents should travel
toward or away from the destination point. Its value lies in the range [0, 2π]. The
parameter r3 in the SCA algorithm is the random weight associated with the destina-
tion point. It controls how much the destination point will contribute in updating the
position of other search agents in subsequent iterations. It is a random scaling factor,
and responsible for boosting (r3 > 1) or lowering (r3 < 1) the influence of the best

2.2 Parameters Associated with the SCA 21

Fig. 2.4 Flowchart of SCA

22 2 Sine Cosine Algorithm

solution by controlling the length of the movement. In other words, a weight greater
than one indicates that the influence of the destination point is higher in finding the
next position of the other search agents. On the other hand, a weight less than one
indicates the lower influence of the destination point in updating the position of rest
of the search agents.

The parameter r4 is employed to randomly switch between the sine and cosine
components of the position update equations. If r4 is less than 0.5, the position
update equation with the sine function is selected, and if the value of r4 is greater
than or equal to 0.5, the position update equation containing the cosine function is
used. It aids the SCA’s ability to avoid local optimal points in the search space and
enhances the robustness of the algorithm. The value of parameter r4 is generated
using uniformly distributed random number in the range [0, 1]. Another additional
important parameter in the SCA algorithm is the constant parameter ‘b’. It is a preset
parameter that ensures that the algorithm transit smoothly from the exploration phase
to the exploitation phase. The value of the constant parameter ‘b’ is suggested to
be 2 in the basic SCA algorithm. Like any other population-based algorithm, the
performance of the SCA algorithm is also sensitive to the population size. The size
of the population is a user-controlled parameter whose value is often selected on the
basis of the complexity of the underlying optimization problem.

Broadly, the advantages and disadvantages of SCA can be summarized as below:

Advantages Disadvantages
Sine cosine algorithm is a simple
population-based algorithm. It is easy
to implement and user-friendly

As compared to other types of problems, its
performance is good for continuous opti-
mization problems only

It has a tendency toward the best regions of
the search space as it updates its position
around the best solution

It lacks internal memory (i.e., it does
not keep the track of previously obtained
potential or best solutions)

It has a higher explorative ability as it uses
four random parameters r1, r2, r3 and r4

It has a weak exploitative ability as it does
not preserve the previously obtained poten-
tial solutions capable of converging to the
global optimal solution

Attributing to its simple code, its speed is
fast

Being a stochastic technique, it does not
guarantee the global optimal solution

SCA transits smoothly from the explo-
ration to the exploitation phase

It shows slow convergence in some of the
complex optimization problems

Population-based optimizers are in great demand in the field of academic research
and industrial applications. A simple and user-friendly practical optimization tech-
nique can be considered as a good optimizer if it follows certain characteristics like:

1. Optimizer should be robust, problem independent, and capable of handling black-
box optimization problems.

2. The ability to locate the global optimal or near global optimal solution regardless
of the complexity of the search space and modality of the objective function with
a high convergence rate.

2.3 Biases of Sine Cosine Algorithm 23

3. It should have less number of control parameters and tuning of the parameters
should not be a challenging task.

Sine cosine algorithm significantly fulfills all the criteria for considering as a good
optimizer. SCA has shown its robust performance capabilities in many complex,
real-world optimization problems where traditional methods fail or have limited
applicability. The simplicity of the SCA algorithm makes it user-friendly and simple
to implement in any computer language. The less number of control parameters and
adaptive nature in managing the balance between exploration and exploitation is one
of themajor characteristics of theSCAalgorithm.The performance of SCAalgorithm
is exceptional in dealing with various benchmark problems. Ease of implementation,
wide range of applicability, and high level of reliability make sine cosine algorithm
a worthy candidate in the class of meta-heuristics.

2.3 Biases of Sine Cosine Algorithm

The major drawback of any meta-heuristic algorithm is(are) its intrinsic bias(es), or
in other words, the tendency of the algorithm to accumulate solutions in a particular
region(s) of the search space. For example, if the intrinsic bias of an algorithm is
central bias, the algorithmwill accumulate solutions in the central region, irrespective
of the underlying objective function. This implies that if the objective function’s true
optima lies in the central region of the search space, the chances for finding the near
optimal solution are favorable to the algorithm. However, on the other hand, if true
optima is lying in some different regions of the search space, the chances for finding
the near optimal solution will be very less; that is, the algorithm’s performance
will deplete on the set of objective functions in which true optima do not lie in
the central region. Similarly, an algorithm may have edge bias, in which solutions
accumulate in the edges of constrained search space, or axial bias, where algorithm
favors distribution of solutions along any axes of the bounded search space, or any
other type of biases, like exploitation bias, in which solutions accumulate around
a position with no specific characteristics, demonstrating that the algorithm is over
exploiting that particular region. So, the information about the intrinsic bias(es)might
help the researchers better understand these stochastic optimizers’ limitations.

In theory, the intrinsic characteristics of any meta-heuristic algorithm can be
accessed with the help of the mathematical analysis of the algorithm. However, in
practice, it is a difficult task to detect these biases of the algorithm by simply inspect-
ing the formula. An experimental approach is suggested, in which these stochastic
algorithms are assigned to optimize an impossible ‘flat’ problem, that is, a constant
function. The problem of optimizing a constant function with the help of a stochastic
algorithmcan be considered impossible to solve because all the solutions in the search
space are equivalent. That means the solutions of an unbiased meta-heuristic algo-
rithm should attain positions statistically similar to a purely random search. For this,
the successive positions of solutions are examined to highlight the intrinsic bias(es)

24 2 Sine Cosine Algorithm

Fig. 2.5 Experiment 1—signature of SCA with 10,000 points

of the algorithm. A graphical illustration called ‘Optimizer Signature’ is used in the
experimental approach to identify these stochastic algorithms’ intrinsic bias(es). The
intrinsic bias(es) of the sine cosine algorithm (SCA) are discussed below.

2.3.1 Experimental Setup

In order to obtain the idea about the intrinsic bias(es), 10 successive execution of
SCA algorithm are performed on the constant objective function f (x1, x2) = 1 in
the range [−1, 1]. In each execution, 1000 points have been generated, which means
in 10 execution, 10,000 points are generated. All the points in the search space are
graphically illustrated using a scatter plot to get the signature of the SCA algorithm.
It is interesting to note that signature of any meta-heuristic algorithm may change
upon executing the experiment several times, but the bias(es) of an algorithm is
identifiable. In Figs. 2.5 and 2.6, two representative signatures of the SCA algorithm
with 10,000 points are illustrated. Both of the figures may have slight differences
from each other, but the patterns for intrinsic bias(es) are identifiable.

It is evident from the illustration of signature that SCA is majorly central biased
and axial biased, and partially edge biased algorithm. The depiction of the signature
indicates that the performance of the SCA algorithm will be badly affected if the
true optima of the objective function lie in the second and fourth quadrants of the
search space. On the other hand, SCA will perform better on the objective functions
whose true optimum lies in the central or axial region of the search space. Further
research is required to understand this biased behavior and possible modifications to
eliminate the same.

2.4 Numerical Example 25

Fig. 2.6 Experiment 2—signature of SCA with 10,000 points

2.4 Numerical Example

In this section, a simple numerical example is taken to demonstrate the step-by-step
working procedure of the SCA algorithm. For the sake of simplicity, the two-variable
sphere function (2.8) in the range [−5, 5] is considered as the underlying objective
function and the optimization problem is formulated as of minimization type.

Min f (X) = X2
1 + X2

2 s.t (2.8)

X = (X1, X2); X1, X2 ∈ [−5, 5] (2.9)

The sphere function is a simple 2-variable problemwith the globalminima situated
at (0, 0). For a simple demonstration of the computational procedure involved in the
SCA algorithm, a small population size of 5 is taken, and the hand calculation for
2 iterations is added. As a first step, the population is randomly initialized in the
range [−5, 5] using Eq. (2.1), and the fitness values of search agents are calculated.
The fitness of an individual solution is usually defined as the value of the objective
function corresponding to it. Substituting X1,1 = −0.6126 and X1,2 = −0.1024 in
the objective function f = X2

1,1 + X2
1,2, we get 0.3857. Similarly, we will calculate

the objective function value for all other search agents (see Table 2.1).
Better objective function values represent better solutions. In this example, a

solution or search agent with the least objective function value is regarded as the best
solution. As one can observe from Table 2.1, the minimum objective function value
is 0.3857, and therefore, (−0.6126,−0.1024) is the best solution or the destination
point (shown in bold). Now, the main loop of the algorithm starts, and the iteration
counter (t) is initialized, t = 0.

26 2 Sine Cosine Algorithm

Table 2.1 Initial population

Agent No. Xi1 Xi2 Fitness value

1 −0.6126 −0.1024 0.3857

2 −1.1844 −0.5441 1.6989

3 2.6552 1.4631 9.1907

4 2.9520 2.0936 13.0977

5 −3.1313 2.5469 16.2914

First Iteration
The destination point is (−0.6126,−0.1024).
The destination fitness is 0.3857.

Updating first search agent (i = 1)1

Consider the first search agent X1, and its first component X1,1 = −0.6126 is
updated. To update X1,1, we need r1, and it is calculated using Eq. (2.4), while
r2, and r3 are generated randomly using Eqs. (2.5) and (2.6), respectively. Consider
r1 = 2, r2 = 1.7343, r3 = 1.3594, and r4 = 0.6551.2

X1
1,1 = (−0.6126) + 2 × cos(1.7343)

× |1.3594 × (−0.6126) − (−0.6126)| = −0.6842

Since the updated position of X1,1 lies in the range [−5, 5], we will accept the
update. Similarly, we will update the second component X1,2 = −0.1024 by consid-
ering r2 = 1.0217, r3 = 0.2380, and r4 = 0.49840 as follows;

X1
1,2 = (−0.1024) + 2 × sin(6.1720)

× |1.5381 × (−0.1024) − (−0.1024)| = 0.0307

The updated value of X1,2 is also within the search space [−5, 5]. Thus, the
updated position of the first search agent is X1 = (−0.6842, 0.0307). A similar pro-
cess is used to update the all other search agents.

Updating second search agent (i = 2)
(first component) (j = 1)
Consider r2 = 6.0302, r3 = 0.6808, and r4 = 0.5853

X1
2,1 = (−1.1844) + 2 × cos(6.0302)

× |0.6808 × (−0.6126) − (−1.1844)| = 0.3016

1 Note that all calculations are carried out component wise.
2 All random numbers are generated using MATLAB rand function.

2.4 Numerical Example 27

(second component) (j = 2)
r2 = 1.4063, r3 = 1.5025, and r4 = 0.2551

X1
2,2 = (−0.5441) + 2 × sin(1.4063)

× |1.5025 × (−0.1024) − (−0.5441)| = 0.2260

Updating third search agent (i = 3)
(first component) (j = 1)
r2 = 3.1790, r3 = 1.3982, and r4 = 0.8909

X1
3,1 = (2.6552) + 2 × cos(3.1790)

× |1.3982 × (−0.6126) − (2.6552)| = −1.8088

(second component) (j = 2)
r2 = 6.0274, r3 = 1.0944, and r4 = 0.1386

X1
3,2 = (1.4631) + 2 × sin(6.0274) × |1.0944 × (−0.1024) − (1.4631)| = 0.8479

Updating fourth search agent (i = 4)
(first component) (j = 1)
r2 = 0.9380, r3 = 0.5150, and r4 = 0.8407

X1
4,1 = (2.9520) + 2 × cos(0.9380) × |0.5150 × (−0.6126) − (2.9520)| = 6.2597

The updated position is 6.2597, which is out of the search space. Therefore the
position is set as X1

4,1 = 5 because the updated value is near to 5, the upper bound
of the search space
(second component) (j = 2)
r2 = 1.5977, r3 = 1.6286, and r4 = 0.2435

X1
4,2 = (2.0936) + 2 × sin(1.5977) × |1.6286 × (−0.1024) − (2.0936)| = 5.5436

Again the updated position is out of the search space. Therefore, the updated
position is set as X1

4,2 = 5.

Updating fifth search agent (i = 5)
(first component) (j = 1)
r2 = 5.8387, r3 = 0.7000, and r4 = 0.1966

X1
5,1 = (−3.1313) + 2 × sin(5.8387)

× |0.7000 × (−0.6126) − (−3.1313)| = −6.0054

28 2 Sine Cosine Algorithm

Table 2.2 Updated position of the search agents

Agent No. Xi1 Xi2 Fitness value

1 −0.6842 0.0307 0.4691

2 0.3016 0.2260 0.1420

3 −1.8088 0.8479 3.9907

4 5.0000 5.0000 50

5 −5.0000 5.0000 50

The updated component position is −6.0054, which is out of the search space.
Therefore, the updated position is set as X1

5,1 = −5 because the lower bound of the
search space is −5
(second component) (j = 2)
r2 = 1.5776, r3 = 1.2321, r4 = 0.4733

X1
5,2 = (2.5469) + 2 × sin(1.5776) × |1.2321 × (−0.1024) − (2.5469)| = 7.0836

Again the updated component position is out of the search space. Therefore, the
updated position is set as X1

5,2 = 5. Finally, updated population after first iteration.
Now, termination criteria is checked. Since we planned to run the algorithm for 2

iterations and till now only one iteration is complete, we will move to iteration 2.

Second Iteration
Clearly, from Table 2.2, the minimum objective function value is 0.1420, which cor-
responds to the second search agent. Therefore, the best solution is (0.3016, 0.2260)
and the best fitness is 0.1420.

Updating first search agent (i = 1)
r1 = 1
(first component) (j = 1)
r2 = 2.2095, r3 = 1.6617, r4 = 0.5853

X2
1,1 = (−0.0284) + 1 × cos(2.2095)

× |1.6617 × (0.3016) − (−0.0284)| = −1.3909

(second component) (j = 2)
r2 = 3.4540, r3 = 1.8344, r4 = 0.2858

X2
1,2 = (1.7795) + 1 × sin(3.4540) × |1.8344 × (0.2260) − (1.7795)| = −0.0873

Updating second search agent (i = 2)
(first component) (j = 1)
r2 = 5.8678, r3 = 1.1504, r4 = 0.1178

2.4 Numerical Example 29

X2
2,1 = (0.3016) + 1 × sin(5.8678) × |1.1504 × (0.3016) − (0.3016)| = 0.1487

(second component) (j = 2)
r2 = 3.5677, r3 = 0.1517, r4 = 0.0540

X2
2,2 = (0.2260) + (1 × sin(3.5677)) × |(0.1517 × (0.2260) − 0.2260)| = 0.1468

Updating third search agent (i = 3)
(first component) (j = 1)
r2 = 3.3351, r3 = 1.5583, r4 = 0.9340

X2
3,1 = (−1.8088) + 1 × cos(3.3351)

× |1.5583 × (0.3016) − (−1.8088)| = −3.8112

(second component) (j = 2)
r2 = 0.8162, r3 = 1.1376, r4 = 0.4694

X2
3,2 = (0.8479) + 1 × sin(0.8162) × |1.1376 × (0.2260) − (0.8479)| = 1.3441

Updating fourth search agent (i = 4)
(first component) (j = 1)
r2 = 0.0748, r3 = 0.6742, r4 = 0.1622

X2
4,1 = (5.0000) + 1 × sin(0.0748) × |0.6742 × (0.3016) − (5.0000)| = 5.3661

The updated component position is 5.3661, which is out of the search space.
Therefore, the updated position is set as X2

4,1 = 5
(second component) (j = 2)
r2 = 4.9906, r3 = 0.6224, r4 = 0.5285

X2
2,2 = (5.0000) + 1 × cos(4.9906) × |0.6224 × (0.2260) − (5.0000)| = 6.3483

Again the updated component position is 6.3483, which is out of the search space.
Therefore, the updated position is taken as X2

4,2 = 5.

Updating fifth search agent (i = 5)
(first component) (j = 1)
r2 = 1.0408, r3 = 1.2040, r4 = 0.2630

X2
5,1 = (−5.0000) + 1 × sin(1.0408)

× |0.2040 × (0.3016) − (−5.0000)| = −0.5315

(second component) (j = 2)
r2 = 4.1097, r3 = 1.3784, r4 = 0.7482

30 2 Sine Cosine Algorithm

Table 2.3 Updated positions of the search agents after iteration 2

Agent No. x1 x2 Fitness value

1 −1.3909 −0.0837 1.9423

2 0.1487 0.1468 0.0436

3 −3.8112 1.3441 16.3318

4 5.0000 5.0000 50.000

5 −0.5315 2.2804 5.4826

X2
5,2 = (5.0000) + 1 × cos(4.1097) × |1.3784 × (0.2260) − (5.0000)| = 2.2804

Finally, the updated search agents are given inTable 2.3.Now, the iteration counter
is increased by one and is set to two. Since the termination criterion is met, the best
solution identified by the SCA algorithm is (0.1487, 0.1468), and the optimal value
of the objective function determined by the SCA algorithm is 0.0436, both of which
are near to the exact solution (0, 0) and exact value 0. In the similar fashion, more
iterations can be performed to further refine the obtained solution.

2.5 Source Code

In this section, the source code (2.1) of the basic SCA algorithm in MATLAB is
illustrated. For simplicity and to be consistent with the numerical example presented
in Sect. 2.4, the sphere function given by Eq. (2.8) is used as an objective function.
The source code of the objective function which we need to minimize by using the
SCA algorithm is shown in Listing 2.2.

Listing 2.1 The basic code of the SCA algorithm in MATLAB

1 % Sine Cosine Algorithm (SCA)
2 % MATLAB Version 2015a
3 % Reference Paper: S. Mirjalili , SCA: A Sine ...

Cosine Algorithm for solving optimization ...
problems

4 % Knowledge -Based Systems , DOI: ...
http ://dx.doi.org /10.1016/j.knosys .2015.12.022

5 % Remark: This code is for academic purposes ...
only. For any query or suggestion write to us;

6 %J.C. Bansal (jcbansal@sau.ac.in)
7 %Prathu Bajpai (prathu.bajpai1812@gmail.com)
8 %=======================%
9

10 % Initialization of Sine Cosine Algorithm
11 clc;
12 clear all;

2.5 Source Code 31

13

14 Np = 50; % Population size
15 Dim = 30; % Dimension of the search space
16 Objf = @cost_function; % Cost function or ...

objective function
17 lb = -5.*ones(1,Dim); % Lower bound of the ...

search space
18 ub = 5.* ones(1,Dim); % Upper bound of the ...

search space
19

20 X = zeros(Np, Dim); % Container to ...
store population

21 fit = zeros(1, Dim); % Initialize ...
fitness vector

22 T = 1000; % Maximum Iterations
23 t = 0; % Iteration counter
24

25 % Initialize parameters
26 b = 2; % Constant parameter
27 p = 0.5 % Probability switch
28

29 r1 = b; r2 = 1; r3 = 1; r4 = 1; %Initial control ...
parameters

30

31 % Initialize population
32 for i=1:Np
33 X(i,:) = lb + rand(1,Dim).*(ub-lb);
34 fit(i) = Objf(X(i,:));
35 end
36 pop = X; % Initial Population
37 [best_fit ,ind] = min(fit); % Best solution is ...

destination point
38 best_agent = pop(ind ,:); % Best agent in the ...

population
39

40 %%Iteration Loop
41

42 while t < T
43 r1 = b - t*(b/T);
44

45 %Position update equations
46 for i=1:Np
47 % Update control parameters
48 r2 = (2*pi)*rand();
49 r3 = 2*rand();
50 r4 = rand();
51

52 % Apply switch
53 if r4 < p
54 pop(i,:) = pop(i,:)+ ...

r1*sin(r2)*abs(r3*best_agent - ...
pop(i,:)); %Equation 2.2

55 else

32 2 Sine Cosine Algorithm

56 pop(i,:) = pop(i,:)+ ...
r1*cos(r2)*abs(r3*best_agent - ...
pop(i,:)); %Equation 2.3

57 end
58 end
59

60 % Check bounds
61 for i=1:Np
62 for j=1:Dim
63 if pop(i,j) < lb(1)
64 pop(i,j) = lb(1);
65

66 elseif pop(i,j) > ub(1)
67 pop(i,j) = ub(1);
68 end
69 end
70 end
71

72 % Evaluate fitness of updated population
73 for i=1:Np
74 fit(i) = Objf(pop(i,:));
75 end
76

77 %Update the best fitness and best solution
78 [best_fit ,ind] = min(fit);
79 best_agent = pop(ind ,:);
80

81 %Increase iteration counter
82 t=t+1;
83 end
84

85 display (['Optimum value obtained by SCA alg. is ...
:', num2str(best_fit)]);

86 display (['Optimum solution obtained by SCA alg. ...
is :', num2str(best_agent)]);

Listing 2.2 Cost function defined in MATLAB

1 %Sphere Function
2 function f = cost_function(x)
3 f = sum(x.^2);
4 end

Practice Exercises

1. Apply SCA to solve the sphere function problem for 10, 30, 50, and 100 variables.
Compare and analyze the obtained results.

2. Discuss the influence of the population size on the performance of SCA.

Reference 33

3. Maximum number of iterations plays an important role in ensuring quality solu-
tions. Explain?

Reference

1. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based
Syst. 96, 120–133 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Sine Cosine Algorithm for
Multi-objective Optimization

In many real-world situations, we have to deal with multiple objectives simultane-
ously in order to make appropriate decisions. The presence of multiple objectives in
an optimization problem makes the problem challenging because most of the time
these objectives are conflicting in nature. For example, we may want to maximize
the return on investment of a portfolio and, on the other hand, minimize the risk
associated with the assets in the portfolio. We may want to minimize the cost of a
productwhilemaximizing the performance of that particular product. Similarly, there
are situations where we may want to maximize more than one objective at a time
and minimize multiple objectives for a given optimization problem. For instance,
a product manager in an XYZ mobile manufacturing company is supervising the
launch of a new smartphone in the market. He/she will have to consider many fea-
tures and configurations of the smartphone before launching. He/she might have to
consider features like the screen resolution, size of the screen, thickness of the phone,
camera resolution, battery life, operating system, and even aesthetics of the product.
On the other hand, he/she might also want to minimize the amount of labor, time
of production, and overall cost associated with the project. He/she knows that the
objectives, in this case, are conflicting, and simultaneously achieving every objective
in not possible. The solution to this dilemma is to look for some trade-off solutions
so that the main motive of the problem can be served.

Even if we consider a simple problem ofmobile-buying decision-making problem
for an individual buyer or consumer who wishes to buy a smartphone from the
available set of options, he/she might have to face the same kind of dilemma as
the product manager in the company XYZ was facing. The individual smartphone
buyer may want to maximize the quality and features, like size, camera quality, user-
interface, aesthetics, reliability and, on the other hand, try to minimize the cost. The
graphical representation of the alternative solutions in the mobile-buying decision-
making problem is illustrated in Fig. 3.1.

From the above discussion, we may convince ourselves that the single-objective
optimization problems are not sufficient to deal with a large class of decision-making

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_3&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_3

36 3 Sine Cosine Algorithm for Multi-objective Optimization

Fig. 3.1 Mobile-buying
decision-making problem

problems, where multiple objectives are present in the problem. Unlike single-
objective optimization problems, the optimal solution(s) may or may not exist in
multi-objective optimization Problems (MOOP). Objectives in the MOOP are con-
flicting in nature to each other. The optimal value of one objective may not be the
optimal value for other objectives, and sometimes, it may be even worse for other
objectives. For example in the above mobile-buying decision-making problem, if a
buyer wants to minimize the cost for buying, and chooses the cheapest option M1,
then he/she has to give up on the quality and features. Similarly, if he/she chooses the
option of M5 with maximum quality and features, he/she has to loosen the pocket,
and have to bear the maximum cost. In the next section, MOOP is discussed mathe-
matically in detail.

3.1 Multi-objective Optimization Problems (MOOP)

Optimization problems involving multiple objective functions (>1), are regarded
as the multi-objective optimization problems (MOOP). The underlying objective
functions in MOOP can be minimization type, maximization type, or a combination
of both (min–max). The procedure of finding single or multiple optimal solutions
for MOOP is called multi-objective optimization.

Mathematically, a MOOP can be written in the following general form:

3.2 Multi-objective Optimization Techniques (MOOT) 37

Minimize F(X̄) = [
f1(X̄), f2(X̄), . . . , fM(X̄)

]
,

s.t. g j (X̄) ≤ 0 j = 1, 2, . . . , J

hk(X̄) = 0 k = 1, 2, . . . , K

x li ≤ xi ≤ xui ∀i = 1, 2, . . . D

(3.1)

where X̄ = (x1, x2, . . . , xD) is the vector of decision variables, xi (i = 1, 2, . . . D).
g j (X̄) and hk(X̄) are J inequality and K equality constraints, respectively. x li
and xui are lower bound and upper bound constraints for decision variable xi
(i = 1, 2, . . . D).

The multi-objective optimization problems give rise to two different kinds of
spaces. The space F ⊆ RD spanned by the vectors of decision variables (X̄) is
called the decision space or search space. And, the space S ⊆ RM formed by all the
possible values of objective functions is called the objective space or solution space
[1].

Similar to single-objective optimization problems, a multi-objective optimization
problem can be classified as linear and nonlinear MOOP depending on the objective
functions and constraints. If all the objective functions and constraints are linear,
thenMOOP is referred as a linear multi-objective optimization problem. On the other
hand, if any of the objectives or constraints is nonlinear,MOOP is called the nonlinear
multi-objective optimization problem. Further, a MOOP can also be classified as
a convex and non-convex multi-objective optimization problem. For the detailed
classification, an interested reader can refer to ‘Multi-Objective Optimization Using
Evolutionary Algorithms’ by Deb [2].

3.2 Multi-objective Optimization Techniques (MOOT)

In the mobile-buying decision-making problem, we see that our hypothetical smart
buyer wants to maximize the quality and features, but also wants to minimize the
cost. We cannot generalize this case for every buyer or consumer in the market, there
might be some buyers not worried about the cost, and their primary preference is
toward quality and features only. Similarly, there might be buyers available in the
market who do not think about the quality and features, but make their decision on
the basis of the cost only. In both of these extreme cases, the problem is in fact not
a multi-objective but a single objective. In many situations, due to the scarcity of
resources taking decisions on extremes is not a feasible option. One has to make
some trade-off on available choices based on his/her preference. In that case, this
problem becomes a multi-objective optimization problem.

Thegist of the abovediscussion is,whenmultiple-conflictingobjectives are impor-
tant in the decision-making process, finding a single optimum solution such that it
optimizes all the objectives simultaneously is not possible, and even not prudent to
look for. We have to settle ourselves on some trade-off solutions, or in layman’s lan-

38 3 Sine Cosine Algorithm for Multi-objective Optimization

guage, we have to achieve certain harmony between conflicting objectives based on
our preference. If in case, the harmony or balance between these conflicting objec-
tives is not possible, we must try to find a list of preferences as to which objective
should be given the most preference and make a compromise.

Multi-objective optimization techniques are methods or procedures, primarily
focused on dealing with the optimization problems, where conflicting objectives
cannot be ignored. There are classical and evolutionary techniques available in the
literature of multi-objective optimization techniques, which we will discuss in later
sections of this chapter, but before going further, we have to make ourselves familiar
with some concepts and terminologies, which are important for understanding the
multi-objective optimization procedures.

3.2.1 Some Concepts and Terminologies

For understanding the idea of optimality in multi-objective optimization, first we
have to discuss about the Pareto optimality. The concept of Pareto optimality was
first introduced by FrancisYsidro Edgeworth, and it is named after themathematician
Vilfredo Pareto, who generalized the concept for multi-objective optimization [3].

Suppose we have a minimization problem as mentioned in Eq. (3.1). The multi-
objective function is denotedby F(X̄) = [f1(X̄), f2(X̄), . . . , fM(X̄)].S is the objec-
tive space. And, F is decision space, and X̄ ∈ F is a decision vector or solution. A
reader should not get confused with the terms decision vectors and solutions, because
in the literature of multi-objective optimization, these terms are used interchange-
ably, and have the same meaning. Continuing this tradition, we also use the terms
decision vectors or solutions, interchangeably depending on the requirements.

Definition 3.1 (Dominance) A solution, X1 ∈ F dominates another solution X2 ∈
F , if the following two conditions are satisfied:

1. fk(X1) ≤ fk(X2),∀ k = 1, 2, . . . M
2. There exists some j ∈ {1, . . . M} such that, f j (X1) < f j (X2).

In the above definition, condition (1) says solution X1 is no worse than solution
X2 in all the objectives, while condition (2) indicates that there exists at least one
objective (say f j) forwhich X1 is strictly better than X2. If any of the above conditions
are not satisfied or violated, the solution X1 does not dominate the solution X2. It
is also worth mentioning here again that we are considering a minimization-type
MOOP for our discussion, and if the underlying MOOP is maximization type, the
inequalities (≤,<) will be replaced by (≥,>) in the above definition of dominance.

If solution X1 dominates the solution X2, we can denote this situation mathe-
matically as X1 ≺ X2. Apart from saying, solution X1 dominates the solution X2,
one can also say, solution X2 is dominated by solution X1, or X1 is non-dominated
by X2, or solution X1 is non-inferior to solution X2. The concept of dominance is
graphically shown in Fig. 3.2.

3.2 Multi-objective Optimization Techniques (MOOT) 39

Fig. 3.2 Graphical illustration of dominance

Definition 3.2 (Pareto optimality) A decision vector or solution, X∗ ∈ F is called
Pareto optimal solution or non-dominated solution if � any k ∈ {1, . . . M} such that
fk(X) < fk(X∗).

The Pareto optimality of solutions implies that there does not exist any feasible
solution in the decision space which would decrease some objectives without simul-
taneously causing an increase in at least one objective. That is, any improvement in
one objective results in the worsening of at least one other objective.

Definition 3.3 (Pareto optimal set) The set containing all the Pareto optimal solu-
tions is called the Pareto optimal set, P∗. It is given by,

P∗ = {X∗ ∈ F : X∗ ≺ X, ∀X ∈ F} (3.2)

Definition 3.4 (Pareto optimal front) In the objective space S, all the objective
values corresponding to the Pareto optimal solutions are joined with a continuous
curve. This curve is called the Pareto optimal frontier, simply Pareto optimal front.

The graphical illustration of the Pareto front and Pareto optimal set is shown in
Fig. 3.3. For every solution in the decision space, there is a corresponding objective
value in the objective space. The objectives of the optimization problem are to be
minimized, and these objectives are conflicting in nature. Furthermore, a vector
is called an ideal vector or Utopian objective vector if it contains all the decision
variables that correspond the optima of objectives functions when each objective is
considered separately [1]. It is also interesting to mention that when the objective
functions in a MOOP are not conflicting in nature, the cardinality of the Pareto
optimal set is one [5]. In the next section, different approaches to handle multi-
objective optimization problems are discussed in detail.

40 3 Sine Cosine Algorithm for Multi-objective Optimization

Fig. 3.3 Graphical illustration of mapping of a decision space onto an objective space, where both
the conflicting objectives are to be minimized [4]

3.2.2 Different Approaches of Solving MOOP

The conflicting objectives in the multi-objective optimization (MOO) problems lead
tomultiple trade-off solutions or Pareto optimal solutions.Many different approaches
to solveMOOPare proposed and classified for theMOOproblems. There are conven-
tional or classical methods andmodern or meta-heuristic methods available in the lit-
erature. In conventional methods, the reformulation of theMOOproblems is required
to proceed with the optimization process. Different methods and approaches were
proposed to reformulate the MOO problems. For instance, one approach is to refor-
mulate MOO problem into single-objective optimization problem using weighted
sum of objective functions in which weights are assigned on the basis of a pref-
erence or utility by decision-maker (DM). One other approach is to optimize the
most preferred objective function of DM’s interest and treat other objectives as con-
straints with some predefined limits. In both of thesemethods, some preference of the
decision-maker is required before the optimization process begins. However, some
classical methods do not need any priori information about the relative importance
of the objective function. These methods are called ‘No-preference methods’. Dis-
cussing these classical methods in detail is not in the scope of this book. For detailed
information regarding classical methods, an interested reader can refer to the book,
“Multi-Objective Optimization Using Evolutionary Algorithms” by Deb [2]. How-

3.2 Multi-objective Optimization Techniques (MOOT) 41

Fig. 3.4 Classification of multi-objective optimization methods

ever, for the convenience of the readers, a brief classification inspired by Miettinen
[6], and Hwang and Masud [7] is presented here (Fig. 3.4).

(1) Priori methods: In priori methods, the preference information (e.g., weights of
the objective functions) is specified before applying the optimization algorithm.
These preferences are used to quantify the relative importance of the different
objective functions in the MOO problems. These methods convert a MOO prob-
lem into a single-objective optimization problem for the further optimization
process. Priori approaches can be described as a “decide first and then search”
approaches, where the decision is taken before searching. The major limitation
of these methods is that they are applicable only when the decision-maker knows
the problem very well. However, it is very challenging for the decision-maker
to accurately express his/her preferences through some goals or weights. More-
over, every time the relative importance of the objectives changes, weights and
preferences are to be relooked. Some example of priori methods are bounded
objective method, lexicographic method, compromise programming method,
goal programming, utility function method, and multi-attribute utility analysis
(MAUA) [7].

42 3 Sine Cosine Algorithm for Multi-objective Optimization

(2) Progressive (or Interactive) methods: In progressive or interactive methods, to
guide the search process, the objective functions and constraints are redefined and
incorporated multiple times, based on the decision-maker’s preferences, during
the execution of the algorithms. A subset of non-dominated (Pareto optimal)
solutions are found in each iteration, and the resultant Pareto set is then presented
before the decision-maker. If the decision-maker is satisfied with the solutions,
then the algorithm terminates the optimization process. However, if decision-
maker is not satisfied, then he/she is required to modify the preferences, and
new Pareto optimal solutions are found using the newmodified preferences. This
process continues until the decision-maker is satisfied or no further improvement
is possible. Method of displaced ideal, method of Steuer, method of Geoffri on,
interactive goal programming (IGP), and surrogate worth trade-off method are
some of the methods that fall under this category [7].

(3) “A Posterior” approach: These approaches are mainly ‘first search and then
decide’ strategies,where the search is executedbefore decision-making.Thenon-
dominated solutions are first generated using some optimization method. Once
the method is terminated, the most satisfactory solutions are selected from the
obtained non-dominated solutions based on the decision-maker’s requirements.
In otherwords, the decision-maker expresses his/her preferences once all the non-
dominated solutions are generated.Thedecision-makingprocess is involved after
the solutions are generated, with the changing preferences of the decision-maker,
new decisions are possible without repeating the optimization process. The main
criticism about the posterior approaches is that these methods usually generate
many non-dominated solutions, making it very difficult for the decision-maker to
choose the most satisfactory solution. Moreover, the process of approximating
the Pareto optimal set is often time-consuming. Some of the examples are ε-
constraintmethod, physical programmingmethod, normal boundary intersection
(NBI) method, and normal constraint (NC) method [7].

(4) No articulation approach: In these methods, personal preference information
from the decision-maker is not needed once the problem is formulated; i.e.,
constraints and objectives are defined. These approaches are advantageous for
problems where the decision-maker cannot precisely define his/her preferences.
These methods are used only when the decision-maker is not available, or the
decision-maker cannot define what he/she prefers. These methods are known
for their faster convergence and speed. Some examples of these methods are the
global criterion method and the min–max method [7].

The approaches discussed above often lead to a solution that may not be optimal.
The obtained Pareto front might be locally non-dominated, not necessarily globally
non-dominated. For example, approaches in which a multi-objective optimization
problem is reformulated as single-objective optimization problems. The reformu-
lation is sometimes challenging. Also, converting the objectives into constraints
due to the conflicting nature of the multiple objectives is not feasible. Similarly, in
the weighted sum approaches, the major challenge is to determine the appropriate
weights based on the preference of the user. Many complex real-world problems do

3.2 Multi-objective Optimization Techniques (MOOT) 43

not provide sufficient information about the problem, and hence, it is not an easy
task to get the optimal values of the weights. Moreover, in most of the methods
mentioned above, additional parameter settings are required. Decision-maker is sup-
posed to supply the value of parameters, and the preferences of the decision-maker
are subjective in many cases. These methods are not only difficult to implement, but
they also suffer from many drawbacks. Some are mentioned below:

(1) Most of these methods fail to perform if the shape of the Pareto front is concave
or disconnected.

(2) These methods are only able to produce a single solution in every run of the
optimization process. For obtaining different trade-off solutions, one has to run
the algorithm multiple times, which increases the computational cost of these
methods.

(3) Thedifferent objectivesmight takevalues of different orders ofmagnitude (or dif-
ferent units). A normalization of objective functions is required, which demands
knowledge of the extremum values of each objective in the objective space.

The methods for multi-objective optimization are presented above utilize the
single-objective optimization techniques for the optimization process. The single-
objective optimization techniques are incapable of producing multiple solutions,
which is the most important aspect of the MOO problems.

The challenge of producing multiple solutions for a MOO problem, however,
can be handled in a more sophisticated manner. There are other promising methods
available, which are non-conventional, more advanced, and intelligent. The methods
which require very low (or, no) information about the optimization problems and
are equipped with the potential of producing multiple solutions in a single run of the
optimization process. Moreover, they provide privilege to the user in deciding the
number of solutions, as much as he wants, or as low as he can. These methods are
meta-heuristic methods. The population-based approach and capability of handling
black-box problems make these evolutionary and swarm-based techniques a suitable
candidate for MOO problems. Meta-heuristic techniques for single-objective opti-
mization can be extended to handleMOOproblemswith somemodifications, because
of their basic structure, which is different from the single-objective optimization.

The first hint regarding the possibility of using population-based stochastic opti-
mization algorithms to solvemulti-objective optimization problems was presented in
the Ph.D. thesis of Rosenberg [8], in which a multi-objective problem was restated
as a single-objective problem and solved with the genetic algorithm (GA). How-
ever, David Schaffer was the first who introduced the revolutionary idea of applying
stochastic techniques to deal with multi-objective optimization problems by propos-
ing themulti-objective evolutionary optimization approach based on the genetic algo-
rithm (GA), known as vector evaluated genetic algorithm (VEGA) [9]. The expan-
sion in the research of meta-heuristic techniques and advancements in the computing
power ofmodern computers paved theway for the researchers to focus on articulating
more superior multi-objective meta-heuristic techniques. For example, some of the
well-known multi-objective stochastic optimization techniques are non-dominated
sorting genetic algorithm (NSGA) [10], non-dominated sorting genetic algorithm

44 3 Sine Cosine Algorithm for Multi-objective Optimization

version 2 (NSGA-II) [11], multi-objective particle swarm optimization (MOPSO)
[12], Pareto archived evolution strategy (PAES) [13], Pareto-frontier differential
evolution (PDE) [14], multi-objective ant colony optimization [15], multi-objective
dragonfly algorithm (MODA) [16], and multi-objective sine cosine algorithm [17].

The population-based approach of meta-heuristic algorithms provides liberty to
obtain multiple Pareto optimal solutions in a single run of the algorithm. Instead of
finding a single Pareto optimal front containing solutions with specific preferences,
thesemethods explore the search space extensively to providemultiple Pareto optimal
front corresponding to the different regions. In the next section, we will discuss the
particular case of multi-objective sine cosine algorithm, which is the main focus of
this chapter.

3.3 Multi-objective SCA

The basic structure of multi-objective optimization is different from the single-
objective optimization, which compels to incorporate some modifications in the
original sine cosine algorithm (SCA) proposed for single-objective optimization.
Before coming to the proposed modifications in the SCA, let us discuss some prob-
lems, which have to be taken into consideration.

1. How to choose Pg (i.e., destination point) in each iteration?
SCA is required to favor non-dominated solutions over dominated solutions, and
drive the population toward the different parts of the Pareto front, or set of non-
dominated solutions, and not only in the direction of the destination point.

2. How to identify the non-dominated solutions in SCA, and how to retain the
solutions during the search process?
Ans: One strategy is to combine all solutions obtained in the optimization process
and then extract the non-dominated solutions from the combined population. Of
course, other approaches do exist.

3. How to maintain the diversity in the population, so that a set of well-
distributed non-dominated solutions can be found along the Pareto front?
Ans: Some classical niching methods (e.g., crowding or sharing) are available
and can be adopted for maintaining the diversity.

The problem of finding an accurate approximation of the true Pareto optimal
front is challenging and even sometimes impossible for a given multi-objective
optimization problem. However, the approximated Pareto front obtained by using
multi-objective meta-heuristic algorithms should possess certain characteristics. For
instance, the resultant non-dominated set of solutions should lie at a minimum dis-
tance from the optimal Pareto front and the solutions in the resultant Pareto front
should be uniformly distributed to cover a wide range of the non-dominated solu-
tions [18]. These pointswere taken into consideration, and various attempts have been
made to design the multi-objective SCA. The structure of multi-objective SCA is dif-
ferent because of the presence of Pareto optimal solutions and the concept of domi-

3.3 Multi-objective SCA 45

Table 3.1 Multi-objective sine cosine algorithms
Approach Algorithm

name
Fitness assignment Diversity

mechanism
Elitism External

population
Selection of
fittest
solution

Non-
dominance
and diversity
based

MOSCA [17] Ranking based on
non-domination
sorting

Crowding distance Yes No Crowded
comparison
operator

MOSCA by
Raut et al.
[19]

Ranking based on
non-domination
sorting

Crowding distance Yes No Fuzzy
decision-
making

MOSCA_SSC
[20]

Ranking based on
non-domination
sorting

Crowding distance Yes No Knee-point
based

MOSCA by
Selim et al.
[21]

Ranking based on
non-domination
sorting

Grid mechanism
and leader
selection
mechanism

Yes Yes Fuzzy logic
decision-
making

MOSCA with
fuzzy loss
sensitivity
factor (FLSF)
[22]

Ranking based on
non-domination
sorting

Grid mechanism
and leader
selection
mechanism

Yes Yes Grey
relational
analysis

MOCSCA
[23]

Ranking based on
non-domination
sorting

Grid mechanism
and leader
selection
mechanism

Yes Yes Grey
relational
analysis

Aggregation
based

SCA for
CEED [24]

Aggregated
objective function
using max–max
price penalty
factors

No No No Based on
fitness value

Multi-
objective
ISCA [25]

Fuzzy membership
function

No No No Based on
fitness value

Mixed MSCO [26] Weighted average
of normalized
objective

Randomly
assigned weights +
opposition-based
learning strategy

Yes Yes User
selection

NSCA [27] Weighted average
of normalized
objective

Randomly
assigned weights

Yes Yes User
selection

nance; however, the searchmechanism is almost similar to single-objective SCA.We
will study the multi-objective versions of SCA based on two approaches, particularly
the aggregation-based approaches and non-dominance diversity-based approaches
which are discussed in subsequent sections. A list of all the multi-objective SCA
proposed in the literature is presented in Table 3.1.

46 3 Sine Cosine Algorithm for Multi-objective Optimization

3.3.1 Aggregation-Based Multi-objective Sine Cosine
Algorithm and Their Applications

In aggregation-based approaches, the multiple objectives of a MOO problem are
combined using aggregation operator to form a single-objective function. The aggre-
gation operators merge multiple objectives using techniques like random weights,
price penalty function, fuzzy membership function, utility function, etc. [25] to for-
mulate a single-objective function. This single objective is then solved using standard
single-objective optimization algorithms. However, in principle, aggregation-based
approaches for handlingMOO problem fail to find solutions when the Pareto optimal
region is non-convex. Fortunately, not many real-world multi-objective optimization
problems have been found to have a non-convex Pareto optimal region. This is the
reason why the aggregation-based approaches are still popular and used in practice
for multi-objective optimization problems [2].

The single-objective sine cosine algorithm [28] is a robust optimizer and can
be utilized with aggregation-based approaches for solving MOO problems. Some
significant applications of aggregation-based MOO-SCA are discussed here in the
subsequent sections.

3.3.1.1 Multi-objective Improved Sine Cosine Algorithm for Optimal
Allocation of STATCOM

In power systems, STATCOM or static synchronous compensator is a power elec-
tronic device used in power systems to regulate its various parameters either by
injecting or by absorbing the reactive power. The optimal location of STATCOM is
needed to enhance the performance of the power system and simultaneously reduce
the cost. Multi-objective improved SCA was proposed by Singh and Tiwari [25]
to handle the problem of optimal allocation of holomorphic embedded load-flow
(HELF)model of STATCOMswith six objective functions. In the proposed improved
SCA (ISCA), some modifications were incorporated in the SCA to boost its explo-
ration and exploitation capabilities. The control parameter r1 is modified to change
the range of sine and cosine functions in an adaptive manner.

r1 = γ × cos

(
90◦ − 90◦

(
t − T

T

))
× cos

(
60◦ − 60◦

(
t − T

T

))
(3.3)

where γ is a constant and its value is taken equal to 2.
Singh and Tiwari [25] formulated STATCOM’s multi-objective problem into a

single-objective problem using aggregation-based approach. The underlying aggre-
gation operator was based on a fuzzymembership function. Multiple objectives were
aggregated using the concept of the fuzzy membership function. In fuzzy member-
ship, each objective function was assigned a membership value, and these member-
ship values represent the weights of the objectives in the aggregated fuzzy member-

3.3 Multi-objective SCA 47

ship function. The range of fuzzy membership values lies in the interval [0, 1]. The
membership value 0 indicates the incompatibility of an objective function with the
aggregated function, meanwhile, the membership value 1 represents the complete
compatibility of an objective function with aggregated function [29].

The underlying six objectives of the holomorphic embedded load-flow (HELF)
model for STATCOMs problem can be considered as different important factors
to consider before planning and operation of STATCOMs allocation. All the six
objectives, (say) f1, f2, f3, f4, f5, f6, are minimization-type problems and share
relative importance in theSTATCOMsallocation problem.For instance, f1 represents
active power loss, f2: reactive power loss, f3: node voltage deviation, f4: cost of
STATCOM, f5: node severity to voltage collapse, and f6 denotes the apparent power
flows through transmission lines. For the mathematical definition of the mentioned
objectives, readers can refer to Singh and Tiwari [25].

The objective function f3, the node voltage deviation, is a important metric for
the STATCOMs allocation problem. The authors used an exponential membership
function mentioned in Eq. (3.4) to compute the membership value for the objective
function f3. The exponential membership function helps in detecting good and bad
solutions of the node voltage profile by assigning higher membership values to the
better solutions and low membership values to other solutions. The membership
value of the rest objective functions fi , (i = 1, 2, 4, 5, 6) was calculated using an
quarter cosine membership function (μ fi) given by Eq. (3.5). The quarter cosine
membership function help to retain the solutions of moderate quality as well, along
with the solutions of high quality.

μ f1 =

⎧
⎪⎨

⎪⎩

1 if f1,min ≤ f1 ≤ f1,max

em×|1−Vk | if f1,min ≥ f1 ≥ f1,max

(3.4)

where Vk is the kth bus voltage, and m = −10 is used to vary the time constant of
an exponential curve.

μ fi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if fi ≤ fi,min

cos
[

π
2 ×

(
fi− fi,min

fi,max− fi,min

)]
if fi,min < fi,max

0 if fi ≥ fi,max

(3.5)

where μ fi is the value of the membership function for the objective fi , while fi,min

and fi,max are lower and upper bounds of the i th objective.
The fuzzy membership functions μ fi of the objectives functions fi were aggre-

gated to produce trade-off solutions. To aggregate these fuzzymembership functions,

48 3 Sine Cosine Algorithm for Multi-objective Optimization

the ‘max-geometric mean’ operator is used [30]. Max-geometric mean operator first
calculates the geometric mean of fuzzy membership functions of the underlying
objective functions as mentioned in Eq. (3.6) below,

μ f = (μ f1 ∗ μ f2 ∗ μ f3 ∗ μ f4 ∗ μ f5 ∗ μ f6)
(1
6) (3.6)

The geometric mean of the aggregated fuzzy membership function, denoted by
μ f , represents the degree of overall fuzzy satisfaction that means μ f indicates the
relative importance of the fuzzy membership functions in the aggregation. In the
second procedure of the max-geometric mean operator, μ f with a maximum degree
is considered to generate the best trade-off solutions [25]. The given multi-objective
optimization problem was reformulated as the minimization problem, mentioned
below in Eq. (3.7).

min f = 1

1 + μ f
(3.7)

f is selected as the fitness function in the proposed ISCA [25], and it provides the
optimal solution without violating any of the constraints of the given multi-objective
optimization problem.

3.3.1.2 Multi-objective Sine Cosine Algorithm for Combined Economic
Emission Dispatch Problem

Combined economic and emission dispatch (CEED) is the process of determining
the outputs of generating units in a power system in order to minimize the fuel cost
and pollutants emissions at the same time. Gonidakis and Vlachos [24] solved the
combined economic emission dispatch (CEED) problem using sine cosine algorithm
(SCA). The objective of the CEED problem is to minimize the four conflicting
objective functions of fuel cost, nitrogen oxides (NOx) emission, sulfur dioxide
(SO2) emission, and carbon dioxide (CO2) emission, under certain constraints. This
multi-objective problem is converted into a single objective by introducing penalty
factors to the objectives representing pollutants [31]. Moreover, to deal with the
constraints, penalty function method is used. The authors used the max–max price
penalty factor to solve the CEED problem, which is the ratio between maximum fuel
cost and maximum emission of the corresponding generator [31]. It is expressed in
Eq. (3.8).

hi = F(Pi,max)

E(Pi,max)
, i = 1, 2, . . . n (3.8)

where F(Pi,max) is the maximum fuel cost, E(Pi,max) is the maximum emission, n
is the number of generating units, and Pi is the active power generated by the i th
generating unit.

3.3 Multi-objective SCA 49

In real-time economic emission dispatch, generator fuel cost curves are approx-
imated using polynomials. This is a standard practice followed by the industries,
and this approximation greatly affects the accuracy of the economic dispatch solu-
tions. Fuel cost and emission are usually formulated as a second-order polynomial
(quadratic) functions. However, by introducing higher order polynomials, economic
emission dispatch solutions can be improved. Higher order polynomial models repli-
cate the actual thermal generators’ fuel and emission costs. Gonidakis and Vlachos
[24] used cubic polynomials to express the economic and emission cost. The CEED
problem is mathematically formulated as mentioned in Eq. (3.9) below.

Min C =
n∑

i=1

[F(Pi) + hSO2,i ESO2 + hCO2,i ECO2 + hNOx,i ENOx]

subject to
n∑

i=1

Pi − PD − PL = 0

(3.9)

where hSO2,i , hNOx,i , hCO2,i are the penalty factors of SO2, NOx, CO2 emissions,
respectively. ESO2 , ECO2 , and ENOx are the total SO2, CO2, and NOx emissions,
respectively.

∑n
i=1 Pi is the total output of all generating units, PD is power system

load demand and PL is the transmission loss. The constraint mentioned in Eq. (3.9)
is known as the power balance constraint.

To satisfy the equality constraint, the objective function in the CEED problem is
modified as follows:

Min G = C + k

∣∣∣∣
∣

n∑

i=1

Pi − PD − PL

∣∣∣∣
∣

(3.10)

where k is a constant penalty parameter.

3.3.2 Non-dominance Diversity-Based Multi-objective SCA
and Its Applications

The non-dominance diversity-based approaches do not reformulate a multi-objective
optimization problem into single-objective optimization problem. All the objectives
are considered at the same time during the optimization process, and no prefer-
ences or weights are required to proceed. These methods produce a set of non-
dominated solutions distributed uniformly along the Pareto optimal front. In the
non-dominance diversity-based approaches, the very first task of the algorithm is to
find non-dominated set of solutions from a given set of solutions. Different methods
and procedures are available in the literature for this purpose, for example ‘Naive
and Slow’ approach, ‘continuously updated’ method, and ‘non-dominated sorting’

50 3 Sine Cosine Algorithm for Multi-objective Optimization

[5]. For a detailed discussion of these methods, an interested reader can refer to the
book ‘Multi-Objective Optimization Using Evolutionary Algorithms’ by Deb [5].

The other important task in non-dominance diversity-based approaches is tomain-
tain the distribution of non-dominated solutions throughout the Pareto region, and
it is an important assessment metric for such algorithms. There are several methods
for maintaining diversity, such as the adaptive grid mechanism [2], and the crowd-
ing distance mechanism [11]. These mechanisms consist of a procedure that divides
objective space in a recursive manner. Next, we will discuss about the first multi-
objective version of SCA based on non-dominance diversity approach.

3.3.2.1 Multi-objective Sine Cosine Algorithm (MOSCA)

Tawhid and Savsani [17] proposed the first multi-objective version of SCA using
elitism-based non-dominated sorting and crowding distance (CD) method of NSGA-
II [11]. In MOSCA, the elitist non-dominated sorting adopted to introduce the selec-
tion bias to the solutions (or, agents) in the population, enabling themodel to select the
solutions from the fronts closer to the true Pareto optimal front (let us denote Pareto
optimal front by PF∗). To maintain the diversity in the population, the crowded-
comparison approach of NSGA-II was adopted. The working of MOSCA can be
divided into two phases:

1. Elitist non-dominated sorting.
2. Crowding distance assignment and comparison.

Elitist non-dominated sorting
In elitist non-dominated sorting approach, for each solution, two attributes are
defined:

(i) domination count (ni): number of solutions dominating the solution Xi

(ii) Si , a set of solutions dominated by the solution Xi , are calculated using Proce-
dure 1.

All the solutions Xi that are assigned a domination count (ni = 0), are put in
the first non-dominated level (or, first Pareto front) (PF1), and their non-domination
rank (NDRi) is set equal to 1 (see Procedure 1). Then, for obtaining the second non-
domination level for each solution Xi with ni = 0, each member X j of the set Si is
visited, and its domination count n j is reduced by one. While reducing domination
count if it falls to ‘0’, the corresponding solution X j is put in the second non-
domination level (PF2), and its rank (NDR j) is set equal to 2. The above procedure
is repeated for each member of the second non-domination level to identify the third
non-domination level. This process continues until the whole population is classified
into different non-domination levels (see Procedure 2).

3.3 Multi-objective SCA 51

Procedure 1: Determining the optimal non-dominated set
Step 1 For each Xi ∈ P (Population), i ∈ 1, 2, . . . N , set ni = 0 and Si = φ.
Then set solution counter i = 1.
Step 2 for all j ∈ {1, 2, . . . N } and j
= i , If Xi ≺ X j , update Si = Si ∪ X j .
Otherwise, if X j ≺ Xi , set ni = ni + 1.
Step 3 Replace i by i + 1. If i ≤ N , go to step 2. Otherwise, go to step 4.
Step 4Keep Xi in P1 (first non-dominated front) if ni = 0 and set NDRi = 1.

Procedure 2: Non-dominated sorting
Step 1 Determine the best non-dominated set or front (P1) using procedure
1
Step 2 Set a front counter(k) = 1
Step 3While Pk
= φ, perform the following steps
Step 3(a) Initialize Q = φ for storing next non-dominated solutions
Step 3(b) For each Xi ∈ Pk and for each X j ∈ Si , update n j = n j−1

Step 3(c) If n j = 0, keep X j inQ (i.e., Q = Q ∪ {X j } and set NDR j = k + 1
Step 4 Set k = k + 1 and Pk = Q, go to Step 2.

Crowding distance estimation
For measuring the distribution of the solutions in the neighborhood of a solution,
MOSCA adopted the crowding distance metric as used in the NSGA-II [11]. The
crowding distancemetric estimates the normalized search space around a solution Xi

which is not occupied by any other solution in the population. The crowding distance
value of a particular solution is the average distance of its two neighboring solutions.
The crowding distance is calculated by sorting all the solutions in the population
of a particular non-dominated set in ascending order for each objective function fl
(l = 1, 2 . . . M). The individuals with the lowest and the highest objective function
values are assigned an infinite crowding distance so that they are always selected,
while other solutions are assigned the crowding distance (cdil) using the following
equation:

cdil = f i+1
l − f i−1

l

f max
l − f min

l

∀ l = 1, 2 . . . M, i = 2, 3 . . . (l − 1) (3.11)

The final crowding distance value (CDi) for each solution (Xi , i = 1 . . . N) is
computed by adding the solution’s crowding distance values (cdlI) in each objective
function.

CDi =
m∑

l=1

cdil (3.12)

For m = 2, the crowding distances of a set of mutually non-dominated points are
illustrated in Fig. 3.5.

52 3 Sine Cosine Algorithm for Multi-objective Optimization

Fig. 3.5 Non-dominance ranking and crowding distance

Crowded tournament selection
After calculating the crowding distance (CD) for each of the solutions (see Proce-
dure 3), the SCA is operated to generate a new population Pj . The new and the old
population (Po) are then merged to form a population Pnew of size greater than N .
In order to maintain a constant population size N , a crowded tournament selection
operator (defined in 3.5) based on the non-dominated ranking (NDR), and the crowd-
ing distance (CD) are used to select N solutions from the Pk number of solutions to
form the updated population.

Definition 3.5 (Crowded tournament selection operator) A solution Xi is selected
over solution X j if it satisfies any of the following conditions: 1. If solution Xi has a
lower (or, better) NDR than X j , 2. If solutions have the same NDR but solution Xi

has a better crowding distance (CD) than the solution X j .

That means, between solutions with different NDRs, we prefer the solutions with
the lower rank. And, if two solutions have the sameNDR (i.e., they both belong to the
same front), then in order to maintain the diversity, the solution located in a lesser

3.3 Multi-objective SCA 53

crowded region in the front is preferred. If the crowding distance is the same for
two solutions, then any of the solutions is assigned a higher ranking, randomly. The
crowding distance measure is used as a tiebreaker in this selection technique, called
the crowded tournament selection operator. In more simpler terms, if the solutions
are in the same non-dominated front, the solution with a higher crowding distance is
the winner.

Procedure 3: Crowding distance assignment
Step 1 Set the front counter k = 1
Step 2 For each solution Xi in the set Pk , first assign cdi = 0
Step 3 For each objective function fm , m = 1, 2, … M, sort the set Pk in
ascending order of its objective function value
Step 4 Assign cdm1 = cdmL = ∞, where L = |Pk |
Step 5 For all other solutions X j ∈ Pk, j = 2, 3, . . . , L − 1, assign crowd-
ing distance using Eq. (3.11)
Step 6 Calculate the final crowding distance value (CDi) for each solution
(Xi , i = 1 . . . N) using Eq. (3.12).

The pseudo-code of the discussed MOSCA algorithm is shown in Algorithm 1.

Algorithm 1Multi-objective sine cosine algorithm [17]
Generate Po randomly in S and evaluate f for the generated Po
Sort the Po based on the elitist non-dominated sorting method and find the NDR and fronts
Compute CD for each front
Update solutions (X j ∈ Po) using SCA algorithm to generate new population P ′
Merge Po and P ′ to create a new population Pnew
For Pnew perform step 2
Based on NDR and CD sort Pnew
Replace Po with Pnew for the first N members of Pnew.

3.3.2.2 Multi-objective Sine Cosine Algorithm for Optimal DG
Allocation Problem

Raut and Mishra [19] developed another Pareto-based multi-objective sine cosine
algorithm (MOSCA) to address the issues of optimal distribution generators (DGs)
allocation. This approach applies a fast non-dominated sorting approach and the
crowding distance operator. In addition to this, to enhance the performance, r1 of
SCA is defined as an exponential decreasing parameter and a self-adapting levy
mutation as defined in Eqs. (3.13) and (3.14) is adopted.

r1 = b × e(−t/T) (3.13)

54 3 Sine Cosine Algorithm for Multi-objective Optimization

Pt+1
g, j = Pt

g, j + levy × A(j)Pt
g, j (3.14)

where Pt
g, j is the value of the best agent in the j th dimension, levy step length is

calculated from Eq. (3.15), and a self-adapting control coefficient A is calculated
using Eqs. (3.18), (3.19) and (3.20).

levy = 0.01 ×
(
S × σ

T (1
α
)

)
(3.15)

where S and T are random numbers in the range [0, 1]. σ is defined as:

σ =
(

�(1 + α) × sin(πα
2)

�(1+α
2) × α × 2(α−1

2)

) 1
α

(3.16)

where
�(k) = (k − 1)! (3.17)

The large value of A in the early iteration enhances the exploration, while the
gradual decrease in A with increasing iteration numbers facilitates the exploitation.

A(j) = e(−ε×t
T)(1− w(j)

wmax(j)) (3.18)

w(j) =
∣
∣∣∣∣
Pt
best, j −

(
1

N

N∑

i=1

Xt
i, j

)∣
∣∣∣∣

(3.19)

wmax(j) = max(Pt
j) − min(Pt

j) (3.20)

where ε and α are constants, w(j) is the difference between the j th dimension
value of the current best solution and j th dimension average value of the population.
wmax(j) is the maximum distance of the best solution from the worst solution.

Once the Pareto optimal set of non-dominated solutions is obtained, a fuzzy-based
mechanism is employed to extract the best trade-off solutions from the obtained
Pareto set and assist the decision-making process. Due to the imprecise nature of the
decision-maker’s judgment, each objective function is represented by a membership
function. A simple linear membership function μk

l is defined for each objective and
the membership value of kth solution in j th objective is given as

μk
l = Fmax

l − Fk
l

Fmax
l − Fmin

l

(3.21)

where μ is the fuzzy membership function, Fmin
l and Fmin

l are the maximum and
minimum values of lth objective function. For each member of non-dominated set,
the normalized membership value (μk) is calculated using the following equation:

3.3 Multi-objective SCA 55

μk =
∑m

l=1 μk
l∑K

k=1

∑m
l=1 μk

l

(3.22)

whereK is the total number of Pareto solutions. Themaximumvalue ofμk is selected
as the Pareto optimal solution.

3.3.2.3 Multi-objective Sine Cosine Algorithm for Spatial-Spectral
Clustering Problem

Wan et al. [20] developed a multi-objective SCA for remote sensing image spatial-
spectral clustering (MOSCA_SSC) that uses a knee-point-based selection approach
[32], the concept of Pareto dominance and elitism. ‘Knees’ are the solutions of the
Pareto front in which any modification to improve one objective would significantly
deteriorate at least one other objective. The technique of Pareto dominance combined
with elitism ensures that the non-dominated solutions survive in the succeeding gen-
erations of the algorithm. A multi-objective model consisting of multiple clustering
objectives is utilized for the purpose of the clustering task of remote sensing image
data. In MOSCA_SSC, two widely used metrics for remote sensing data, namely the
Xie-Beni (XB) index and Jeffries–Matusita (Jm) distance combined with the spatial
information are used as objective functions for the optimization purposes [33] (see
Eqs. 3.23 and 3.24)

(XB)ind =
∑K

i=1

∑N
j=1 μm

i j ||x j −Ui ||2
Nmini
=k ||Ui −Uj ||2 (3.23)

(SJm)ind =
K∑

i=1

N∑

j=1

μm
i j ||x j −Ui ||2 + φ

K∑

i=1

N∑

j=1

μm
i j ||x j −Ui ||2 (3.24)

where K is the number of cluster centers, N is the total number of pixels in the remote
sensing image, m is the fuzzy weighting exponent, which determines the degree of
sharing of samples between classes. x j is a vector, which denotes the j th pixel of
the image, and μi j denotes the fuzzy membership.Ui andUk , are the j th and the kth
cluster centers, and φ is the control parameter. x j represents the average gray value
[33].

The procedure for MOSCA_SSC is described as follows:

56 3 Sine Cosine Algorithm for Multi-objective Optimization

Main Steps of the MOSCA_SSC
Step 1 Initialize a set of parent search agents (population) of size NP.
Step 2 Select the initial destination point using the Fuzzy C-Means (FCM)
method.
Step 3Generate newoffsprings using SCA to get a newpopulation andmerge
the new population with the old population to get 2× NP solutions.
Step 4 For each search agent, calculate the values of the two clustering objec-
tive functions using Eqs. (3.23) and (3.24).
Step 5 Rank the parent and the offspring search agents using the non-
dominance sorting and crowding distance approach and select the NP best
solutions from 2× NP solutions.
Step 6 Select the destination point using the knee-point-based selection
approach.
Step 7 Repeat the process from steps 3 to 6 until the stopping criteria is
reached.

The Fuzzy C-Means (FCM) method [34], mentioned in the step 2 of the
MOSCA_SSC is used to obtain the initial destination point, as SCA requires ini-
tial destination points to begin the optimization procedure. Knee-point selection
approach is utilized for automatically updating the destination points in the SCA
algorithm [32]. In non-dominance diversity-based approaches, there are two chal-
lenging aspects to handle. The first aspect of this approach is to produce multiple
non-dominated solutions to form a near optimal Pareto front, while the second aspect
is to maintain diversity among these non-dominated solutions. Researchers have pro-
poseddifferentmethods and techniques to tackle this challenge.Theuse of an external
archive to store the non-dominated solutions and a grid mechanism to improve the
diversity of the non-dominated solutions are some major methods to enhance the
capabilities of non-dominance diversity-based approaches.

Archive: Archive is a storage memory where non-dominated solutions of previous
iterations are stored. The non-dominated solutions stored in archive can be utilized
for further generating new solutions, and based on the dominance status of these
newly generated solutions, the solutions stored in the archive are managed.

Grid Mechanism: It concerns with managing the diversity in the non-dominated
solutions by locating the crowded region where non-dominated solutions lie. Dif-
ferent grid mechanism techniques are available in the literature for this purpose.
However, the basic idea behind the grid mechanism is to divide the objective space
into smaller regions or grids to observe the distribution of the non-dominated solu-
tions. If the distance between non-dominated solutions is small, and the number of
non-dominated solutions is big, that particular grid is considered crowded.

Selim et al. [21] proposed a multi-objective sine cosine algorithmwith an external
archive and adaptive grid mechanism to handle the DSTATCOM allocation problem
as mentioned below.

3.3 Multi-objective SCA 57

3.3.2.4 Multi-objective Sine Cosine Algorithm for DSTATCOM
Problem

In distribution systems, to improve the voltage profile, and overall reliability, Distri-
bution STATic COMpensators (DSTATCOMs) are used. Selim et al. [21] proposed
multi-objective SCA (MOSCA) and used fuzzy logic decision-making to optimally
install multiple Distribution STATic COMpensators (DSTATCOMs). The optimiza-
tion procedure is carried out to determine the optimum size and location of DSTAT-
COMs that leads to the minimization of power loss, voltage deviation (VD), and
maximization of the voltage stability index (VSI) of the radial distribution system.
MOSCA is a Pareto-based algorithm that utilizes the Pareto ranking scheme in the
sine cosine algorithm to handle this multi-objective optimization problem. MOSCA
incorporates an external archive of solutions to keep the historical record of non-
dominated solutions, and the mechanism of adaptive grid [12] to maintain the diver-
sity of the non-dominated solutions in the external archive. Themajor objective of the
external archive and grid mechanism is the fact that a solution that is non-dominated
with respect to its current population might not be non-dominated with respect to
other solutions stored in the archive from the previous iterations in the evolutionary
process. In MOSCA [21], an archive controller and adaptive grid mechanism are
employed to store the non-dominated solutions and maintain the diversity of the
solutions.

Archive Controller
Archives controllers are responsible for deciding whether a solution should be
included in the archive or not. The non-dominated solutions generated at each iter-
ation of the MOSCA are compared with the solutions inside the archive [21]. This
archive is initially empty, and with the iterations, non-dominated solutions are added
and updated. However, a fixed size of the archive is maintained because of mem-
ory limitations. If the archive is empty, then the candidate solution is accepted. If the
archive is not empty, there are three possibilities—if solutions in the archive dominate
the new candidate solution, it is not added in the archive. If there are solutions in the
archive that are dominated by the new solution, then those solutions are eliminated.
If the new candidate solution is neither dominated by any solution of the archive nor
dominates any solution, it is added to the archive depending on the availability of the
slot in the archive. Finally, the adaptive grid mechanism is triggered if the external
population has exceeded its permitted capacity [12]. The archiving behavior is sum-
marized in Algorithm 2. The graphical illustration of the archive update mechanism
is depicted in Fig. 3.6.

Adaptive Grid Mechanism
The adaptive grid mechanism maintains the diversity in non-dominated solutions
lying in the archive. It is used to delete solutions from the external archive if the
external population has reached its maximum size. The MOSCA proposed in [21]
utilizes the adaptive grid mechanism proposed in [12] to generate well-distributed
Pareto fronts. This mechanism measures the degree of crowding in different regions
of the solution space. The objective space region is divided into d × M number of

58 3 Sine Cosine Algorithm for Multi-objective Optimization

Algorithm 2 Pseudo-code for maintaining an archive of Pareto solutions
for Each candidate solution Xi in the new population do
if A candidate dominates any solutions in the archive then
if Archive is not full then
Remove all dominated members from the archive and add the candidate to the archive

else if the archive is full then
if the candidate increases the diversity in the archive then
Run the grid mechanism to remove the solution with the highest frequency from the
archive and add the candidate search agent to the archive;

end if
end if

else
Reject the candidate

end if
end for

Fig. 3.6 Archive update mechanism

equal-sized M-dimensional hyper-cubes, where d is a user-defined parameter that
denotes the number of grids (see Fig. 3.7). The archived solutions are placed in these
hyper-cubes according to their locations in the objective space. A map of the grid is
maintained, to calculate the number of non-dominated solutions lying in a particular
grid. If the archive is already full, then the new solution cannot be included without

3.3 Multi-objective SCA 59

Fig. 3.7 Graphical representation of the insertion of a new element in the adaptive grid when the
individual lies within the current boundaries of the grid [12]

making the space in the archive. In this case, the hypercube with the highest number
of solutions is identified, and if the new solution does not belong to this hypercube,
it is included in the archive, and one of the solutions from the archive is eliminated.
If the new solution is not dominated or dominates any other solution in the archive,
while the archive is full, the solution with the highest grid count is deleted from the
archive. If the new solution inserted into the archive lies outside the current bounds
of the grid, then the grid is recalculated, and each solution inside it is relocated (see
Fig. 3.8).

Algorithm 3 Pseudo-code for adaptive grid mechanism
Search Space S, Number of grids d, Archive A, Grid Mi i = 1, 2 . . . d
A grid counter nc denoting the number of solutions in a particular grid Mi , Initialize nc = 0
for Each non-dominated solution Xi in the archive A do
if Solution Xi ∈ Mi then
Increase the grid counter by 1
Calculate the number of solutions in each grid

else if the archive is full then
if a new solution is eligible for entering the archive then
Remove a solution lying in a grid with a maximum nc value

end if
else
Recalculate the grid

end if
end for

60 3 Sine Cosine Algorithm for Multi-objective Optimization

Fig. 3.8 Graphical representation of the insertion of a new element in the adaptive grid when it
lies outside the previous boundaries of the grid [12]

When the non-dominated solution in the archive are assessed on the basis of
crowding, the solutions with the least crowding or the solutions located in the least
congested region of the objective space are given preference over the solutions lying
in the more crowded region. The pseudo-code of the MOSCA [21] is given in Algo-
rithm 4.

Algorithm 4 Pseudo-code of MOSCA [21]
Initialize the population {X1, X2, . . . , XN } randomly
Initialize the parameter ‘b’
For each candidate solution, calculate the objective function values
Find the non-dominated search agents and initialize the archive with them
Select the destination point from the archive
t = 0
while Termination criteria is met do
for each search agent do
Update the position of the search agent using the original SCA

end for
Calculate the objective values of all the search agents
Find the non-dominated search agents
Update the archive using Algorithm 2
if any of the new added solutions to the archive is located outside the hypercube then
Update the grids to cover the new solution(s)

end if
Select the destination point from the archive
t = t + 1

end while
Return Archive

References 61

3.4 Conclusion

Optimization problems involving multiple objectives are common. In this context,
meta-heuristics turn out to be a valuable tool, in particular, if the problem complexity
prevents exact methods from being applicable and flexibility is required with respect
to the problem formulation. Most real-world engineering problems involve simulta-
neously optimizing multi-objectives where considerations of trade-offs is important.
Multi-objective sine cosine algorithm has shown its applicability to various appli-
cation problems. Apart from basic MOO concepts, this chapter has covered various
multi-objective sine cosine algorithms and their applications.

Practice Exercises

1. Prove that dominance relation is a partial order. (Hint: If a relation is reflexive,
anti-symmetric, and transitive, it is called partial order.)

2. Given a set of points and a multi-objective optimization problem, analyze the
statement that one point always dominates the others.

3. Given four points and their objective function values for multi-objective mini-
mization:
f1(x1) = 1, f2(x1) = 1, f1(x2) = 1, f2(x2) = 2, f1(x3) = 2, f2(x3) = 1,
f1(x4) = 2, f2(x4) = 2

(1) Which point dominates all the others?
(2) Which point is non-dominated?
(3) Which point is Pareto optimal?

4. Discuss the challenges involved in multi-objective optimization.
5. Comment on the dependence of the optimal solution on the weighting coefficients

in the weighted sum approach.
6. For multi-objective optimization, the understanding of the Pareto front is very

important. Explain.

References

1. X.-S. Yang, Nature-Inspired Optimization Algorithms (Academic Press, 2020)
2. K. Deb, Multi-objective optimisation using evolutionary algorithms: an introduction, inMulti-

Objective Evolutionary Optimisation for Product Design and Manufacturing (Springer, 2011),
pp. 3–34

3. M. Ehrgott, Vilfredo Pareto and multi-objective optimization. Doc. Math. 447–453 (2012)
4. M. Nagy, Y. Mansour, S. Abdelmohsen, Multi-objective optimization methods as a decision

making strategy. Int. J. Eng. Res. Technol. (IJERT) 9(3), 516–522 (2020)
5. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, 2014)
6. K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business

Media, 2012)

62 3 Sine Cosine Algorithm for Multi-objective Optimization

7. C.-L. Hwang, A.S.M. Masud, Multiple Objective Decision Making—Methods and Applica-
tions: A State-of-the-Art Survey, vol. 164 (Springer Science & Business Media, 2012)

8. R.S. Rosenberg, Stimulation of genetic populations with biochemical properties: I. The model.
Math. Biosci. 7(3–4), 223–257 (1970)

9. J. David Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in
Proceedings of the First International Conference of Genetic Algorithms and Their Application
(1985), pp. 93–100

10. N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algo-
rithms. Evol. Comput. 2(3), 221–248 (1994)

11. K. Deb et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 6(2), 182–197 (2002)

12. C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm
optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

13. J.D. Knowles, D.W. Corne, Approximating the nondominated front using the Pareto archived
evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

14. H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for
multi-objective optimization problems, in Proceedings of the 2001 Congress on Evolutionary
Computation (IEEE Cat. No. 01TH8546), vol. 2 (IEEE, 2001), pp. 971–978

15. L.A.Moncayo-Martinez, D.Z. Zhang,Multi-objective ant colony optimisation: a metaheuristic
approach to supply chain design. Int. J. Prod. Econ. 131(1), 407–420 (2011)

16. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–
1073 (2016)

17. M.A. Tawhid, V. Savsani,Multi-objective sine cosine algorithm (MO-SCA) for multi-objective
engineering design problems. Neural Comput. Appl. 31(2), 915–929 (2019)

18. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical
results. Evol. Comput. 8(2), 173–195 (2000)

19. U. Raut, S. Mishra, A new Pareto multi-objective sine cosine algorithm for performance
enhancement of radial distribution network by optimal allocation of distributed generators.
Evol. Intell. 14(4), 1635–1656 (2021)

20. Y. Wan et al., Multiobjective sine cosine algorithm for remote sensing image spatial-spectral
clustering. IEEE Trans. Cybern. (2021)

21. A. Selim, S. Kamel, F. Jurado, Voltage profile enhancement using multi-objective sine cosine
algorithm for optimal installation of DSTACOMs into distribution systems, in 2019 10th Inter-
national Renewable Energy Congress (IREC) (IEEE, 2019), pp. 1–6

22. A. Selim, S. Kamel, F. Jurado, Optimal allocation of distribution static compensators using a
developed multi-objective sine cosine approach. Comput. Electr. Eng. 85, 106671 (2020)

23. A. Selim, S. Kamel, F. Jurado, Efficient optimization technique for multiple DG allocation in
distribution networks. Appl. Soft Comput. 86, 105938 (2020)

24. D. Gonidakis, A. Vlachos, A new sine cosine algorithm for economic and emission dispatch
problems with price penalty factors. J. Inf. Optim. Sci. 40(3), 679–697 (2019)

25. P. Singh, R. Tiwari, Optimal allocation of STATCOM using improved sine cosine optimization
algorithm, in 2018 8th IEEE India International Conference on Power Electronics (IICPE)
(IEEE, 2018), pp. 1–6

26. R.M. Rizk-Allah et al., A new sine cosine optimization algorithm for solving combined non-
convex economic and emission power dispatch problems. Int. J. EnergyConvers. 5(6), 180–192
(2017)

27. R.M. Rizk-Allah, R.A. El-Sehiemy, A novel sine cosine approach for single and multiobjective
emission/economic load dispatch problem, in 2018 International Conference on Innovative
Trends in Computer Engineering (ITCE) (IEEE, 2018), pp. 271–277

28. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based
Syst. 96, 120–133 (2016)

29. M. Sakawa, H. Yano, T. Yumine, An interactive fuzzy satisficing method for multiobjective
linear-programming problems and its application. IEEE Trans. Syst. Man Cybern. 17(4), 654–
661 (1987)

References 63

30. L.A. Zadeh, G.J. Klir, B. Yuan, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers,
vol. 6 (World Scientific, 1996)

31. S. Krishnamurthy, R. Tzoneva, Impact of price penalty factors on the solution of the combined
economic emission dispatch problem using cubic criterion functions, in 2012 IEEE Power and
Energy Society General Meeting (IEEE, 2012), pp. 1–9

32. X. Zhang, Y. Tian, Y. Jin, A knee point-driven evolutionary algorithm for many objective
optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)

33. Y. Wan et al., Hyperspectral remote sensing image band selection via multi-objective sine
cosine algorithm, in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing
Symposium (IEEE, 2019), pp. 3796–3799

34. M.N. Ahmed et al., A modified fuzzy c-means algorithm for bias field estimation and segmen-
tation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
Sine Cosine Algorithm for Discrete
Optimization Problems

In many scenarios, the nature of the decision-making is discrete, and we have to deal
with a situation where decisions have to be made from the set of discrete choices, or
mutually exclusive alternatives. Choices like passing the electric signal versus not
passing the electric signal, going upward versus downward, or choosing a certain
route over other available routes are discrete in nature. There are many physical
systems for which continuous variable modeling is not sufficient to handle the com-
plexity of the physical systems. For instance, communication models, transportation
models, finite element analysis, and network routingmodels are discrete models. The
discrete nature of the search space offers the leverage of definiteness, and possibilities
for graphical representation of given particular choices. In fact, discrete optimiza-
tion problems are of paramount importance in various branches of sciences, like
decision-making, information systems, and combinatorics. Operation management
decision problems, like product distribution, manufacturing facility design, machine
sequencing, and production scheduling problems, fall under the purview of discrete
optimization problems. Network designing, circuit designing, and automated pro-
duction systems are also represented as discrete optimization problems. Moreover,
the application spectrum of discrete optimization problems includes data mining,
data processing, cryptography, graph theory, and many others.

The decision space of the discrete optimization problems is either finite or similar
to an enumerable set in the sense of cardinality. Mathematically, a general discrete
optimization problem is given by Eq. (4.1),

Min (or Max) C(X)

subject to X ∈ P
(4.1)

where X is a permutation of decision variables, P is the set of feasible permutations
or the search space, andC(X) is the objective function.We are interested in finding an
optimal permutation or arrangement X ∈ P , such that the objective value is optimal.

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_4&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_4

66 4 Sine Cosine Algorithm for Discrete Optimization Problems

Fig. 4.1 Traveling salesman problem with 6 cities

The problem of finding optimal arrangement might look simple and easy to handle,
but the discreteness of the problem brings forth a massive burden of dimensionality
and computational complexity. For instance, traveling salesman problem (TSP) with
100 cities would require (100 − 1)! permutations to be checked if the brute force
method is applied. 99! would be approximately equal to 9.3326 × 10155, and it is
estimated that our observable universe has approximately 1082 atoms. But, to make
our point clear, it involves a very huge computational cost, and of course, brute
force method is not a recommended choice. The discrete optimization problems may
look simple in formulation, but these problems can be computationally expensive.
First, we explain a few discrete optimization models, then methods to solve them
are included, and finally, discrete variants of SCA will be discussed in subsequent
sections.

4.1 Discrete Optimization Models

We are mentioning some of the discrete optimization problems to give a brief idea to
the reader. For more discrete optimization problems, a reader can refer to the book
‘Discrete Optimization’ by Parker and Rardin [1].

1. Traveling Salesman Problem (TSP): Suppose a salesman wants to travel n
number of cities lying in a geographical area. The salesman wants to start his
journey from the present city and travel all the remaining n − 1 cities exactly

4.1 Discrete Optimization Models 67

once and return back to his current location with minimizing the cost of the
journey. This cost may include money, time, distance, or all. The problem can
be visualized on a graph where each city represents a node (vertex). Arc (edge)
lengths denote the associated cost of travelingbetween the cities.Wehave already
discussed about the complexity of TSPwith 100 cities. Mathematically, TSP can
be formulated as:
For any directed (or, undirected) graph with certain fixed weights lying on the
edges, we are interested in determining a closed cycle that includes each vertex
of the graph exactly once, and this closed cycle would yield minimum total edge
weight. Graphical illustration of TSP with 6 cities is given in Fig. 4.1.
The application spectrum of the TSP is very wide. A lot of well-known problems
like vehicle routing, computer wiring, X-ray crystallography, crew-scheduling
problem, and aircraft scheduling problems can be studied as the instance of a
TSP problem [2].
In the literature, many exact and approximate methods are available for handling
traveling salesman problem. One of the earliest approaches to solve TSP prob-
lem was proposed by Dantzig, Fulkerson, and Johnson (DFJ) [3]. DFJ algorithm
formulates TSP into integer linear programming (ILP) problemwith constraints,
and prohibits the formation of subtours, i.e., tours containing less than n vertices
[3]. Miller, Tucker, and Zemlin (MTZ) proposed an alternative formulation of
ILP by reducing the number of subtour elimination constraints at the cost of
introducing a new variable in the TSP problem [4]. Other than ILP approaches,
branch-and-bound (BB) algorithms also proved effective in providing optimal
solutions to the TSP problem. In BB algorithms, some of the problem constraints
are relaxed initially, and at later stages, feasibility is regained by including con-
straints in an enumerative manner [5]. Many researchers including Eastman [6],
Little et al. [7], Shapiro [8], Murty [9], Bellmore and Malone [10], Garfinkel
[11], Smith et al. [12], Carpaneto and Toth [13], Balas and Christofides [14], and
Miller and Pekny [15] proposed various branch-and-bound algorithms for han-
dling TSP instances. However, high computational complexities of above men-
tioned approaches motivated researchers to employ heuristic and meta-heuristic
approaches to solve TSP problems. For instance, ant colony optimizer (ACO)
[16], particle swarm optimizer (PSO) [17], and discrete spider monkey opti-
mizer (D-SMO) [18] are some popular heuristic approaches to produce optimal
solution for TSP problems.

2. Knapsack Problem: In Knapsack problem, we are interested in finding a
finite set K ⊆ Z of integer values ki , where i = 1, 2, . . . n that minimizes
F(k) = f (k1, k2, . . . , kn) satisfying the restriction g(k1, k2, . . . , kn) ≥ v, where
v is a parameter.
The Knapsack problem is of particular interest in the various branches of sci-
ences and decision-making problems like, resource allocation problems, port-
folio allocation, capital budgeting, and project selection applications [19, 20].
The Knapsack problem has also been used in generating covering inequali-
ties [21, 22], and in the area of cryptography [23]. Different versions of knap-
sack problems are available in the literature, for instance multi-dimensional

68 4 Sine Cosine Algorithm for Discrete Optimization Problems

knapsack problem (MKP), multiple choice knapsack problem (MCKP), and
multi-dimensional multi-choice knapsack problem [24]. Traditional methods
like dynamic programming, linear programming relaxation, Lagrangian relax-
ation, reduction methods, and branch-and-bound approaches are available in the
literature to handle a variety of knapsack problems [25]. On the other hand,meta-
heuristic approaches like simulated annealing (SA), genetic algorithm (GA), and
particle swarm optimizer (PSO) have proved their capabilities in handling knap-
sack problems [26–28].

3. Vertex Coloring: Vertex coloring problem is a particular case of Vertex labeling
problem in which vertices in a graph are labeled using colors. In this problem,
the task is to label vertices of a given graph with a minimum number of colors,
such that each vertex of the graph is in order that two adjacent vertices (an edge
connecting vertices) are not labeled with the same color.
Somemajor applications of the vertex coloring problem include scheduling tasks
like job scheduling, aircraft scheduling, and time-table scheduling [29]. The
assignment of radio frequencies, separating combustible chemical combinations,
and handlingmulti-processor tasks are also instances of vertex coloring problems
[30]. The traditional approaches like dynamic programming, branch-and-bound
methods, and integer linear programs have been used in exact methods for han-
dling the vertex coloring problems [31]. For instance, algorithms like Lawler’s
algorithm [32], Eppstein’s algorithm [33], Byskov’s algorithm [34], and Bod-
laender and Kratsch algorithm [35] utilize dynamic programming approaches.
And, Brelaz’s algorithm [36], and Zykov’s algorithm [37] are based on branch-
and-bound methods. Meta-heuristic approaches like genetic algorithm (GA),
simulated annealing (SA), ant colony optimizer (ACO), and cuckoo search (CS)
have been utilized in the literature for solving vertex coloring problem [38, 39].

4. Shortest Path Planning Problem: The goal is to determine the shortest path
connecting two fixed vertices in a given graph with certain fixed cost on the
edges, such that the total length of a distinct sequence of edges that connects the
two vertices is minimum.
Shortest path planning problem has applicability in road networks, designing
electric circuits, logistic communication, robotic path planning, etc. [40]. Dijk-
stra’s algorithm [41], Floyd–Warshall algorithm [42], and Bellman–Ford algo-
rithm [43] are some traditional algorithms in the literature of shortest path prob-
lem. Apart from the traditional approaches, genetic algorithms (GA), particle
swarm optimizer (PSO), ant colony optimizer (ACO), and artificial bee colony
(ABC) algorithms are popular meta-heuristic approaches to solve shortest path
problem [44, 45].

5. Set Covering: The task is to find a family of subsets {Pi ⊆ P : i ∈ K } (K is
an index set) for a particular finite set P. These subsets Pi have a cost, say, ci
associated with them. One has to choose a collection of subsets such that the
union of these subsets contains all the elements of the universal set P and the
total cost of the collection is minimum.
Set covering problem is a particular problem of interest for various disciplines,
like operations research, computer science, and management. Crew schedul-

4.2 Discrete Optimization Methods 69

ing problems, optimal location problems, optimal route selection problems are
some of the instances of set covering problems [46]. The traditional approaches
like linear programming relaxation, Lagrange relaxation, and branch-and-bound
methods are available in the literature to tackle set covering problems [47, 48].
Meta-heuristic approaches including genetic algorithm (GA), ant colony opti-
mizer (ACO), and XOR-based ABC have been utilized to solve the set covering
problem [49, 50].

Discrete problems are widely used by different branches of sciences and indus-
tries. For instance, an airline company will be interested in solving TSP to optimize
the route plan of their fleet. Similarly, the knapsack problem has a wide variety of
applications in the financial modeling, production and inventory management, and
optimal design for queueing networks model in manufacturing [51]. The detailed
discussion of discrete optimization problems and their applications is beyond the
scope of this book. The focus of this chapter is to present an overview of the discrete
version of sine cosine algorithm (SCA) and its applications. But, before proceeding
further, we briefly discuss about the discrete optimization methods.

4.2 Discrete Optimization Methods

Similar to continuous optimization methods, discrete optimization methods can also
be studiedunder the twomajor categories of exactmethods and approximatemethods.
The exact methods offer the guarantee of finding the optimal solution in a bounded
time, but these methods are incapable of handling problems with large instances.
Branch-and-cut, branch-and-bound, and Gomory’s cutting plane method are some
of the examples of exact methods. An interested reader can refer to the books ‘Com-
binatorial Optimization’ by Cook [52] and ‘Discrete Optimization’ by Parker and
Rardin [1] to have a detailed idea about exact methods. On the other hand, approxi-
mate methods do not offer any guarantee for locating the optimal solution(s), but can
produce near optimal solutions way much faster than the exact methods [53]. These
heuristic methods are easy to implement and do not require extensive computational
power to generate solutions. The greedy algorithms, sequential algorithms, heuristics
local search, and methods based on random-cut, and randomized-backtracking are
some of the examples of approximate algorithms. Figure 4.2 represents the classifi-
cation of discrete optimization problems.

In the last three decades, researchers have tried to propose many efficient methods
to tackle the discrete optimization problems. In the class of these efficient methods,
the population-based meta-heuristic techniques have important role to play. Meta-
heuristic possesses the potential to provide efficient near optimal solution(s) to these
discrete optimization problem. Ant-colony optimizer [16], tabu search (TS) [54],
simulated annealing [55], and genetic algorithm [56] are some of the meta-heuristic
algorithms proposed for handling discrete optimization problems. The other class
of meta-heuristic algorithms which were actually proposed for tackling continuous

70 4 Sine Cosine Algorithm for Discrete Optimization Problems

Fig. 4.2 Classification of discrete optimization methods

optimization problems, but later modified to solve the discrete optimization prob-
lems. Kennedy and Eberhart presented the discrete binary version of particle swarm
optimization [57]. Discrete version of other meta-heuristic algorithms include dis-
crete firefly-inspired algorithm [58], discrete teaching–learning-based optimization
algorithm [59], binary coded firefly algorithm [60], binary magnetic optimization
algorithm (BMOA) [61], binary cat swarm algorithm [62], binary dragonfly algo-
rithm [63], and discrete spider monkey optimization [18].

Many discrete optimization problems can be reduced to binary optimization prob-
lems [1].

The sine cosine algorithm was originally proposed for continuous optimiza-
tion problems [64]. The robust optimization capabilities of the SCA motivated the
researchers for designing discrete sine cosine algorithm. In the next section, bina-
rization techniques adopted to modify continuous sine cosine algorithm (SCA) will
be discussed in detail.

4.3 Binary Versions of Sine Cosine Algorithm

In binary optimization problems, the decision variables can only take two values, typ-
ically 0 and 1. These two values can represent the True/False logic values, Yes/No,
or On/Off. In general, the logical truth value is represented by ‘1’ and false value

4.3 Binary Versions of Sine Cosine Algorithm 71

is denoted by ‘0’. There are various techniques available to modify a continuous
meta-heuristic into binary one. The binarization methods, like the nearest integer
(NI) [65], the normalization technique [66], transfer functions [67], angle modula-
tion [68], quantum approach [69], etc., are available in the literature to reinforce a
binary version of continuous evolutionary or swarm intelligence algorithm [70]. In
the literature of binarization techniques [53], twomajor categorization of binarization
techniques were identified. The first category corresponds to a general techniques of
binarization that enable the proceeding with the continuous meta-heuristics without
altering the operators of the continuous algorithms. These techniques adopt mech-
anisms, like transfer functions [71], and angular modulation [68], to transform a
continuous meta-heuristic algorithm into a binary version. Discrete PSO [17], binary
coded firefly algorithm [60], binary magnetic optimization algorithm (BMOA) [61],
and binary cat swarm algorithm [62] are some of the algorithms under the first cate-
gory mentioned above. The second category consists of the techniques, in which the
structure of meta-heuristics is altered. These methods rectifies the structure of the
search space and hence reformulate the operators of the algorithms. Some techniques
under this category include quantum binary algorithms [69], set-based approaches
[72], techniques based on percentile concept [73], Db-scan unsupervised learning
[74], and K-means transition ranking [75], to design binary versions of continu-
ous meta-heuristic algorithms. Figure 4.3 depicts the various binarization techniques
available in the literature.

4.3.1 Binary Sine Cosine Algorithm Using Round-Off
Method

Hafez et al. [65] proposed a binary version of sine cosine algorithm (SCA) that utilizes
the standard binarization rule. This proposed binary SCA was applied to feature
selection problems. The goal is to choose combinations of features that maximize the
classification performance and minimize the number of selected features. Therefore,
the overall objective is to minimize the fitness value given by Eq. (4.2).

fX = w ∗ ε + (1 − w)

∑n
i=1 xi
n

(4.2)

where fX is the fitness function corresponding to a D-dimensional vector X =
(x1, x2, . . . xD), where xi = 0 or 1. xi = 1 represents the selection of the i th fea-
ture, while xi = 0 indicate the non-selection of the i th feature. D is the total number
of features in the given dataset. ε is the classifier error rate and w is a constant
controlling the importance of classification performance to the number of features
selected.

In the proposed approach, the range of all the decision variables is constrained
to {0, 1} using the rounding method, in which values of each decision variables are
rounded to the integer value 0/1 by employing Eq. (4.3). The features corresponding

72 4 Sine Cosine Algorithm for Discrete Optimization Problems

Fig. 4.3 Different binarization techniques

to the variable value 1 are selected. And, the features with variable value 0 are
rejected.

Xt+1
i j =

{
1 if Xt

i j > 0.5

0 otherwise
(4.3)

where Xi j is the value for i th search agent at the j th dimension.
The feature selection problem is of particular interest in machine learning algo-

rithms. This is also an essential tool for attribute reduction or pre-processing of a large
data sets. The least significant features which have very less relevance are removed
to reduce the computational burden of the classification algorithm. It is quite evident
that from the set of features we have to select or reject a feature. The choice available
to us is of ‘Yes/No’ type, which fall under the purview of ‘0/1’ discrete optimization
problem or binary optimization. The proposed algorithm applied sine cosine algo-
rithm (SCA) to find the combinations of features that have maximum impact on the
classification performance.

4.3 Binary Versions of Sine Cosine Algorithm 73

4.3.2 Binary Sine Cosine Algorithm Using Transfer
Functions

The procedure of converting a continuous meta-heuristic algorithm into its binary
counterpart is called binarization. The technique of binarization using transfer func-
tions has two major steps,

(1) The transfer function, which mapped the values generated by a continuous meta-
heuristic algorithm to an interval (0, 1).

(2) The binarization process, which consist of converting the real number lying in
the interval (0, 1) to a binary value.

Kennedy et al. [17] introduced transfer function (sigmoid function) for converting
continuous PSO into discrete PSO. A transfer function facilitates the movement of
i th search agent in the binary space by switching the value of j th dimension from
0 to 1 and vice versa. The advantage of utilizing a transfer function is that, it pro-
vides a probability of switching the solutions coordinates at a low computational cost
[53]. In the literature of binarization techniques, there are several transfer functions
available for converting a continuous meta-heuristic algorithm into its binary version
[53]. The binary versions of a continuous meta-heuristic algorithms are constructed
using the transfer functions, and these binary versions have the structure, similar to
their continuous versions. The search agents’ position is updated in the continuous
space, and these continuous values are mapped in the interval (0, 1) using transfer
functions to generate a switching probability. These binary versions of continuous
meta-heuristics differ from their continuous counterparts in the sense that, the search
agents’ position vector is a vector of binary digits rather than a vector of continu-
ous values, and the position update mechanism is concerned with switching search
agents’ positions in the set {0, 1} based on the transition probability obtained using
the transfer function. The fundamental idea is to update the search agents’ positions
in such a way that the bit value of the search agents is switched between 0 and 1, with
a probability based on the updated position of the search agents in the continuous
space. The idea of using transfer function for converting a continuous meta-heuristic
algorithm into a discrete meta-heuristic has also been incorporated in the sine cosine
algorithm (SCA). The procedure for two-step binarization technique using transfer
function method is graphically illustrated in the (Fig. 4.4).

Reddy et al. [71] proposed and investigated four binary variants of SCA to solve
the binary natured profit-based unit commitment problem (PUCP). The proposed
four variants use four different transfer functions for binary adaption of continuous
search space and search agents. These transfer functions are mentioned as follows;

1. The tangent hyperbolic transfer function (T)

T (Xt+1) = tanh(Xt+1) = e−(Xt+1) − 1

e−(Xt+1) + 1
(4.4)

Mapping is given by:

74 4 Sine Cosine Algorithm for Discrete Optimization Problems

Fig. 4.4 Two-step binarization technique using transfer function

Y t+1 =
{
0 if rand < T (Xt+1)

1 otherwise
(4.5)

where Xt is the real-valued position of the search agent in the t th iteration and
Y t is its corresponding binary position. Here, rand is a uniformly distributed
random number in the range [0, 1].

2. Sigmoidal transfer function (S)

S(Xt+1) = 1

1 + e−Xt+1 (4.6)

Mapping is given by:

Y t+1 =
{
0 if rand < S(Xt+1)

1 otherwise
(4.7)

where rand has the same meaning as mentioned above.
3. A modified sigmoidal transfer function (MS)

MS(Xt+1) = 1

1 + e−10(Xt+1−0.5)
(4.8)

Mapping is given by:

4.3 Binary Versions of Sine Cosine Algorithm 75

Y t+1 =
{
0 if rand < S(Xt+1)

1 otherwise
(4.9)

where rand has the same meaning as mentioned above.
4. Arctan transfer function (ArcT)

ArcT(Xt+1) = arctan(Xt+1)

=
∣
∣
∣
∣
2

π
arctan

(π

2
Xt+1

)∣
∣
∣
∣

(4.10)

Mapping is given by:

Y t+1 =
{
0 if rand < ArcT(Xt+1)

1 otherwise
(4.11)

where rand has the same meaning as mentioned above.

The performance of these different transfer functions to solve a binary profit-based
unit commitment (PBUC) problem was investigated. The adequacy of the proposed
approach, in terms of convergence and quality of solutions, was experimented over
a benchmark test set. In terms of the solution quality, the arctan transfer function
showed superior results out of all mentioned above variants, and the simple sigmoid
transfer function could not produce satisfactory results.

Following the similar trend, Taghian et al. [67] proposed two other binary versions
of SCAusing the two-step binarization technique. The first version is called S-shaped
binary sine cosine algorithm (SBSCA). In SBSCA, the S-shaped transfer function,
defined in Eq. (4.12), is used to define a bounded probability of changing positions
of the search agents [67].

S(Xt+1
i j) = 1

1 + e−Xt
i j

(4.12)

Then, the standard binarization rule, given in Eq. (4.13), is used to transform the
solutions into a binary counterpart.

Xt+1
i j =

{
1 if rand < S(Xt+1

i j)

0 otherwise
(4.13)

Here, rand is a uniformly distributed random number in the range [0, 1]. The
second version is called the V-shaped binary sine cosine algorithm (VBSCA) [67].
In VBSCA, the V-shaped transfer function is used to calculate the position changing
probabilities given as:

V (Xt+1
i j) =

∣
∣
∣
∣
2

π
arctan

(π

2

)
(Xt

i j)

∣
∣
∣
∣ (4.14)

76 4 Sine Cosine Algorithm for Discrete Optimization Problems

Then, the complement binarization rule, given by Eq. (4.15), is utilized to trans-
form the solution into a binary domain.

Xt+1
i j =

{
X̄ t+1
i j if rand < V (Xt+1

i j)

(Xt
i j) otherwise

(4.15)

where X̄ t+1
i j represents the complement of Xt+1

i j at the iteration t + 1.
The performance of both the proposed algorithms was assessed and compared

with four popular binary optimization algorithms, including binary GSA [76] and
binary Bat algorithm [77], over five UCI medical datasets: pima, lymphography,
heart, breast cancer, and breast-WDBC. The experimental results demonstrated that
both the binary SCA variants have effectively enhanced the classification accuracy
and yielded competitive or even better results when compared with the other existing
algorithms.

4.3.3 Binary Sine Cosine Algorithm Using Percentile
Concept

Another binary variant of SCA called binary percentile sine cosine algorithm
(BPSCA) was introduced by Fernandez et al. [78], in which percentile concept was
utilized to conduct the binary transformation of the sine cosine algorithm (SCA). In
binary percentile concept, the magnitude of the displacement in j th component of
a solution (say) X is calculated. Based on the magnitude of the displacement, these
solutions are grouped in different percentile values of 20, 40, 60, 80, and 100. Solu-
tions with least displacement values were grouped into 20-percentile value, while
solutions with the maximum displacement were grouped into 100-percentile values
[79].

The main issue using the binary percentile operator is that it may generate infea-
sible solutions in the search space. For handling the infeasible solutions, the BPSCA
uses a heuristic operator. Heuristic operator chooses a new column, when solutions
are needed to be repaired. As an input argument, the operator considers the set Sin,
which is a set of columns to be repaired. The flowchart of the BPSCA algorithm is
illustrated in Fig. 4.5.

To assess the performance of the percentile operator in obtaining the solutions,
BPSCA was applied to solve the classic combinatorial problems called the set cov-
ering problem (SCP). The experimental results demonstrated that the percentile
operator plays an important role in maintaining good-quality solutions. In addition,
whenBPSCAcomparedwith the two best availablemeta-heuristic binary algorithms,
namely jumping PSO (JPSO) [80] and multi-dynamic binary black hole (MDBBH)
algorithm [81]. The experiments showed that the solutions obtained using BPSCA
were similar to the jumping PSO. BPSCA generated superior results when compared
with the MDBBH. The authors emphasized that, unlike JPSO, the percentile tech-

4.3 Binary Versions of Sine Cosine Algorithm 77

Fig. 4.5 Flowchart of the BPSCA

nique used in BPSCAallows binarization of any continuousmeta-heuristic algorithm
[78].

Pinto et al. [73] proposed percentile-based binary SCA (BPSCOA) using a repair
operator instead of a heuristic operator. The repair operator handles the infeasible
solutions produced during the optimization process. For repairing a particular solu-
tion, the coordinate with the maximum displacement measure is selected and elim-
inated from the solution [73]. The process is continued till the feasible solution is
obtained. After this, repaired solution is improved by incorporating new elements in
the solution such that no constraints are violated [73]. The flowchart of the BPSCOA
is given in Fig. 4.6. In binarization process, the utility of percentile concept was eval-
uated by applying it to resolve the multi-dimensional knapsack problem (MKP). The
results showed that the operator improved the precision and the quality of the solu-
tions. The proposed method was contrasted with the binary artificial algae (BAAA)
[82] and K-means transition ranking (KMTR) algorithms [75].

Till now, all the discrete optimization problems discussed above have binary
nature. The solution(s) to these problems were ‘Yes/No’, or ‘0/1’ type. Binary opti-
mization problems hold important position in the discrete world of choices. However,
sometimes we are interested in finding integer solutions to the real-world discrete
optimization problems. Now, instead of making Boolean choices, we try to find the

78 4 Sine Cosine Algorithm for Discrete Optimization Problems

Fig. 4.6 Flowchart of the BPSCOA

solution(s) having integer values associated with the discrete optimization problem.
In the next section, we will be discussing a general discrete version of sine cosine
algorithm, in which solutions can take any finite integer value including the case of
‘0/1’ type binary optimization problems.

4.4 Discrete Versions of Sine Cosine Algorithm

Tawhid et al. [83] proposed discrete version of sine cosine algorithm (DSCA) for
solving traveling salesman problem (TSP). The objective function of the TSP is given
by:

Min F(C) =
n∑

i=1, j=1

Ci, j (4.16)

where the cost Ci, j represents the Euclidean distance between any two towns i and
j. For solving TSP, the authors adopted two local search techniques—the heuristic
crossover [84] and the 2-opt [85] method on the best solution based on two randomly
generated numbers between 0 and 1 (say R1 and R2), in a manner mentioned below,

If R1 < R2, Heuristic crossover is operated

4.4 Discrete Versions of Sine Cosine Algorithm 79

Otherwise, 2-opt local search is operated

The psuedo-code of DSCA is given by Algorithm 1.

Algorithm 1 Pseudo-code of DSCA (Tawhid et al. [83])
Initialize the population of Hamiltonian cycles {C1,C2, . . . ,CN }, randomly
Initialize the parameters associated with SCA
Calculate the objective function value for each search agent in the population
Identify the best solution obtained so far as the destination point Cb
initialize t = 0, where t is the iteration counter
while termination criteria is not met do
Calculate r1, using Eq. (2.4) and generate the parameters r2, r3, r4, randomly
for each search agent (Ct

i) do
Generate the new search agents (Ct+1

i) using Eq. (2.7)
if Ct+1

i is better than Ct
i then

Replace Ct
i with C

t+1
i

else
Reject Ct+1

i and keep the Ct
i

end if
end for
Update the current best solution (or destination point) Cb
Generate random number R1 and R2
if R1 < R2 then
Update Cb using heuristic crossover

else
Update Cb using 2-opt local search

end if
t = t + 1

end while
Return the best solution Cb

The DSCA was tested on 41 different benchmark instances of symmetrical TSP.
The results indicated that the technique provided optimal solutions for 27 benchmark
problems and near optimal solutions for the remaining ones. When the results were
compared with other state-of-the-art techniques, the DSCA demonstrated promising
and competitive performance over the others.

Gholizadeh et al. [86] proposed discrete version of the sine cosine algorithm
to tackle the discrete truss structures optimization problem and called it discrete
modified SCA. In this algorithm, the solutions obtained from the traditional SCA are
rounded to their nearest integer to speed up the process of optimization.

Xt+1
i j =

⎧
⎪⎨

⎪⎩

round(Xt
i j + r1 × sin(r2) × |r3 × Pt

g j − Xt
i j |) if r4 < 0.5

round(Xt
i j + r1 × cos(r2) × |r3 × Pt

g j − Xt
i j |) if r4 ≥ 0.5

(4.17)

80 4 Sine Cosine Algorithm for Discrete Optimization Problems

where round(·) truncate the values to their nearest integer. However, the solutions
generated by the unintelligent round-offs might lie in an infeasible region, and their
fitness values might differ drastically from that of the optimal solutions. The two
main strategies—regeneration and mutation operator—are incorporated to address
the issue of infeasible solutions. These two strategies help the algorithm to explore
and exploit the design space in more robust manner. In the regeneration strategy,
individual solutions of the population of size N arefirst sorted on the basis of objective
function values in ascending order as follows:

sort(Xt) = [Xt
1, X

t
2 . . . Xt

k−1, X
t
k, X

t
k+2 . . . Xt

N−1, X
t
N] (4.18)

where sort(Xt) is the current sorted population, and Xt
k to Xt

N are the worst solutions
at iteration (t), that are required to be regenerated. Then, λ × N number of worst
search agents (Xt

k to Xt
N) are removed from the population, where λ is a user defined

parameter whose value lies in the interval (0, 1). The best solution found so far
X∗ = [X∗

1, X
∗
2 . . . X∗

j , . . . , X
∗
D] are then copied λ × N times in the population, that

is,
For l = k, k + 1 . . . N , Replace Xt

l by Xt
l = [X∗

1, X
∗
2 . . . X∗

D] (4.19)

A randomly selected dimension j ∈ [1, 2 … D] of each solution Xt
k to Xt

N−1 is
regenerated in a random manner using Eq. (4.20),

X∗
j = round

(
XL

j + r × (XU
j − XL

j)
)

(4.20)

where XL
j and XU

j are lower and upper bounds of the j th dimension, and r is a
random number in [0, 1].

The regenerated variables of the individuals Xt
k to Xt

N−1 are then substituted in
the last particle (Xt

N) to increase the chances of finding promising regions in the
search space. In the second strategy, a mutation operator is applied in the generated
solutions to escape the local optimal region. For each particle (Xi , i = 1, 2 . . . N), a
random number in [0, 1] is generated, and if for the i th particle, the selected random
number is less than a pre-defined mutation rate (mr), Xi will be regenerated using
the following equation:

Xt+1
i = round

(

Xt
i +

(
t

T

)

× Rt ⊗ (Xt
best − Xt

r)

)

(4.21)

where ⊗ denotes the vector product and Rt is a D dimensional vector of random
numbers in the range [0, 1] at the t th iteration. Xt

best is the best solution of the current
population, and Xt

r is a randomly selected solution from the current population at
iteration t . The values of λ and mr were taken to be 0.2 and 0.05, respectively. The
pseudo-code of the algorithm is given in Algorithm 2.

The proposed algorithm was applied on five well-known benchmark truss opti-
mization problems, and the outcomes were compared with the original SCA and

4.4 Discrete Versions of Sine Cosine Algorithm 81

Algorithm 2 Pseudo-code of discrete modified SCA
Initialize the population of search agents Xi i = 1, 2, . . . N , randomly
Initialize the parameters associated with SCA
Calculate the objective function value for each search agent in the population
Identify the best solution obtained so far as the destination point Pg
initialize t = 0, where t is iteration counter
while termination criteria is not met do
Calculate r1, using Eq. (2.4) and generate the parameters r2, r3, r4 randomly
for each search agent (Xt

i) do
Generate the new search agent (Xt+1

i) using Eq. (4.17)
Identify and regenerate the worst search agents using Eqs. (4.18), (4.19) and (4.20)
Mutate the search agents based on the mutation rate mr using Eq. (4.21)

end for
Update the current best solution (or destination point) Pg
t = t + 1

end while
Return the best solution Pg

other optimization algorithms. Discrete modified SCA has shown superiority over
other discrete algorithms [86].

Montoya et al. [87] proposed another discrete version of the sine cosine algorithm
(SCA) to find the optimal location of the distributed generators (DGs) in alternating
current (AC) distribution networks. An integer codification of SCA is proposed in the
algorithm [88]. This codification technique eases the implementation with a matrix
associated with the population. Any infeasible solutions obtained during the search
process are removed from the population. In the technique of integer codification,
each location of DGs is assigned a number between 2 and n (where n is the total
number of nodes), and the number 1 is assigned to the slack node. The location of all
the DGs can be visualized at the nodes, and an individual xi does not appear more
than once in any node to maintain the codification. The initial population for the
proposed SCA will be represented in the form of a matrix with the dimensions NP
× N, defined as follows:

Pt =

⎡

⎢
⎢
⎢
⎣

xt1
xt2
...

xtNP

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 · · · x1,N
x2,1 x2,2 · · · x2,N
...

...
. . .

...

xNP,1 xNP,2 · · · xNP,N

⎤

⎥
⎥
⎥
⎦

(4.22)

where NP denotes the population size, and N is the number of DGs available for
installation. In the initial population, i th search agent in the j th dimension (xi, j) is
randomly generated natural number between 2 and n, using the following equation:

xi, j = round(2 + rand × (n − 2)) (4.23)

82 4 Sine Cosine Algorithm for Discrete Optimization Problems

where the round(·) denotes the floor function or nearest integer part of the given
number, and rand is a normal distributed random number with mean 0 and standard
deviation 1.

The following constraint must be satisfied to secure the feasible solution using
the following equation:

xi, j �= xi,k; ∀k = 1, 2, . . . N and k �= j (4.24)

To preserve the feasible solution space at the time of the initializing population,
the authors establish that every solution’s component is different from one another.
The discrete version of the sine cosine algorithm is summarized in Algorithm 3.

Algorithm 3 Pseudo-code of DSCA (Montoya et al. [87])
Initialize the population of search agents randomly using Eq. (4.23)
Initialize the parameters associated with SCA
Calculate the objective function value for each search agent in the population
Identify the best solution obtained so far as the destination point Pg
initialize t = 0, where t is iteration counter
while termination criteria is not met do
Calculate r1, using Eq. (2.4) and generate the parameters r2, r3, r4 randomly
for each search agent (xti) do
Update the position of the search agents using Eq. (2.7)
for j = 1 : N do
if (Xi, j < 2 || Xi, j > n) then
Regenerate Xi, j using Eq. (4.23)

end if
end for

end for
Calculate the objective function value for each new search agent
Update the current best solution (or destination point) Pg
t = t + 1

end while
Return the best solution Pg

Practice Exercises

1. How is the binary version of SCA different from the original SCA?
2. What are the major limitations of using the transfer function for discrete opti-

mization problems?
3. Binary PSO has also used the transfer function. Compare and tell how the transfer

function taken in binary PSO and the transfer function taken in SCA are different.
4. What is the difference between the sigmoid transformation function and the tan

hyperbolic transformation function?

References 83

5. What are the important issues to be considered while designing a discrete version
of a meta-heuristic algorithm?

6. Using the standard SCA and converting it into a binary or discrete value is easier
than going through conversion and working in the discrete space. Explain why it
cannot be adopted with the help of an example.

References

1. R.L. Rardin, R.G. Parker, Discrete Optimization (Academic Press, Inc., 1988)
2. D. Devendra, Travelling Salesman Problem, Application and Theory, vol. 1 (InTech, 2010)
3. G. Dantzig, R. Fulkerson, S. Johnson, Solution of the large-scale travelling salesman problem.

Oper. Res. (1954)
4. C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formulation and travelling sales-

man problem. J. Assoc. Comput. Mach. (1960)
5. G. Laporte, The traveling salesman problem: an overview of exact and approximate algorithms.

Eur. J. Oper. Res. (1992)
6. W.L. Eastman, Linear programming with pattern constraints, PhD thesis, Harvard University,

Cambridge, 1958
7. J.D.C. Little, K.G. Murty, D.W. Sweeney, C. Karel, An algorithm for travelling salesman

problem. Oper. Res. 11 (1963)
8. D.M. Shapiro, Algorithms for the solution of the optimal cost and bottleneck traveling salesman

problems, Sc.D. thesis, Washington University, St. Louis, MO, 1966
9. K.G. Murty, An algorithm for ranking all the assignments in order of increasing cost. Oper.

Res. 16 (1968)
10. M. Bellmore, J.C. Malone, Pathology of travelling-salesman subtour-elimination algorithms.

Oper. Res. 19, 278–307 (1971)
11. R.S. Garfinkel, On partitioning the feasible set in a branch-and-bound algorithm for the asym-

metric traveling-salesman problem. Oper. Res. 21, 340–343 (1973)
12. T.H.C. Smith, G.L. Thompson, V. Srinivasan, Computational performance of three subtour

elimination algorithms for solving asymmetric traveling salesman problems. Ann. Discrete
Math. 1, 495–506 (1977)

13. G. Carpaneto, P. Toth, Some new branching and bounding criteria for the asymmetric travelling
salesman problem. Manage. Sci. 26, 736–743 (1980)

14. E. Balas, N. Christofides, A restricted Lagrangean approach to the traveling salesman problem.
Math. Program. 21, 19–46 (1981)

15. D.L. Miller, J.F. Pekny, Results from a parallel branch and bound algorithm for solving large
asymmetric traveling salesman problems. Oper. Res. Lett. 8, 129–135 (1989)

16. M.Dorigo,M.Birattari, C.Blum,M.Clerc, T. Stützle,A.F.T.Winfield,Ant colony optimization
and swarm intelligence, in 5th International Workshop (Springer, 2006)

17. J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997
IEEE International Conference on Systems,Man, andCybernetics. Computational Cybernetics
and Simulation, vol. 5 (IEEE, 1997), pp. 4104–4108

18. M.A.H. Akhand, S.I. Ayon, S.A. Shahriyar, N.H. Siddique, H. Adeli, Discrete spider monkey
optimization for travelling salesman problem. Appl. Soft Comput. J. 86(4), 469–476 (2020)

19. J.H. Lorie, L.J. Savage, Three problems in capital rationing. J. Bus. 28, 229–239 (1955)
20. R. Nauss, The zero-one knapsack problem with multiple-choice constraints. Eur. J. Oper. Res.

2, 125–131 (1978)
21. E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130–

1154 (1980)

84 4 Sine Cosine Algorithm for Discrete Optimization Problems

22. L.A. Wolsey, Faces for a linear inequality in 0–1 variables. Math. Program. 8, 165–178 (1975)
23. M. Merkle R. Hellman, Hiding information and signatures in trapdoor knapsacks. IEEE Trans.

Inf. Theory 24, 525–530 (1978)
24. C.Wilbaut, S. Hanafi, S. Salhi, A survey of effective heuristics and their application to a variety

of knapsack problems. IMA J. Manag. Math. 19, 227–244 (2008)
25. K.Dudziński, S.Walukiewicz, Exactmethods for the knapsack problem and its generalizations.

Eur. J. Oper. Res. 28(1), 3–21 (1987)
26. A. Liu, J. Wang, G. Han, S. Wang, J. Wen, Improved simulated annealing algorithm solving

for 0/1 knapsack problem, in Sixth International Conference on Intelligent Systems Design and
Applications, 2006. ISDA’06, vol. 2 (IEEE, 2006)

27. F. Qian, R. Ding, Simulated annealing for the 0/1 multidimensional knapsack problem. Numer.
Math. Engl. Ser. 16(4), 320 (2007)

28. L. Ouyang, D. Wang, New particle swarm optimization algorithm for knapsack problem, in
8th International Conference on Natural Computation (2012)

29. U. Ufuktepe, G.B. Turan, Applications of graph coloring, in Lecture Notes in Computer Science
(2005)

30. P. Gupta, O. Sikhwal, A study of vertex—edge coloring techniques with application. Int. J.
Core Eng. Manag. (IJCEM) 1(2) (2014)

31. A.M. de Lima, R. Carmo, Exact algorithms for the graph coloring problem. Rev. Inform. Teór.
Apl. (RITA) 25 (2018). ISSN 2175-2745

32. E. Lawler, A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3),
66–67 (1976)

33. D. Eppstein, Small maximal independent sets and faster exact graph coloring. J. Graph Algo-
rithms Appl. 7(2), 131–140 (2003)

34. J.M. Byskov, Chromatic number in time O(2.4023n) using maximal independent sets. BRICS
Rep. Ser. 9(45), 1–9 (2002)

35. H.L. Bodlaender, D. Kratsch, An exact algorithm for graph coloring with polynomial memory.
UU-CS, vol. 2006, no. 15, pp. 1–5 (2006)

36. D. Brelaz, Newmethods to color the vertices of a graph. Commun. Appl. Comput.Mach. 22(4),
251–256 (1979)

37. A. Zykov, On some properties of linear complexes. Mat. Sb. (N.S.) 24(66)(2), 418–419 (1962)
38. A. Layeb, H. Djelloul, S. Chikhi, Quantum inspired cuckoo search algorithm for graph colour-

ing problem. Int. J. Bio-Inspired Comput. 7, 183–194 (2015)
39. A. Kole, D. De, A.J. Pal, Solving graph coloring problem using ant colony optimization,

simulated annealing and quantumannealing—a comparative study, in Studies inComputational
Intelligence, vol. 1029 (Springer, 2022)

40. M. Kairanbay, H.M. Jani, A review and evaluations of shortest path algorithms. Int. J. Sci.
Technol. Res. 2(6) (2013)

41. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 269–271
(1959)

42. R.W. Floyd, Algorithm 97 shortest path. Commun. ACM 5, 345 (1962)
43. R. Bellman, On a routing problem. Q. J. Appl. Math. 16, 87–90 (1958)
44. D.D.Caprio,A.Ebrahimnejad,H.Alrezaamiri, F. Santos-Arteaga,Anovel ant colony algorithm

for solving shortest path problems with fuzzy arc weights. Alex. Eng. J. 61(5) (2022)
45. M. Gen, R. Cheng, D. Wang, Genetic algorithms for solving shortest path problems, in Pro-

ceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97)
(1997)

46. A. Caprara, P. Toth, M.A. Fischetti, Algorithms for the set covering problem. Ann. Oper. Res.
98, 353–371 (2000)

47. E. Balas, A class of location, distribution and scheduling problems: modelling and solutions
methods, in Proceedings of the Chinese-US Symposium on System Analysis (Wiley, 1983)

48. E. Balas, M.C. Carrera, A dynamic subgradient-based branch-and-bound procedure for set
covering. Oper. Res. 44, 875–890 (1996)

References 85

49. R. Soto et al., A XOR-based ABC algorithm for solving set covering problems, in The 1st
International Conference on Advanced Intelligent System and Informatics (AISI2015), Beni
Suef, Egypt, 28–30 Nov 2015 (Springer, 2016), pp. 209–218

50. K.S. Al-Sultan, M.F. Hussain, J. Nizami, A genetic algorithm for the set covering problem. J.
Oper. Res. Soc. 47, 702–709 (1996)

51. K.M. Bretthauer, B. Shetty, The nonlinear knapsack problem—algorithms and applications.
Eur. J. Oper. Res. 1(1), 1–14 (2002)

52. W.J. Cook, W.H. Cunningham, Combinatorial Optimization (Wiley, 1998)
53. B. Crawford et al., Putting continuous metaheuristics to work in binary search spaces. Com-

plexity 2017 (2017)
54. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.

Oper. Res. 13(5), 533–549 (1986)
55. S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
56. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1998)
57. J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997

IEEE Conference on Systems, Man, and Cybernetics (1997)
58. M.K. Sayadi, A. Hafezalkotob, S.G.J. Naini, Firefly-inspired algorithm for discrete optimiza-

tion problems: an application to manufacturing cell formation. J. Manuf. Syst. 32(1), 78–84
(2013)

59. A. Lotfipour, H. Afrakhte, A discrete teaching-learning-based optimization algorithm to solve
distribution system reconfiguration in presence of distributed generation. Int. J. Electr. Power
Energy Syst. 82, 264–273 (2016)

60. B. Crawford et al., A binary coded firefly algorithm that solves the set covering problem.
Roman. J. Inf. Sci. Technol. 17(3), 252–264 (2014)

61. S.A. Mirjalili, S.Z.M. Hashim, BMOA: binary magnetic optimization algorithm. Int. J. Mach.
Learn. Comput. 2(3), 204 (2012)

62. B. Crawford et al., Binary cat swarm optimization for the set covering problem, in 2015 10th
Iberian Conference on Information Systems and Technologies (CISTI) (IEEE, 2015), pp. 1–4

63. M. Mafarja et al., Binary dragonfly optimization for feature selection using time-varying trans-
fer functions. Knowl.-Based Syst. 161, 185–204 (2018)

64. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based
Syst. 96, 120–133 (2016)

65. A.I. Hafez et al., Sine cosine optimization algorithm for feature selection, in 2016 International
Symposium on Innovations in Intelligent Systems and Applications (INISTA) (IEEE, 2016), pp.
1–5

66. A.P. Engelbrecht, G. Pampara, Binary differential evolution strategies, in 2007 IEEE Congress
on Evolutionary Computation (IEEE, 2007), pp. 1942–1947

67. S. Taghian, M.H. Nadimi-Shahraki, Binary sine cosine algorithms for feature selection from
medical data. arXiv preprint arXiv:1911.07805 (2019)

68. B.J. Leonard, A.P. Engelbrecht, C.W. Cleghorn, Critical considerations on angle modulated
particle swarm optimisers. Swarm Intell. 9(4), 291–314 (2015)

69. J. Sun, B. Feng,W. Xu, Particle swarm optimization with particles having quantum behavior, in
Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753),
vol. 1 (IEEE, 2004), pp. 325–331

70. Z.A. El Moiz Dahi, C. Mezioud, A. Draa, Binary bat algorithm: on the efficiency of mapping
functions when handling binary problems using continuous-variable-based metaheuristics, in
IFIP International Conference on Computer Science and Its Applications (Springer, 2015), pp.
3–14

71. K.S. Reddy et al., A new binary variant of sine cosine algorithm: development and application
to solve profit-based unit commitment problem. Arab. J. Sci. Eng. 43(8), pp. 4041–4056 (2018)

72. Y.-J. Gong et al., Optimizing the vehicle routing problemwith timewindows: a discrete particle
swarm optimization approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(2), 254–
267 (2011)

http://arxiv.org/abs/1911.07805

86 4 Sine Cosine Algorithm for Discrete Optimization Problems

73. H. Pinto et al., A binary sine cosine algorithm applied to the knapsack problem, in Computer
Science On-line Conference (Springer, 2019), pp. 128–138

74. J. Garcıa et al., ADb-scan binarization algorithm applied tomatrix covering problems. Comput.
Intell. Neurosci. 2019 (2019)

75. J. Garcıa et al., A k-means binarization framework applied to multidimensional knapsack
problem. Appl. Intell. 48(2), 357–380 (2018)

76. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci.
179(13), 2232–2248 (2009)

77. S. Mirjalili, S.M. Mirjalili, X.-S. Yang, Binary bat algorithm. Neural Comput. Appl. 25(3),
663–681 (2014)

78. A. Fernéndez et al., A binary percentile sin cosine optimisation algorithm applied to the set
covering problem, in Proceedings of the Computational Methods in Systems and Software
(Springer, 2018), pp. 285–295

79. J. Garcıa et al., A percentile transition ranking algorithm applied to binarization of continuous
swarm intelligence metaheuristics, in International Conference on Soft Computing and Data
Mining (Springer, 2018), pp. 3–13

80. S. Balaji, N. Revathi, A new approach for solving set covering problem using jumping particle
swarm optimization method. Nat. Comput. 15(3), 503–517 (2016)

81. J. Garcıa et al., A multi dynamic binary black hole algorithm applied to set covering problem,
in International Conference on Harmony Search Algorithm (Springer, 2017), pp. 42–51

82. X. Zhang et al., Binary artificial algae algorithm for multidimensional knapsack problems.
Appl. Soft Comput. 43, 583–595 (2016)

83. M.A. Tawhid, P. Savsani, Discrete sine cosine algorithm (DSCA) with local search for solving
traveling salesman problem. Arab. J. Sci. Eng. 44(4), 3669–3679 (2019)

84. W.-P. Liu et al., Hybrid crossover operator based on pattern, in 2011 Seventh International
Conference on Natural Computation, vol. 2 (IEEE, 2011), pp. 1097–1100

85. G.A. Croes, A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812
(1958)

86. S. Gholizadeh, R. Sojoudizadeh, Modified sine cosine algorithm for sizing optimization of
truss structures with discrete design variables. Iran Univ. Sci. Technol. 9(2), 195–212 (2019)

87. O.D. Montoya et al. A hybrid approach based on SOCP and the discrete version of the SCA for
optimal placement and sizing DGs in AC distribution networks. Electronics 10(1), 26 (2020)

88. O.D. Montoya, W. Gil-González, C. Orozco-Henao, Vortex search and Chu-Beasley genetic
algorithms for optimal location and sizing of distributed generators in distribution networks: a
novel hybrid approach. Eng. Sci. Technol. Int. J. 23(6), 1351–1363 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Advancements in the Sine Cosine
Algorithm

In the last few decades, the development and advancement of meta-heuristic algo-
rithms have become the focus of the research community as these algorithms face
various challenges like, balance between exploration and exploitation, tuning of
parameters, getting trapped in local optima, and very slow convergence rate. Sine
Cosine Algorithm (SCA) also faces similar kinds of challenges and sometimes fails
to perform effectively in finding the global optimal solution. Sine and Cosine are
trigonometric operators with a 90◦ phase shift from each other. The range of sine and
cosine functions lies in the range [−1, 1]. Sine and cosine functions in the position
update equation of SCA help solutions to perform search procedure. However, in
some situations, SCA promotes similar solutions in the search space, which results
in the loss of diversity in the population, and the search process is susceptible to
trapping in the region of local optimum [1]. Motivated by these challenges, SCA has
beenmodified to improve its capability and efficiency in several ways. Several strate-
gies have been employed to alter the basic version of SCA [2], aiming to enhance
its effectiveness and optimization capabilities. In this chapter, we will discuss about
these modifications and strategies, which have been incorporated into the sine cosine
algorithm (SCA) in past few years. Apart from this, we will briefly describe the
applications of the modified versions of SCA.

The modifications and ensemble of new strategies into the SCA algorithm
include—modification in the update mechanism, change in the parameters involved,
the introduction of elitism, the introduction of new operators, the introduction of
an encoding scheme, the introduction of several statistical distributions for random
number generations, etc. For the sake of brevity, we will briefly describe about these
modifications and developments in the following manner,

1. Modifications in the position update mechanism
2. Opposition-based learning (OBL) in SCA
3. Quantum-inspired SCA
4. Hybridization of SCA with other meta-heuristics.

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_5&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_5

88 5 Advancements in the Sine Cosine Algorithm

5.1 Modifications in the Position Update Mechanism

The position update mechanism or position update operator can be considered as
the core of any population-based meta-heuristic algorithm. The movement of the
search agents in the search space is controlled by the position update mechanism. It
is responsible for updating the current position of the search agents in an intelligent
stochastic manner. In the literature of SCA, various modifications in the position
update mechanism have been proposed to modify SCA in different ways.

Long et al. [1] proposed an improved version of the SCA (ISCA) for solving
high-dimensional problems. This approach is inspired by the integration of the inertia
weight (w) in the particle swarm optimizer (PSO) [3]. In this approach, the position
update equation is modified by including the concept of inertia weight coefficient (w)
to speed up the convergence and prevent local optima entrapment. Furthermore, a
new nonlinearly decreasing conversion parameter based on the Gaussian function is
introduced to keep the fine-tune balance between SCA’s exploration and exploitation
phases. The suggested modifications in the position update equation is given by
Eq. (5.1).

Xt+1
i j =

⎧
⎨

⎩

w(t) · Xt
i j + r1 · sin (r2) ×

∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 < 0.5

w(t) · Xt
i j + r1 · cos (r2) ×

∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 ≥ 0.5

(5.1)

wherew ∈ [0, 1] is the inertia weight coefficient. The value ofw is linearly decreased
from the initial value (ws) to the final value (we) according to the following equation:

w(t + 1) = we + (ws − we) × (T − t)

t
(5.2)

where T denotes the maximum number of iterations, and t is the current iteration
number.

Along with the introduction of the weight coefficient, Long et al. [1] proposed
modifications in the control parameter r1. The control parameter r1 is the critical
control parameter in the SCA algorithm which helps in controlling the exploration
and exploitation phase of the algorithm by controlling the step size. The linearly
decreasing value of r1 helps the algorithm in choosing large step sizes in the initial
phase and small step sizes at later phases of the optimization process [2]. However,
the linearly decreasing value of r1 might restrict its convergence rate and accuracy.
Long et al. [1] presented a new nonlinearly decreasing strategy for control parameter
r1 based on the Gaussian function, mentioned in Eq. (5.3).

r1(t) = ae + (as − ae) × exp

(−t2

(m × T)2

)

(5.3)

5.1 Modifications in the Position Update Mechanism 89

where t indicates the current iteration, T indicates themaximumnumber of iterations,
m is the nonlinear modulation index, and as and ae are the initial and final values of
constant a, respectively.

Suid et al. [4] proposed modifications in its update position and in the control
parameter r1 by utilizing the mean of the best search agent’s position and the posi-
tion of the current search agent. In this approach, each agent updates its position
dimension-wise with respect to the average of its current position and the best search
agent’s position to avoid premature convergence. Themodified position update equa-
tion is given in Eq. (5.4).

Xt+1
i j =

⎧
⎨

⎩

Xt
i j+Pt

g j

2 + r1 · sin (r2) ×
∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 < 0.5

Xt
i j+Pt

g j

2 + r1 · cos (r2) ×
∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 ≥ 0.5

(5.4)

The control parameter r1 is updated using a nonlinear decreasing mechanism,
instead of the linearly decreasing mechanism, as mentioned in Eq. (5.5).

r1 = b ·
(

1 −
(
t

T

)α)β

(5.5)

where b is the constant parameter (a = 2), T denotes the number of maximum
iteration, t is the current iteration, and both α and β are positive real numbers.

Kumar et al. [5] proposed Weibull Pareto sine cosine optimization algorithm
(WPSCO), amodification in the sine cosine algorithm (SCA) to solve the peak power
detection problem in solar PV panels. In WPSCO, Weibull and Pareto distributions
functions are integrated with the SCA algorithm in the position update equation,
which improves the convergence rate and enhances the exploitation of the search
spaces [5]. In the first stage, the SCA is applied to find the optimal place for all
variables (see Eq. 5.6).

� =
⎧
⎨

⎩

Xt
i j + r1 · sin (r2) ×

∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 < 0.5

Xt
i j + r1 · cos (r2) ×

∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 ≥ 0.5

(5.6)

In the second stage, the positions of all variables are analyzed by the Weibull and
Pareto distribution function, and the worst regions of the search space are filtered.
The position update mechanism for the second stage is given in Eq. (5.7).

Xt+1
i j = � ×

[

1 + � ×
{
t

T
× W (1, ε) +

(

1 − t

T

)

× P(0, ε, 0)

}]

(5.7)

where � is the inertia constant. W (1, ε) is Weibull random number. P(0, ε, 0) is
Pareto random number. ε is the error modulation index described as:

90 5 Advancements in the Sine Cosine Algorithm

ε =
∣
∣
∣Pt

g j − Pt−1
g j

∣
∣
∣

ρ t
max j

(5.8)

where

ρ t
max j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t = 1
{∣

∣
∣Pt

g j − Pt−1
g j

∣
∣
∣ if ρ t−1

max <

∣
∣
∣Pt

g j − Pt−1
g j

∣
∣
∣

ρ t−1
max j otherwise

if t = 1
(5.9)

Formaximumpower point tracking (MPPT)of partially shadedPVsystem,Kumar
et al. [6] proposed another variant of SCA, called Cauchy and Gaussian sine cosine
optimization (CGSCO) algorithm. TheCGSCOalgorithm combines theCauchy den-
sity [7] and Gaussian distribution function (GCF) [8] with the sine cosine algorithm
(SCA). In the proposedmethod, firstly initial population is updated using the position
update mechanism of the SCA algorithm, and then Cauchy and Gaussian mutation
mechanisms are employed on the updated population matrix � at every iteration.
The Cauchy-Gauss mutation mechanism is given in Eq. (5.10).

Xnew = � + [1 + δ × {η × N (0, 1) + (1 − η) × C(0, 1)}] (5.10)

where N (0, 1) andC(0, 1) are Gaussian and Cauchy random numbers, δ is an inertia
constant, η = t

T , t is the current iteration, andT is themaximumnumber of iterations.
The Cauchy density function enhances the global exploration ability and prevents
the algorithm from trapping into the region of local minima. And, the Gaussian
distribution function increases the local exploitation capabilities to enhance the rate
of convergence of the proposed CGSCO algorithm.

In the position update mechanism, random components are drawn from different
distributions. For example, normal distribution, Gaussian distribution, or Cauchy dis-
tribution play a very important role in managing the stochasticity of the underlying
meta-heuristic algorithm. These random components are responsible for the move-
ment in the search agent’s position in the search space by deciding direction and step
lengths randomly. In simpler terms, position update mechanisms can be considered
as random walks followed by the agents or particles in the search space. A Lévy
flight is a specific class of random walk in which the step lengths have a heavy-tailed
probability distribution, that is, agents will take a large step sizes occasionally, which
in turn improves the exploration capabilities of the underlying algorithm and helps
the search agents in escaping local optimal regions of the search space [9].

Inspired by the concept of Lévy flight, Attia et al. [10] proposed a modified sine
cosine technique for solving the optimal power flow (OPF) problem by embedding
Lévy flight into the position update mechanism of the sine cosine algorithm (SCA).
The introduction of Lévy flights in the position update mechanism enhances the
global search capabilities of the algorithm, andprevents the agents frombeing trapped
in the regions of local optima. In addition, a fine-tuning capability (i.e., adaptive

5.1 Modifications in the Position Update Mechanism 91

tuning of population size strategy) is utilized, in which the size of the population is
updated in the following manner:

if
fmin(t) < { fmin(t − 1), fmin(t − 2), fmin(t − 3), fmin(t − 4)}, here t is iteration

counter.
Then,
population size = Number of search agents in the (t − 1)th iteration×(1 − α)

else
population size does not change
α is a constant whose value is taken to be 0.05. This adaptive strategy for the

population size provides a fast convergence rate to the proposed algorithm.
Similarly, inspired by the concept of Lévy flights, Qu et al. [11] proposed another

SCA variant involving Lévy flight. For maintaining a better balance between the
exploration and exploitation capabilities of the algorithm, the method of exponen-
tially decreasing conversion (see Eq. 5.11) was applied to the control parameter r1,
and the method of linearly decreasing inertia weight (see Eq. 5.12) was adopted
on w. This helps in achieving a smooth transition from global exploration to local
development.

r1 = b · e t
T (5.11)

w = wmax − (wmax − wmin) · t

T
(5.12)

Here, T is the maximum number of iterations, t is the current iteration. wmax and
wmin denote the maximum andminimum value of the weight parameter, respectively.

Alongwith the adaptive control parameter strategy, a randomneighborhood search
strategy is employed, in which a random solution in the vicinity of the optimal
solution is used in the position update equation. This allows the algorithm to quickly
jump out of the local optimum and increases the diversity of the population. The
modified position update equation is mentioned in Eq. (5.13).

Xt+1
i j =

{
w · Xt

i j + r1 · sin (r2) × | r3 · Pt
g j × (1 + λ · rand(−1, 1)) − Xt

i j | if r4 < 0.5

w · Xt
i j + r1 · cos (r2)× | r3 · Pt

g j × (1 + λ · rand(−1, 1)) − Xt
i j | if r4 ≥ 0.5

(5.13)
where r1 and w are the same as mentioned in Eqs. (5.12) and (5.13), respectively. λ
is a constant parameter, and r2, r3, and r4 are control parameters.

A self-adapting greedy Lévy mutation strategy is applied to perturb the optimal
solution to enhance the local exploitation ability of the algorithm, and to eliminate
the defect of low efficiency in a later period [11]. The optimal solution is updated
using the following equation:

Pt+1
g j = Pt

g j + η(j) · L · Pt
g j (5.14)

Here, L is a random number drawn from Lévy distribution. Pgj is the optimal
solution, g is a solution index, and j denotes the dimension at iteration counter t .
η(j) is the coefficient of self-adapting variation defined in Eq. (5.15).

92 5 Advancements in the Sine Cosine Algorithm

η(j) = e(
−ε· t

T)
(
1− r(j)

rmax(j)

)

(5.15)

Here in Eq. (5.15), ε is a control parameter whose value is chosen to be 30.
r(j) denotes the adjusted optimal solution’s position given by Eq. (5.16), and rmax

denotes the difference between the maximum andminimum value of all the solutions
in dimension j (see Eq. 5.17)

r(j) = Pt
g j − 1

N
·

N∑

i=1

Xt
i, j (5.16)

rmax = max
(
Xt

:, j
) − min

(
Xt

:, j
)

(5.17)

whereN is the population size, t is the current iteration, and T denotes the maximum
iteration.

5.2 Opposition-Based Learning Inspired Sine Cosine
Algorithm

In this section, we briefly discuss about the concept of opposition-based learning
in the sine cosine algorithm. Opposition-based learning (OBL) is a search strategy
proposed by Tizhoosh [12] for machine learning applications. It takes into con-
sideration the opposite position of solutions in the search space to increase the
chance of finding better solutions in the search space. For a given population, say
X , the opposition-based population X is calculated in a given manner. Suppose
Xi = [xi,1, xi,2, . . . , xi,D] is a solution in X , then Xi is calculated using the follow-
ing equation:

xi j = u j + l j − xi j , i = 1, 2 . . . N ; j = 1, 2 . . . D (5.18)

where u j and l j are the upper and lower bounds of j th dimension, respectively.
The concept of OBL increases the chances of better exploration in the search

space and utilizing the opposite positions of solutions in the search space helps
in generating a more refined population. For instance, suppose X is a randomly
generated population of size N . Using the concept of OBL, a new population X is
generated using X . Now, there are 2N solutions in the search space, and out of these
2N solutions, N solutions are selected on the basis of fitness value. That is, fitness
values of X and X are calculated, and N number of solutionswith better fitness values
is retained in the population, and the rest of the solutions are eliminated or deleted.
For the sake of brevity, two modifications of SCA algorithm using the concept of
opposition-based learning (OBL) are discussed below.

5.3 Quantum-Inspired Sine Cosine Algorithm 93

Elaziz et al. [13] proposed opposition-based sine cosine algorithm (OBSCA).
The authors combined the opposition-based learning strategy with SCA in both
the initialization phase and updating phase. In the initialization phase, a randomly
generated population (say, X) containing N solutions is initialized, and the concept
of OBL is employed to generate the opposition-based population (say, X). The fitness
values of both X and X are calculated and N better solutions are retained for the
updating phase. In the updating phase, the population is updated using the SCA
algorithm, and the opposition-based learning is employed in the updated population.
The fitness values of both the population are calculated, and N better solutions are
retained for the next iterations, and the rest of the solutions are eliminated. The
iterative process is repeated until the termination criteria is satisfied.

Chen et al. [14] proposed a multi-strategy enhanced sine cosine algorithm based
on Nelder–Mead simplex (NMs) [15] concept and the opposition-based learning
(OBL) strategy for the parameter estimation of photovoltaic models. The Nelder–
Mead simplex method is used to deal with unconstrained minimization problems
and nonlinear optimization problems. It is a derivative-free direct search method
based on functional value comparison. In every iteration, the algorithm first executes
the SCA algorithm for updating the population, and then, the OBL mechanism is
employed to diversify the population in order to enhance the exploration capability of
the algorithm. After the OBLmethod, the NMs mechanism is incorporated as a local
search technique on every solution in order to exploit the potential neighborhood
regions of the search space. In detail, the best solution found after using the OBL
mechanism in the current population is selected to construct a primary simplex. Then,
the simplex is updated according to the NMs simplex mechanism for some k number
of iterations, and then the algorithm switched back to the SCA algorithm. The k is
a vital parameter whose value is chosen to be D + 1, if the optimization problem
is D dimensional. The concept of OBL enhances the diversity of the population
and benefits the exploration capabilities of the meta-heuristic algorithms. For more
applications in the field of soft computing, machine learning, and fuzzy systems, an
interested reader can refer to the literature review of opposition-based learning by
Mahdavi et al. [16].

5.3 Quantum-Inspired Sine Cosine Algorithm

Apart from the above-mentioned strategies and techniques, researchers have also
employed many other methods to modify the sine cosine algorithm. The quantum-
inspired meta-heuristics are also becoming popular in recent times. Quantum-
inspired meta-heuristics take their inspiration from the various quantum mechanics
principles like superposition, uncertainty, inference, entanglement, etc., to model
various optimization algorithms [17–19]. The concept of quantum computing, like
quantum bits (Q-bits), quantum gates (Q-gates), and their superposition have been
combined with various existing meta-heuristic algorithms like particle swarm opti-
mizer [17], gravitational search algorithm [18], gray wolf optimizer [19], to incor-

94 5 Advancements in the Sine Cosine Algorithm

porate the merits of quantum computing to some extent. Inspired by the concept
of quantum computing, Fu et al. proposed chaos quantum sine cosine algorithm
(CQSCA) [20]. In the proposed algorithm, a chaotic initialization method and the
quantum concept of superposition are used to improve the performance of the SCA
algorithm. CQSCA is employed to produce the optimal values for the parameters
involved in the support vector machine (SVM) in order to recognize the pattern of
different kinds of faults. In the proposed algorithm, the population is initialized with
a chaotic variable using a duffing system to enhance the quality of searching global
optima [21]. The dynamical equation of the duffing system is given below:

x ′′(t) + ηx ′(t) − ξ x(t) + μx3(t) = A · cos(τ t) (5.19)

where A is the amplitude of driving force. The coefficient η is the damping degree
whose value is taken to be 0.1, and ξ is the toughness degree whose value is chosen
as 1. μ is the nonlinearity of power and its value is taken to be 0.25. τ is the circular
frequency of the driving force and its value is taken to be 2.

After the chaotic initialization, the inherent characteristics of the qubits and quan-
tum gate concepts help in achieving a better balance between the exploration and
exploitation phase of the search process. The proposed algorithm uses quantum bits
or qubits1 to encode the position of search agents in the search space to avoid prema-
ture convergence [20]. A qubit can be expressed by probability amplitude Pi using
the following equation:

Pi =
[
cos(θ)

sin(θ)

]

=
[
pci
psi

]

(5.20)

where θ denotes the phase shift of a qubit.
Every search agent occupies two positions in the search space, namely the sine

position (psi) and the cosine position (pci), represented by Eqs. (5.21) and (5.22),
respectively.

psi = [sin(θi1), sin(θi2), . . . , sin(θi D)] (5.21)

pci = [cos(θi1), cos(θi2), . . . , cos(θi D)] (5.22)

where θi j = 2π × α, and α is a random number in the range [0, 1].
All the encoded search agents update their positions based on an update equation

utilizing the features of the SCA algorithm and quantummechanics. The movements
in the search agents are implemented using quantum rotation gate. The position
update mechanism of the proposed mechanism is given in Eq. (5.23).

Pinew =
[
pcinew
psinew

]

(5.23)

1 A qubit is the smallest unit of information in quantum theory.

5.3 Quantum-Inspired Sine Cosine Algorithm 95

where pcinew and psinew are calculated using Eqs. (5.24) and (5.25).

pcinew = (
cos(θ k

i1 + �θ k+1
i1), cos(θ k

i2 + �θ k+1
i2), · · · cos(θ k

i D + �θ k+1
i D)

)
(5.24)

psinew = (
sin(θ k

i1 + �θ k+1
i1), sin(θ k

i2 + �θ k+1
i2), · · · sin(θ k

i D + �θ k+1
i D)

)
(5.25)

�θ k+1
i j =

{
r1 · sin(r2) × �θ k

g

r1 · cos(r2) × �θ k
g

(5.26)

and,

�θg =

⎧
⎪⎨

⎪⎩

2π + θg j − θi j , θg j − θi j < −π

θg j − θi j , −π ≤ θg j − θi j < π

θg j − θi j − 2π, θg j − θi j > π

(5.27)

Then a mutation operator with quantum non-gate is adopted to avoid local opti-
mum and increase the population diversity [20]. For each search agent, a random
number is generated between (0, 1) and is compared with the mutation probabil-
ity pm. Then the probability amplitudes of randomly chosen qubits are updated as
follows:

Pi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
cos(θi j)

sin(θi j)

]

if randi < pm

[
sin(θi j)

cos(θi j)

]

otherwise

(5.28)

Similarly, Lv et al. [22] proposed a quantum encoding scheme inspired modifi-
cation in the encoding scheme of the search agents in the SCA algorithm. In the
proposed algorithm, instead of using real-valued coding for the search agents, the
idea of quaternion coding is used. In quaternion encoding, a search agent is expressed
as a hyper-complex number containing one real part and three imaginary parts. The
real part and imaginary parts of a solution are updated in parallel using the position
update mechanism of the SCA algorithm. Quaternions are super-complex numbers
represented as mentioned in Eq. (5.29) [23]

q = a0 + a1i + a2 j + a3k (5.29)

Here, a0, a1, a2, and a3 are real numbers, and i, j , and k are imaginary numbers
following given algebraic rules (Eq. 5.30),

96 5 Advancements in the Sine Cosine Algorithm

i · j = k j · i = −k j · k = i
k · j = −i k · i = j i · k = − j;

i · i = j · j = k · k = −1
(5.30)

The quaternion (q) described in Eq. (5.29) can be further simplified as,

q = a0 + a1i + a2 j + a3k = c + dj (5.31)

Here, both c and d are complex numbers, and j is an imaginary part defined as
follows,

c = a0 + a1i (5.32)

d = a2 + a3i (5.33)

A random population of quaternion encoded search agents (Q) is initialized in the
problem’s definition domain [L, U], using Eq. (5.34),

Q = QR + QI · i (5.34)

where QR and QI are complex numbers given by the following equations (see
Eqs. 5.35 and 5.36).

QR = QRR + QRI · i = ρR cos θR + ρR sin θR · i (5.35)

QI = QIR + QII · i = ρI cos θI + ρI sin θI · i (5.36)

where ρR, ρI are random numbers generated in the range,

ρR, ρI ∈
[

0,

(
L −U

2

)]

(5.37)

and, θI, θR are random numbers generated in the range,

θI, θR ∈ [−2π, 2π] (5.38)

The quaternion encoded search agents (Q) could be converted to their real-value
counterpart X using Eqs. (5.39)–(5.41),

XR = ρRsgn

(

sin

(
QRR

ρR

))

+ L +U

2
(5.39)

X I = ρIsgn

(

sin

(
QII

ρI

))

+ L +U

2
(5.40)

5.4 Covariance Guided Sine Cosine Algorithm 97

X =
√(

X2
R + X2

I

)
(5.41)

The position the search agents (Qk) is updated using the following position update
mechanism mentioned in the equation below:

Qt+1
k =

{
Qt

k + r1 × sin (r2) × ∣
∣r3 × QPtk − Stk

∣
∣ if r4 < 0.5

Qt
k + r1 × sin (r2) × ∣

∣r3 × QPtk − Qt
k

∣
∣ if r4 ≥ 0.5

(5.42)

where k = RR, IR,RI, II. And, QP represents the best solution obtained so far and
is represented in the quaternion form as follows in Eq. (5.43),

QP = QPR + QPI · i (5.43)

Here, QPR and QPI are given as follows,

QPR = QPRR + QPRI · i (5.44)

QPI = QPIR + QPII · i (5.45)

The incorporationof quantum techniques in the sine cosine algorithm improves the
exploration-exploitation capabilities of the algorithm.However, in digital computers,
one can not exactly simulate the true nature of quantum computing. Despite of having
the limitations, quantum-inspired techniques can be realized as effective techniques
for advancements in the existing meta-heuristic algorithms.

5.4 Covariance Guided Sine Cosine Algorithm

Liu et al. [24] proposed an improved version of sine cosine algorithm called covari-
ance guided sine cosine algorithm (COSCA). In COSCA, sine cosine algorithm
(SCA) is embedded with the covariance concept to speed up its convergence, and
the OBL mechanism to improve the diversity in the population. In every iteration,
search agents in the population are sorted based on their fitness value in ascending
order. The top H = �N/4� agents are selected to create a guiding population, say,
(PGuide). For updating the position of the agents, the position update mechanism of
the SCA algorithm is utilized. After updating the position of every search agent in the
population, the opposition-based learning (OBL) strategy is employed. The opposite
positions of all the agents are calculated to form an opposite population. The best
agents are selected from both the current population and its opposite population to
proceed with the search process. The concept of covariance is utilized in the guided
population PGuide. The value of the covariance C j,k between any two dimensions j
and k in the guided population is calculated using the following equation:

98 5 Advancements in the Sine Cosine Algorithm

C j,k = 1

H − 1
×

H∑

h=1

(Gh, j − G j) ∗ (Gh,k − Gk) j, k = 1, 2, . . . D (5.46)

where Gh, j , and Gh,k represent the j th and kth dimensions of the hth variable in the
guided population (PGuide), respectively. G j and Gk denote the mean of the j th and
kth dimensions of the guided population. The value of the covariance C j,k forms a
covariance matrix C with the size D × D.

Further, eigenvalue decomposition is performed on the covariance matrix C as
given in Eq. (5.47).

C = OM2OT (5.47)

Here, M is a diagonal matrix whose elements are equals to the eigenvalues of C ,
O is an orthogonal matrix, such that each column of O comprises the orthogonal
basis for each eigenvector of the covariance matrix C .

For i th search agent Xi , its candidate position Yi is calculated using the following
equation:

Yi = G + σ · O · M · γ (5.48)

where G is the mean value of the guided population. σ is a zoom factor whose
value is taken to be 1.5, γ is a D-dimensional random vector, and the range of
each component of γ lies in the [0, 1]. If Yi is better than Xi , Xi is replaced by Yi ,
otherwise, Xi remains unchanged.

5.5 Hybridization of SCA with Other Meta-heuristics

In the context of meta-heuristic algorithms, hybridization refers to the process of
integrating two or more existing meta-heuristic algorithms to form a new variant
or hybrid algorithm. The hybrid algorithm produced by integrating two or more
different algorithms are meant to report better performance when compared to the
algorithms, which are used in the process of hybridization. The basic idea of merg-
ing two or more existing algorithms is to utilize the merits and strengths of used
algorithms while improving their drawbacks. For instance, suppose an algorithm
(say)A is known for better exploration capabilities but suffers from the drawback of
weak exploitation, and on the other hand, a different algorithm (say) B owns better
exploitation capabilities but is prone to get stuck in the region of local optimum.
The hybrid algorithm (say) C produced by integrating algorithms A and B is sup-
posed to contain the merits of both of the parent algorithms and perform relatively
better when compared to both of the algorithms. However, utilizing the techniques
of hybridization is a challenging task and requires careful analysis. The process of
hybridization can also be achieved using different classical algorithms like simplex
methods, Nelder-Mead simplex methods, and local random search techniques [25].

5.5 Hybridization of SCA with Other Meta-heuristics 99

Sine cosine algorithm (SCA) holds the decent ability to achieve a fine balance
between the exploration and exploitation phase. However, the performance of SCA
can be enhanced using the technique of hybridization for any specific application-
oriented problems. Sine cosine algorithm (SCA) has been successfully hybridized
with the algorithms like particle swarm optimizer (PSO) [25, 26], genetic algorithm
(GA) [27], differential evolution (DE) [28], simulated annealing (SA) [29], gray
wolf optimizer (GWO) [30], and artificial bee colony (ABC) algorithm [31], etc. It
is beyond the scope of this book to discuss about all the hybridization techniques
employed in the SCA algorithm. However, for giving a fair idea to the readers, some
of the hybrid algorithms concerning to SCA algorithm are discussed below.

Elaziz et al. [28] proposed a hybridization of sine cosine algorithm (SCA) with
differential evolution (DE) algorithm for tackling the feature selection problem. The
proposed hybrid algorithm is called SCADE,which has the strengths ofDE algorithm
and SCA algorithm combined. The feature selection problem is a binary optimization
problem, so that solutions in the population represent the binary vectors with length
equal to the number of features. Suppose Xi is a solution, and elements of xi will
take values 1 or 0, where 1 represents the selection of the particular feature, while
0 represents the non-selection of the feature. The underlying objective function for
evaluating the fitness of the solutions is mentioned below:

f (Xi) = ψ × ErrXi + (1 − ψ) ×
(

1 −
(|S|

D

))

(5.49)

where ErrXi represents the classification error of the logistic regression classifier
with respect to the solution Xi , |S| is the number of selected features, and D is the
total number of features in the given data set. ψ ∈ [0, 1] is a random number used
to balance the accuracy of the classifier and the number of selected features.

The normalized fitness value for each solution Xi , s.t. (i = 1, 2, . . . , N , and N is
the total number of features), is computed using the following equation:

Fiti = fi
∑N

i=1 fi
(5.50)

The best solution (say) Pg is determined from the population after assigning a
fitness value to every solution in the population. In updating phase, the position update
mechanism of the DE algorithm or SCA algorithm is used, according to a random
value p ∈ [0, 1]. Suppose Xi is a solution and Fiti represents the normalized fitness
value of the solution Xi , if Fiti > P , then position updatemechanismofDEalgorithm
is utilized, else (Fiti ≤ P) position update mechanism of the SCA algorithm is used.
The performance of the hybrid SCADE was tested on UCI datasets, and significant
improvement in the classification accuracy of the logistic regression classifier is
reported [28]. The hybridization technique is an effective technique for improving the
performance and robustness of the underlyingmeta-heuristic algorithm. In the similar
fashion, we will discuss below the hybridization of sine cosine algorithm (SCA) with

100 5 Advancements in the Sine Cosine Algorithm

gray wolf optimizer (GWO), and the hybridization of sine cosine algorithm with
Particle Swarm Optimizer (PSO).

Singh et al. [30] proposed a hybridization of gray wolf optimizer (GWO) [32] and
sine cosine algorithm (SCA) [2]. In the proposed hybrid algorithm, the exploitation
phase utilizes the GWO algorithm, while the exploration phase incorporates the
exploration capabilities of the SCA algorithm. A randomly generated population
is initialized, and the fitness value of each search agent is calculated. Based on
the fitness value of the search agents, the best search agent (alpha wolf xα), the
2nd best search agent (beta wolf Xβ), and the 3rd best search agent (delta wolf
Xδ) is selected, in the same manner as in the GWO algorithm. After this, for the
movement of Xα , the position update mechanism of sine cosine algorithm is utilized.
The other parameters involved in the GWO algorithm are kept the same, except the
position updatemechanism of alphawolf or the best solution Xα . The position update
mechanism of Xα is mentioned in Eq. (5.51).

dα =
{
r1 × sin (r2) × |r3 × Xα − Xi | if r4 < 0.5

r1 × cos (r2) × |r3 × Xα − Xi | if r4 ≥ 0.5
(5.51)

Xl = Xα − al × dα (5.52)

where r1, r2, r3, and r4 are control parameters, as mentioned in the SCA algorithm
[2]. And, dα represents the movement in the Xα . Xl is the next position of the alpha
gray wolf [30].

Issa et al. [25] proposed a hybridization of particle swarm optimizer (PSO) with
sine cosine algorithm (SCA) in an adaptive manner, and called this hybrid algorithm
ASCA-PSO.The proposed hybrid algorithmmaintains two layers, namely the bottom
layer and the top layer of the solutions based on their fitness value. The bottom
layer divides the population into M—different groups, and each group contains N—
number of search agents. From every group, a leader yk (best search agent in a
particular group K) is selected for the top layer, and the position update mechanism
of PSO is utilized to update the position of the group leaders yk , k = 1, 2, . . . , M . The
bottom layer is responsible for the exploration of the search space and, on the other
hand, the top layer is responsible for performing the exploitation phase in the hybrid
algorithm [25]. This hybridization ensures a good balance between the exploration
and exploitation phase in the entire optimization process [25].

Following the similar trend, Nenavath et al. [33] proposed a hybrid sine cosine
algorithm with teaching–learning-based optimization algorithm (SCA–TLBO) to
solve global optimization problems and visual tracking. In hybrid SCA–TLBO, first,
the standard SCAalgorithm is utilized to increase the diversification in the population
at the early stages of the search process for exploring the search space extensively,
and helping the algorithm in avoiding local optimal regions. After applying the SCA
algorithm, search agents are then passed to the teacher-learning phase of the TLBO
algorithm in order to move solutions in the direction of the best solution found
so far. This strategy helps the proposed algorithm to maintain a fine-tune balance

References 101

between the exploration and exploitation phase to perform the global and local search
effectively.

Gupta et al. [34] proposed the sine cosine artificial bee colony (SCABC) algorithm,
which hybridizes the ABC algorithm with the sine cosine algorithm (SCA). The
proposed algorithm improves the exploitation and exploration capabilities of the
artificial bee colony (ABC) algorithm. In the ABC algorithm, the employed bee
phase plays an important role in exploring more promising regions during the search
process. The employed bee phase of the ABC is improved using the SCA, it helps
the employed bees to prevent irregular exploration, and increases the efficiency of
the proposed hybrid algorithm. The position update mechanism of the employed bee
phase in the proposed algorithm utilizes the best solution (or elite solution), and is
given in Eq. (5.53).

Xt+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

Pt
g +

∣
∣
∣

fbest
fworst

∣
∣
∣ × sin r2 × ∣

∣r3 × Pt
g − Xt

i

∣
∣ if rand < 0.5

Pt
g +

∣
∣
∣

fbest
fworst

∣
∣
∣ × cos r2 × ∣

∣r3 × Pt
g − Xt

i

∣
∣ otherwise

(5.53)

where Pt
g represents the elite (best) solution at the iteration t . fbest and fworst represent

the best fitness and worst fitness respectively.

Practice Exercises

1. Discuss the rationale behind opposition-based SCA.
2. Explain the levy flight walk. How this concept is implemented in SCA?
3. Discuss the rationale behind using the covariance concept in SCA.
4. Explain the notion of chaos in Chaotic quantum SCA.
5. What do you mean by encoding? Discuss quantum encoding with suitable exam-

ples.
6. How is hybridization going to help SCA in giving better results?

References

1. W. Long et al., Solving high-dimensional global optimization problems using an improved sine
cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)

2. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based
Syst. 96, 120–133 (2016)

3. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Con-
ference on Evolutionary Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No. 98TH8360) (IEEE, 1998), pp. 69–73

4. M. Suid, M. Tumari, M. Ahmad, A modified sine cosine algorithm for improving wind plant
energy production. Indones. J. Electr. Eng. Comput. Sci. 16(1), 101–106 (2019)

102 5 Advancements in the Sine Cosine Algorithm

5. N. Kumar et al., Peak power detection of PS solar PV panel by using WPSCO. IET Renew.
Power Gener. 11(4), 480–489 (2017)

6. N. Kumar et al., Single sensor-based MPPT of partially shaded PV system for battery charging
by using Cauchy and Gaussian sine cosine optimization. IEEE Trans. Energy Convers. 32(3),
983–992 (2017)

7. M. Ali, M. Pant, Improving the performance of differential evolution algorithm using Cauchy
mutation. Soft Comput. 15(5), 991–1007 (2011)

8. L.S. Coelho, Novel Gaussian quantum-behaved particle swarm optimiser applied to electro-
magnetic design. IET Sci. Meas. Technol. 1(5), 290–294 (2007)

9. X.-S. Yang, Nature-Inspired Optimization Algorithms (Academic Press, 2020)
10. A.-F. Attia, R.A. El Sehiemy, H.M. Hasanien, Optimal power flow solution in power systems

using a novel sine cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)
11. C. Qu et al., A modified sine cosine algorithm based on neighborhood search and greedy levy

mutation. Comput. Intell. Neurosci. 2018 (2018)
12. H.R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in Inter-

national Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCAIAWTIC’06), vol. 1 (IEEE, 2005), pp. 695–701

13. M.A. Elaziz, D. Oliva, S. Xiong, An improved opposition-based sine cosine algorithm for
global optimization. Expert Syst. Appl. 90, 484–500 (2017)

14. H. Chen et al., An opposition-based sine cosine approach with local search for parameter
estimation of photovoltaic models. Energy Convers. Manag. 195, 927–942 (2019)

15. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313
(1965)

16. S. Mahdavi, S. Rahnamayan, K. Deb, Opposition based learning: a literature review. Swarm
Evol. Comput. 39, 1–23 (2018)

17. Y.-W. Jeong et al., A new quantum-inspired binary PSO: application to unit commitment
problems for power systems. IEEE Trans. Power Syst. 25(3), 1486–1495 (2010)

18. M. Soleimanpour-Moghadam, H. Nezamabadi-Pour,M.M. Farsangi, A quantum inspired grav-
itational search algorithm for numerical function optimization. Inf. Sci. 267, 83–100 (2014)

19. K. Srikanth et al., Meta-heuristic framework: quantum inspired binary grey wolf optimizer for
unit commitment problem. Comput. Electr. Eng. 70, 243–260 (2018)

20. W.Fu et al., A hybrid fault diagnosis approach for rotatingmachinerywith the fusion of entropy-
based feature extraction andSVMoptimized by a chaos quantumsine cosine algorithm.Entropy
20(9), 626 (2018)

21. X.Y. Deng, H.B. Liu, T. Long, A new complex Duffing oscillator used in complex signal
detection. Chin. Sci. Bull. 57(17), 2185–2191 (2012)

22. L. Lv et al., A quaternion’s encoding sine cosine algorithm, in International Conference on
Intelligent Computing (Springer, 2019), pp. 707–718

23. C. Schwartz, Calculus with a quaternionic variable. J. Math. Phys. 50(1), 013523 (2009)
24. G. Liu et al., Predicting cervical hyperextension injury: a covariance guided sine cosine support

vector machine. IEEE Access 8, 46895–46908 (2020)
25. M. Issa, A.E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, A. Alzohairy, ASCA-PSO: adaptive

sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence
alignment. Expert Syst. Appl. 99, 56–70 (2018)

26. H.N. Fakhouri, A. Hudaib, A. Sleit, Hybrid particle swarm optimization with sine cosine
algorithm and Nelder-Mead simplex for solving engineering design problems. Arab. J. Sci.
Eng. (2019)

27. M.A. El-Shorbagy, M.A. Farag, A.A. Mousa, I.M. El-Desoky, A Hybridization of Sine Cosine
Algorithm with Steady State Genetic Algorithm for Engineering Design Problems (Springer
Nature Switzerland AG, 2020)

28. M.E. Abd Elaziz, A.A. Ewees, D. Oliva, P. Duan, S. Xiong, A Hybrid Method of Sine Cosine
Algorithm and Differential Evolution for Feature Selection (Springer International Publishing
AG, 2017)

References 103

29. H. Jouhari, D. Lei, M.A.A. Al-qaness, M. Abd Elaziz, A.A. Ewees, O. Farouk, Sine cosine
algorithm to enhance simulated annealing for unrelated parallel machine scheduling with setup
times. Mathematics 7, 1120 (2019)

30. S.B. Singh, N. Singh, A novel hybrid GWO-SCA approach for optimization problems. Eng.
Sci. Technol. Int. J. 20, 1586–1601 (2017)

31. K. Deep, S. Gupta, Hybrid sine cosine artificial bee colony algorithm for global optimization
and image segmentation. Neural Comput. Appl. (2019)

32. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
33. H. Nenavath, R.K. Jatoth, Hybrid SCA-TLBO: a novel optimization algorithm for global opti-

mization and visual tracking. Neural Comput. Appl. 31(9), 5497–5526 (2019)
34. S. Gupta, K. Deep, Hybrid sine cosine artificial bee colony algorithm for global optimization

and image segmentation. Neural Comput. Appl. 32(13), 9521–9543 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Conclusion and Further Research
Directions

The increasing complexity of real-world optimization problems demands fast, robust,
and efficientmeta-heuristic algorithms. The popularity of these intelligent techniques
is gaining popularity day by day among researchers from various disciplines of
science and engineering. The sine cosine algorithm is a simple population-based
stochastic approach for handling different optimization problems. In this work, we
have discussed the basic sine cosine algorithm for continuous optimization problems,
the multi-objective sine cosine algorithm for handling multi-objective optimization
problems, and the discrete (or, binary) versions of sine cosine algorithm for dis-
crete optimization problems. Sine cosine algorithm (SCA) has reportedly shown
competitive results when compared to other meta-heuristic algorithms. The easy
implementation and less number of parameters make the SCA algorithm, a recom-
mended choice for performing various optimization tasks. In this present chapter,
we have studied different modifications and strategies for the advancement of the
sine cosine algorithm. The incorporation of concepts like opposition-based learning,
quantum simulation, and hybridization with other meta-heuristic algorithms have
increased the efficiency and robustness of the SCA algorithm, and meanwhile, these
techniques have also increased the application spectrum of the sine cosine algo-
rithm. The integration of machine learning techniques with the sine cosine algorithm
is also becoming a hot topic for researchers in various fields. For instance, Zamli
et al. incorporated the concept of Q-learning along with the levy flights in the sine
cosine algorithm (QL-SCA) for improving the performance of the algorithm [1].
Wang et al. combined the mechanism of extreme learning machines (ELM) and sine
cosine algorithm to develop a novel air quality prediction model [2]. Fu et al. uti-
lized the sine cosine algorithm with variational mode decomposition (VMD) model,
and singular value decomposition (SVD)-based phase space reconstruction (PSR)
method to optimize least squares support vector machine (LSSVM) [3]. Similarly,
Sahlol et al. utilized the sine cosine algorithm (SCA) for the training of multi-layer
perceptron (MLP) or feedforward neural networks (FNNs) to improve the prediction
of liver enzymes on fish farmed on nano-selenite [4]. The SCA algorithm is used in

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9722-8_6&domain=pdf
https://doi.org/10.1007/978-981-19-9722-8_6

106 6 Conclusion and Further Research Directions

the training phase of NN to update the weights and the biases of the network. Ham-
dan et al. used the sine cosine algorithm (SCA) to train an artificial neural network
(ANN) for forecasting the electricity demand [5]. And, Song et al. utilized sine cosine
algorithm (SCA) to optimize the classification performance of the back-propagation
neural network (BP-NN) for the image classification task [6]. The weights of the BP-
NNwere optimized using the SCA in the training phase to improve the classification
accuracy.

Despite having all the characteristics of a goodoptimizer, the sine cosine algorithm
still needs more attention from the researchers and focused application-oriented
approaches in the development. The incorporation of various advance strategies and
modifications can enhance the performance and optimization capabilities of the sine
cosine algorithm.

References

1. K.Z.Zamli et al.,AhybridQ-learning sine cosine-based strategy for addressing the combinatorial
test suite minimization problem. PLoS ONE 13(5), e0195675 (2018)

2. J. Wang et al., An innovative hybrid model based on outlier detection and correction algorithm
and heuristic intelligent optimization algorithm for daily air quality index forecasting. J. Environ.
Manage. 255, 109855 (2020)

3. W. Fu et al., A hybrid approach for measuring the vibrational trend of hydroelectric unit with
enhancedmulti-scale chaotic series analysis and optimized least squares support vectormachine.
Trans. Inst. Meas. Control 41(15), 4436–4449 (2019)

4. A.T. Sahlol, A.A. Ewees, A.M. Hemdan, A.E. Hassanien, Training feedforward neural networks
using sine cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-
selenite (IEEE, 2016)

5. S. Hamdan, S. Binkhatim, A. Jarndal, I. Alsyouf, On the performance of artificial neural network
with sine cosine algorithm in forecasting electricity load demand, in International Conference
on Electrical and Computing Technologies and Applications (ICECTA) (2017)

6. H. Song, Z.Ye,C.Wang, L.Yan, Image classification based onBPneural network and sine cosine
algorithm, in IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Index

A
Adaptive grid mechanism, 50, 56, 57
Aggregation based approaches, 45, 46
A Posterior approach, 42
Archive, 56
Archives controller, 57

B
Binarization methods, 71
Binary optimization, 70
Binary SCA, 71, 75

C
Chaos quantum SCA, 8, 94
Constrained optimization, 2
Covariance guided SCA, 11, 97
Crowded tournament selection, 52
Crowding distance, 50–53

D
Deterministic methods, 2
Discrete optimization, 65, 66, 69, 70
Discrete SCA, 78, 79, 81, 82
Dominance, 38, 45

E
Elitist non-dominated sorting, 50, 51
Evolutionary algorithms, 8
Exploitation, 7
Exploration, 7

F
Flowchart, 19, 76, 77

G
Grid mechanism, 56

H
Heuristic, 4, 5
Hybridization, 12–14, 98–100

K
Knapsack problem, 67, 69, 77

M
Meta-heuristics, 5–7, 9
Multi-Objective optimization, 2, 36–38, 40
Multi-objective SCA, 44, 45, 60

N
No articulation approach, 42
Non-dominance diversity based approaches,

45, 49, 50
Non-dominated ranking, 52
Non-dominated solution, 39, 42, 44, 55–58,

60
Non-dominated sorting, 53

O
Opposition-based learning, 6, 92
Optimization, 1, 2, 7–10, 76

P
Pareto dominance, 55
Pareto front, 44, 50, 55, 57

© The Author(s) 2023
J. C. Bansal et al., Sine Cosine Algorithm for Optimization,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-19-9722-8

107

https://doi.org/10.1007/978-981-19-9722-8

108 Index

Pareto optimal front, 39
Pareto optimality, 38, 39
Pareto optimal set, 39
Population-based meta-heuristic, 7, 8, 10
Priori methods, 41
Progressive methods, 42
Pseudo-code, 19

Q
Quantum-inspired SCA, 7, 93
Quaternion, 9–11, 95–97
Quaternion encoding, 9, 95

S
Sine cosine algorithm, 7, 10, 16, 20
Single solution-based, 7
Stagnation, 7
Stochastic methods, 4
Swarm Intelligence-based algorithms, 8

T
Transfer function, 71
Travelling salesman problem, 66, 67, 69, 78

W
Weibull Pareto sine cosine optimization

algorithm, 3, 89

	Foreword
	Preface
	Contents
	1 Introduction
	References

	2 Sine Cosine Algorithm
	2.1 Description of the Sine Cosine Algorithm (SCA)
	2.2 Parameters Associated with the SCA
	2.3 Biases of Sine Cosine Algorithm
	2.3.1 Experimental Setup

	2.4 Numerical Example
	2.5 Source Code
	Reference

	3 Sine Cosine Algorithm for Multi-objective Optimization
	3.1 Multi-objective Optimization Problems (MOOP)
	3.2 Multi-objective Optimization Techniques (MOOT)
	3.2.1 Some Concepts and Terminologies
	3.2.2 Different Approaches of Solving MOOP

	3.3 Multi-objective SCA
	3.3.1 Aggregation-Based Multi-objective Sine Cosine Algorithm and Their Applications
	3.3.2 Non-dominance Diversity-Based Multi-objective SCA and Its Applications

	3.4 Conclusion
	References

	4 Sine Cosine Algorithm for Discrete Optimization Problems
	4.1 Discrete Optimization Models
	4.2 Discrete Optimization Methods
	4.3 Binary Versions of Sine Cosine Algorithm
	4.3.1 Binary Sine Cosine Algorithm Using Round-Off Method
	4.3.2 Binary Sine Cosine Algorithm Using Transfer Functions
	4.3.3 Binary Sine Cosine Algorithm Using Percentile Concept

	4.4 Discrete Versions of Sine Cosine Algorithm
	References

	5 Advancements in the Sine Cosine Algorithm
	5.1 Modifications in the Position Update Mechanism
	5.2 Opposition-Based Learning Inspired Sine Cosine Algorithm
	5.3 Quantum-Inspired Sine Cosine Algorithm
	5.4 Covariance Guided Sine Cosine Algorithm
	5.5 Hybridization of SCA with Other Meta-heuristics
	References

	6 Conclusion and Further Research Directions
	References

	Index

