103 research outputs found

    Uncovering population dynamics using mobile phone data : the case of Helsinki Metropolitan Area

    Get PDF
    Understanding the whereabouts of people in time and space is necessary for unraveling how our societies function. Regardless, our understanding of human presence is predominantly based on static residential population data, which is often outdated and excludes certain population groups, such as commuters or tourists. In the light of development towards 24-hour societies and the needs for promoting sustainable and equitable urban planning, reliable data of population dynamics are needed. To this end, ubiquitous mobile phones provide an attractive source for estimating the spatiotemporal digital footprints of people. In this study, I set out to investigate 1) the feasibility of three different aggregated network-based mobile phone data – the number of voice calls, data transmission and general network connection attempts – as a proxy for human presence, 2) how does the population distribution vary in Helsinki Metropolitan Area over the course of a regular weekday and 3) the role of temporally-sensitive population data when analysing dynamic accessibility to grocery stores and transport hubs. To my best knowledge, this is the first attempt when mobile phone data is used to reveal population dynamics for scientific purposes in Finland. Mobile phone data collected by the mobile network operator Elisa in 2017–2018 and ancillary data about land cover, buildings and a time use survey were used to estimate the 24-hour population distribution of the Helsinki Metropolitan Area. The mobile phone data were allocated to statistical 250 m x 250 m grid cells using an advanced dasymetric interpolation method and validated against population register data from Statistics Finland. The resulting 24-hour population was used to map the pulse of the city and to introduce the first fully dynamic accessibility model in the study area. The results show that data use is a good proxy for people and outperforms voice calls or overall network connection attempts. During daytime, the static population overestimates the population in residential areas and underestimates the population in work and service areas. In general, the 24-hour population reveals the pulse of a city, which is highlighted especially in the inner city of Helsinki, where the relative share of population of the study area increases by 50 % from the share at night-time to its peak at noon. The results of the case study suggest that integrating dynamic population data to location-based accessibility analysis provides more realistic results compared to static population data, but the significance of dynamic population data depends on the study context and research questions. In summary, aggregated network-driven mobile phone data is a feasible alternative for dynamic population modelling, however, different mobile phone data types vary in representativeness, which should be taken into account when using mobile phone data in research. To this end, critical evaluation of data and transparent data description are essential. Overall, understanding 24-hour societies and supporting sustainable urban planning necessitates dynamic population data, but advancements in data policy and availability are needed to harvest these possibilities. The results of this study also provide new empirical insights of the population dynamics in the study area, which can be used to advance planning and decision making.Ymmärrys väestön alueellisen jakautumisen ajallisesta vaihtelusta on keskeistä yhteiskuntamme toiminnan ymmärtämiseksi. Tästä huolimatta ymmärrys ihmisten läsnäolosta on vähäistä ja perustuu pääasiassa staattisiin asuinpaikkakohtaisiin väestötietoihin, jotka ovat usein vanhentuneita ja saattavat johtaa eräiden väestöryhmien, kuten työmatkalaisten tai turistien, sivuuttamiseen. Kehityksen kohti ympärivuorokautista yhteiskuntaa ja kestävän ja tasa-arvoisen kaupunkisuunnittelun edistämisen tarpeiden valossa tarvitaan luotettavia tietoja väestön dynamiikasta. Tässä tutkimuksessa tarkastelin 1) kolmen eri verkkopohjaisen matkapuhelinaineiston – puheluiden, tiedonsiirtoyhteyksien ja verkkoyhteyksien muodostusyritysten lukumäärän – soveltuvuutta ihmisen läsnäolon kuvaajana, 2) miten väestöjakauma vaihtelee pääkaupunkiseudulla säännöllisen arkipäivän aikana ja 3) temporaalisten väestötietojen käytön roolia saavutettavuusmallinnuksessa tarkasteltaessa ruokakauppojen ja liikenteen solmukohtien saavutettavuutta joukkoliikenteellä. Parhaan tietämykseni mukaan tämä on ensimmäinen kerta, kun matkapuhelinaineistoja käytetään väestön dynamiikan tarkasteluun tieteellisiin tarkoituksiin Suomessa. Matkapuhelinoperaattori Elisan keräämiä matkapuhelinaineistoja (2017–2018) sekä aineistoja maankäytöstä, rakennuksista ja ajankäyttötutkimuksen tuloksia käytettiin pääkaupunkiseudun 24 tunnin väestöjakauman arvioimiseen. Matkapuhelimen tiedot allokoitiin 250 m x 250 m tilastoruutuihin käyttäen edistynyttä dasymetristä interpolointimenetelmää ja validoitiin Tilastokeskuksen väestörekisteritietoja käyttäen. Tuloksena saatua 24 tunnin väestöaineistoa käytettiin kaupungin pulssin analysointiin ja ensimmäisen täysin dynaamisen saavutettavuusmallin toteuttamiseen tutkimusalueella. Tutkimuksen tulokset osoittavat, että matkapuhelinten tiedonsiirto on hyvä kuvaaja ihmisten sijainnille ja parempi kuin puhelut tai verkkoyhteyksien muodostusyritykset. Päivän aikana staattinen väestöaineisto yliarvioi väestöä erityisesti asuinalueilla samalla aliarvioiden väestöä alueilla, joilla on työpaikka- tai palvelukeskittymiä. Yleisesti katsottuna 24 tunnin väestö paljastaa kaupungin pulssin, mikä korostuu erityisesti Helsingin keskustassa, jossa tutkimusalueen väestön suhteellinen osuus kasvaa 50 %:lla yöstä sen huippuun keskipäivällä. Tapaustutkimuksen tulokset havainnollistavat kuinka dynaamisen väestötietojen integroiminen sijaintipohjaiseen saavutettavuustarkasteluun tarjoaa realistisempia tuloksia verrattuna staattiseen väestöaineistoon, mutta dynaamisten väestötietojen integroimisen merkitys riippuu tutkimuksen kontekstista ja tutkimuskysymyksistä. Yhteenvetona voidaan todeta, että aggregoitu verkkopohjainen matkapuhelinaineisto on hyvä vaihtoehto dynaamisen väestön mallintamiseen, mutta soveltuvuus vaihtelee aineistojen välillä, mikä on tärkeä huomioida käytettäessä matkapuhelinaineistoja tutkimuksessa. Tätä vasten aineiston kriittinen tarkastelu ja läpinäkyvä aineiston dokumentointi on olennaista. Kaiken kaikkiaan 24 tunnin yhteiskuntien ymmärtäminen ja kestävän kaupunkisuunnittelun tukeminen edellyttävät dynaamisia väestötietoja, mutta tietopolitiikan ja aineistojen saatavuuden edistäminen on välttämätöntä tämän toteutumiseksi. Tämä työ tarjoaa myös uutta empiiristä tietoa väestön dynamiikasta pääkaupunkiseudulla, jota voidaan käyttää suunnittelun ja päätöksenteon tukena

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Impact of COVID-19 on iot adoption in healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT

    Get PDF
    COVID-19 has disrupted normal life and has enforced a substantial change in the policies, priorities and activities of individuals, organisations and governments. These changes are proving to be a catalyst for technology and innovation. In this paper, we discuss the pandemic's potential impact on the adoption of the Internet of Things (IoT) in various broad sectors namely healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Our perspective and forecast of this impact on IoT adoption is based on a thorough research literature review, a careful examination of reports from leading consulting firms and interactions with several industry experts. For each of these sectors, we also provide the details of notable IoT initiatives taken in wake of COVID-19. We also highlight the challenges that need to be addressed and important research directions that will facilitate accelerated IoT adoption.Comment: This is the version accepted at Sensors 202

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Mining Behavioral Patterns from Mobile Big Data

    Get PDF
    Mobile devices connected to the Internet are a ubiquitous platform that can easily record a large amount of data describing human behavior. Specifically, the data collected from mobile devices --- referred to as mobile big data reveal important social and economic information. Therefore, analyzing mobile big data is valuable for several stakeholders, ranging from smartphone manufacturers to network operators and app developers. This thesis aims to discover and understand behavioral patterns from mobile big data based on large real-world datasets. Specifically, this thesis reveals patterns from three domains: people, time, and location. First, we explore mobile big data from the people domain and propose a framework to discover users' daily activity patterns from their mobile app usage. By applying the framework to a real-world dataset consisting of 653,092 users, we successfully extract five common patterns among millions of people, including commuting, pervasive socializing, nightly entertainment, afternoon reading, and nightly socializing. Second, still from the people domain, we derive group health conditions by using their smartphone usage data. In particular, we collect mobile usage records of 452 users in North America. We then demonstrate the potential for inferring group health conditions (i.e., COVID-19 outbreak stages) by leveraging less privacy-sensitive smartphone data, including CPU usage, memory usage, and network connections. Third, we mine the behavior patterns from the time domain. We reveal the evolution of mobile app usage by conducting a longitudinal study on 1,465 users from 2012 to 2017. The results show that users' app usage significantly changes over time. However, the evolution in app-category usage and individual app usage are different in terms of popularity distribution, usage diversity, and correlations. Last, with respect to the location domain, we leverage city-scale spatiotemporal mobile app usage data to reveal urban land usage patterns. We prove the strong correlation between mobile usage behavior and location features, which brings a new angle to urban analytics.Internetiin kytketyt mobiililaitteet ovat kaikkialla läsnä oleva alusta, joka voi helposti tallentaa suuren määrän tietoja, jotka kuvaavat ihmisen käyttäytymistä. Erityisesti mobiililaitteista kerätyt tiedot, joita kutsutaan mobiiliksi massadataksi (big data), paljastavat tärkeitä sosiaalisia ja taloudellisia tietoja. Siksi mobiilin massadatan analysointi on arvokasta useille sidosryhmille älypuhelinvalmistajista verkko-operaattoreihin ja sovelluskehittäjiin. Tämän väitöskirjan tavoitteena on löytää ja ymmärtää käyttäytymismalleja mobiilista massadatasta, joka perustuu suuriin reaalimaailman tietojoukkoihin. Erityisesti tämä väitöskirja tuottaa malleja kolmelta eri alueelta: ihmisiin, aikaan ja sijaintiin liittyen. Ensinnäkin tutkimme mobiilia massadataa ihmisiin liittyen ja ehdotamme viitekehystä, jonka avulla voidaan löytää käyttäjien päivittäisiä toimintamalleja heidän mobiilisovellustensa käytön perusteella. Soveltamalla tätä viitekehystä tosielämän tietojoukkoon, joka koostuu 653 092 käyttäjästä, löysimme onnistuneesti viisi yleistä mallia miljoonien ihmisten tiedoista, joihin kuuluivat mm. tiedot työmatkoista, sosiaalisista kontakteista, yöllisestä viihteestä, iltapäivän lukemisesta ja yöllisestä seurustelusta. Toiseksi, edelleen ihmisiin liittyen, johdamme tietoja ryhmien terveysolosuhteista käyttämällä heidän älypuhelintensa käyttötietoja. Keräsimme erityisesti 452 käyttäjän mobiilikäyttötietoja Pohjois-Amerikassa. Sitten osoitamme, että on mahdollista päätellä ryhmän terveysolosuhteet (eli COVID-19-epidemiavaiheet) hyödyntämällä vähemmän yksityisyyden kannalta arkoja älypuhelintietoja, mukaan lukien suorittimen käyttö, muistin käyttö ja verkkoyhteydet. Kolmanneksi louhimme käyttäytymismalleja aikaan liittyen. Paljastamme mobiilisovellusten käytön kehityksen tekemällä pitkittäistutkimuksen 1 465 käyttäjälle vuosina 2012–2017. Tulokset osoittavat, että käyttäjien sovellusten käyttö muuttuu merkittävästi ajan myötä. Sovellusluokan käytön ja yksittäisten sovellusten käytön kehitys on kuitenkin erilainen niiden suosion jakautumisen, käytön moninaisuuden ja korrelaatioiden suhteen. Lopuksi liittyen sijaintitietoihin hyödynnämme spatiotemporaalisten mobiilisovellusten käyttötietoja suurkaupunkitasolla paljastaaksemme kaupunkien maankäyttömallit. Todistamme vahvan korrelaation mobiililaitteiden käyttöön liittyvän käyttäytymisen ja sijaintiominaisuuksien välillä, mikä tuottaa uuden näkökulman kaupunkianalytiikkaan

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore