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Abstract

Mobile devices connected to the Internet are a ubiquitous platform that can easily
record a large amount of data describing human behavior. Specifically, the data
collected from mobile devices — referred to as mobile big data reveal important
social and economic information. Therefore, analyzing mobile big data is valuable
for several stakeholders, ranging from smartphone manufacturers to network
operators and app developers.

This thesis aims to discover and understand behavioral patterns from mobile big
data based on large real-world datasets. Specifically, this thesis reveals patterns
from three domains: people, time, and location. First, we explore mobile big data
from the people domain and propose a framework to discover users’ daily activity
patterns from their mobile app usage. By applying the framework to a real-world
dataset consisting of 653,092 users, we successfully extract five common patterns
among millions of people, including commuting, pervasive socializing, nightly
entertainment, afternoon reading, and nightly socializing. Second, still from the
people domain, we derive group health conditions by using their smartphone usage
data. In particular, we collect mobile usage records of 452 users in North America.
We then demonstrate the potential for inferring group health conditions (i.e.,
COVID-19 outbreak stages) by leveraging less privacy-sensitive smartphone data,
including CPU usage, memory usage, and network connections. Third, we mine
the behavior patterns from the time domain. We reveal the evolution of mobile
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app usage by conducting a longitudinal study on 1,465 users from 2012 to 2017.
The results show that users’ app usage significantly changes over time. However,
the evolution in app-category usage and individual app usage are different in
terms of popularity distribution, usage diversity, and correlations. Last, with
respect to the location domain, we leverage city-scale spatiotemporal mobile app
usage data to reveal urban land usage patterns. We prove the strong correlation
between mobile usage behavior and location features, which brings a new angle
to urban analytics.

Computing Reviews (2012) Categories and Subject
Descriptors:

Human-centered computing → Ubiquitous and mobile computing →
Empirical studies in ubiquitous and mobile computing
Information systems → Information systems applications → Data mining
Social and professional topics → User characteristics

General Terms:
Ph.D. thesis, mobile computing, smartphone usage, data mining, pattern
recognition

Additional Key Words and Phrases:
Clustering, representation learning, user behavior
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Chapter 1

Introduction

Mobile devices connected to the Internet are a ubiquitous platform that can easily
record a large amount of data describing human behavior. Supported by plenty
of mobile applications, just termed as apps for conciseness, mobile devices enable
people to access diverse Internet services to support work-, social-life, education,
and entertainment. At the same time, mobile users leave abundant fine-grained
usage traces that can be collected by app developers and service providers through
monitoring apps and mobile networks. These data referred to as mobile big
data [11, 27, 68] have formed a cross-domain and multi-view data ecosystem,
including various mobile usage behavior. For example, downloading, installing,
launching, uninstalling mobile apps, CPU and memory usage of smartphones,
and contextual information such as time, location, traffic, energy consumption.

1.1 Motivation

Mobile big data provides a new lens to discover and understand behavioral
patterns of users, which has significant implications for several stakeholders.
For example, smartphone manufacturers can optimize the scheduling of various
smartphone resources, such as CPU, memory, and battery power, according to
behavioral patterns to improve device performance and extend usage time [10,45].
Network operators and market intermediaries can provide personalized services,
through accurate recommendations and targeted advertisements to mobile users
by inferring their preferences and interests from their usage behavior. By doing
so, operators and intermediaries can not only enhance users’ quality of experience
(QoE) but also make more profits [40, 73]. Mobile app developers can upgrade
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2 1 Introduction

Figure 1.1: Mobile usage behavior acts as the core part linking the other domains,
i.e., people, time, and location.

of existing apps and the design of new apps by analyzing behavioral patterns
of mobile app usage and profiling mobile app popularity [23,24]. Moreover, the
government can understand people’s living status [34] and detect group health
conditions [56] from users’ behavioral patterns, then make policies to improve
people’s well-being.

1.2 Problem Statement

Mobile big data record the mobile usage behavior from the domains in the 4W
framework: what (usage), who (people), when (time), and where (location).
In particular, mobile usage acts as the core part linking the other domains
(Figure 1.1). In turn, mobile usage behavior is deeply shaped by different people,
times, and locations. The complex interdependencies in different domains entail
diverse behavioral patterns. This thesis aims to extract knowledge from mobile
big data through a systematic study, which reveals behavioral patterns from three
different domains: people, time, and location. Specifically, it focuses on answering
the following research questions:

RQ1. What activities can be discovered from anonymized mobile app usage data?

RQ2. What common patterns do we share with others in our daily activities?
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RQ3. Does the outbreak of COVID-19 affect users’ smartphone usage? If so,
how?

RQ4. Can we use smartphone usage data to infer the outbreak stages of COVID-
19?

RQ5. What is the evolution of mobile app usage behavior over time?

RQ6. Is it possible to leverage mobile app usage data to reveal urban land usage
patterns?

The first four research questions fall in the people domain and aim to under-
stand user features by mining digital spatial and temporal behavioral patterns.
Specifically, RQ1 aims to build connections between user activities and anonymized
mobile app usage traces. RQ2 aims to discover common activity patterns among
individuals on a large scale. By jointly answering RQ1 and RQ2, we build a
framework that reveals users’ daily activity patterns from their mobile app usage
traces, both individually and collectively. While RQ1 and RQ2 focus on regular
patterns, RQ3 and RQ4 aim to examine how an extreme event i.e., COVID-19
pandemic affects mobile usage behavior and explore mobile big data in sensing
group health conditions i.e., the outbreak stages of COVID-19. RQ5 relates to the
time domain, and aims to understand longitudinal temporal patterns of mobile
app usage behavior. RQ6 addresses the location domain and explores the value of
spatial features in mobile big data. This thesis presents several works to answer
the above research questions with the contributions outlined in the following
section.

1.3 Thesis Contribution

Figure 1.2 shows how the research questions are covered in the relevant publications
and an overview of the research methodology used in this thesis. Paper I answers
RQ1 and RQ2 by providing a framework to identify user activities from their
mobile app usage data and recognize the common patterns across diverse groups
of individuals. Paper II targets RQ3 and RQ4 by studying the differences in
smartphone usage across the outbreak of COVID-19 and proposing an inference
model to infer outbreak stages from smartphone usage data. Paper III answers
RQ5 by studying how mobile app usage changes over time. Finally, Paper IV
addresses RQ6 by proposing a graph-based representation learning framework
that reveals dynamic regional functions using mobile app usage behavior. As
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Figure 1.2: The methodology of this thesis and matching research questions along
with corresponding publications.

for the methodology, statistical data analysis and machine learning algorithms
are two critical methods we used to reveal behavioral patterns and understand
interdependencies in mobile usage data. The behavioral patterns discovered in
our work can provide prior knowledge to better protect the privacy of users. We
next summarize the content of Papers I-IV.

Paper I: To What Extent We Repeat Ourselves? Discovering Daily Activity
Patterns Across Mobile App Usage.

This paper addresses the problem of discovering the daily activity patterns of
a large population through their mobile app usage data. We first segment mobile
app usage traces into short time windows and then apply an unsupervised learning
model, a probabilistic topic model, to infer users’ activities in each time window.
We next investigate the coherence of users’ activity sequences to identify daily
patterns for individuals. Furthermore, we employ hierarchical cluster analysis to
identify the common patterns across individuals. We apply our framework on a
large-scale and real-world dataset consisting of 653,092 users. We identify seven
typical activities and discover the population follows five common patterns in
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their daily activities. Chapter 3 of this thesis summarizes the proposed framework
and critical findings.

Paper II: The Impact of COVID-19 on Smartphone Usage.

This paper studies the impact of COVID-19 on smartphone usage and explores
the values of mobile data for sensing group health conditions. Based on a global
data collection platform called Carat, we collect mobile usage records from 452
users in North America from November 2019 to April 2020. By conducting a
statistical data analysis, we find that COVID-19 makes a drop in engagement
with smartphones and network type switches but a rise in WiFi usage. Also,
the outbreak causes new typical diurnal patterns of both memory usage and
WiFi usage. Additionally, we design an inference model to infer outbreak stages
from users’ smartphone usage behavior, where both Macro-F1 and Micro-F1 can
achieve values over 0.8. We introduce the main findings and proposed method in
Chapter 4.

Paper III: “What Apps Did You Use?”: Understanding the Long-term
Evolution of Mobile App Usage.

This paper reveals long-term temporal patterns of mobile app usage behavior
through statistical data analysis. We leverage the Carat dataset and select 1,465
long term users and their mobile usage records from 2012 to 2017. We then
study the evolution process on a macro-level(i.e., app categories), and micro-
level (individual apps). On both levels, a growth stage can be triggered by
the release of new technologies. Then a plateau stage emerges due to high
correlations between app categories and a Pareto effect in individual app usage.
Additionally, individual app usage has an elimination stage due to fierce intra-
category competition. The usage diversity in two levels exhibits opposing trends:
app-category usage assimilates while individual app usage diversifies. The main
findings are presented in Chapter 5.

Paper VI: Revealing Urban Dynamic Functions with Mobile App Usage
Behavior and POIs.

The paper proposes a graph-based representation learning framework that
reveals dynamic regional functions using mobile app usage behavior. Specifically,
we use a graph structure to model mobile app usage data. In such a graph,
nodes represent users, apps, and time-enhanced locations, and edges represent the
co-occurrence of entities in mobile app usage records. The proposed framework is
able to map time-enhanced location nodes into the same latent space by leveraging
meta-paths and graph neural networks. As a result, a region at a specific time
interval is represented by an embedding vector. We further use the learned
region dynamic embeddings for the two tasks of static land usage identification
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and regional economic level (GDP) prediction. We further discuss the details in
Chapter 6.

1.4 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 introduces and compares
different data collection methods and previous studies. Also, it presents two mobile
usage datasets we used in our studies. Next, Chapter 3 discusses the framework to
discover the daily activity patterns from users’ mobile app usage data on a large
scale. Chapter 4 explains how the outbreak of COVID-19 impacts smartphone
usage behavior. After that, Chapter 5 presents the evolution process of mobile app
usage behavior over a long-term period from 2012 to 2017. Chapter 6 introduces
a representation learning framework learning dynamic location embeddings from
spatiotemporal mobile app usage data. Finally, chapter 7 concludes the thesis
with a summary and a discussion of future work.



Chapter 2

Background and Dataset Overview

This chapter introduces and compares different data collection methods and
previous studies in the domain of mobile usage pattern discovery, user profiling
from mobile data, and mobile app evolution analysis. Also, this chapter presents
two mobile usage datasets we used in the following studies.

2.1 Background

This section introduces mobile usage data collection methods. We also summarize
related studies in the fields of mobile usage pattern discovery, user profiling, and
mobile app evolution analysis.

2.1.1 Data Collection Methods

Real-world data are the basis and core parts of mobile big data analysis. We first
introduce different data collection methods for mobile data.

Monitoring Apps

One straightforward data collection method is to use monitoring apps installed
in participants’ mobile devices to record fine-grained mobile usage behavior
automatically. In practice, researchers can deploy such a data collection method
on both a small scale by recruiting volunteers [25] and a large scale by publishing
monitoring apps on app stores [45]. Recruiting volunteers can focus on a particular
group of users, e.g., students [60] and older adults [21]. Also, recruiting volunteers
can pre-control the quality of data and mitigate the bias of analytical results by

7



8 2 Background and Dataset Overview

cautiously selecting involved users according to their backgrounds and properties.
Alternatively, although publishing to app stores cannot pre-determine engaged
users, it can still control data quality by filtering out noisy data and alleviate
the bias by leveraging the benefit from the large volume of both active users and
collected data [8]. Moreover, benefited from globalization, publishing monitoring
apps to international app stores like Google Play and Apple Store is more accessible
to collect app usage data from multiple countries. This will enhance the generality
and representativeness of the analysis results.

Monitoring apps apply the event-triggered collection scheme, i.e., collecting
a smartphone usage record when an event happens. The event can be user
actions [3] (e.g., screen-on, launching apps, and typing), message received [19]
(e.g., notifications, emails), network requests [53], and hardware status changes [76]
(e.g., CPU usage, battery levels). Researchers are feasible to collect different
usage behavior and control the granularity of data collection by properly selecting
trigger events. Also, mobile devices have embedded with many sensors [69], e.g.,
accelerometer, gyroscope, and GPS. Hence, monitoring apps can collect sufficient
sensor data, such as CPU usage, movement status, GPS location, battery status.
These sensor data can provide sensor contextual information for usage analyses.

Network Operators

Nowadays, most mobile services are supported through the Internet. Therefore,
apart from collecting mobile data directly from end devices, one alternative method
is to collect app usage data from network operators. Network data can be collected
and extracted from multiple network interfaces, including packet-switched core
network (IU-Ps), serving gateway interface (SGi), mobility management interface,
etc. Precisely, mobile app usage information, covered in traffic flow records and
collected from SGi and Gi network interfaces, is typically inferred through deep
packet inspection and deep flow inspection [64].

Due to the constraint on access to network interfaces, such a data collection
method is usually performed by network operators and in large-scale measurements.
The data collected generally cover most mobile users in an entire city [65] or a
country [63]. Also, as the volume of network traffic data is extensive, network
operators usually take sample strategies by collecting network traffic records at
systematical time intervals, such as sampling every hour [74] or several minutes [26].
Apart from time information, the datasets collected by network operators usually
have location information of smartphone usage records, which is commonly
approximated to the GPS location of the associated base station.
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We next make a comparison of the above two data collection methods. In
terms of collection scale, both approaches can conduct large-scale measurements,
covering tens of thousands of users, which is benefited from the development
of communication and network technologies. However, as for monitoring apps,
limited by response rates or app popularity, they usually cover up to hundreds of
thousands of users, making it difficult to collect millions of users. In another line,
monitoring apps can collect small-scale datasets by recruiting volunteers. Also, it
is available to conduct control studies by properly selecting participants, which
is impracticable for network operators. Network operators are also limited to
associating certain types of behavior, i.e., network access. Nevertheless, monitoring
apps, installed on smartphones and based on the event-triggered collection, are
available to collect most kinds of mobile usage behavior by choosing different
trigger events.

2.1.2 Mobile Usage Pattern Discovery

Discovering mobile usage patterns aims at identifying regularities in usage data
to explore typical users’ usage habits and further improve user experience quality.
Existing studies principally worked on two sub-fields of pattern discovery, i.e.,
contextual pattern discovery and temporal pattern discovery.

The goal of contextual pattern discovery is to investigate the relationship
between mobile usage behavior and contextual factors, including location, time,
WiFi or cell connectivity, social environments, etc. For example, Do et al. [15]
and Bohmer et al. [5] found out that users prefer to use web and multimedia
apps while waiting for and during trips. Graells-Garrido et al. [22] analyzed
city-scale app usage data and found that street types also affect mobile usage.
For example, message apps consume more traffic in main streets, while dating
apps are used more in pedestrian streets. Further, Shema et al. [52] proposed to
determine environment context, e.g., home, workplace, commute, based on users’
mobile usage behavior, where the accuracy achieved around 69%. Our work in [35]
explored the correlations between mobile app usage and location features. We
proposed a graph-based representation learning framework that reveals dynamic
regional functions by leveraging spatiotemporal mobile app usage behavior.

Unlike contextual patterns focusing on static analysis, temporal pattern
discovery explores the dynamics of mobile usage behavior. For example, the
diurnal pattern is a basic temporal pattern of user behavior discovered by numerous
existing studies [51]. That is, the intensity of mobile usage increases during the
daytime while reduces over the night period. Also, Ghahramani et al. [20] showed
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that different mobile usage behavior has different temporal patterns. For instance,
the diurnal usage pattern of transport apps has more than two peaks on weekends,
different from other app categories. Moreover, Jones et al. [28] analyzed users’
re-visitation behavior across mobile app sessions and identified three distinct
patterns, i.e., checkers, waiters, and responsives. Our work in Paper I analyzed
a real-world mobile app usage dataset covering millions of users and discovered
five daily activity temporal patterns based on their mobile usage traces. The
five patterns include commuting, pervasive socializing, afternoon reading, nightly
entertainment, and nightly socializing. Our work in Paper II investigated how
the outbreak of Covid-19 affects users’ temporal patterns of smartphone usage.

2.1.3 User Profiling from Mobile Data

Since different user profiles can lead to differences in mobile app usage behavior,
many studies have sought to study the relationship between user personality traits
and their app usage traces. For example, Zhao et al. [74] conducted a user-group
level analysis. They analyzed one month of app usage from 106,762 users and
discovered 382 distinct groups of users. They then gave a meaningful label to each
user group, such as night communicators, evening learners, and financial users.
Andone et al. [2] presented a descriptive analysis of how age and gender affect
app usage. They discovered that females spent more time on communication and
social apps, while males spent more time playing games. Also, teenagers, from 12
to 17 years old, have the highest usage time on communication, social, media, and
game apps, over 40 minutes daily. Nevertheless, users over 30 years old only take
less than 10 minutes on these apps. Meanwhile, Peltonen et al. [46] investigated
how cultural affiliations of mobile users affect their usage behavior. By taking
app category usage as features and applying the hierarchical clustering algorithm,
they obtained three main clusters of cultural affiliations with respective usage
patterns, i.e., European group, English speaking group, and mixed group. Our
work in Paper VI also demonstrated that demographics have an important impact
on users’ daily activity patterns inferred from their mobile app usage traces.

Alternatively, some work has conducted predictive analyses, i.e., inferring
user profiles by extracting features from mobile app usage data. For example,
Seneviratne et al. [50] collected mobile app usage data from 200 users and
exploited SVM to predict users’ gender labels based on the apps used by users.
Further, Malmi et al. [39] applied a larger dataset covering 3,760 users to verify
Seneviratne’s studies and predict new demographics, e.g., income and race. They
determined that the most predictable trait is gender, while the hardest to predict
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is income. Zhao et al. [75] extracted designed topic features from app descriptions
and then used SVM and MLP to infer the gender of users.

2.1.4 Mobile App Evolution Analysis

Some scholars worked on analyzing mobile app evolution [6,7,55,57]. For example,
Carbunar et al. [7] crawled app information from Google Play. The dataset
includes 160,000 apps and lasts for six months. They then investigated how
app properties, like downloads, price, and update frequency, changed over time.
Calciati et al. [6] looked into the permission requests of apps. They tracked
227 Android apps and found that apps tend to require more permissions. Also,
Taylor et al. [55] discovered similar evolutionary trend in permission requests by
analyzing over 30,000 apps. Moreover, Wang et al. [57] crawled three snapshots
of Google Play in 2014, 2015, and 2017, and explored the evolution of various app
properties, including permission usage, privacy policy declaration, advertising
libraries, updates, and malicious behavior. However, these studies principally
focus on revealing the evolution of apps’ inherent properties, such as permission
requirements, downloads, price, update frequency, instead of users’ usage behavior.
Our work in Paper III studied the longitudinal evolution of mobile apps based
on users’ usage behavior. Compared with previous studies, our work includes
user-related indicators of the evolution, like intra-user diversity and inter-user
diversity of mobile app usage.

2.2 Dataset Overview

In this section, we overview two real-world mobile usage datasets used in our
studies. Also, we discuss ethical considerations.

2.2.1 Cellular Dataset

Cellular dataset was collected by a primary Internet Service Provider (ISP) in
China [58]. Specifically, the dataset was gathered during one week in April 2016,
covering the whole metropolitan area of Shanghai, one of the world’s largest cities.
The dataset includes over 2 million users and their network access records during
the data collection period. The mobile usage dataset is characterized by the ISP
with an anonymized user ID, timestamp, base station ID and network metadata.

The ISP derived a mobile app usage dataset from users’ network access records.
To determine the corresponding app ID for each network access record, the ISP



12 2 Background and Dataset Overview

inspected the HTTP head and used the destination domain and user-agent as the
app identifier. By adopting a systematic tool, SAMPLE [67], the ISP constructed
conjunctive rules to match specific apps. SAMPLE applies a supervised learning
algorithm over a small set of labeled data streams to automatically generate the
conjunctive rules, which can identify over 90% of apps with an average accuracy
of 99% [67]. In practice, the ISP built the conjunctive rules by manually operating
a small set of apps to generate data streams. They then crawled the 2,000 most
popular apps across app stores and matched network traffic records to these apps.
Also, the ISP manually verified the correctness of the matched apps. In terms
of the statistics from the ISP, more than 95% of network traffic used HTTP at
the time of data collection, and they could map up to 90% of the network traffic
to specific apps. During data collection, although some apps used HTTPS for
critical functions, e.g., log-in, most parts of their traffic still used HTTP. Also,
we notice most apps use HTTPS in recent years. Some existing studies [59,61]
have demonstrated that app usage traces can also be identified from encrypted
data traffic. Overall, the app usage dataset provided by the ISP, although not
covering all traffic, is sufficient for our analysis of mainstreams of usage behavior
modeling. Each entity of the mobile app usage dataset contains an anonymized
user identification, timestamp, base station ID, used app ID, and traffic volume.
The complete app usage traces of the top 1,000 active users in the dataset are
released to the research community, also including the app category information
and the distribution of points of interest (POIs) under each base station. The
public dataset is available at ‘http://fi.ee.tsinghua.edu.cn/appusage/’.

2.2.2 Carat Dataset

Carat dataset is collected using a monitoring app called Carat [45]. Carat applies
an event-triggered collection scheme, gathering a data sample every time the
battery level changes by 1%. Specifically, each data sample contains a list of
apps being used as mobile app usage information, user-specific identifier, and
timestamp. Also, Carat collects sensor contextual data consisting of battery level,
battery status, CPU usage, memory usage, mobile country code, and time zone.
In order to boost the number of participants in data collection, we publish Carat
on both Google Play1 and Apple Store2. In this way, we conduct a worldwide
data collection. The user will be informed of all data collection items when
installing Carat in the End-user License Agreement (EULA). The data-gathering

1https://play.google.com/store/apps/details?id=edu.berkeley.cs.amplab.carat.android
2https://apps.apple.com/us/app/carat/id504771500
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part of the platform is open-source3, enabling users to examine it easily. Also,
to reduce data collection expense, we motivated users to use Carat by designing
Carat as a collaborative energy diagnosis app. In other words, Carat can provide
personalized recommendations for improving smartphone battery life.

Up to now, Carat has gathered data from over 500,000 mobile users from
over 100 countries. We released a long-term app usage dataset to the research
community. The public long-terms app usage dataset contains the top 1,000
users ranked by the total duration of using Carat from 2014 to 2018. In the
public dataset, the user with the longest duration has 18,146,042 time-series
records spanning 4.65 years, and even the shortest duration user has more
than two years of records. In particular, the public dataset is available at
‘https://www.cs.helsinki.fi/group/carat/data-sharing/’.

2.2.3 Ethical Considerations

We are very aware of the privacy implications of using the datasets for research
and our research findings. We have taken adequate measures to safeguard the
privacy of the users involved. As for the Cellular dataset, the ISP has the consent
to collect mobile data and stripped all the personally identifiable information from
the traces. The ISP only gave us the anonymized user IDs. We never had access
to their actual identifiers. Alternatively, for the Carat dataset, the data-gathering
part of Carat is open-source. The users are informed of the data collection and
management procedures and grant their consent from their devices. A user-specific
identifier is randomly generated when a user first installs Carat. We do not have
users’ sensitive information. Also, both datasets are stored in a secure local server
protected by strict authentication mechanisms and firewalls. All researchers
are regulated by a strict non-disclosure agreement to access both datasets. All
conducted works have received approval from relevant local institutions.

3http://carat.cs.helsinki.fi/.
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Chapter 3

Discovering Daily Activity Patterns

This chapter gives an overview of the results of Paper I that solve RQ1 and RQ2:

• What activities can be discovered from anonymized mobile app usage data?

• What common patterns do we share with others in our daily activities?

We explore mobile big data from the people perspective and propose a frame-
work to discover users’ daily activity patterns from mobile app usage. We apply
the framework to the Cellular dataset and identify seven typical activities from
app usage, i.e., commuting and transportation, entertainment, shopping, so-
cializing, reading and checking, life and health, and exploring food. We then
successfully extract five common patterns among millions of people, including
afternoon reading, nightly entertainment, pervasive socializing, commuting, and
nightly socializing. We also show that people usually follow yesterday’s activity
patterns and the demographics have a significant impact on users’ daily lives.

3.1 Discovery of User Activities

We first identify users’ activities based on their mobile app usage traces. This
chapter leverages the Cellular dataset that includes over 2 million users and their
usage records over one week.

3.1.1 App Usage Trace Representation

To capture users’ short-term activities, we divide mobile app usage traces one day
into multiple small time windows. In practice, we use a time-based segmentation

15
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Figure 3.1: Min-max normalized number of app usage records during one day.

mechanism. As shown in Figure 3.1, we divide app usage traces of each day for
each user into ten windows. In our case, a window refers to an app usage block
composed of app usage records during a specific time slot. In the end, each user
has 70 windows, i.e., 7 (# of days) × 10 (# of windows for each day). Also, we
can apply the usual notions to some time slots, such as morning rush hour (7.00
to 9.00), noon break (11.00 to 13.00), and evening rush hour (17.00 to 19.00).

3.1.2 Activity Discovery

To characterize the activities of windows, we explore the power of the author-topic
model [48]. As a probabilistic topic model, the author-topic model has been
successfully used for discovering the hidden topic structure in documents. Given
all words and authors of each document as observations, the author-topic model is
trained to infer the hidden topic of each document. Alternatively, we aim to find
the hidden activity structure of mobile app usage windows for activity discovery.
Specifically, each window is a block of app usage traces, represented as a sequence
of app IDs. Each window has multiple activity features, and each app usage of a
window supports hidden activities in probability. Hence, the relationships among
activities, apps, and windows, are highly similar to the relationships among topics,
words, and documents. By considering they also have similar objectives, we build
an analogy between the activity discovery of windows and the topic discovery of
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Figure 3.2: Analogy between window-activities to document-topics.

documents. As shown in Figure 3.2, a unique window represents a document, and
an activity represents a topic. A window has multiple activity features, which is
just like a document that has various topics. Apps in one window are deemed
as words in a document. Vocabulary is the set of all words in documents, while
apps collected are the set of all apps in windows. Thus, the apps collected are
regarded as vocabulary. We then obtain the activity features of each window by
applying the author-topic model.

3.1.3 Activity Identification

To facilitate finding the semantic terms of each window, we take a further step,
aggregating similar unique windows in terms of their activity features. Windows
from the same cluster have similar activity features, and different clusters represent
different activities. By applying the Bisecting K-means clustering algorithm on
the activity feature vectors of windows, we obtain seven clusters. Windows in the
same cluster have similar activities. Thus, we next aim to identify each window
cluster with semantic terms, i.e., activity labels. Note that activity identification
is a very challenging problem. Unlike small-scale datasets, the large-scale app
usage datasets lack meaningful labels mapping user activities to mobile app usage
records. Fortunately, we can explore the semantic information of app categories
and prior knowledge of activity temporal patterns to identify activity labels.
For example, if a user uses food & drink apps during lunchtime, it has a high
probability of identifying the activity as exploring food.

In detail, we identify the cyber activity label of a window cluster by considering
the following three aspects: 1) The app category configuration in a window cluster.
We compute the average proportion of different app categories for each window
cluster. According to the calculated proportion, we rank app categories in a
window cluster, called Internal Ranking (IR). 2) The window cluster configuration
across different app categories. We also rank the window clusters for each app
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category, called External Ranking (ER). 3) The temporal distribution of windows
in each cluster. In Table 3.1, the top-3 internal app categories for each window
cluster are colored by blue from darkest to lightest, while the top window cluster
for each app category is colored by red. The seven typical window clusters are
identified as follows.

(C1) Commute and Transportation. The top-3 app categories in this window
cluster are Music & audio, SON & IM, and Navigation. This cluster contains the
maximum number of Transportation apps as well.

(C2) Entertainment. This cluster contains typical entertainment activities
with the highest both internal ranking and external ranking of Media & video
and Game, as shown in Table 3.1.

(C3) Shopping. This cluster mainly has shopping activities with the most
shopping apps. In the windows of this cluster, the socializing apps, i.e., SON &
IM category, account for the highest proportion in the internal ranking. We infer
that people usually browse the products in online shops and share them with
friends via socializing apps to ask for suggestions and comments.

(C4) Socializing. This cluster is identified as the social activity since not only
the SON & IM category has the highest internal ranking and external ranking
but also the other app categories are of lower proportions compared with other
clusters (see Table 3.1).

(C5) Reading and checking. The most characteristic app categories in this
window cluster are News, Reading, Sport, Weather, Stock, and Education, with a
significant higher proportion than other window clusters. These app categories
are all about reading and checking activities.

(C6) Life and health. In this window cluster, the typical app category features
are Lifestyle and Health & fitness, which are with both high external ranking and
internal ranking as presented in Table 3.1.

(C7) Exploring food. Table 3.1 shows that the windows in this cluster are of
the maximum proportion of Food & drink app usage both in external ranking
and internal ranking.

3.2 Discovery of Activity Patterns

Activity patterns are of significant value for both individuals and society. For
individuals, service providers can provide personalized service by exploring users’
lifestyles, habits, occupations, and socio-economic status from their activity
patterns. For society, the government can understand people’s living status and
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Table 3.2: Average Levenshtein distance between arbitrary two days.

MON TUE WED THU FRI SAT SUN

MON / 4.26 4.37 4.42 4.58 5.26 5.18

TUE / / 4.37 4.48 4.59 5.29 5.21

WED / / / 4.28 4.49 5.07 5.01

THU / / / / 4.47 5.27 5.29

FRI / / / / / 5.27 5.31

SAT / / / / / / 4.70

detect disrupting trends from activity patterns and then make policies to improve
people’s well-being. Next, we sequence users’ activities1 identified from their app
usage traces and apply sequence analysis methods to extract activity patterns.

We treat users’ app usage traces of one day as an incidence of sequential
activities. For each user, each day app usage traces reveal a activity sequence of
length ten that contains combinations of the eight general activities including
Commute and transportation, Entertainment, Shopping, Socializing, Reading and
checking, Life and health, Exploring food, and Unknown. Hence, each user’s
activity sequence can be expressed as,

Au = {[ad11 , ad12 , ..., ad110], ..., [a
d7
1 , ad72 , ..., ad710]}, (3.1)

where Au stands for the activity sequence of user u and adnm denotes the activity
label of window m in the n-th day, a ∈ {C1, C2, C3, C4, C5, C6, C7, C8}.

To quantify the degree of similarity among activity sequences, we apply the
string metric. Each user’s activity sequence for one day is regarded as a string,
which is a combination of eight kinds of characters, i.e., activities. Particularly,
we use the Levenshtein distance metric [42].

3.2.1 Individuals’ Activity Analysis

We first investigate the similarity of different days to examine the regularity
of activities in days’ scale. As shown in Table 3.2, we calculate the average
Levenshtein distance between two days in pairwise. Given day i and day j, their
distance is computed as,

1

U

U∑
u=1

lev(Adi
u ,A

dj
u ), (3.2)

1Apart from discovered seven activities, we add an Unknown label to denote silent time slots
and denote it as C8.
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where U is the number of unique users and Adi
u denotes the activity sequence of

the i-th day for user u.

We notice that there is an apparent difference between weekdays’ sequences
and weekends’ sequences because the average distance between any two weekdays
is less than that between any weekday and weekend. Besides, we discover an
interesting appearance that the activity sequence of a weekday is more similar to
yesterday’s sequence. This implies that people intentionally or unintentionally
obey yesterday’s activity sequence, and there should be a daily pattern of activities
for individuals. We then give the definition of the daily activity pattern of an
individual as follows.

Definition 1 Daily activity pattern of an individual. Given an individual’s
activity sequences on weekdays, Ad1, Ad2, ..., Ad5, the daily activity pattern of
the individual, A, has the minimum sum-distance between all pairs of A and Adi .
Mathematically, denoting A = [a1,a2, ...,a10], then

A ← arg min
a∈{C1,C2,...,C8}

5∑
i=1

lev(Adi ,A). (3.3)

3.2.2 Identifying Common Activity Patterns

We next investigate whether there are common activity patterns for millions
of users. To do this, we first quantify the distance between each pair of daily
activity patterns for all users. Once the distance matrix is calculated, we apply
the agglomerative hierarchical algorithm [13] to identify homogeneous clusters of
daily patterns.

To determine the most appropriate number of clusters, i.e., patterns, we apply
the dendrogram to evaluate the agglomerative hierarchical clustering algorithm,
as shown in Figure 3.3. The dendrogram is a branching diagram representing the
hierarchy of clusters based on the degree of similarity. Highly similar nodes or
subtrees have joining points farther from the root. Thus, we know how the nodes
are combined into larger parent clusters from the dendrogram, i.e., the detailed
clustering process. We find five is the most appropriate number of clusters, where
the clusters are of high intra-cluster and low inter-cluster distances. The five
clusters are boxed using orange lines.
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C B D

Figure 3.3: Dendrogram of the hierarchical clustering where highly similar nodes
or subtrees have joining points farther from the root. Five is the most appropriate
number of clusters.

3.2.3 Pattern Annotation

Given the clustering results, we then annotate each cluster of daily activity
patterns with semantic terms, contributing to understanding the hidden image
of these patterns. We first visualize them by randomly selecting fifty users for
each cluster and show how their cyber activities are sequenced. As shown in
Figure 3.4, the x-axis refers to the windows, and the y-axis indicates the random
fifty users. Each bin refers to the activity label of that window for that user, and
we use different colors to distinguish different activities.

Afternoon reading (Cluster A). The users in this cluster are mostly involved
in Reading and Checking during the day, as shown in Figure 3.4(a). The users,
on average, start to use mobile apps from time slot 4, 9.00 to 11.00, and become
to be inactive after time slot 8, around 19.00. Hence, we annotate this cluster as
afternoon reading to reflect this group’s main active periods and activity. Although
Reading and Checking activity dominates during time slots 4 to 7, there are still
many users like Shopping during these hours. Generally, both two activities
are leisure activities. We still notice that there are several Commuting and
Transportation activities in this cluster. However, unlike Cluster D, Commuting
and Transportation activities in this cluster are randomly distributed over time
slots. Therefore, the users in this cluster do not have regular commute schedules,
e.g., on and off work. Moreover, by considering the dominating pattern of reading
and shopping activities, we infer the users in this group are senior citizens.
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(a) Afternoon reading patterns. (b) Nightly entertainment patterns.

(c) Pervasive socializing patterns. (d) Commuting patterns.

(e) Nightly socializing patterns.

Commute and Transportation
Entertainment
Shopping
Socializing
Reading and Checking
Life and Health
Exploring food

Figure 3.4: Visualization of daily activity patterns by randomly selecting fifty
users in each cluster. Each row represent the activity patterns for one user.
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Nightly entertainment (Cluster B). Figure 3.4(b) visualizes the daily
patterns of this cluster. The users are engaged in Entertainment activities during
evening and night, from 17.00 to 24.00. Hence, we annotate this cluster as nightly
entertainment. Compared with clusters A, C, and E, the users have fewer activities
during the usual active hours, i.e., from 7.00 to 15.00. Also, the users in this
cluster are mostly nocturnal, and they are more than 18% of all the users. We
infer that they are likely the younger generation. Due to the daytime classes, they
only have free time in the evening and night, which may be why their app usage
is so sparse during the daytime. Besides, the daily patterns show that many users
in this cluster sleep late, still active in the time slot 1, from 0.00 to 5.00. Most of
their entertainment activities last more than 6 hours, which indicates that the
younger generation is addicted to the Entertainment activity, e.g., mobile games,
and it is harmful to their health.

Pervasive socializing (Cluster C). As shown in Figure 3.4(c), the users in
this cluster are engaged in the Socializing activity from 7.00 till 24.00. Compared
with the patterns of other clusters, the patterns of this cluster are more regular
concerning the active time of users and the duration of the dominating activity.
This unusual pattern of social activities of nearly 7.5% users can be explained as
follows. With modern social networking apps, social activities are not limited only
to known friends and families. Peoples are making friends and communicating
with people from different social classes via social apps. The social platforms
are not only for interaction but also for various businesses, such as advertising
and self-media. Therefore, we suspect that the users in this cluster work in call
centers, customer services, or they are bloggers, cyberspace writers, and online
shop owners.

Commuting (Cluster D). The patterns in this cluster shown in Figure 3.4(d)
are typical commuting patterns. The Commuting and Transportation activities
are sequenced regularly and mainly occur during rush hours. Due to the regular
commute patterns, we infer most people in this cluster are involved in white-collar
jobs. Meanwhile, we find an important phenomenon. In the morning, nearly
90% of Commute and Transportation activities happen in the morning rush hour.
However, these activities are spread over multiple time slots around the evening
rush hour. This phenomenon implies that many workers cannot knock off on time,
and even working overtime becomes a habitual pattern for them. Like cluster B,
most users are with limited activities from 9.00 to 17.00, as they are busy at work
and do not have time to use smartphones.

Nightly socializing (Cluster E). The patterns of this cluster are shown in
Figure 3.4(e). The dominating activity is Socializing, which mostly happens after
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the evening, i.e., after time slot 6. The users in this cluster are mostly active
during the day and engaged in other activities, such as Shopping. This implies
their time is more flexible compared to other cluster users. The lack of sufficient
commuting suggests that people are mostly staying at or near home, involved in
household work during the daytime, and socializing in the evening. Hence, we
infer the users in this cluster should be self-employed.

3.3 Chapter Summary

This chapter introduced Paper I, in which we leverage the cellular dataset to
answer RQ1 and RQ2. We designed a probabilistic topic model based activity
detection framework for discovering daily activity patterns across mobile app
usage data. By applying our framework on the Cellular dataset, we identified seven
typical activities, i.e., commuting and transportation, entertainment, shopping,
socializing, reading and checking, life and health, and exploring food. From users’
activity sequences, we examined the regularity of individuals’ daily activities and
successfully extracted five common patterns among millions of people, including
afternoon reading, nightly entertainment, pervasive socializing, commuting, and
nightly socializing.
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Chapter 4

Understanding the Impact of
Pandemic

This chapter introduces Paper II that solves RQ3 and RQ4:

• Does the outbreak of COVID-19 affect users’ smartphone usage? If so, how?

• Can we use smartphone usage data to infer the outbreak stages of COVID-
19?

We explore mobile big data from the people perspective and leverage less
privacy-sensitive smartphone usage data to sense group health conditions, e.g.,
COVID-19 outbreak stages. Specifically, we gather smartphone usage records by
using Carat, including the usage of mobile users in North America from November
2019 to April 2020. We then conduct the study on the differences in smartphone
usage across the outbreak of COVID-19. We discover that COVID-19 leads to a
decrease in users’ smartphone engagement and network switches but an increase
in WiFi usage. Also, its outbreak causes new typical diurnal patterns of both
memory usage and WiFi usage. Additionally, we demonstrate the correlations
between smartphone usage and daily confirmed cases of COVID-19 and leverage
smartphone usage data the inference of outbreak stages, in which both Macro-F1
and Micro-F1 can achieve over 0.8.

4.1 Differences in Smartphone Usage

To determine whether the outbreak of COVID-19 changes users’ mobile engage-
ment, first of all, we need to determine the outbreak date in North America.

27
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Figure 4.1: The cumulative number of confirmed cases changes over time. The
federal government issued an emergency declaration on March 13, 2020. Most
states issued school closure rules and restaurant restrictions by April 7, 2020.

Figure 4.1 shows the cumulative number of confirmed cases in North America from
February 2020 to April 2020 and the governmental policies on the same timescale.
The dashed curve is in the linear scale, while the solid curve depicts the cumulative
number in the logarithmic scale. Notably, the propagation of COVID-19 is in
exponential growth. Therefore, using the logarithmic scale curve makes it more
accessible to detect the phase change of increase trend and determine the outbreak
date accordingly [14, 38]. In terms of Figure 4.1, we can observe an apparent
step-up around March 1, 2020, as denoted by the red point. Hence, we regard
March 1, 2020, as the outbreak date of COVID-19 in North America.

4.1.1 Differences in Number and Distributions

We then begin the analysis by comparing the distributions of smartphone usage
variables before and after the outbreak of COVID-19. In Figure 4.2, we use
box-plots to depict the distributions of the percentages of CPU usage, memory
usage, WiFi usage, and network switches, respectively. Specifically, the ‘Before’
set contains the samples from November 1, 2019, to February 29, 2020, while the
‘After’ set contains the samples from March 1, 2020, to April 30, 2020.

There is an apparent difference in smartphone usage across the outbreak in
terms of all hardware variables. The mean values of CPU and memory usage
drop from 7.36% and 3.93% to 6.87% and 3.47%, respectively. The decreases
imply that users’ smartphone engagement becomes less active after the outbreak,
i.e., March 1, 2020. Meanwhile, the WiFi usage percentage grows dramatically,
where the mean value rises from 56.95% to 64.06%. Since WiFi access points are
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(a) The distributions of the percentage of
CPU usage, p = 5.239 · 10−5.

(b) The distributions of the percentage of
memory usage, p = 7.383 · 10−18.

(c) The distributions of the percentage of
WiFi usage, p = 2.585 · 10−19.

(d) The distributions of the percentage of
network switches, p = 1.526 · 10−23.

Figure 4.2: The differences in smartphone usage before and after the outbreak of
COVID-19.

usually deployed indoors, we can conclude that people have more time to stay
indoors instead of going outside after the outbreak of COVID-19. Moreover, we
also notice that the percentage of network switches drops remarkably. Similar to
WiFi usage, network switches also reflect the movement of mobile users. Since the
WiFi network is commonly deployed indoors and limited by its coverage, network
switches usually occur when mobile users go from indoors to outside and from
outside to indoors. Consequently, the percentage of network switches can reveal
the mobility intensity of smartphone users. In this way, the decreasing trend of
network switches suggests users have less mobility after the outbreak.

4.1.2 Differences in Diurnal Patterns

In terms of the above statistical analysis, we can conclude that the outbreak of
COVID-19 has affected users’ smartphone usage behavior. Next, we delve into the
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(a) The centroids of clusters. (b) Proportion of cluster labels.

Figure 4.3: Cluster results of CPU usage diurnal patterns.

dynamic analysis, i.e., revealing the differences in diurnal patterns. The diurnal
pattern depicts how users’ smartphone usage behavior unfolds over the time of
the day, which is an essential temporal pattern studied by many previous studies.

We define each day’s diurnal pattern by averaging the usage data over the
day’s active users. In our case, we evenly divide one day into 48 time-slots,
where each time slot represents half an hour. Therefore, each diurnal sequence
is of 48 dimensions. Next, we compute smartphone usage data for each time
slot. In practice, as for CPU usage and memory usage behavior, we take the
averages in that time slot. For WiFi usage, we calculate the proportion of WiFi
connection records in that time slot. Besides, for network switches, we calculate
the proportion of network type changes in the time slot. By doing so, given one
day, each type of smartphone usage behavior will have a diurnal sequence with
48 dimensions. In total, we have 728 diurnal sequences, i.e., 182 (# of days) × 4
(# of usage types).

We propose a hypothesis that the outbreak of COVID-19 will lead to a new
diurnal pattern for smartphone usage. In our case, the new pattern means that
it does not or rarely appears before the outbreak but is popular on the dates
after the outbreak. To test the hypothesis, we apply K-means to cluster diurnal
sequences of the entire 182 days for each type of smartphone usage behavior and
examine whether the cluster results can be distinguished by the outbreak date of
COVID-19. Since there are only two situations for any date, i.e., before or after
the outbreak, we set the number of clusters to two. The clustering results are
presented in Figures 4.3-4.6, where the cluster A and B refer to the two-cluster
output of K-means. Also, we regard the centroid as the typical diurnal pattern of
the cluster.
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(a) The centroids of clusters. (b) Proportion of cluster labels.

Figure 4.4: Cluster results of memory usage diurnal patterns.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Figure 4.5: Cluster results of WiFi usage diurnal patterns.

Diurnal patterns of CPU usage. As shown in Figure 4.3(a), the obtained
two typical diurnal patterns of CPU usage have the same trend but different
values. Both of them decrease during the night and increase during the day,
while cluster B’s centroid is of lower numerical values. Figure 4.3(b) shows that,
compared to cluster A, cluster B accounts for a higher proportion of the dates
after the outbreak, consistent with the dropping trend observed in Figure 4.2(a).
We also observe that COVID-19 only affects the proportion of two cluster labels,
and both typical patterns frequently appear on the dates before the outbreak. In
other words, the outbreak did not create a new typical diurnal pattern of CPU
usage.

Diurnal patterns of memory usage. As depicted in Figure 4.4(a), similar
to CPU usage, two typical diurnal patterns obtained are also with the same trend
but different numerical values. In terms of Figure 4.4(b), over 80% of the dates
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(a) The centroids of clusters. (b) Proportion of cluster labels.

Figure 4.6: Cluster results of network switch diurnal patterns.

before the outbreak belong to cluster A. Meanwhile, more than 65% of the dates
after the outbreak belong to cluster B. Therefore, we can conclude that the cluster
results can be distinguished by the outbreak date. Also, cluster B’s centroid can
be regarded as a new typical diurnal pattern because it rarely appears before the
outbreak and becomes common after the outbreak. In summary, COVID-19 leads
to the appearance of a new typical diurnal pattern of memory usage.

Diurnal patterns of WiFi usage. Figure 4.5 displays the cluster results of
WiFi usage. Unlike CPU and memory usage, apart from numerical differences, the
centroids of WiFi usage clusters also have different changing trends. As depicted
in Figure 4.5(a), the centroid of cluster B has a higher percentage of WiFi usage
throughout the day. Instead of a cliff-like drop shown in cluster A, cluster B has a
slow-down after 6 am. This indicates that users need less mobile network support
on the dates in cluster B. Moreover, similar to memory usage, the dates after
the outbreak have a dominating cluster, i.e., cluster B. Therefore, COVID-19
also brings a new diurnal pattern of WiFi usage, leading users to use more WiFi
connections.

Diurnal patterns of network switches. We exhibit the clustering results
of network switch patterns in Figure 4.6. Network switches can reflect the
mobility intensity of smartphone users. In Figure 4.6(a), the centroid of cluster
A presents two peaks in the morning and evening rush hours, which verifies the
above discussion. We notice that less than 18% of the dates after the outbreak
belong to cluster A, indicating that users’ mobility intensity drops significantly.
Alternatively, cluster B has fewer network switches throughout the day and
without bimodal patterns, indicating that users have less mobility on the dates
in that cluster. Although cluster B dominates the dates after the outbreak, it
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also frequently appears before the outbreak. As a result, similar to CPU usage,
COVID-19 only changes the proportion of different network switch patterns but
does not trigger the appearance of new patterns.

Consequently, the outbreak of COVID-19 also profoundly affects diurnal
patterns of smartphone usage behavior. Such observations imply that the diurnal
sequences of smartphone usage can be used to reflect the outbreak status.

4.2 Inference of Outbreak Stages

We study whether we can use smartphone usage data, e.g., CPU usage, memory
usage, and network connections, to infer the outbreak stages of COVID-19.
Recalling Figure 4.1, we can witness that the outbreak of COVID-19 has shown
three stages from March 1, 2020, to April 30, 2020. First, the dates from February
1, 2020, to March 1, 2020, are the early stage of COVID-19, with only a few
cases appearing. Second, during the dates from March 1, 2020, to April 1, 2020,
the daily confirmed cases increased dramatically. Third, on the dates after April
1, 2020, the increasing trend of COVID-19 cases is stable. Therefore, we label
COVID-19 outbreak stages with three classes, i.e., early, dramatic, and stable. By
doing so, the inference problem is converted into a 3-class classification problem.
Specifically, we infer the outbreak stages of one day by using its diurnal sequences
of different smartphone usage behavior, including CPU usage, memory usage,
WiFi usage, and network switches. Also, to evaluate the performance, we use
Macro-F1 and Micro-F1 as metrics. The higher the value of Macro-F1 and Micro-
F1, the better the performance. For all experiments, we obtain the results by
employing a five-fold cross-validation policy on our dataset.

4.2.1 Delay Analysis of Stage Inference

Users’ smartphone usage behavior can reflect their physical activities and the
outbreak stages of COVID-19. However, the reflection may not be immediately
expressed by the daily cases of COVID-19 due to the incubation period and
diagnosis delay. Hence, we explore the typical time delay of stage inference.
Specifically, we infer the outbreak stage of one day by utilizing the smartphone
usage features of the days before it. In practice, we conduct the inference with the
three most commonly used classification algorithms, logistic regression (LR) [30],
support vector machine (SVM) [54] and Xgboost [9]. We infer the outbreak stages
of one day by concatenating all behavior types’ diurnal sequences, including CPU
usage, memory usage, WiFi usage, and network switches.
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(a) Performance with LR classifier. (b) Performance with SVM classifier.

(c) Performance with Xgboost classifier.

Figure 4.7: COVID-19 outbreak stage inferences with different time delays.

We show the results in Figure 4.7. The LR classifier has poor performance,
and F1 scores fluctuate on different delays. That is because the LR classifier only
uses a logistic function to model the correlation, which is more susceptible to
outliers tampering with the performance. Therefore, it is hard to capture the
relations between smartphone usage features and COVID-19 outbreak stages with
the LR classifier using the real-word dataset that might have noisy data points.
Alternatively, as shown in Figure 4.7(b) and Figure 4.7(c), SVM and Xgboost
classifiers have better performance. Also, we can observe that F1 scores achieve
the highest value under a delay of 2 or 3 days. This observation confirms that the
reflection of users’ smartphone usage behavior will emerge in COVID-19 trends
with a time delay of a few days.

4.2.2 Smartphone Usage Behavior Embedding

We further propose an embedding model to fuse different smartphone usage
behavior effectively for improving inference performance. Given a day, we first
construct a diurnal smartphone usage feature sequence {ui}48i=1, where ui is a
vector containing all four usage features in the i-th timeslot of the day. We then
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Figure 4.8: Seq2Seq model for smartphone usage embedding.

utilize a Seq2Seq [12] model to learn an embedding from the diurnal sequence.
As shown in Figure 4.8, the model consists of an encoder and a decoder, which
are implemented with a GRU network [12]. The sequence {ui}48i=1 is fed into the
encoder to obtain an encoding vector of z. Then, z and a shifted usage sequence
{ui}47i=0 are fed into the decoder to reconstruct the original sequence, where u0 is
a vector that contains all 1. Moreover, to encode comprehensive information in
vector z, we engage z in the reconstruction. Formally, the i-th unit of the decoder
takes ui−1 as input and outputs hidden state ĥi , we infer ûi as,

ûi = σ(W [ĥi, z] + b), (4.1)

where [, ] is the concatenating operation, σ is the sigmoid activating function, W
and b are trainable parameters. Finally, we train the model by minimizing the
reconstruction loss,

L =

48∑
i=1

|ûi − ui|2. (4.2)

We train the model and obtain a usage embedding vector for each day. To
evaluate whether the embedding fuses different usage features better, we conduct
the inference on the original features (Raw) and the original features concatenated
with the learned embeddings (Raw + Embedding). We again use the Xgboost
classifier as the inference model. We compare the performance with embeddings,
as shown in Figure 4.9. We can observe that, by combining with embeddings, we
improve the entire performance under different delay settings. Especially when
the delay is set as two days, the performance of raw features combined with
embeddings reaches around 0.87 for both Macro-F1 and Micro-F1, which has an
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Figure 4.9: Outbreak stage inferences with embeddings.

Figure 4.10: A potential causality diagram of smartphone usage and COVID-19
cases.

over 20% improvement compared with the best performance of only using raw
features. These results demonstrate that the learned embeddings fuse multiple
features more effectively indeed.

4.3 Discussion

Although we have examined the correlation between smartphone usage behavior
and COVID-19 cases, their causality relationship still needs further exploration.
In Figure 4.10, we depict a potential causality diagram of smartphone usage and
COVID-19 cases. People mobility and psychological state serve as a confounder
and mediator connecting smartphone usage and COVID-19 cases, respectively.
Smartphone usage is directly affected by mobility and can act as a mobility
indicator. Also, smartphone usage is still affected by the psychological states of
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users [17, 41]. Meanwhile, the causation between people mobility and COVID-19
cases is bidirectional. On the one hand, frequent people mobility will trigger new
COVID-19 cases. On the other hand, COVID-19 will affect people’s mobility
through governmental policies and their psychological states. Therefore, the
causation between smartphone usage and COVID-19 cases might be complex. As
for checking the potential causality diagram we proposed, we leave it to future
work.

4.4 Chapter Summary

This chapter introduced Paper II, in which we leverage the Carat dataset to
answer RQ3 and RQ4. Our findings indicate that users’ smartphone usage indeed
changes across the outbreak of COVID-19. However, the outbreak has different
effects on different usage behavior regarding changing trends and diurnal patterns.
Also, we demonstrate the potential of using smartphone usage data to infer the
outbreak stages, achieving over 0.8 for both Macro-F1 and Micro-F1. Our findings
provide a novel application of smartphone usage data and explore their values for
fighting against the epidemic and detecting group health conditions.
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Chapter 5

Longitudinal Evolution of Mobile App
Usage

In this chapter, we give an overview of the results of Paper III aiming to solve
RQ5:

• What is the evolution of mobile app usage behavior over time?

We aim to reveal how mobile app usage evolves over a long-term period.
Specifically, we leverage the Carat dataset and extract mobile app usage records
of long-term users (1,465 users) from 2012 to 2017. We then conduct the study
on the long-term evolution processes on a macro-level, i.e., app-category, and
micro-level, i.e., individual app. We discover that, on both levels, there is a growth
stage enabled by the introduction of new technologies. Then there is a plateau
stage caused by high correlations between app categories and a Pareto effect in
individual app usage, respectively. Additionally, the evolution of individual app
usage undergoes an elimination stage due to fierce intra-category competition.
Nevertheless, the diverseness of app-category and individual app usage exhibit
opposing trends: app-category usage assimilates while individual app usage
diversifies.

5.1 Evolution of App-category Usage

In this section, we reveal the evolution of app category usage in terms of number
of app categories used, diversity of app-category usage and popularity of app
categories.

39
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(a) CDF of the number of app
categories used by each unique user.

(b) Distribution of used app categories
across different years.

Figure 5.1: Evolution of app-category usage across six years.

5.1.1 Number of App Categories

We begin our analysis by investigating the most intuitive metric of app-category
usage, i.e., the number of app categories used by each user during a given year.
Figure 5.1(a) presents the Cumulative Distribution Function (CDF) of the number
of used app categories for all long-term users from 2012 to 2017. We observe that
the evolution of app-category usage undergoes two stages:

• Stage one (2012 - 2014). In this stage, the number of app categories
used by each user increased significantly. The increasing trend suggests
that during this stage, smartphones were endowed with more functions, and
people started using smartphones in more diverse activities.

• Stage two (2014 - 2017). During this stage, the number of used app
categories remained stable over time, which implies that both smartphones’
functions and users’ usage at the app-category granularity became steady.

Alternatively, to better illustrate the changes in the number of app categories
used, we depict the distributions across different years using box-plots in Figure
5.1(b). From 2012 to 2014, the values in the interquartile range, i.e., the boxed
area, increased significantly, reinforcing Figure 5.1(a). However, after 2014, the
third quartile is constant, implying the group of users who use relatively more
app categories remained stable. Although the first quartile dropped slightly until
2016, there was no discernible change in terms of the average value.

One possible reason for the increase in app categories used in stage one is the
development of mobile networks. In terms of the mobile network types in our
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Figure 5.2: Proportions of mo-
bile network types.

Figure 5.3: Jaccard distance of app-
category usage.

dataset, we present how the proportions of different mobile network types changed
from 2012 to 2017 in Figure 5.2. We can observe that by 2014, around 30% of
users collected were using 4G networks, and the fraction grew steadily after that.
Compared to 3G providing up to 21.6 Mbit/s download rate, 4G networks can
support 1 Gbit/s or about 50 times that of 3G [29]. As a result, mobile networks
no longer inhibit the usage of latency-sensitive apps and data consuming apps,
e.g., online gaming apps, online video apps, and map apps. Therefore, more app
categories are widely used by mobile users to facilitate and color their lives.

5.1.2 Diversity of App-category Usage

We next study the diversity of app-category usage across different users, which
measures the magnitude of one user’s usage behavior different from others [18].
In practice, we apply Jaccard distance to measure the difference in app-category
usage between two users. For each year, we compute the Jaccard distance between
every two users and illustrate the distributions using box-plots, as shown in Figure
5.3. We notice that the average pairwise distance, denoted as the green triangle,
shows a downtrend from 2013 to 2014. The average value dropped dramatically
from 0.42 to 0.32. Although there was a slight increase after 2014, the average
pairwise distance was still much lower than that of 2013. Also, the distribution
did not significantly change from 2014 to 2017. The trend reflects that users’
requirements for smartphone functions tend to be consistent.
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Figure 5.4: App category popularity across different years.

5.1.3 Popularity of App Categories

To understand which app categories are more competitive and explore general laws
in usage evolution, we next investigate how the popularity of each app category
changes over time. In our case, we measure the popularity in terms of unique
users, which is the ratio of the users who used that app category to all long-term
users. For instance, if one app category has a popularity of 0.9, it means that
90% of long-term users have used at least one app belonging to that app category.
Figure 5.4 shows the popularity of each app category across different years.

We first focus on the prevalent app categories. We define an app category
as prevalent if its popularity is higher than 0.9. The prevalent app categories
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represent the critical requirements and preferences of mobile users. We discover
that there are two types of prevalent app categories distinguished by their evolution
processes:

• Prior prevalent app category. This type refers to the category whose
popularity has exceeded 0.9 since 2012. There are six prior prevalent
categories, including ‘Communication’, ‘Music and audio’, ‘Productivity’,
‘Social’, ‘Tools’, and ‘Video players’, which suggests smartphones have
already acted as communication devices and multimedia players since 2012.

• Posterior prevalent app category. This type refers to the category whose
popularity reached 0.9 after 2012, which suggests changes in smartphone
roles. There are four posterior prevalent categories, i.e., ‘Entertainment’,
‘News and magazines’, ‘Photography’, and ‘Travel and local’.

Compared to prior prevalent categories, posterior prevalent categories are
more relevant to life services. The emerging of posterior prevalent categories
implies smartphones changed from communication tools to life assistants coloring
users’ daily lives. Also, in terms of the popularity changes across app categories,
we present the hype cycles of popularity for app categories in Figure 5.5. The hype
cycle shows the relationship between the maturity of app categories with their
popularity. In the hype cycle, we only focus on depicting changes in popularity
rather than exact values. Generally, if the app category is more mature, then
its popularity is more stable. As shown in Figure 5.5, the evolution of app
category popularity undergoes two stages, i.e., growth of popularity and plateau
of popularity:

• Growth of popularity. In this stage, the popularity of the app category
increases. When an app category is newly introduced, it will be at this
stage initially. The development of technologies and smartphone designs,
like 4G networks and larger screen sizes, will trigger an increase in multiple
app categories’ popularity.

• Plateau of popularity. In this stage, the popularity of the app category
tends to be stable, which suggests that the market in this app category is
mature. For different app categories, their steady popularity is different
because they have different potential customers.

Surprisingly, there is no discernible decline stage during the popularity evolu-
tion of app categories. One major reason might be the high correlations between
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Figure 5.5: The evolution of app category popularity.

app categories. With the development of the app market, a stable and highly
correlated app ecosystem has been formed. Various app categories are connected
with and reliant on others. Due to the high correlations among app categories,
users have to keep using multiple app categories together. For example, for online
shoppers, apart from ‘Shopping’ apps, they have to use ‘Finance’ apps for online
payment as well.

5.1.4 Correlations of App Categories

To validate the previous inference about the app ecosystem, we then study the
correlations of app categories. In our case, we use the co-usage of app categories for
unique users to represent their correlations. Figure 5.6 displays the correlations of
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Figure 5.6: The correlations of app categories across different years.

app categories in 2012, 2014, and 2017, respectively. In the heatmap, each row or
column represents one app category. The categories are sorted in descending order
by their first letter (the same as Figure 5.4). From Figure 5.6, we can observe
that the strength of correlations between app categories generally increased from
2012 to 2014. Comparing the heatmaps in 2014 and 2017, the correlations across
various app categories were high and tended to be stable, suggesting that a robust
app ecosystem had formed.

5.2 Evolution of App Usage

In this section, we depict the evolution of app usage in terms of number of app
used, diversity of app usage, app popularity, and app usage Within app categories.

5.2.1 Number of Used Apps

We first analyze the number of apps used by each unique user. As shown in
Figures 5.7(a) and 5.7(b), similar to app categories, the evolution of app usage is
also separated into two stages by the year 2014:

• Stage one (2012 - 2014). During this stage, users increased the number
of apps used on their smartphones. This boosting period at the micro-level
is consistent with the macro-level. As analyzed before, the occurrence of
this stage should be motivated by the release of new technologies.

• Stage two (2014 - 2017). During this stage, the number of apps used by
each user decreased year by year, which is significantly different from the
trend at the macro-level. In 2017, the proportion of users who used over
150 apps fell to 20%.
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(a) CDF of the number of used apps for
each user from 2012 to 2014.

(b) CDF of the number of used apps for
each user from 2014 to 2017.

Figure 5.7: The evolution of app usage from 2012 to 2017.

5.2.2 Diversity of App Usage

We next explore how the diversity of app usage changes over time. By applying
Jaccard distance to measure the difference of app usage between every two users,
we depict the distribution of pairwise Jaccard distances across different years in
Figure 5.8. From 2012 to 2013, the average distance between two users jumped
from 0.75 to 0.85, implying the diversity of app usage increased. The trend is
contrary to that at the macro-level in Figure 5.3. After 2013, the distribution
became stable, i.e., the strength of diversity stopped increasing. However, users’
used apps were still extremely different from others considering the minimum
distance is nearly 0.7.

As a result, the diversity between users exhibits two opposite evolutionary
trends at the micro-level, i.e., apps, and the macro-level, i.e., app categories,
respectively. At the macro-level, mobile users fully explore the functionality of
smartphones and tend to use more and similar app categories. On the other hand,
at the micro-level, mobile users have different preferences and use a diverse array
of apps.

5.2.3 Distribution of App Popularity

We further study the distributions of app popularity from 2012 to 2017. Figure
5.9 reports the CDF of app popularity (the ratio of app users to all users). Our
results reveal a typical Pareto effect for app usage. Over 80% of apps have less
than 0.01 popularity in 2012, while this number increased to 90% by 2017. The
Pareto effect suggests that although the set of apps used by one user are quite
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Figure 5.8: Jaccard distance of
app usage.

Figure 5.9: CDF of the popular-
ity of apps.

different from others, the app market is still governed by a small number of
dominating apps. This observation is consistent across all six years.

5.2.4 App Usage Within App Categories

Up to now, we have discovered that the evolutionary processes at the macro-level
and the micro-level show considerable differences, especially during stage two,
i.e., from 2014 to 2017. Therefore, we next delve into the reasons behind this
phenomenon and investigate how app usage changes in a particular app category.
For the sake of representativeness, we actually select two typical app categories,
i.e., ‘News and magazine’ representing a posterior prevalent app category and
‘Social’ representing a prior prevalent app category.

In our case, we apply the number of apps and app usage entropy to measure
the evolution processes. Figure 5.10 shows the results. The entropy is a common
metric to measure the randomness of a system. We use entropy to measure the
centralization of app usage in one specific app category, i.e., whether app usage
in that category concentrates on a few apps. The lower the entropy, the higher
the centralization of app usage.

In terms of Figure 5.10, for both ‘News and magazine’ and ‘Social’ categories,
the number of apps peaked in 2014 and then decreased. Additionally, we have also
examined the other app categories and found their trends are consistent as well.
However, the evolution in entropy exhibits different trends in ‘News and magazine’
and ‘Social’ categories. For the ‘Social’ category, entropy first increased and then
kept steady. The increase stage is caused by the growing number of apps in the
category. New apps disperse users’ concentration. On the other hand, the Pareto
effect leads to the plateau stage. As a prior prevalent app category, ‘Social’ had a
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(a) ‘News and magazine’ category. (b) ‘Social’ category.

Figure 5.10: Evolution of app usage in ‘News and magazine’ and ‘Social’ categories.

few governing apps dominating usage before 2012. Therefore, during the boosting
period, the newly introduced apps would compete with these old governing apps,
and some low-quality would be eliminated. Meanwhile, new governing apps would
emerge. As a result, in 2014, apart from the increasing entropy, users’ usage
was also hugely dominated by both previous and new governing apps. Therefore,
after 2014, the entropy did not change dramatically. For the ‘News and magazine’
category, the evolution in entropy still experienced the decrease stage. Since
‘News and magazine’ is a posterior prevalent app category, limited by its maturity,
it had few governing apps before 2012. Hence, its entropy is deeply affected by
the number of apps in the category.

In order to better understand the app elimination stage, we also investigate
how the correlations of apps in the same app category changed from 2014 to
2017. Similar to Subsection 5.1.4, we use the co-usage of apps for unique users
to represent their correlations. For consistency, we still use ‘News and magazine’
and ‘Social’ to represent posterior and prior prevalent app categories, respectively.
In Figure 5.11, we depict the correlations of the top 20 popular apps in these two
categories. In the heatmap, each row or column represents one app. The apps
are listed in descending order in terms of their popularity. Compared with app
categories, the correlations of apps in the same category is much lower, and most
are below 0.2. Since the functionality of apps in the same category is similar,
installing multiple apps from the same category is often redundant. By comparing
the top 20 popular apps in both ‘News and magazine’ and ‘Social’ categories
from 2014 to 2017, we then discover the relationship between correlations and
popularity of apps. The apps with high correlations have a greater chance of
gaining popularity in the future.
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(a) Correlations of apps in ‘News and
magazines’ category.

(b) Correlations of apps in ‘Social’ category.

Figure 5.11: Correlations of apps in ‘News and magazine’ and ‘Social’ categories.

5.3 Chapter Summary

This chapter introduced Paper III, in which we leverage a long-term mobile app
usage dataset collected by Carat to solve RQ5, understanding the long-term
evolution of mobile app usage. Our analysis covers about 1,500 Android users
with six-year app usage records from 2012 to 2017. Our findings indicate that
users’ app usage indeed changes over time. However, the evolutionary processes in
app-category usage and individual app usage are different in terms of popularity
distribution, usage diversity, and correlations.
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Chapter 6

Revealing Urban Land Usage
Patterns

This chapter overviews the contributions of Paper IV for solving RQ6:

• Is it possible to use mobile app usage data to reveal urban land usage
patterns?

A city is composed of many regions providing different functions for urban
residents, for example, residential regions and business regions. Additionally, due
to daily urban dynamics, a region might provide different functions at different
times of the day. In this chapter, we leverage spatiotemporal mobile app usage
data to reveal urban land usage patterns. Specifically, we propose a graph-based
representation learning framework, where an embedding vector represents a region
at a specific time interval. We then evaluate our framework through a series of
experiments conducted on the cellular dataset.

6.1 Framework Overview

We present an overview of our proposed framework in Figure 6.1. The complete
process of the framework can be described as follows. First, based on road
networks, we partition the city into multiple disjoint regions. These regions are
treated as atomic units to study dynamic region functions. Then using this
region data along with spatiotemporal mobile app usage data, we construct a
heterogeneous app usage graph. Next, we derive a relational location graph from
the app usage graph with the POI distribution as region features. Then, we obtain
dynamic region embeddings by feeding the attributed relational location graph

51
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Figure 6.1: Overview of our proposed framework.

into a graph auto-encoder model for training. The main purpose of the graph
auto-encoder model is to fuse both graph structure and node feature information
into the node embeddings. In our case, each region at a specific time interval has
a corresponding embedding, representing the characteristics of that region in that
time interval. Finally, we verify our model using three illustrative applications,
including static land usage identification, dynamic region functions analysis, and
economic level prediction. In practice, for static land usage identification, we use
the official land use map as the ground truth, while for economic level prediction,
we take GDP data of administrative districts as the ground truth.

6.2 Method

Mobile app usage data contains dynamic relationships between users, apps, and
locations. To encode such connections between different entities, we first build
a heterogeneous app usage graph and then formalize it as a meta-path guided
homogeneous relational location graph.

6.2.1 Heterogeneous App Usage Graph

The interactions in mobile app usage behavior can be abstracted as a heterogeneous
graph containing three types of entities, i.e., users, apps, and locations. Figure 6.2
shows the structure of the heterogeneous app usage graph, where U refers to user
nodes, A refers to app nodes, L refers to time-enhanced location nodes, and the
edges reflect the co-occurrence of different objects in mobile app usage records. We
note that since particular regions can exhibit different roles at different time slots,
we use time-enhanced location nodes to represent these dynamic relationships.
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Figure 6.2: An example of a heterogeneous app usage graph.

For the sake of simplicity, in this chapter, the term ‘location node’ refers to
‘time-enhanced location node’ by default.

To distinguish different connection strengths between nodes, we model the
heterogeneous app usage graph as an undirected weighted graph. There are three
types of edges, including user app edges that reflect the usage of apps by users,
user time-enhanced location edges that reflect the trajectories of users, and app
time-enhanced location edges that reflect the spatiotemporal nature of app usage.

6.2.2 Homogeneous Relational Location Graph

As we are interested in uncovering urban dynamics, i.e., learning representations
of the time-enhanced location nodes, we next derive a homogeneous relational
location graph from the heterogeneous app usage graph.

We apply a meta-path based method to the time-enhanced location nodes in
the heterogeneous app usage graph. A meta-path defines a compositional relation
connecting two entities while still accounting for the heterogeneity and semantics
of nodes and edges between those entities.

Definition 2 Meta-path. A meta-path φ is defined as a path generation rule on
a heterogeneous graph in the form of V1 → V2 → · · · → Vl, where V denotes node
types. In other words, a meta-path φ describes a composite connection relation
between nodes of node types V1 and Vl.

Definition 3 Meta-path reachable nodes. Given a meta-path φ and a node
v, the meta-path reachable nodes N φ

v of node v are a set of nodes connected with
node v through a path in the generated path set Pφ based on meta-path φ.
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Figure 6.3: An example of several meta-paths in an app usage graph.

The key idea behind a meta-path is to generate a set of paths through the
heterogeneous graph based on a semantic-aware relation. For example, the meta-
path of Location-User-Location (abbreviated as ‘LUL’) enables the system to start
with a given location node and find other location nodes visited by the same user.
In particular, as shown in Figure 6.3, given the meta-path ‘LUL’, L1 → U2 → L2

is an entity in the generated path set and L1 and L2 are meta-path reachable
based on the meta-path ‘LUL’. Based on different meta-paths, the meta-path
reachable connections reveal different semantic relations of nodes by exploiting
the structural information in the heterogeneous graph.

Next, we employ the meta-path reachable connections to construct a homo-
geneous relational location graph, while retaining the structural information of
the heterogeneous app usage graph. Specifically, there are two steps, i) path set
generation, ii) relational connection construction.

1) Path set generation. Given a meta-path φ, in this step, we generate a
set of node paths Pφ guided by this meta-path. By using multiple meta-paths
φ1, φ2, ..., φn, we can generate corresponding path sets Pφ1 , Pφ2 , ..., Pφn where n is
the number of meta-paths. Each path set has a semantic meaning and represents
a specific structure in the heterogeneous graph.

2) Relational connection construction. Given multiple path sets Pφ1 , Pφ2 ,
..., Pφn generated in step (1), in this step, we determine node connections in
the location graph. Specifically, for each path set Pφ, we build a meta-path
guided location graph where location nodes will be connected if they are meta-
path reachable. An example is depicted in Figure 6.4. For meta-paths ‘LAL’,
‘LUL’, ‘LUAUL’, and ‘LAUAL’, we construct four meta-path guided homogeneous
location graphs that correspond to those meta-paths, respectively. For different
location graphs, their edges reflect different semantic meanings and relations. As



6.2 Method 55

Figure 6.4: The corresponding meta-path guided location graphs of the heteroge-
neous app usage graph from Figure 6.2.

Figure 6.5: The corresponding relational location graph containing all graph
structures of the meta-path guided location graphs from Figure 6.4.

all the location graphs have the same node sets, i.e., the set of time-enhanced
location nodes, we can merge them using a relational graph to distinguish edges
with different semantic meanings. An example is shown in Figure 6.5 in which we
construct a corresponding relational location graph that contains all connection
structures of the meta-path guided location graphs in Figure 6.4. Specifically, we
distinguish different types of edges by different colors.

Using the above steps, we can derive a homogeneous relational location graph
from the heterogeneous app usage graph. In particular, we denote the relational
location graph as Ghom = (L,EΦ,Φ, H), where L and EΦ denote the sets of
time-enhanced location nodes and relational edges, respectively. Φ is the set of
relation types (i.e., meta-paths), and H is the set of node features.

6.2.3 Node Features

In order to leverage the POI data of regions, we assign a feature vector h to each
time-enhanced location node l ∈ L in the homogeneous relational location graph
Ghom. Specifically, the time-enhanced location node features contain two parts:
static components hs and dynamic components hd, where h = [hs,hd].
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Static components hs. We use the density of nearby Point-of-Interests
(POIs) to represent the static components of location node features. POI data
depict various venues located in the region, such as shopping malls, theaters, parks,
and office buildings. Thus, nearby POIs describe the inherent characteristics of
that region.

Dynamic components hd. We use the human mobility flows in a region
within a time slot to represent the dynamic components of location node features.
In particular, human mobility flows describe people’s arrive-stay-leave behavior.
In detail, people arrive at a specific region and stay for a certain period, and then
leave that region. Many previous studies have shown that human mobility flows
within a region reflect that region’s dynamic characteristics [70]. Specifically,
areas with similar flow patterns have similar functions. We note that since human
mobility flows in a region change over time in a day, the mobility flow features
are dynamic for individual regions.

6.2.4 Auto-Encoder for Relational Location Graph

The information in the relational location graph Ghom = (L,EΦ,Φ, H) is con-
tained in both the network structure and node features. Expressly, the node
features represent the internal characteristics of time-enhanced locations, while
the network structure depicts their relationships. Next, we aim to learn a nu-
merical representation for each time-enhanced location node by simultaneously
considering both node features and network structure.

Specifically, we utilize a deep auto-encoder framework for learning time-
enhanced location embeddings. An auto-encoder is an unsupervised neural
network model, which consists of two parts: a graph encoder and a graph decoder.
The whole architecture of the framework is shown in Figure 6.6. The encoder
projects the original node feature matrix H to a hidden representation Z. While
the decoder attempts to reconstruct the node feature matrixH ′ from the generated
hidden representation Z. The auto-encoder framework aims to guarantee that
the reconstructed node feature matrix H ′ is as similar to the original feature
matrix H as possible. Also, in order to introduce network structure information
into the hidden representation Z, both graph encoder and decoder characterize
node features over the relational location graph Ghom by using relational graph
attention networks (i.e., Rel-GAT), which enhance the graph attention network
to relation-specific operations.
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Figure 6.6: The architecture of the graph auto-encoder. The graph encoder
and decoder capture node features from the relational location graph by using
relational graph attention networks, i.e., Rel-GAT.

6.3 Experiment

We evaluate our proposed model through a set of experiments conducted on the
cellular datasets. Specifically, we test our model on three applications: identifying
static land usage, revealing dynamic region functions, and predicting economic
levels of districts.

6.3.1 Baselines

We compare our model with four commonly used and state-of-the-art approaches
for urban exploration:

• POI. An intuitive approach is to represent a region using intra-region POI
data. We use TF-IDF [49] to measure different POI categories’ importance to a
region. Specifically, each region can be represented by a C-dimensional vector,
where C is the total number of unique POI categories. This baseline only considers
the static features of regions.

• Hidden Markov model (HMM) [62]. HMM is a state-of-the-art method
for modeling urban dynamics with app usage data. For one region at a time
slot, it endows a state for that region. Each region can be represented by a state
sequence across all time slots. However, this baseline cannot represent or model
urban dynamics precisely because of the limited number of states.

• DeepWalk [47]. DeepWalk extends the word2vec model to the scenario of
network embedding. We employ DeepWalk on the heterogeneous app usage graph
and obtain the embeddings of time-enhanced location nodes. Specifically, each
region can be represented by a vector, which is the average of its embeddings in
all time slots.

• Metapath2Vec [16]. Metapath2Vec employs meta-path based random
walks to construct the heterogeneous neighborhood of nodes and then leverages
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the skip-gram model to perform node embeddings. We take the heterogeneous app
usage graph as input and use ‘LAL’, ‘LUL’, ‘LUAUL’, and ‘LAUAL’ as meta-path
schemes. Like DeepWalk, we represent each region by using the average of its
embeddings in all time slots.

• Graph Auto-encoder. Our proposed method. Given the heterogeneous
app usage graph, we construct the corresponding relational location graph guided
by meta-paths ‘LAL’, ‘LUL’, ‘LUAUL’, and ‘LAUAL’. By feeding the relational
location graph into the Rel-GAT-based graph auto-encoder, we obtain the em-
beddings of time-enhanced location nodes.

6.3.2 Identifying Static Land Usage

For the task of identifying static land usage, we perform k-means clustering on
region representations to partition regions into k clusters. Regions with similar
static land usage should, in theory, be assigned to the same cluster. To validate
identification performance, we use the official land use map of Shanghai as the
ground-truth, which classifies land use into 6 categories, i.e., residence, business,
industry, public infrastructure, farming and forestry, and ecological restoration
area. Therefore, we partition regions into 6 clusters by using k-means and setting
k = 6. Next, we use the following metrics to evaluate the region clustering results
of our proposed method and baselines:

• Normalized Mutual Information (NMI). NMI is a widely used metric to
measure the purity of clustering results from an information-theoretic perspective.
A higher NMI indicates that the clustering results are closer to the ground-truth.

• Adjusted Rand Index (ARI). ARI is the corrected-for-chance version of
the Rand index. The higher the ARI, the better the clustering performance.

• F-score. F-score is a measure of clustering accuracy, which is calculated
from precision and recall. Specifically, the higher the F-score, the better the
clustering results. The maximum F-score is 1 and minimum is 0.

The evaluation results are shown in Table 6.1. From the results, we have
the following key observations: 1) Graph Auto-encoder performs the best among
all methods by a large margin. Compared with the best baseline, Graph Auto-
encoder shows an improvement of 18.73%, 25.62%, and 19.44%, in terms of NMI,
ARI, and F-score, respectively. 2) The network embedding methods, including
DeepWalk and Metapath2Vec, show better performance than the POI method,
implying that mobile app usage data are more informative for region profiling
compared with POI distribution. 3) HMM shows the best performance among all
baselines. The main reason is that HMM jointly uses mobile app usage and human
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Table 6.1: Performance of Graph Auto-encoder (our proposed model) and baseline
methods for static land use identification. NMI refers to normalized mutual infor-
mation, ARI refers for adjusted rand index, and Imp. refers to improvement.

Model NMI
Imp. on
NMI

ARI
Imp. on
ARI

F-score
Imp. on
F-score

POI 0.3359 103.22% 0.2926 122.52% 0.3505 120.14%
DeepWalk 0.4459 53.08% 0.3937 65.38% 0.4971 55.22%
Metapath2Vec 0.5121 33.29% 0.4332 50.30% 0.5673 36.01%
HMM 0.5749 18.73% 0.5183 25.62% 0.6460 19.44%
Graph Auto-
encoder

0.6826 - 0.6511 - 0.7716 -

mobility flows as region features. However, compared with Graph Auto-encoder,
HMM only leverages individual region features and neglects interactions between
regions, which leads to performance degradation.

In order understand the clustering differences in depth, we select the models
of POI, HMM, and Graph Auto-encoder and visualize the clustering results in
Figure 6.7, where color denotes regions in the same cluster. We notice that using
POI distributions can identify the central business area (red) and residence area
(yellow). An important reason is that the POI categories of residence, restaurant,
shopping mall, and corporation & business are popular and have sufficient records.
On the other hand, since the other POI categories are less common, the land-use
types like public infrastructure and industry can not be easily identified. Although
we use TF-IDF to mitigate this uneven distribution of POI data, the model still
does not perform well compared with other baselines. Alternatively, through
leveraging mobile app usage data, HMM can differentiate the public infrastructure
areas (purple), e.g., the airport. Moreover, as HMM also leverages human mobility
flow patterns, HMM has the ability to recognize the farming and forestry area
(light green) and ecological restoration area (dark green) to some extent. In terms
of Figure 6.7(d), we observe that our proposed model, Graph Auto-encoder, can
accurately identify all six land-use types. The main reason is that apart from
intra-region features, Graph Auto-encoder also builds a relational location graph
to leverage various inter-relations among regions.

Through the land use identification task we demonstrate the effectiveness
of learned embeddings in representing region properties. More importantly, we
obtain six anchor embeddings, i.e., centroids of the six clusters, representing
the six types of region functions. Specifically, we use zR, zB, zI , zP , zF , and
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(a) The official land use map of Shanghai. (b) The clustering results of POI.

(c) The clustering results of HMM. (d) The clustering results of Graph
Auto-encoder (our proposed model).

Figure 6.7: The official land use map of Shanghai and region clustering results of
POI, HMM, and Graph Auto-encoder. Each cluster is denoted by a unique color.

zE to denote the anchor embeddings of residence, business, industry, public
infrastructure, farming and forestry, and ecological restoration area, respectively.

6.3.3 Revealing Dynamic Region Functions

We next aim to investigate the changes in region functions throughout the day.
In particular, for a region i at time slot t, we measure its region functions
by computing the cosine similarity between its embedding zlti and the anchor
embeddings. Given a region, we reveal its dynamic region functions by depicting
how the region’s intensities of the six region function types change over the course
of a day. In our case, we only show our analysis of three regions.
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Shanghai 
Hongqiao 
international 
airport

(a) The map of
Region A.

(b) The dynamic region functions of Region A.

Figure 6.8: The map of Region A and the intensities of the six region function
types, including residence, business, public infrastructure, farming and forestry,
and ecological restoration area.

Region A. First, we take Shanghai Hongqiao international airport as an
example to analyze how its intensities of the six region function types change
throughout the day. As shown in Figure 6.8(b), Region A, i.e., the international
airport, has a higher intensity of public infrastructure function compared with
other function types. This corresponds to the official land use map, marking
the airport as public infrastructure. Moreover, we detect that Region A has a
business function during the daytime, which might be due to duty-free shops and
restaurants located in the airport.

Region B. The map of Region B and its dynamic region functions are
depicted in Figure 6.9. Specifically, the area of Region B is denoted by a red
dotted polygon in Figure 6.9(a). In the official land use map, Region B is classified
as a residence type. We can observe that there are five major residential areas in
Region B, denoted by yellow dots. Also, in terms of Figure 6.9(b), Region B has
a high intensity of residence function throughout the day, corresponding to the
official land use map classification. Moreover, we still notice that the intensity
of residence function of Region B fluctuates over the day, peaking at night with
valleys at around 11.00 and 16.00. One possible reason is the working rhythm of
people. When people leave home and go to work, the intensity of the residence
function is weakened due to population decrease.

Meanwhile, a large shopping mall is located in Region B, indicated by a
red dot, which causes Region B to exhibit a business function to some extent.
As depicted in Figure 6.9(b), the intensity of business function rises during the
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Shopping mall
Residence

(a) The map of
Region B.

(b) The dynamic region functions of Region B.

Figure 6.9: The map of Region B and the intensities of the six region function
types, including residence, business, public infrastructure, farming and forestry,
and ecological restoration area.

daytime and reaches a peak at around 18.00. Between 14.00 and 18.00, the
intensity of business function overrides the residence function, which indicates
that the most significant region function changes from residential to business.

Region C. We depict the map of Region C and its dynamic region functions
in Figure 6.10. In the official land use map, Region C is marked as industrial.
Nevertheless, according to Figure 6.10(a), Region C is a mosaic consisting of
seven industry areas (marked by brown dots), four residence areas (marked by
yellow dots), and one market (marked bya red dot). From Figure 6.10(b), we
can observe that the industry function, as the most significant function type, has
the highest intensity during the daytime, from 6.00 to 20.00. Alternatively, after
20.00, the residence function becomes the dominating function type. Again, the
main reason is likely daily working rhythms. Moreover, a market is located in
Region C, which gives the region a business function. However, compared with
residence and industry, the business function intensity is weak.

6.3.4 Predicting Economic Levels of Districts

Naturally, an area’s urban functions are highly related to the area’s economic
development. In this section, we aim to predict districts’ economic levels by using
the dynamic functions as input features. In practice, we use GDP data as a
measure of economic development for each district. From the Shanghai Economy
Almanac (2017) [1], we obtain the official GDP data of the 188 administrative
districts of Shanghai, ranging from 21.75 to 671.11 and with an average of
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(b) The dynamic region functions of Region C.

Figure 6.10: The map of Region C and the intensities of the six region function
types, including residence, business, public infrastructure, farming and forestry,
and ecological restoration area.

Table 6.2: Performance of several classifiers using district-level dynamic function
features for economic (GDP) level prediction.

Method Precision Accuracy F-score

Logistic regression 0.6655 0.8157 0.7330
Support vector machine 0.7780 0.4211 0.5215
Random forest 0.8616 0.8421 0.8265

142.661. Next, we discretize the GPD data into three levels, i.e., [21.75, 42.66),
[42.66, 242.66), and [242.66, 671.11].

Since one administrative district contains multiple regions, we represent its
intensities of dynamic functions by averaging all regions in that district. We
conduct a 5-fold cross-validation experiment using three popular classifiers, i.e.,
logistic regression, support vector machine, and random forest, to predict district
economic levels. Table 6.2 presents the classification performance in terms of
precision, accuracy, and F-score. We can observe that random forest achieves the
best performance with an F-score of 0.8265, outperforming the linear classifiers,
i.e., logistic regression and support vector machine. Also, such a high F-score and
accuracy illustrates the strong correlations between dynamic functions and the
economic development of administrative districts.

1The unit is 100 million RMB.
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Figure 6.11: The importance of different dynamic function features for economic
(GDP) level prediction of districts.

We also explore the importance of dynamic functions for predicting economic
level by computing the mean decrease impurity (MDI) of all input features when
using the random forest model. The higher the MDI, the more important the
feature. Figure 6.11 shows the MDI score of six function types across different time
slots for predicting the economic level. We can observe that the same function
type has different importances at different time slots, thus validating the use of
dynamic functions. Specifically, the intensities of residence and business functions
have higher importance in the evening, i.e., between 18.00 and 22.00. While, the
intensities of industry, farming and forestry, and ecological restoration functions
are of higher importance in the morning. Such differences might be caused by
human flow interactions across different functional areas throughout the day.

6.4 Chapter Summary

We conducted a series of experiments based on the Cellular dataset, including
static land usage identification, dynamic region functions analysis, and economic
(GDP) level prediction. The experimental results demonstrate the superiority and
effectiveness of our framework. The study brings a new angle to urban analytics
by leveraging mobile app usage data and lights the way for further urban-related
applications, including urban planning, urban dynamic modeling, and economic
analyses.



Chapter 7

Conclusions and Future Work

This thesis provides techniques for analyzing mobile usage in the wild and reveals
behavioral patterns from three different domains, i.e., user, time, and location.
The studies demonstrate that mobile big data generated from mobile devices
can be a real benefit in revealing user features and location functions by mining
digital spatial and temporal behavioral patterns. In this chapter, we conclude
this thesis by revisiting the research questions provided at the beginning of this
thesis. Furthermore, we present some interesting further research directions.

7.1 Summary

We first revisit the research questions and summarize the corresponding answers
as follows:

RQ1. What activities can be discovered from anonymized mobile app
usage data?

Based on a city-scale mobile app usage dataset, We have discovered a
set of seven dominant activities and provided these seven activities with
meaningful labels based on their temporal patterns and the semantic
information of app categories. The discovered activities are commute and
transportation, entertainment, shopping, socializing, reading and checking,
life and health, and exploring food options.
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RQ2. What common patterns we share with others in our daily activi-
ties?

We have examined the existence of daily activity patterns for individuals
and found a set of five common regular activity patterns for different groups
of people. More specifically, the afternoon reading pattern for senior citizens,
the nightly entertainment pattern for the younger generation, the pervasive
socializing pattern for socially active people, the commuting pattern for
white-collar workers, and the nightly socializing for freelancers.

RQ3. Does the outbreak of Covid-19 affect users’ smartphone usage,
and how?

Based on a mobile usage dataset collected from North America, we discover
that users’ smartphone usage indeed changes across the outbreak of Covid-
19. The outbreak of Covid-19 causes a decrease in users’ smartphone
engagement in terms of both CPU usage and memory usage. Also, the
outbreak of Covid-19 makes an increase in WiFi usage and a decrease in
network switches, implying that users reduce their mobility intensity.

RQ4. Can we use smartphone usage data to infer the outbreak stages
of Covid-19?

We examine the Pearson correlations between smartphone usage and daily
confirmed cases of Covid-19. The results reveal that memory usage, WiFi
usage, and network switches of smartphones have significant correlations,
whose absolute values of Pearson coefficients are greater than 0.8. By
conducting the inference task, we demonstrate that using smartphone usage
data to infer the outbreak stages can achieve Macro-F1 and Micro-F1 of
over 0.8.

RQ5. What are the longitudinal evolution patterns of mobile app usage
behavior?

Based on a long-term mobile app usage dataset covering 1,465 users from
2012 to 2017, we discover the longitudinal evolution patterns of app cate-
gories and apps exhibit different processes. A complete usage evolution of
an app-category undergoes two stages, i.e., a growth stage and a plateau
stage. However, apart from the above two stages, apps have one more
additional stage, i.e., an elimination stage. The diversity of app-category
usage declines over time and then keeps stable, reflecting app categories
used by different users tend to be consistent. However, the diversity of app
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usage increases greatly, showing large differences between mobile users at
the app level.

RQ6. Is it possible to use mobile app usage data to reveal urban land
usage patterns?

We propose a graph-based representation learning framework that reveals
dynamic regional functions using mobile app usage behavior. By applying
our framework to a city-scale mobile app usage dataset, we can successfully
identify all types of land usage patterns. The learned dynamic location em-
beddings can be used to illustrate how regional functions change throughout
the day and predict regional economic level (GDP). We show the significant
potential of mobile app usage data in urban analytic.

7.2 Future Work

This thesis has presented several studies for mining behavior patterns from mobile
big data. However, there are still multifold potential extensions of this thesis in
both theoretical and technical directions. Below we present some of them:

• Privacy preservation is always an important aspect when accessing, using,
and sharing mobile app usage data from individuals. As we discussed in
Chapter 3, users’ attributes might be inferred from their app usage data.
Thus, privacy-preserving technologies for data analysis are essential when
we deal with sensitive data. A commonly used method is anonymization.
However, only anonymizing user IDs is still not enough for preserving
privacy. One promising analysis framework might be Federated Learning [66].
Federated Learning enables mobile smartphones to collaboratively learn a
shared model while keeping all the data locally. In this way, users do not
need to upload their usage data to cloud servers, and their sensitive data
can be well protected. These mechanisms will protect user privacy to some
extent and further mitigate user privacy concerns.

• Context-aware spatiotemporal mobile app usage modeling is an important
but challenging problem. Solving this problem will make essential break-
throughs in mobile app usage pattern discovery, app usage prediction, and
app recommendation. However, as demonstrated in Chapter 3 and Chap-
ter 6, app usage changes with different contexts, e.g., location and time,
making it hard to model such complicated and dynamic behavior. One
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research direction would be about developing a unified framework to model
spatiotemporal app usage behavior by considering the inter-dependencies of
mobile app usage, location, and time, as well as the effect of user character-
istics.

• Investigating the behavior evolution process across different countries is
also a further step. In Chapter 5, we revealed the worldwide evolution
patterns of mobile app usage behavior. However, different countries might
have different patterns. On the one hand, in the past decades, globalization
accelerated interaction and integration among people from different countries
and cultural backgrounds [4]. Such interaction and integration also affect
users’ app usage behavior. Apps are more comfortable to spread around the
world and attract a large number of users. On the other hand, localization
is still a trend in mobile app adoptions. Many apps support local-related
information and are useful for tourists and local residents [44]. Affected
by globalization and localization simultaneously, the behavior evolution
patterns in different countries will be more complicated.

• Our studies leverage statistical data analysis and machine learning algo-
rithms to explore interdependencies and correlations in mobile usage data.
Although interdependencies and correlations are useful for prediction and
classification tasks, they still lack interpretability in some cases. For exam-
ple, in Chapter 4, we examined the correlation between smartphone usage
behavior and Covid-19 cases. However, their causality relationship still
needs further exploration, which is not enough to provide direct guidance to
policymakers. Moreover, the correlation analysis might get stuck in Simp-
son’s Paradox [43] and lead to erroneous analysis results. In this way, deep
reasoning app usage behavior for users by adding causal analysis is necessary.
Fortunately, in recent years, causal inference has developed significantly,
which might support reasoning analysis of mobile user behavior.
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Abstract—With the prevalence of smartphones, people have left abundant behavior records in cyberspace. Discovering and
understanding individuals’ cyber activities can provide useful implications for policymakers, service providers, and app developers. In
this paper, we propose a framework to discover daily cyber activity patterns across people’s mobile app usage. The framework first
segments app usage traces into short time windows and then applies a probabilistic topic model to infer users’ cyber activities in each
window. By constructing and exploring the coherence of users’ activity sequences, the framework can identify individuals’ daily
patterns. Next, the framework uses a hierarchical clustering algorithm to recognize the common patterns across diverse groups of
individuals. We apply the framework on a large-scale and real-world dataset, consisting of 653,092 users with 971,818,946 usage
records of 2,000 popular mobile apps. Our analysis shows that people usually follow yesterday’s activity patterns, but the patterns tend
to deviate as the time-lapse increases. We also discover five common daily cyber activity patterns, including afternoon reading, nightly
entertainment, pervasive socializing, commuting, and nightly socializing. Our findings have profound implications on identifying the
demographics of users and their lifestyles, habits, service requirements, and further detecting other disrupting trends such as working
overtime and addiction to the game and social media.

Index Terms—Mobile app usage, activity pattern, pattern discovery, clustering.
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1 INTRODUCTION

INDIVIDUALS exhibit diverse activities both in physical
and cyberspace. Discovering and understanding patterns

of such activities are fundamental to promote and support
healthier lifestyles for individuals and further improve peo-
ple’s well-being. Although prior research has made signifi-
cant progress towards understanding activity patterns, they
only focus on small groups or specific activities. With lim-
ited data and controlled studies, it is only possible to char-
acterize the patterns of an individual or a few individuals.
In most cases, the investigated groups are either narrowly
focused or so diverse that it is difficult to find their common
activity patterns. The common patterns among large-scale
individuals may not only hint at their demographics and
lifestyles but also expose disrupting trends in our society.
However, this requires exploring the activity patterns of a
large-scale population, e.g., millions of people.
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The difficulties in accessing data from many individuals
are one of the main obstacles in large-scale pattern stud-
ies. Traditional data collection methods, like surveys and
questionnaires, need a lot of human effort, which is usually
inefficient and delayed. In recent years, the multifaceted
usage of smartphones in daily lives has established them
as a necessity, which records various users’ cyber activities.
In addition to traditional uses, e.g., communication and
web browsing, people use smartphones in more complex
activities such as ordering food, shopping online, and man-
aging health [1]. A great number of research studies in
recent years have applied app usage data to investigate user
behavior [2]–[5]. These studies include app energy drain
[6], app signatures [3], how app usage varies with different
kinds of users [4], and how unusual events disrupt the app
engagement [5].

In this work, we focus on discovering daily activity
patterns in cyberspace from large-scale app usage data.
More specifically, we study the following research problems.

• What activities can be discovered from app usage
data?

• What common patterns we share with others in our
daily cyber activities?

There are three challenges to address these two prob-
lems. 1) The complexity of mobile app usage behavior. App
usage behavior varies across app categories, usage time, and
users. Due to the unbalanced usage of different categories,
some useful and critical app usage, like ordering food,
may be overwhelmed by popular categories and cannot be
detected. Besides, the same app usage may imply different
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activities for different users in different contexts. Hence,
how to extract user activity features from such complicated
data is fundamental but difficult. 2) The lack of ground
truth labels of user cyber activities. All large-scale app usage
datasets lack meaningful labels to map user activities to
app usage records. Finding the appropriate activity labels
is challenging, and annotating the extracted cyber activities
with semantic terms is also tricky. 3) The complexity of user
activities in cyberspace. Activity patterns can be diverse
in both individual and group granularity. For individuals,
her/his cyber activity patterns may change over days. How
to identify a typical daily cyber activity pattern for each indi-
vidual is complicated. Also, whether there are any common
patterns across individuals and discovering these common
patterns is another challenge.

To overcome the above challenges, we propose a frame-
work to discover daily activity patterns in cyberspace by
leveraging the following three key designs. First, we devise
a probabilistic topic model based method to identify the
activity features of app usage windows obtained using a
time-based segmentation approach. The proposed method
regards a window as a document, a user as an author,
an activity as a topic, and app usage logs related to the
window as words. In this way, the probabilistic topic model
can characterize the relationships between users, app us-
age, and cyber activities in a cohesive manner. Second, to
annotate extracted cyber activities with semantic terms, we
explore the semantic information of app categories and prior
knowledge of activity temporal patterns. More specifically,
we compute an average app category feature vector for each
extracted activity. In terms of the density in the calculated
vector, we rank app categories in an activity termed as inter-
nal ranking. Besides, we also rank all activities for each app
category termed as external ranking. By jointly considering
internal ranking, external ranking, and temporal distribu-
tion of activities, we determine each extracted cyber activity
with a meaningful label. Third, we look into the regularity
of individuals’ cyber activity patterns by measuring their
average intra-distance of patterns across different days. We
then identify a daily cyber activity pattern for every individ-
ual. By applying the agglomerative hierarchical clustering
with edit distance, we recognize the common patterns across
diverse groups, which address the third challenge.

The contributions of our work can be summarized as
follows.

• We investigate the problem of discovering daily ac-
tivity patterns in cyberspace of a large-scale popula-
tion by using their mobile app usage data. We pro-
pose a novel activity discovery framework based on
a probabilistic topic model, which can characterize
the relationships between users, apps, and activities
in a cohesive manner.

• We apply our framework on a large-scale and real-
world app usage dataset. We discover people pre-
fer to imitate yesterday’s activity patterns and pro-
vide evidence that the population follows five com-
mon patterns in their daily cyber activities, includ-
ing afternoon reading (8.50%), nightly entertainment
(18.45%), pervasive socializing (7.56%), commuting
(29.29%), and nightly socializing (36.20%).

• We verify our findings via a small-scale dataset with
users’ occupation information. We find that differ-
ent common patterns correspond to different demo-
graphic groups. More specifically, freelancers have
a nightly socializing pattern. White-collar workers
have a commuting pattern. Advertisers and social-
izers have a pattern of pervasive socializing. Also,
we infer that senior citizens are mostly involved in
afternoon reading, and the younger generation is
primarily involved in nightly entertainment.

• Based on the discovered cyber activity patterns,
we detect several social issues, e.g., around 35%
of workers always work overtime, and nearly 42%
of the younger generation is addicted to gaming
applications. We further explore the implications of
our framework and findings for policymakers and
government, researchers, service providers, and app
developers.

The rest of this paper is organized as follows. In section 2,
we present an overview of our dataset. In section 3, we
present how to discover activities from app usage traces.
In section 4, we elaborate on the schemes of identifying the
common daily patterns. We then discuss the implications
and limitations of our work in section 5. Related works are
presented in section 6. Finally, we briefly conclude the paper
in section 7.

2 DATASET OVERVIEW

To understand the daily activity patterns of people in a large
city, we explore a city-scale app usage dataset provided
by a primary Internet Service Provider (ISP) in China. The
dataset was collected during one week in April 2016, cov-
ering the whole metropolitan area of Shanghai, one of the
world’s largest cities. The dataset includes over 2 million
users and their app usage records during the data collection
period. The app usage dataset is characterized by the ISP
with an anonymized user ID, timestamp, and app ID.

In detail, the ISP identified app usage traces based
on users’ network access records collected from gateways,
generated when users issue network connection requests.
In terms of the data format, each network access record
contains a user ID, timestamp, and the connection’s meta-
data. To determine the corresponding app ID for each
network access record, the ISP inspected the HTTP head
and used the destination domain and user-agent as the app
identifier. By adopting a systematic tool, SAMPLE [7], the
ISP constructed conjunctive rules to match specific apps.
SAMPLE applies a supervised learning algorithm over a
small set of labeled data streams to automatically generate
the conjunctive rules, which can identify over 90% of apps
with an average accuracy of 99% [7]. In practice, the ISP
built the conjunctive rules by manually operating a small
set of apps to generate data streams. They then crawled
the 2,000 most popular apps across app stores and matched
network traffic records to these apps. Also, the ISP manually
verified the correctness of the matched apps. In terms of the
statistics from the ISP, more than 95% of network traffic used
HTTP at the time of data collection, and they could map
up to 90% of the network traffic to specific apps. During
data collection, although some apps used HTTPS for critical
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TABLE 1
The numuber of apps and usage records for each app category.

No. Category # of apps # of usage records No. Category # of apps # of usage records
1 Game 342 44,553,941 13 Photography 26 2,082,726
2 Finance 27 22,421,634 14 Lifestyle 79 55,949,873
3 Stock 106 24,724,632 15 Health & fitness 73 4,616,153
4 Shopping 152 48,973,459 16 Sports 33 7,385,860
5 Parent & child 34 631,729 17 News 86 79,210,799
6 Education 67 7,135,838 18 Reading 98 17,182,331
7 Weather 34 4,181,546 19 Media & video 105 45,994,839
8 Travel 66 5,353,283 20 Music & audio 86 70,127,620
9 Navigation 68 89,816,498 21 Business 59 5,116,745
10 Transportation 78 39,915,957 22 House & home 26 1,412,869
11 SON & IM 185 827,784,029 23 Car 39 4,156,542
12 Food & drink 53 69,783,067 24 Tools & others 78 14,337,945

functions, e.g., log-in, most parts of their traffic still used
HTTP. Also, we notice most apps use HTTPS in recent
years. Some existing studies [8], [9] have demonstrated that
app usage traces can also be identified from encrypted data
traffic. Overall, the app usage dataset provided by the ISP,
although not covering all traffic, is sufficient for our analysis
of mainstreams of usage behavior modeling.

Next, we classify the 2,000 most popular apps into dif-
ferent categories. An app category has an inherent semantic
meaning, and apps in the same category are more likely
to be involved in a similar cyber activity [5]. As our data
is collected from network operators, the dataset includes
both Android and iOS users. Due to the difference in app
categorization systems of Apple Store (iOS apps of 25 cate-
gories) and Google Play (Android apps of 30 categories), we
cannot directly adopt the category information of app stores.
For some apps, they may belong to different categories in
different app stores. For example, Firefox belongs to utilities
in Apple Store while it is in the communication category
in Google Play. Therefore, we re-categorize apps. We first
crawl app descriptions from app stores and generate an app-
description matrix using Jieba [10]. With the app-description
matrix, we apply the Latent Dirichlet Allocation [11] model
to cluster apps and extract their category information. To
determine the optimal categories, we gradually vary it from
20 to 30 and manually check the coherence of the outputs.
We find that 24 categories are optimal and with the mini-
mum perplexity. We then count the apps and usage records
for each app category and show them in Table 1. It is worth
noting that, in practice, some apps may fall into multiple
categories. For example, the specific category of YouTube
may vary depending on the content viewed by users. It
belongs to the news category when users watch news videos
while belonging to the education category when users watch
education videos. However, due to the privacy restrictions,
we cannot obtain the information of the content accessed
by users. Therefore, in this work, we only consider a hard
categorization scheme, where one app solely belongs to
one major category. For example, YouTube belongs to the
category of media and video in terms of its app description.

Since our analysis focuses on the collected 2,000 most
popular apps, we first filter out the outlier users who do
not have any matched app usage. After the filtering, the
remaining dataset contains 1,699,386 users and 1,492,849,915
usage records. Fig. 1 shows the statistics of the dataset
without outlier users. In Fig. 1(a), we find that the records

(a)

(b)

Fig. 1. This figure shows (a) the records for each unique user. (b) The
cumulative distribution function of the average number of records per
day.

of each unique user still follows the power-law distribution,
which means that the app usage behavior still has the long
tail pattern even when we consider only 2,000 apps. Further,
we solely keep those users who were always active during
the data collection period. In terms of the statistics, more
than 90% of users have average daily records exceeding five,
as shown in Fig. 1(b). Hence, we define the active day for
each user is the one with at least five app usage records.
After these two-step filtering operations, we finally obtain
971,818,946 valid app usage records and 653,092 unique
active users. Table 2 presents a summary of the filtered app
usage dataset.

Meanwhile, we are very aware of the privacy implica-
tions of using the dataset for research and our research
findings. We and the ISP have taken adequate measures
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TABLE 2
Dataset summary.

# of Records # of Users
# of Identified

Apps
# of App

Categories
971,818,946 653,092 2,000 24

to safeguard the privacy of mobile users according to [12].
First, the ISP has the consent to collect mobile data, and
stripped all the personally identifiable information from the
traces and enforced strict non-disclosure agreements for all
researchers. The dataset is stored in a server protected by au-
thentication mechanisms and firewalls in the ISP network.
Second, the ISP only gave us the anonymized user IDs. We
never had access to their actual identifiers. Also, we did not
have location information of users. The discovered pattern
of an individual alone does not leak the privacy, as it cannot
be associated with the user’s actual ID. Finally, this work
has received approval from both the ISP and the authors’
local institute.

3 DISCOVERY OF USER ACTIVITIES

In this section, we identify users’ cyber activities based on
their app usage traces logged over a whole week. For each
user, we first divide her/his app usage traces into several
small time windows to capture short-term activities. By
using a probabilistic topic model, we obtain the activity
label for each window. We then determine the semantic
terms of each cyber activity in terms of internal ranking
and external ranking of app categories. Finally, we recognize
seven unique activities across large-scale app usage data.

3.1 App Usage Trace Representation
In this paper, we assume that users’ app usage records
reflect their cyber activities. To capture users’ short-term
activities, we first divide app usage traces of each day into
multiple small time windows. In practice, we use a time-
based segmentation mechanism. Considering the diurnal
pattern of app usage [13], we make a trade-off between non-
uniform time grids and uniform time grids. In our case,
a window refers to an app usage block composed of app
usage records during a specific time period.

More specifically, we first look into the cumulative dis-
tributions of window size, the number of app usage records
for different candidate time grids, as shown in Fig. 2. With
half an hour and one-hour time grids, 20% of windows have
less than 15 records, which are too short of capturing user
activities. On the other hand, setting time grids as four and
six hours, the windows become too large where multiple
activities will be mixed. Hence, in terms of Fig. 2, the time
grid of two hours strikes a balance between having enough
app usage records within each window and having more
stationary windows during the usual active hours of the
day, i.e., 5.00 to 21.00.

Moreover, app usage has a typical diurnal pattern, as
shown in Fig. 3. The app usage sharply declines after 21.00,
and there is very limited app usage during the usual inactiv-
ity period, i.e., 0.00 - 5.00. This is expected, as people usually
begin to take rest and sleep during these hours. To get a
more stable size for windows, similar to [14], we aggregate

Fig. 2. Quantity of windows with respect to the number of app usage
records.
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Fig. 3. Min-max normalized number of app usage records during one
day.

the windows of low app usage during these two periods.
In the end, we divide app usage traces of each day for each
user into ten windows. Therefore, in our dataset, each user
has 70 windows, i.e., 7 (# of days) × 10 (# of windows
for each day). Also, we can apply the usual notions to
some time slots, such as morning rush hour (7.00 to 9.00),
noon break (11.00 to 13.00), and evening rush hour (17.00 to
19.00). After segmentation, we get 45,716,440 windows for
the 653,092 unique active users. Among all these windows,
only 9,196,661 windows are unique.

3.2 Activity Discovery

To characterize the activities of windows, we explore the
power of the author-topic model [15]. As a probabilistic
topic model, the author-topic model has been successfully
used for discovering the hidden topic structure in large
documents [15]–[17]. In this model, each document exhibits
multiple topic features. Each word of a document supports
topics in probability, and the authors of the document deter-
mine the mixture weights for different topics as well. Given
all words and authors of each document as observations,
the author-topic model is trained to infer the hidden topic
of each document.

In the author-topic model, the generative model for
documents is depicted in Fig. 4. There is one latent variable
z for topics. Assuming that there are D documents in the
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Fig. 4. Generative model for documents. Observations are represented
by shadowed nodes.

corpus, document d is a sequence of Nd words and has a
group of authors ad. x indicates the author responsible for
a given word wi

d and chosen from ad. Let α and β be the
prior parameters for the Dirichlet author-topic distribution
and topic-word distribution. ϕ denotes a T × V matrix of
topic distributions, with a multinomial distribution over
V vocabulary items, i.e., all words in D documents for
each of T topics. Each ϕt is drawn independently from
the symmetric Dirichlet(β) prior. θa stands for the topic
proportion for author a. z denotes the topic responsible for
generating the word w. By using the above notations, we
illustrated the generative process as follows.

1) For each author in the A authors, choose the vector
of topic proportions θa ∼ Dirichlet(α).

2) For each topic in the T topics, choose the vector of
word proportions ϕt ∼ Dirichlet(β).

3) For each of the word wi
d in document d,

• choose an author x ∼ Uniform(ad);
• choose a topic z ∼ Multinomial(θa);
• choose a word wi

d ∼ Multinomial(ϕz).

Dirichlet(·) means the Dirichlet distribution. Uniform(·) rep-
resents the uniform distribution, and Multinomial(·) is the
multinomial distribution. The exact inference of the hidden
variables is computationally intractable. Therefore, in prac-
tice, approximate inference algorithms are commonly used,
such as Laplace approximation [18], Variational approxima-
tion [19], and Markov chain Monte Carlo (MCMC) [20]. In
our work, we use the Variational Bayes inference algorithm
[21], a variant of Variational approximation method.

We aim to find the hidden cyber activity structure of
app usage windows for the problem of activity discovery.
Specifically, each window is a block of app usage traces,
represented as a sequence of app IDs. Each window has
multiple activity features, and each app usage of a window
supports hidden activities in probability. Hence, the rela-
tionships among activities, apps, and windows, are highly
similar to the relationships among topics, words, and docu-
ments. By considering they also have similar objectives, we
build an analogy between the activity discovery of windows
and the topic discovery of documents. As shown in Fig. 5, a
unique window represents a document, the users of a win-
dow represent the authors of a document, and an activity
represents a topic. A window has multiple activity features,
which is just like a document that has various topics. Apps
in one window are deemed as words in a document. The
vocabulary is the set of all words in documents, while the

Activities in a window Topics of a document

An unique window

Apps in a window

Collected apps

Users

A document

Words in a document

Vocabulary

Authors

Fig. 5. Analogy between window-activities to document-topics.

collected apps are the set of all apps in windows. Thus,
the collected apps are regarded as vocabulary. In practice,
the collected apps stand for the app IDs of the 2,000 most
popular apps.

Specifically, we applied the author-topic model to extract
hidden activity features of app usage windows due to the
following three reasons. 1). As shown in Fig. 2, app usage
windows vary from 20 records to 500 records. Traditional
clustering algorithms, like K-means and hierarchical cluster-
ing, have difficulty dealing with inputs of different sizes. Al-
ternatively, the author-topic model has no input size limita-
tion and has proven to perform well for both short texts [22],
e.g., twitters, and long texts [16], e.g., articles. 2). As for
traditional clustering algorithms, we need to empirically
and manually extract features from app usage windows
to identify activities. Nevertheless, the author-topic model
can characterize the relationships between users, app usage,
and cyber activities cohesively and automatically identify
activities of app usage windows. 3). The same app usage
may imply different activities in different contexts. As a
probabilistic topic model, the author-topic model enables
app usage to support multiple hidden activities in probabil-
ity, which solves the semantic ambiguity of app usage.

Like the other topic models [23], [24], the author-topic
model requires us to specify the number of topics in ad-
vance. Although determining the most appropriate number
of topics remains an open issue, we can evaluate the model
by measuring how perplexity scores vary with the number
of topics. Perplexity is a measurement of how well a prob-
ability distribution or probability model predicts samples
[25]. Perplexity is a common metric for estimating topic
model performance [26]. Mathematically, the perplexity of
a set of words, Wd for document d, is defined as follows,

Perplexity(Wd) = exp

[
− lnP (Wd)

Nd

]
. (1)

Intuitively, perplexity stands for the confusion of the model
about its decision. More accurately, perplexity expresses
the average number of words that have to be picked to
get a correct one, when we randomly choose words from
the probability distribution calculated by the author-topic
model at each time step [27].

To determine the most appropriate number of topics, we
vary it ranging from 2 to 30 and compute perplexity. Fig. 6
shows perplexity relative to the number of topics. The lower
value of perplexity implies the better performance of the
model. We then find the perplexity score is lowest when the
number of topics is 12, while the knee of the curve is where
the number of topics is 6. Empirically, the knee of the curve
is better. Subsequently, we obtain the cyber activity features
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Fig. 6. Perplexity score versus the number of topics. The lower value of
perplexity implies the better performance of the model. The knee of the
curve is denoted as the red point where the number of topics is 6.

of each window by applying the author-topic model and
setting the predefined number of topics as 6.

3.3 Window Aggregation

To facilitate finding the semantic terms of each window,
we take a further step, aggregating similar unique win-
dows in terms of their activity features. Windows from
the same cluster have similar activity features, and differ-
ent clusters represent different activities. For an arbitrary
window s, its activity feature is a 6-dimensional vector, i.e.,
θs = (θs,1, θs,2, ..., θs,6), where θs,t is the proportion of
activity t for window s.

We perform the Bisecting K-means clustering algorithm
on the activity feature vectors of the 9,196,661 unique win-
dows. Compared with other clustering algorithms, such as
hierarchical clustering and spectral clustering, only k-means
and its variants can handle such large scale windows. Dif-
ferent from basic K-means, Bisecting K-means as a variant
that can overcome the problem of getting caught in a local
minimum by minimizing the Sum of Squared Errors (SSE) of
split clusters [28], [29]. Karypis et al. showed that Bisecting
K-means outperforms basic K-means in terms of entropy, F
measure, and overall similarity [30].

The number of clusters for the Bisecting K-means algo-
rithm needs to be predefined according to the application
and determined by measuring the quality of clustering [31].
To evaluate the quality of clustering for different numbers
of clusters, K , we defined a clustering evaluation metric
(CEM),

CEM =
SP

CP
, (2)

where SP and CP indicate the average separation and
compactness of clusters, respectively.

SP =
2

K2 −K

K−1∑
i=1

K∑
j=i+1

|ci − cj |,

CP =
1

K

K∑
i=1

∑
θ∈Ωi

|θ − ci|
|Ωi| ,

(3)
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Fig. 7. Clustering evaluation metric versus the number of clusters. The
higher the value implies the better the clustering. The optimal clustering
is performed with 7 clusters.

where Ωi is the set of members in cluster i, ci is the centroid
of cluster i. SP stands for the average inter-cluster distance.
A small value for SP indicates adjacent clusters are similar.
Thus, the larger SP , the higher the quality of clustering.
On the other hand, CP stands for the average intra-cluster
distance. A small value for CP means the less scattering
of clusters. As a result, the higher the CEM, the better the
quality of clustering. To determine the most appropriate
number of clusters, we run the Bisecting K-means algorithm
on the Window-Activity matrix and vary the number of
clusters ranging from 2 to 12 to compute CEM. Fig. 7 shows
how CEM changes with the number of clusters. We then
find the optimal number of clusters is 7.

3.4 Activity Identification

After window aggregation, we obtain seven clusters. Win-
dows in the same cluster have similar activities. In this
step, we aim to identify each window cluster with semantic
terms, i.e., activity labels. Note that activity identification is
a very challenging problem. Unlike small scale datasets [32],
the large-scale app usage datasets lack meaningful labels
mapping user cyber activities to app usage records. Fortu-
nately, we can explore the semantic information of app cat-
egories and prior knowledge of activity temporal patterns
to identify activity labels. For example, if a user uses food
& drink apps during lunchtime, it has a high probability of
identifying the activity as exploring food.

In detail, we identify the cyber activity label of a win-
dow cluster by considering the following three aspects. 1)
The app category configuration in a window cluster. We
compute the average proportion of different app categories
for each window cluster. According to the calculated pro-
portion, we rank app categories in a window cluster, called
Internal Ranking (IR). 2) The window cluster configuration
across different app categories. We also rank the window
clusters for each app category, called External Ranking (ER).
3) The temporal distribution of windows in each cluster. In
Table 3, the top-3 internal app categories for each window
cluster are colored by blue from darkest to lightest, while the
top window cluster for each app category is colored by red.
The seven typical window clusters are identified as follows.
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TABLE 3
Proportion of app categories for window clusters and corresponding internal and external rankings. C: cluster, Pro: proportion, IR: internal ranking.

Commute & tra- Entertainment Shopping Socializing Reading & Life & Exploring
nsportation (C1) (C2) (C3) (C4) checking (C5) health (C6) food (C7)

App categories Pro IR Pro IR Pro IR Pro IR Pro IR Pro IR Pro IR
Game 0.0109 9 0.3435 2 0.0083 16 0.0093 5 0.0127 18 0.0076 10 0.0997 2

Finance 0.0063 13 0.0017 21 0.0127 12 0.0056 10 0.0087 19 0.0074 11 0.0254 6
Stock 0.0027 18 0.0059 12 0.0130 11 0.0024 14 0.0642 5 0.0028 17 0.0047 17

Shopping 0.0127 8 0.0077 11 0.1223 3 0.0141 3 0.0197 10 0.0171 5 0.0191 7
Parent & child 0.0009 24 0.0107 8 0.0093 15 0.0008 23 0.0049 24 0.0015 20 0.0049 16

Education 0.0026 19 0.0005 24 0.0048 22 0.0022 15 0.0151 13 0.0020 19 0.0015 23
Weather 0.0022 20 0.0017 22 0.0049 20 0.0016 18 0.0084 20 0.0014 21 0.0023 22
Travel 0.0016 22 0.0023 19 0.0049 21 0.0009 21 0.0133 17 0.0009 24 0.0038 18

Navigation 0.1812 3 0.0039 15 0.0387 5 0.0085 6 0.0715 4 0.0138 7 0.0346 5
Transportation 0.1322 4 0.0129 7 0.0269 7 0.0036 12 0.0199 9 0.0049 14 0.0148 8

SON & IM 0.2226 2 0.0551 5 0.4335 1 0.8294 1 0.1410 2 0.1141 2 0.0976 3
Food & drink 0.0480 5 0.0729 3 0.1374 2 0.0765 2 0.0432 6 0.0224 4 0.5825 1
Photography 0.0062 14 0.0041 14 0.0071 18 0.0016 16 0.0064 23 0.0010 23 0.0416 4

Lifestyle 0.0080 12 0.0032 17 0.0484 4 0.0060 7 0.0150 14 0.6962 1 0.0113 9
Health & fitness 0.0031 17 0.0098 9 0.0050 19 0.0016 19 0.0140 16 0.0478 3 0.0052 14

Sports 0.0017 21 0.0026 18 0.0073 17 0.0009 20 0.0406 7 0.0142 6 0.0027 21
News 0.0056 15 0.0052 13 0.0237 8 0.0056 9 0.3280 1 0.0038 16 0.0051 15

Reading 0.0046 16 0.0082 10 0.0098 14 0.0016 17 0.0878 3 0.0064 13 0.0071 13
Media & video 0.0103 10 0.3632 1 0.0342 6 0.0052 11 0.0236 8 0.0069 12 0.0076 12
Music & audio 0.2693 1 0.0579 4 0.0138 10 0.0134 4 0.0173 11 0.0090 9 0.0103 11

Business 0.0302 6 0.0208 6 0.0108 13 0.0028 13 0.0149 15 0.0104 8 0.0103 10
House & home 0.0097 11 0.0035 16 0.0040 24 0.0008 22 0.0076 21 0.0024 18 0.0034 19

Car 0.0013 23 0.0010 23 0.0043 23 0.0005 24 0.0151 12 0.0014 22 0.0010 24
Tools & others 0.0260 7 0.0017 20 0.0149 9 0.0058 8 0.0071 22 0.0046 15 0.0033 20

(a) Commute and transportation (b) Entertainment (c) Life and health (d) Exploring food

Fig. 8. The temporal distribution of windows in clusters (C1) Commute and Transportation, (C2) Entertainment, (C6) Life and health, and (C7)
Exploring food.

(C1) Commute and Transportation. The top-3 app cate-
gories in this window cluster are Music & audio, SON &
IM, and Navigation. This cluster contains the maximum
number of Transportation apps as well. We also investigate
the distribution of these windows in the temporal domain.
As shown in Fig. 8(a), on weekdays, the windows in this
cluster mainly happen in the time slots 3 and 8, i.e., morning
rush hour and evening rush hour. The specific time slot
division scheme is presented in section 3.1. On weekdays,
the number of windows occurring in the evening is higher
than that in the afternoon, while it is contrary to weekends.
This phenomenon corresponds to the fact that on week-
days people, especially white-collar workers, are ‘bound’
in workplaces during the afternoon and free from work on
weekends. According to the app category features of this
cluster, we also infer that people prefer to listen to music
and check emails during commute time. It is not surprising
that navigation apps are highly used during transportation
activities as well.

(C2) Entertainment. This cluster contains typical enter-
tainment activities with the highest both internal ranking

and external ranking of Media & video and Game, as shown
in Table 3. Fig. 8(b) shows the temporal features of the
windows in this cluster. On weekdays, there are three time
slots of the highest proportion of windows, namely time
slots 3 (morning rush hour), 5 (noon break), and 8 (evening
rush hour). These three time slots are the main ‘free time’
for people on weekdays. On the other hand, on weekends,
the time slots in the evening account for the highest pro-
portion. Especially for the time slot 1, from 0.00 to 5.00,
the proportion on weekends is much larger than weekdays,
because people do not need to get up early and go to work
on weekends.

(C3) Shopping. This cluster mainly has shopping activi-
ties with the most shopping apps. There is no significant dif-
ference in its temporal features on weekdays and weekends.
Like the general pattern of user behavior, the proportion
increases during the day and decreases during the night. In
the windows of this cluster, the socializing apps, i.e., SON
& IM category, account for the highest proportion in the
internal ranking. We infer that people usually browse the
products in online shops and share them with friends via
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socializing apps to ask for suggestions and comments.
(C4) Socializing. This cluster is identified as the social ac-

tivity since not only the SON & IM category has the highest
internal ranking and external ranking but also the other app
categories are of lower proportions compared with other
clusters (see Table 3). In other words, the windows in this
cluster are ‘pure’ social states. Its temporal features are
similar to the Shopping activity, peaking during the daytime
while reducing over the night period.

(C5) Reading and checking. The most characteristic app
categories in this window cluster are News, Reading, Sport,
Weather, Stock, and Education, with a significant higher pro-
portion than other window clusters. These app categories
are all about reading and checking activities. It seems that
people are habituated to using these kinds of apps in the
same period. Besides, its temporal features are similar to the
Shopping activity as well.

(C6) Life and health. In this window cluster, the typical
app category features are Lifestyle and Health & fitness, which
are with both high external ranking and internal ranking
as presented in Table 3. The temporal distribution of this
cluster’s windows is shown in Fig. 8(c). It is clear that, on
weekdays, the windows are concentrated in the morning,
especially in the time slot 3, from 7.00 to 9.00. In contrast,
on weekends, time slot 10, from 21.00 to 24.00, accounts for
the most significant part of windows. Since apps of Health &
fitness category are mainly used to record users’ exercises
such as jogging, swimming, and keep-fit, we infer that
people prefer to take workouts in the morning on weekdays
while in the evening on weekends.

(C7) Exploring food. Table 3 shows that the windows in
this cluster are of the maximum proportion of Food & drink
app usage both in external ranking and internal ranking. We
then look into its temporal features, as shown in Fig. 8(d).
We observe that both on weekdays and weekends, time
slot 5 (lunchtime, from 11.00 to 13.00) and time slot 8
(dinner time, from 17.00 to 19.00) take up the largest part
of windows. Also, SON & IM and Game are with a high
ranking in this cluster. We guess this is because people share
restaurant localization with friends via social apps and like
playing mobile games while waiting for dishes. We also
notice Finance in this cluster is with a significantly higher
proportion than other clusters, which suggests that people
pay their orders by electronic payment methods like Paypal.

4 DISCOVERY OF ACTIVITY PATTERNS

Activity patterns are of significant value for both individuals
and society. For individuals, service providers can provide
personalized service by exploring users’ lifestyles, habits,
occupations, and socio-economic status from their activity
patterns. For society, the government can understand peo-
ple’s living status and detect disrupting trends from activity
patterns and then make policies to improve people’s well-
being. Specifically, in this work, we sequence users’ cyber
activities1 identified from their app usage traces and apply
sequence analysis methods to extract activity patterns.

1. Apart from discovered seven activities, we add an Unknown label
to denote silent time slots.

4.1 Similarity Measurement of Activity Sequences
After identifying users’ activities, the next goal is to use the
collected one-week individuals’ behavior to determine daily
cyber activity patterns. To do so, we treat users’ app usage
traces of one day as an incidence of sequential activities.
Apart from the discovered seven activities, we add an
Unknown label for those silent time slots during which no
app usage records are observed and denote it as C8. For
each user, each day app usage traces reveal a cyber activity
sequence of length ten that contains combinations of the
eight general activities including Commute and transportation,
Entertainment, Shopping, Socializing, Reading and checking, Life
and health, Exploring food, and Unknown. Hence, each user’s
activity sequence can be expressed as,

Au = {[ad1
1 , ad1

2 , ..., ad1
10], ..., [a

d7
1 , ad7

2 , ..., ad7
10]}, (4)

where Au stands for the activity sequence of user u and
adn
m denotes the activity label of window m in the n-th day,

a ∈ {C1, C2, C3, C4, C5, C6, C7, C8}.
To quantify the degree of similarity among activity se-

quences, we apply the string metric. Each user’s activity
sequence for one day is regarded as a string, which is
a combination of eight kinds of characters, i.e., activities.
Particularly, in our work, we use the Levenshtein distance
metric [33] which has been widely used in the social analysis
[34], information theory [35], linguistics [36], and computer
science [37]. In [38], William W. C. et al. compared different
string metrics and showed the Levenshtein distance is better
than others. The Levenshtein distance is also be referred
to as edit distance. Given two sequences, the Levenshtein
distance is the minimum number of single-character edits,
including insertions, deletions, and substitutions, required
to transform one sequence into another.

Compared with another commonly used distance met-
ric, i.e., Hamming distance, Levenshtein distance is more
suitable for our measurement to capture the sequential
patterns. Hamming distance does not use insertions and
deletions [39]. It only uses substitutions and is only pos-
sible to compare when activities occur, while Levenshtein
distance takes insertions and deletions into account and can
capture the order in which user activities are organized over
time. We then justify that with a practical example. We are
given three sequences: ‘C8C1C5C4C1C2’, ‘C2C8C1C5C4C1’
and ‘C8C2C2C2C2C2’, where C denotes the discovered
activities which are presented in Table 3. Since our
goal is to investigate how cyber activities are sequenced
throughout a day, i.e., sequential features, the distance
between ‘C8C1C5C4C1C2’ and ‘C2C8C1C5C4C1’ should
be smaller than the distance between ‘C8C1C5C4C1C2’
and ‘C8C2C2C2C2C2’. Note that, for ‘C8C1C5C4C1C2’
and ‘C2C8C1C5C4C1’, there is only one time slot shift.
The Hamming distance and Levenshtein distance between
‘C8C1C5C4C1C2’ and ‘C2C8C1C5C4C1’ are 6 and 2 re-
spectively, while both Hamming distance and Levenshtein
distance between ‘C8C1C5C4C1C2’ and ‘C8C2C2C2C2C2’
are 4. Hence, we apply Levenshtein distance to measure
the similarity of activity sequences. Particularly, the two
edits to change ‘C8C1C5C4C1C2’ into ‘C2C8C1C5C4C1’ for
Levenshtein metric are shown as follows,

1) C8C1C5C4C1C2 ⇒ C8C1C5C4C1 (deletion of ‘C2’),
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2) C8C1C5C4C1 ⇒ C2C8C1C5C4C1 (insertion of ‘C2’
at the beginning).

4.2 Individuals’ Activity Analysis

We first investigate the similarity of different days to ex-
amine the regularity of activities in days’ scale. As shown
in Table 4, we calculate the average Levenshtein distance
between two days in pairwise. Given day i and day j, their
distance is computed as,

1

U

U∑
u=1

lev(Adi
u ,Adj

u ), (5)

where U is the number of unique users and Adi
u denotes the

activity sequence of the i-th day for user u.
We notice that there is an apparent difference between

weekdays’ sequences and weekends’ sequences because the
average distance between any two weekdays is less than
that between any weekday and weekend. Besides, we dis-
cover an interesting appearance that the activity sequence of
a weekday is more similar to yesterday’s sequence. This im-
plies that people intentionally or unintentionally obey yesterday’s
activity sequence, and there should be a daily pattern of activities
for individuals.

We further look into the coherence of each user’s activity
sequences on weekdays. As shown in Fig. 9, we compute the
average intra-distance for each user,

2

D2 −D

D−1∑
i=1

D∑
j=i+1

lev(Adi ,Adj ), (6)

where D is the number of weekdays, here D = 5, and Adi

stands for [adi
1 , adi

2 , ..., adi
10] namely the activity sequence of

day i. We observe that nearly 74% of users have the average
intra-distances less than 5, implying that they repeat at
least half of their daily activities in cyberspace. Therefore, a
large part of individuals’ daily lives follows a regular daily
activity pattern. We give the definition of the daily activity
pattern of an individual as follows.

Definition 1. Daily activity pattern of an individual. Given an
individual’s activity sequences on weekdays, Ad1 , Ad2 , ..., Ad5 ,
the daily activity pattern of the individual, A, has the minimum
sum-distance between all pairs of A and Adi . Mathematically,
denoting A = [a1, a2, ...,a10], then

A ← arg min
a∈{C1,C2,...,C8}

5∑
i=1

lev(Adi ,A). (7)

4.3 Identifying Common Activity Patterns

We have examined the existence of daily activity patterns
in cyberspace for individuals. Next, we investigate whether
there are common activity patterns for millions of users. To
do this, we first quantify the distance between each pair of
daily activity patterns for all users. Once the distance ma-
trix is calculated, we apply the agglomerative hierarchical
algorithm to identify homogeneous clusters of daily pat-
terns. In terms of existing studies [30] conducted on labeled
datasets, the agglomerative hierarchical algorithm usually
has a better performance compared with bisecting K-means.

TABLE 4
Average Levenshtein distance between arbitrary two days. We round

numbers to two decimals.

MON TUE WED THU FRI SAT SUN
MON / 4.26 4.37 4.42 4.58 5.26 5.18
TUE / / 4.37 4.48 4.59 5.29 5.21
WED / / / 4.28 4.49 5.07 5.01
THU / / / / 4.47 5.27 5.29
FRI / / / / / 5.27 5.31
SAT / / / / / / 4.70

Fig. 9. Cumulative distribution of users with respect to the intra-distance.
The average intra-distances of nearly 74% users are less than 5.

Also, there are 654,092 users, which satisfies the scalability
limitation of hierarchical clustering algorithms. Hence, in-
stead of bisecting K-means, we employ the agglomerative
hierarchical algorithm for common pattern discovery. In
detail, the agglomerative hierarchical algorithm is a ‘bottom-
up’ approach in which each object starts in its own cluster,
and the pairs of clusters are merged as one moves up the
hierarchy [40].

To determine the most appropriate number of clusters,
i.e., patterns, we apply the dendrogram to evaluate the
agglomerative hierarchical clustering algorithm, as shown
in Fig. 10. The dendrogram is a branching diagram repre-
senting the hierarchy of clusters based on the degree of sim-
ilarity [41]. As Fig. 10 shows, the distance from the root to
a subtree indicates the similarity of subtrees. Highly similar
nodes or subtrees have joining points farther from the root.
We know how the nodes are combined into larger parent
clusters from the dendrogram, i.e., the detailed clustering
process. In Fig. 10, we find five is the most appropriate
number of clusters, where the clusters are of high intra-
cluster and low inter-cluster distances. The five clusters are
boxed using orange lines.

4.4 Pattern Annotation

Given the clustering results, we then annotate each cluster
of daily activity patterns with semantic terms, which will
contribute to understanding the hidden image of these
patterns. We first visualize them by randomly selecting fifty
users for each cluster and show how their cyber activities
are sequenced. As shown in Fig. 11, the x-axis refers to the
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TABLE 5
The number and proportion of users for each cluster.

Cluster A Cluster B Cluster C Cluster D Cluster E
Number of users 55,513 120,495 49,374 191,291 236,419

Proportion of users 8.50% 18.45% 7.56% 29.29% 36.20%

C B D

Fig. 10. Dendrogram of the hierarchical clustering where highly similar
nodes or subtrees have joining points farther from the root. Five is the
most appropriate number of clusters, where the clusters are of high intra-
cluster and low inter-cluster distances.

windows, and the y-axis indicates the random fifty users.
Each bin refers to the activity label of that window for that
user, and we use different colors to distinguish different
activities. The distribution of all users among clusters is
shown in Table 5.

Afternoon reading (Cluster A). The users in this cluster
are mostly involved in Reading and Checking during the
day, as shown in Fig. 11(a). The users, on average, start
to use apps from time slot 4, 9.00 to 11.00, and become
to be inactive after time slot 8, around 19.00. Hence, we
annotate this cluster as afternoon reading to reflect the main
active periods and activity of this group. Although Reading
and Checking activity dominates during time slots 4 to 7,
there are still many users like Shopping during these hours.
Generally, both two activities are leisure activities. We still
notice that there are several Commuting and Transportation
activities in this cluster. However, unlike Cluster D, Commut-
ing and Transportation activities in this cluster are randomly
distributed over time slots. Therefore, the users in this
cluster do not have regular commute schedules, e.g., on and
off work. Moreover, by considering the dominating pattern
of reading and shopping activities, we infer the users in this
group are senior citizens. Recalling the statistics in Table 5,
they represent 8.5% of the total users, which is similar to the
proportion of senior citizens, 10.1%, in Shanghai.

Nightly entertainment (Cluster B). Fig. 11(b) visualizes
the daily patterns of this cluster. The users are engaged
in Entertainment activities during evening and night, from
17.00 to 24.00. Hence, we annotate this cluster as nightly
entertainment. Compared with cluster A, C, and E, the users
have fewer activities during the usual active hours, i.e.,
from 7.00 to 15.00. Also, the users in this cluster are mostly
nocturnal, and they are more than 18% of all the users. We
infer that they are likely the younger generation. Due to
the daytime classes, they only have free time in the evening
and night, which may be why their app usage is so sparse
during the day time. Besides, the daily patterns show a high
number of users in this cluster sleep late, still active in the

time slot 1, from 0.00 to 5.00. Most of their Entertainment
activities last more than 6 hours, which indicates that the
younger generation is addicted to the Entertainment activity,
e.g., mobile games, and it is harmful to their health.

Pervasive socializing (Cluster C). As shown in Fig. 11(c),
the users in this cluster are engaged in the Socializing ac-
tivity from 7.00 till 24.00. Compared with the patterns of
other clusters, the patterns of this cluster are more regular
concerning the active time of users and the duration of the
dominating activity. This unusual pattern of social activities
of nearly 7.5% users can be explained as follows. With
modern social networking apps, social activities are not
limited only to known friends and families. Peoples are
making friends and communicating with people from differ-
ent social classes via social apps. The social platforms are not
only for interaction but also for various businesses, such as
advertising and self-media. For example, on WeChat, people
advertise and sell their products via instant messages, video
calls, group chats, and WeChat Moments. This method [42]
utilizes the business relationship and friendship to maintain
the customer relationship and is called the WeChat business.
Therefore, we suspect that the users in this cluster work
in call centers, customer services, or they are bloggers,
cyberspace writers, and online shop owners.

Commuting (Cluster D). The patterns in this cluster
shown in Fig. 11(d) are typical commuting patterns. The
Commuting and Transportation activities are sequenced reg-
ularly and mainly occur during rush hours. Due to the
regular commute patterns, we infer most people in this
cluster are involved in white-collar jobs. Meanwhile, we
find an important phenomenon. In the morning, nearly
90% of Commute and Transportation activities happen in the
morning rush hour. However, these activities are spread
over multiple time slots around the evening rush hour. This
phenomenon implies that many workers cannot knock off
on time, and even working overtime becomes a habitual
pattern for them. Like cluster B, most of the users are with
limited activities from 9.00 to 17.00, as they are busy at work
and do not have time to use smartphones.

Nightly socializing (Cluster E). The patterns of this
cluster are shown in Fig. 11(e). It is the largest cluster having
36.2% of users and the most diverse patterns as well. The
dominating activity is Socializing, which mostly happens
after the evening, i.e., after time slot 6. The users in this
cluster are mostly active during the day and engaged in
other activities, such as Shopping. This implies their time
is more flexible compared to other cluster users. The lack
of sufficient commuting suggests that people are mostly
staying at or near home, involved in household work during
the day time, and socializing in the evening. Hence, we infer
the users in this cluster should be self-employed.

4.5 Verification through Controlled Study
To validate the detected activity patterns, we make a con-
trolled study and collect a small-scale app usage dataset
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(a) Afternoon reading patterns. (b) Nightly entertainment patterns. (c) Pervasive socializing patterns.

(d) Commuting patterns. (e) Nightly socializing patterns.

Commute and Transportation
Entertainment
Shopping
Socializing
Reading and Checking
Life and Health
Exploring food

Fig. 11. Visualization of daily activity patterns by randomly selecting fifty users in each cluster. Each row represent the activity patterns for one user.
The windows correspond to the time segments illustrated in Fig. 3.

TABLE 6
The average distance matrix between common daily activity patterns and occupations, where the corresponding occupations and clusters are

highlighted.

Occupation

Distance Cluster
Afternoon Read-
ing (Cluster A)

Nightly entertain-
ment (Cluster B)

Pervasive socia-
lizing (Cluster C)

Commuting
(Cluster D)

Nightly socia-
lizing (Cluster E)

White-collar workers 6.6904 7.2043 7.4817 5.5983 6.6183
Socializers 7.5787 8.2933 3.5213 7.9347 5.7453
Freelancers 7.1092 7.2277 5.4939 6.7462 5.0953

from 100 users with occupation information. The small-scale
app usage dataset is over one week, i.e., seven days and
users are in the age range from 25 to 55. Users’ occupations
are in three categories, i.e., white-collar workers, socializ-
ers, and freelancers. Specifically, the white-collar workers
include clerks, engineers, teachers, editors, lawyers, and
others. The socializers consist of bloggers, advertisers, cy-
berspace writers, online shop owners, and others.

Applying our proposed cyber activity discovery ap-
proach, we obtain the activity sequences of that 100 users.
We then compute the average distance matrix between
common daily activity patterns and occupations, as shown
in Table 6. Mathematically, the average distance is calculated
as, ∑

u∈U

∑
û∈Ûi

lev(Au, Aû)

|U| · |Ûi|
, (8)

where A denotes the activity sequence, U is the set of users

for each occupation category, and Ûi is the set of users in
cluster i.

From Table 6, we find that white-collar workers, social-
izers, and freelancers have the lowest average distance with
cluster D, C, and E, respectively. Since white-collar workers
go work and back home in the working days, it is reason-
able that their activity sequences belong to the commuting
pattern. Similarly, socializers are usually engaged in social-
economic activities for a whole day and of the pervasive
socializing pattern. As for freelancers, they have more free-
dom to arrange their time so that their activity pattern is
the most diverse, similar to the nightly socializing pattern.
Besides, due to the age bias of the small-scale dataset, we
do not find the groups of small distances with cluster A
(Afternoon reading) and cluster B (Nightly entertainment).
This reflects the correctness of our former inferences to some
extent as well.
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In summary, these results are consistent with our an-
notation of the discovered activity pattern. These results
also demonstrate the potential of our model to leverage the
features of app usage in cyber activity profiling and social
status inferring.

5 DISCUSSION

We now revisit the research questions presented in the in-
troductory part and present answers based on our method-
ology and empirical observations.

• What activities can be discovered from app usage
data? We have discovered a set of seven dominant activ-
ities and provided these seven activities with meaningful
labels based on their temporal patterns and the semantic
information of app categories. The discovered activities are
commute and transportation, entertainment, shopping,
socializing, reading and checking, life and health, and
exploring food options.

• What common patterns we share with others in our
daily cyber activities? We have examined the existence
of daily activity patterns for individuals and found a set of
five common regular activity patterns for different groups
of people. More specifically, the afternoon reading pattern
for senior citizens, the nightly entertainment pattern for
the younger generation, the pervasive socializing pattern
for socially active people, the commuting pattern for white-
collar workers, and the nightly socializing for freelancers.

In this study, we answered these two fundamental re-
search questions. We also discuss how the discovery of
such patterns may help to understand human behavior
and further improve the quality of user experience and
contribute to the well-being of people. In this section, based
on our findings of both activities and daily patterns, we
will discuss the implications for policymakers, researchers,
service providers, and app developers.

5.1 Implications for Policymakers

Mobile app usage data and the insights on human behavior
are relevant and vital for policymakers. The data analysis
can provide valuable feedback regarding the activities and
well-being of citizens. The insights are expected to con-
tribute to better decisions on multiple scales: from cities
and urban planning to the level of individual companies
and environments. Traditional methods, like survey and
questionnaire techniques require significant personnel re-
sourcing and cannot address the need for timely data and
insights. Thus, app data analysis provides an alternative
methodology that can be near real-time and low cost.

Through smartphone app data analysis, social issues can
be detected and traced at an early stage. For example, in
March 2019, an ‘anti-996’ protest was launched via GitHub2,
followed by over 250 thousand people against working
overtime.

We have analyzed working patterns and examined signs
of overtime with our smartphone app dataset. We have
detected that approx. 35% of workers tend to stay late at

2. https://996.icu/#/en US

the office following a habitual pattern of working over-
time. Similarly, we find that a significant proportion of
the younger generation has addicted to the Entertainment
activity. The observations indicate that policymakers and
employers can use smartphone data for providing early
advice and counseling when working overtime or becoming
addicted to games is becoming an addiction.

5.2 Implications for Researchers

The identified seven activities and five common daily cyber
activity patterns indicate that app usage records reflect user
activities in real life. The usage records provide a rich
basis for research on multiple levels of abstraction from the
analysis of specific apps and app categories to user activities
and habits.

We show that demographics have a significant impact on
users’ app usage and activities. This may result in biased re-
sults and may explain the inability to replicate results across
studies, as mentioned in [43]. For example: since our small-
scale validation dataset does not cover senior citizens and
teenagers, we could not discover the groups associated with
the afternoon reading and nightly entertainment patterns
that are presented in the large-scale dataset. This issue can
be mitigated by understanding the demographics aspects of
the study at hand and taking this information into account
when designing the data gathering and analysis.

5.3 Implications for Service Providers

Smartphone app data analysis is expected to provide valu-
able insights for mobile service providers. They can config-
ure and optimize their services in a dynamic manner accord-
ing to the discovered patterns and behavior. For example,
the usage patterns show when the high bandwidth apps are
in use of the day, allowing the provider to optimize service
delivery and reduce operating costs predictively. The data
is also very important for generating recommendations to
users based on their observed app usage.

As another example, the nightly entertainment pattern
implies that low latency network service is essential in the
evening and night since game and media & video apps
dominate this pattern. However, in terms of our findings in
section 4, there are nearly 42% of users in cluster B addicted
to mobile games, still involved in entertainment activity af-
ter midnight. A recent report [44] suggests that gaming and
smartphone addiction have significant detrimental effects
on physical and mental well-being. The app data analysis
can highlight these problems through early detection.

5.4 Implications for App Developers

Our work also provides useful information for app de-
velopers. For example, during the step of activity identi-
fication, we found several highly related app pairs, such
as Navigation and Transportation, Game and Media & video,
Shopping and SON & IM, Food & drink and Photography.
These observations help application developers in making
their apps more intuitive and user-friendly by grouping
and merging functions of highly related applications. For
example, WeChat, one of the most popular apps in China,
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already supports such grouped functions through mini-
programs3. Mini-programs are embedded in WeChat, and
they enable the user to access other apps’ services effectively.

5.5 Study Limitations
We have examined the smartphone app usage data gathered
from the urban area. However, the activity patterns might
be different for suburban and rural areas. The presented
work is based on mobile app usage data; thus, it is only
possible to detect cyber activities performed while using
and carrying smartphones. It is also possible that the app
usage records may not reflect the actual engagement of
users’ activities, as some apps may be executed automat-
ically in the background. For example, an email app may
download emails even when the user is not using that app.
The basic model can be improved by introducing a user
attention mechanism.

6 RELATED WORK

6.1 App Usage Patterns
A lot of previous works or analyses focused on how indi-
viduals use their smartphones and their applications. For
example, Falaki et al. [45] used detailed traces from 255
users to characterized user activities and found that users
interact with their smartphones between 10 to 200 times per
day on average and use 10-90 applications. Xu et al. [46]
investigated the diverse usage patterns of smartphone apps
via network measurements from a tier-1 cellular network
provider in the US. They found that some apps have a
high likelihood of co-occurrence across smartphones, that
is, when a user uses one app, he or she is also likely
to use another one. In our work, we also found similar
results. For example, recalling Commute and transportation
activity presented in section 3, we found that people listen
to music and check emails along with the transportation
apps while commuting. We also discovered that people are
habituated to using news, reading, and weather apps during
the same period in Reading and checking activity. Yang et
al. [47] collected continuous cellular traffic over a week to
characterize user behavior on mobile Internet. They showed
that a user visits seven applications over a week and five
categories of applications within a day on average. Canneyt
et al. [5] collected a sample of Flurry data which consists of
events from 600 million daily unique users and covers users
from 221 countries. They showed how application usage
behavior is disrupted through major political, social, and
sports events.

Some existing studies clustered users into several par-
ticular groups and provide comprehensive descriptions for
these groups. Jones et al. [2] analyzed users’ application re-
visitation patterns based on three months of application
launch logs from 165 users and identified three distinct
user clusters, checkers, waiters, and responsives. Checkers
refer to the users exhibit brief revisit patterns of fast re-
visitation (less than one hour). Waiters stand for the users
who show longer revisit patterns, which are uniformly
distributed between short-medium re-visitations (between

3. https://wechatwiki.com/wechat-resources/wechat-mini-
program-epic-tutorial-guide/

1min and 4hrs) and long re-visitations (from 2hrs to 3days).
Responsives are the users who sometimes exhibit brief and
occasionally long revisit patterns. Zhao et al. [4] analyzed
one month of application usage from 106,762 users and
discovered 382 distinct types of users based on their usage
behaviors in app-category granularity. They also gave a
meaningful label to the users in each cluster, such as Night
communicators, Evening learners, and Financial users. In
[48], Katevas et al. collected daily mobile phone activity data
from 340 users and revealed five smartphone use profiles,
i.e., limited use, business use, power use, and personality-&
externally induced problematic use.

Unlike grouping users of similar application usage
habits, Welke et al. [49] showed the significant diversity of
application usage among users. They demonstrated that it is
possible to differentiate users according to their application
usage and found out that 500 most frequent applications are
sufficient to identify 99.67% of the users. Further, Tu et al.
[3] quantified the uniqueness of individual app usage and
showed that the fingerprints of mobile app usage are highly
unique. They also found user demographics, users’ online,
and offline behavior all influence the uniqueness level.

Since different demographic attributes can lead to differ-
ences in app usage behavior, many studies have sought to
study the relationship between user personality traits and
their app usage traces. For example, Seneviratne et al. [50]
collected an app usage dataset from over 200 users and
exploited linear support-vector machine to predict users’
gender based on the apps used by users. Further, Malmi
et al. [51] conducted a similar study on a more extensive
app usage dataset covering 3,760 mobile users and demon-
strated that, apart from gender, the app usage traces can be
used to predict income as well. Zhao et al. [52] collected an
app usage dataset from 15,000 mobile users. They extracted
topic features from app descriptions and then applied the
topic features of used apps to infer users’ gender.

6.2 App Usage Prediction and Recommendation

Some scholars also worked on modeling mobile app usage
and tried to predict which applications will be launched and
recommend accordingly. Given the app usage sequences,
it is often assumed that Markovian property stands. Zou
et al. [53] proposed using Markovian models to learn the
app usage sequences. They compared first and second-order
Markov models with the weighted linear combination of
these two models. The results showed that the combined
model is the best model with an accuracy of 85% in pre-
dicting the top-5 apps each time of the sequence. Besides,
Natarajan et al. [54] proposed a cluster-level Markov model
to make personalized app usage prediction to a user. It
first clusters users based on their usage patterns and then
computes personalized PageRank for users corresponding
cluster Markov graph.

Apart from only using app usage sequences, some works
computed app usage features separately for different tem-
poral contexts. In [55], Verkasalo et al. studied how mobile
services are used in different contexts and found that time
of day is the most useful context for app usage prediction.
Liao et al. [56] proposed a temporal-based apps predictor
to dynamically predict the apps that are most likely to be
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used. They extracted three Apps usage features, i.e., global,
temporal, and periodical, from the Apps usage trace. Later
they dynamically derive an app usage probability model
from estimating the current usage probability of each app
in each feature. Other studies [57], [58] applied similar
approaches, i.e., taking time-based features into account
to predict app usage dynamically. Like time features, the
activity features derived in our work can be used as context,
which helps to predict app usage.

With a large pool of apps currently available and the
fast proliferation rate of new apps, app recommendation
as an important topic also attracted many researchers. Shi
et al. [59] proposed a similarity-based recommendation al-
gorithm that measured the similarity of apps based on the
usage patterns found among a group of users. Yan et al.
[60] presented the AppJoy system to make personalized
recommendations by picking the apps with similar usage
patterns to a user’s installed apps. Bae et al. [61] made
app recommendations based on co-occurrence in usage
behavior. Meanwhile, in our work, we also find several
high related app pairs, like Navigation and transportation,
Game and Media & video, Shopping and SON & IM, Food &
drink, and Photography, which can provide prior knowledge
for app recommendation systems. Besides, the contextual
information, e.g., users’ mobility status, location, and time of
the day, is also useful for app recommendations. Davidsson
et al. [62] combined both the context and user feedback to
develop the app recommendation system. Kaji et al. [63]
developed an app, AppLocky, which requests users to select
their current context for context-aware app recommenda-
tions. The activity labels derived in our work can also be
applied in recommendation systems as a kind of contextual
information.

7 CONCLUSIONS

Although we are overwhelmed by the chaotic flow of
everyday obligations, we have patterns in our digital ac-
tivities that characterize our daily lives individually and
collectively. In this paper, we designed a probabilistic topic
model based activity detection framework for discovering
daily activity patterns across mobile app usage data. By
applying our framework on a large-scale and real-world
dataset collected from Shanghai, one of the world’s largest
cities, we identified seven typical activities, i.e., commuting
and transportation, entertainment, shopping, socializing,
reading and checking, life and health, and exploring food.
From users’ activity sequences, we examined the regularity
of individuals’ daily activities and successfully extracted
five common patterns among millions of people, including
afternoon reading, nightly entertainment, pervasive social-
izing, commuting, and nightly socializing. We also showed
that demographics have an important impact on users’ daily
lives. Finally, we demonstrated how our findings could
be used by policymakers, government, researchers, service
providers, and app developers. In this work, the patterns
discovered are based on the dataset collected from only one
city, i.e., Shanghai, which might not represent the whole
community. Therefore, verifying the findings and compar-
ing the differences across different cities is an exciting future
direction.
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Abstract—The outbreak of Covid-19 changed the world as well
as human behavior. In this paper, we study the impact of Covid-
19 on smartphone usage. We gather smartphone usage records
from a global data collection platform called Carat, including the
usage of mobile users in North America from November 2019 to
April 2020. We then conduct the first study on the differences
in smartphone usage across the outbreak of Covid-19. We
discover that Covid-19 leads to a decrease in users’ smartphone
engagement and network switches, but an increase in WiFi
usage. Also, its outbreak causes new typical diurnal patterns of
both memory usage and WiFi usage. Additionally, we investigate
the correlations between smartphone usage and daily confirmed
cases of Covid-19. The results reveal that memory usage, WiFi
usage, and network switches of smartphones have significant
correlations, whose absolute values of Pearson coefficients are
greater than 0.8. Moreover, smartphone usage behavior has the
strongest correlation with the Covid-19 cases occurring after
it, which exhibits the potential of inferring outbreak status. By
conducting extensive experiments, we demonstrate that for the
inference of outbreak stages, both Macro-F1 and Micro-F1 can
achieve over 0.8. Our findings explore the values of smartphone
usage data for fighting against the epidemic.

Index Terms—Smartphone usage, Covid-19, correlations, out-
break stage inference.

I. INTRODUCTION

At the beginning of 2020, Covid-19 was identified and has

spread globally [1]. The outbreak of Covid-19 has changed

people’s lives significantly. Countless efforts have been made

to study the world after Covid-19 from different perspectives,

ranging from world economy [2], personal mental health [3],

to human mobility [4]. Meanwhile, since the first iPhone was

released in 2007, smartphones have become a necessity in

daily lives [5]. The number of smartphone users worldwide

today has surpassed three billion [6]. However, up to now, the

understanding of the impact of Covid-19 on smartphone usage

is still inadequate. Specifically, studying how Covid-19 affects

users’ smartphone usage behavior can bring two-fold benefits.

First, understanding smartphone usage differences across the

Covid-19 outbreak is critical for the industry, e.g., smartphone

manufacturers and network service providers, to dynamically

adjust market strategies and enhance user experience. Second,

smartphones are embedded with a set of sensors recording user
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activities in both cyber and physical spaces [7]. By exploring

the impact, we can use such rich behavioral data to infer

different Covid-19 outbreak stages and further contribute to

the fight against Covid-19.

Meanwhile, some previous studies have introduced mo-

bile sensing data to the public health field. For example,

Yarkoni [8] proposed the concept of Psychoinformatics, using

tools and techniques from information sciences to improve

psychological research. Insel [9] and Baumeister et al. [10]

introduced digital phenotyping that leverages digital behavior

data logged on smartphone sensors to detect psychological

states. Further, Markowetz et al. [11] proposed to explore

big data technologies and conduct digital phenotyping on a

large-scale. The above studies showed the correlation between

smartphone usage and the psychological states of users. The

Covid-19 pandemic represents a global health crisis, which

will severely change psychological burdens and physical ac-

tivities of individuals [12]. Such changes may be conveyed to

and reflected in smartphone usage [13]. In this way, we are

motivated to investigate how the outbreak of Covid-19 affects

smartphone usage behavior.

In this work, we make an effort towards understanding the

impact of Covid-19 on smartphone usage and explore the

potential of smartphone usage data to fight against Covid-19.

More specifically, we study the following research problems.

1) Does the outbreak of Covid-19 affect users’ smartphone

usage, and how?

2) Can we use smartphone usage data, e.g., CPU usage,

memory usage, and network connections, to infer the

outbreak stages of Covid-19?

To answer the above two questions, we reveal the correla-

tions between smartphone usage and the outbreak of Covid-19

from both statistics and dynamic patterns. We first collect a

large-scale smartphone usage dataset by leveraging a global

crowdsourcing platform called Carat. The dataset covers users

in North America and their smartphone usage records for

six months from November 2019 to April 2020 (Section II).

Next, we use the dataset to make a statistical analysis. The

results demonstrate that the outbreak of Covid-19 has indeed

impacted significantly on users’ smartphone usage behavior in

terms of CPU usage, memory usage, WiFi usage, and network

switches. In our case, CPU and memory usage describe how

much of the processor’s and memory’s capacity is in use,

respectively. WiFi usage indicates the percentage of records

under WiFi connection. Network switch refers to the change

of network connection from WiFi to cellular network and vice

versa. Specifically, the CPU usage and memory usage reflect

the intensity of smartphone engagement of users. The WiFi

usage and network switches reveal users’ mobility intensity.



2

TABLE I
SAMPLES OF THE COLLECTED SMARTPHONE USAGE DATA, WHERE LTE AND UTMS ARE SPECIFIC MODES OF CELLULAR NETWORK. USER IDS HAVE

BEEN ANONYMIZED.

User ID Timestamp
CPU

usage (%)
Active

memory (KB)
Free

memory (KB)
Network

Battery
level (%)

Timezone MCC

1 2019-11-05 05:48:48 0.6992 3528 1875820 WiFi 66 America/Denver us
2 2019-11-13 07:51:11 51.5152 429632 1746900 LTE 79 America/New York us
3 2019-11-16 12:31:51 53.1807 1006248 2853892 UTMS 94 Europe/Helsinki fi

Further, we extend our analysis to dynamic patterns, i.e.,

diurnal patterns of smartphone usage. The results unveil how

the outbreak of Covid-19 affects usage behavior during the

time of one day. We also examine the correlations between

smartphone usage and daily confirmed cases (Section III).

Moreover, we investigate smartphone usage data’s inference

ability for Covid-19 outbreak stages using both statistical and

deep learning methods. By comparing the performance and

conducting importance analysis, we select the most potent

smartphone usage features for the outbreak stage inference

(Section IV).

Among the many insightful results and observations, the

following are the most prominent.

• The outbreak of Covid-19 causes a decrease in users’

smartphone engagement in terms of both CPU usage and

memory usage. However, it has different impacts on CPU

and memory usage according to their diurnal patterns.

Specifically, it leads to a new typical diurnal pattern of

memory usage while it only changes the proportion of

existing patterns of CPU usage.

• The outbreak of Covid-19 makes an increase in WiFi

usage and a decrease in network switches, implying that

users reduce their mobility intensity. Also, similar to

memory usage, a new typical diurnal pattern of WiFi

usage has emerged after the outbreak.

• Memory usage, WiFi usage, and network switches have

significant correlations with the number of daily con-

firmed cases of Covid-19. Also, the correlation between

smartphone usage behavior and Covid-19 daily cases has

a time delay. Smartphone usage changes earlier than the

number of cases. That is because the smartphone data

can reflect the outbreak status in real-time. However, such

reflection cannot be immediately expressed in daily cases

due to the diagnosis delay.

• By using smartphone usage data to infer Covid-19 out-

break stages, we can achieve over 0.8 for both Macro-F1

and Micro-F1, which presents a promising application of

smartphone usage data on fighting against Covid-19.

II. DATASET OVERVIEW

A. Data Collection

We leverage a crowdsourcing platform called Carat to

collect smartphone usage data. Carat is a cross operating

system mobile app, including both iOS1 and Android2, which

can record users’ smartphone usage traces automatically. Carat

can monitor and record the working status of smartphones in

1https://apps.apple.com/us/app/carat/id504771500
2https://play.google.com/store/search?q=carat

(a) (b)

Fig. 1. This figure shows (a) The cumulative distribution function (CDF) of
the number of records per month for each unique user. (b) The daily average
number of collected records of users.

detail. In practice, Carat informs of all data collection items in

the End-user License Agreement (EULA) when users install

Carat to alleviate user privacy concerns. Also, Carat users

are anonymized, and the app does not collect any personal

information. It is worth noting that Carat is live. Up to now,

Carat has been downloaded over 100 thousand times. The

number of downloads and installations is increasing every day.

Specifically, Carat applies an event-triggered collection

scheme, gathering a data sample every time the battery

level changes by 1%. Each data sample contains a list of

smartphone hardware status, including CPU, memory, battery,

and network. Each sample also has several other features,

including a user-specific identifier, timestamp, timezone, and

mobile country code (MCC). The MCC is obtained from

the cellular network and automatically converted to a two-

character country code. Table I presents samples of collected

smartphone usage data to show the data format.

B. Basic Analysis

Since we focus on studying the impact of Covid-19, we

select the records from November 2019 to April 2020. Also,

we principally consider samples collected from North Amer-

ica. In total, we have 452 users with over 7,517,494 records.

Since users involved may uninstall and reinstall Carat during

the data collection period, the number of active users changes

over time, i.e., November 2019 (293 users), December 2019

(295 users), January 2020 (251 users), February 2020 (224

users), March 2020 (198 users), and April 2020 (158 users).

In our case, we use both timezones and MCC to determine

the users’ country, which increases the reliability of detection.

Table II summarizes the dataset.

Next, we depict basic statistics to illustrate the quality and

representativeness of the collected smartphone usage dataset.

Fig. 1(a) presents the cumulative distribution function (CDF)

of the number of records per month for each unique user. We

observe that the involved users kept a high activeness level
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TABLE II
SUMMARY OF THE COLLECTED DATASET FROM THE USA.

# Users # Records Attributes Date Area

452 7,517,494
User ID, timestamp, CPU usage, Memory usage,

network status, battery level, timezone, MCC
11/2019 - 04/2020 North America

during the data collection period. For each month, more than

20% of users have over 1,800 records. Moreover, we plot how

the average number of users’ records changes every day in

Fig. 1(b). We can witness that there are around 220 records

every day per user on average. Although there are some

fluctuations, the curve is relatively stable. Such a high number

of records per user demonstrates our dataset’s effectiveness in

capturing the smartphone usage behavior of users involved

covering the entire six months, i.e., from November 2019

to April 2020. Also, the continuity of the data collection

guarantees the representativeness of our study.

C. Ethical Considerations

We are very aware of the privacy issues when using the

collected data for research. We have taken adequate actions

to safeguard the privacy of the involved mobile users. First,
we do not collect any personal information from users. A

user-specific identifier is randomly generated when the user

first installs Carat. We only have users’ country information

rather than sensitive location information, like GPS data.

Also, the data-gathering part of Carat is open-source3. Users

can examine it easily. The users involved are informed of

the data collection and management procedures in the End-

user License Agreement (EULA) and grant their consent

from their devices. In the EULA, we also point out that

the data we collect may be used to improve products or for

research purposes. Second, the dataset is stored in a secure

local server protected by strict authentication mechanisms

and firewalls. All researchers are regulated by a strict non-

disclosure agreement to access the data. Finally, this work

has received approval from all the authors’ local institutions.

III. DIFFERENCES IN SMARTPHONE USAGE

In this section, we aim to solve the first research problem,

i.e., whether and how the outbreak of Covid-19 affects users’

smartphone usage behavior. Specifically, we explore the im-

pact on CPU usage, memory usage, and network status from

statistical and dynamic pattern analysis. The data processing

and analysis was conducted in Helsinki.

A. Differences in Number and Distributions

To determine whether the outbreak of Covid-19 changes

users’ mobile engagement, first of all, we need to determine

the outbreak date in North America. Fig. 2 shows the cu-

mulative number of confirmed cases in North America from

February 2020 to April 2020 and the governmental policies

on the same timescale. The dashed curve is in the linear

scale, while the solid curve depicts the cumulative number

3The code is available at https://github.com/carat-project/carat/.

Fig. 2. The cumulative number of confirmed cases changes over time. The
federal government issued an emergency declaration on March 13, 2020. Most
states issued school closure rules and restaurant restrictions by April 7, 2020.

in the logarithmic scale. Notably, the propagation of Covid-

19 is in exponential growth. Therefore, using the logarithmic

scale curve makes it more accessible to detect the phase

change of increase trend and determine the outbreak date

accordingly [14]. In terms of Fig. 2, we can observe an

apparent step-up around March 1, 2020, as denoted by the

red point. Hence, we regard March 1, 2020, as the outbreak

date of Covid-19 in North America.

We then begin the analysis by comparing the distributions

of smartphone usage variables before and after the outbreak of

Covid-19. In Fig. 3, we use box-plots to depict the distributions

of the percentages of CPU usage, memory usage, WiFi usage,

and network switches, respectively. Specifically, the ‘Before’

set contains the samples from November 1, 2019, to February

29, 2020, while the ‘After’ set contains the samples from

March 1, 2020, to April 30, 2020. The box-plots describe

data distribution through quartiles. The candlesticks represent

the minimum and the maximum values, while the boxed area

contains the values between 25% and 75% quartiles. The

horizontal line denotes the median, while the green upper

triangle indicates the mean.

There is an apparent difference in smartphone usage across

the outbreak in terms of all hardware variables. The mean

values of CPU and memory usage drop from 7.36% and 3.93%

to 6.87% and 3.47%, respectively. Their differences across the

outbreak are significant under a two-sided t-test [15] with p
values of 5.239·10−5 � 0.001 and 7.383·10−18 � 0.001. The

decreases imply that users’ smartphone engagement becomes

less active after the outbreak, i.e., March 1, 2020. Meanwhile,

the WiFi usage percentage grows dramatically, where the mean

value rises from 56.95% to 64.06%. The distribution difference

is also significant under a two-sided t-test with a p value of

2.585 · 10−19 � 0.001. Since WiFi access points are usually

deployed indoors, we can conclude that people have more time

to stay indoors instead of going outside after the outbreak of

Covid-19. Moreover, we also notice that the percentage of

network switches drops remarkably. The mean value declines

from 3.98% to 2.85%, and the distribution difference is

significant, with p value 1.526 · 10−23 � 0.001. Similar to
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(a) The distributions of the percent-
age of CPU usage, p = 5.239 ·
10−5.

(b) The distributions of the percent-
age of memory usage, p = 7.383 ·
10−18.

(c) The distributions of the percent-
age of WiFi usage, p = 2.585 ·
10−19.

(d) The distributions of the percent-
age of network switches, p = 1.526 ·
10−23.

Fig. 3. The differences in smartphone usage before and after the outbreak of
Covid-19.

TABLE III
CORRELATIONS BETWEEN MEMORY USAGE AND WIFI USAGE ACROSS

DIFFERENT TIME PERIODS.

Over complete time window Before outbreak After outbreak

-0.0689 0.3205 -0.3240

WiFi usage, network switches also reflect the movement of

mobile users. Since the WiFi network is commonly deployed

indoors and limited by its coverage, network switches usually

occur when mobile users go from indoors to outside and from

outside to indoors. Consequently, the percentage of network

switches can reveal the mobility intensity of smartphone users.

In this way, the decreasing trend of network switches suggests

users have less mobility after the outbreak.

As a result, based on the differences in number and distribu-

tions, we can conclude that the outbreak of Covid-19 causes a

decrease in smartphone engagement in terms of both CPU and

memory usage. Meanwhile, the outbreak causes an increase

in users’ intensity staying indoors in terms of WiFi usage.

Further, we depict the correlation between WiFi usage and

memory usage to investigate smartphone usage intensity when

people stay indoors. Table III shows the correlations across

different time periods, i.e., over the complete time windows,

before the outbreak, and after the outbreak. As depicted in

Table III, WiFi usage and memory usage have a weak positive

correlation before the outbreak, which follows the commonly-

held intuition. However, after the outbreak, the correlation

becomes weak negative. We infer that the longer time to

stay at home after the outbreak may cause such differences.

When people have more time at home, they will prefer to

use their computers and laptops for entertainment instead of

smartphones.

B. Differences in Diurnal Patterns

In terms of the above statistical analysis, we can conclude

that the outbreak of Covid-19 has affected users’ smartphone

usage behavior. Next, we delve into the dynamic analysis,

i.e., revealing the differences in diurnal patterns. The diurnal

pattern depicts how users’ smartphone usage behavior unfolds

over the time of the day, which is an essential temporal pattern

studied by many previous studies [16], [17].

We define each day’s diurnal pattern by averaging the usage

data over the day’s active users. In our case, we evenly divide

one day into 48 time-slots, where each time-slot represents half

an hour. Therefore, each diurnal sequence is of 48 dimensions.

Next, we compute smartphone usage data for each time-slot.

In practice, as for CPU usage and memory usage behavior,

we take the averages in that time slot. For WiFi usage, we

calculate the proportion of WiFi connection records in that

time slot. Besides, for network switches, we calculate the

proportion of network type changes in the time slot. By doing

so, given one day, each type of smartphone usage behavior

will have a diurnal sequence with 48 dimensions. In total, we

have 728 diurnal sequences, i.e., 182 (# of days) × 4 (# of

usage types).

After obtaining the diurnal sequences, we use the t-SNE

transformation [18] to visualize them, as shown in Fig. 4.

t-SNE is a commonly used data transformation method that

projects high-dimensional data to a low-dimensional space

while keeping the similarity across objects. In Fig. 4, blue

points represent the dates before the outbreak, while orange

points represent the dates after the outbreak. We can observe

that excluding CPU usage, the other types of smartphone

usage behavior appear to be nicely separated by the outbreak.

This shows the existence of differences in diurnal patterns of

smartphone usage before and after the outbreak of Covid-19.

Based on the t-SNE visualization results, we propose a

hypothesis that the outbreak of Covid-19 will lead to a new

diurnal pattern for smartphone usage. In our case, the new

pattern means that it does not or rarely appears before the

outbreak but is popular on the dates after the outbreak. To

test the hypothesis, we apply K-means to cluster diurnal

sequences of the entire 182 days for each type of smartphone

usage behavior and examine whether the cluster results can be

distinguished by the outbreak date of Covid-19. Since there

are only two situations for any date, i.e., before or after the

outbreak, we set the number of clusters to two. The clustering

results are presented in Fig. 5∼8, where the cluster A and B

refer to the two-cluster output of K-means. Also, we regard

the centroid as the typical diurnal pattern of the cluster.

Diurnal patterns of CPU usage. As shown in Fig. 5(a),

the obtained two typical diurnal patterns of CPU usage have

the same trend but different values. Both of them decrease

during the night and increase during the day, while cluster

B’s centroid is of lower numerical values. Fig. 5(b) shows

that, compared to cluster A, cluster B accounts for a higher

proportion of the dates after the outbreak, consistent with the

dropping trend observed in Fig. 3(a). We also observe that

Covid-19 only affects the proportion of two cluster labels, and

both typical patterns frequently appear on the dates before the
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(a) t-SNE representation of CPU us-
age patterns.

(b) t-SNE representation of memory us-
age patterns.

(c) t-SNE representation of WiFi usage
patterns.

(d) t-SNE representation of network
switch patterns.

Fig. 4. t-SNE representation of diurnal sequences of smartphone usage, projecting high-dimensional data to a 2-dimensional space while keeping the similarity
across objects.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 5. Cluster results of CPU usage diurnal patterns.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 6. Cluster results of memory usage diurnal patterns.

outbreak. In other words, the outbreak did not create a new

typical diurnal pattern of CPU usage. The t-SNE visualization

in Fig. 4(a) also verifies this.

Diurnal patterns of memory usage. As depicted in

Fig. 6(a), similar to CPU usage, two typical diurnal patterns

obtained are also with the same trend but different numerical

values. In terms of Fig. 6(b), over 80% of the dates before the

outbreak belong to cluster A. Meanwhile, more than 65% of

the dates after the outbreak belong to cluster B. Therefore, we

can conclude that the cluster results can be distinguished by

the outbreak date. Also, cluster B’s centroid can be regarded

as a new typical diurnal pattern because it rarely appears

before the outbreak and becomes common after the outbreak.

In summary, Covid-19 leads to the appearance of a new typical

diurnal pattern of memory usage, corresponding to the t-SNE

visualization in Fig. 4(b).

Diurnal patterns of WiFi usage. Fig. 7 displays the

cluster results of WiFi usage. Unlike CPU and memory usage,

apart from numerical differences, the centroids of WiFi usage

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 7. Cluster results of WiFi usage diurnal patterns.

(a) The centroids of clusters. (b) Proportion of cluster labels.

Fig. 8. Cluster results of network switch diurnal patterns.

clusters also have different changing trends. As depicted in

Fig. 7(a), the centroid of cluster B has a higher percentage

of WiFi usage throughout the day. Instead of a cliff-like drop

shown in cluster A, cluster B has a slow-down after 6 am.

This indicates that users need less mobile network support on

the dates in cluster B. Moreover, similar to memory usage, the

dates after the outbreak have a dominating cluster, i.e., cluster

B. Therefore, Covid-19 also brings a new diurnal pattern of

WiFi usage, leading users to use more WiFi connections.

Diurnal patterns of network switches. We exhibit the clus-

tering results of network switch patterns in Fig. 8. As discussed

in Section III-A, network switches can reflect the mobility

intensity of smartphone users. In Fig. 8(a), the centroid of

cluster A presents two peaks in the morning and evening rush

hours, which verifies the above discussion. We notice that less

than 18% of the dates after the outbreak belong to cluster

A, indicating that users’ mobility intensity drops significantly.

Alternatively, cluster B has fewer network switches throughout

the day and without bimodal patterns, indicating that users
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(a) CPU usage and cumulative con-
firmed cases.

(b) CPU usage and new confirmed
daily cases.

(c) Memory usage and cumulative
confirmed cases.

(d) Memory usage and new confirmed
daily cases.

(e) WiFi usage and cumulative con-
firmed cases.

(f) WiFi usage and new confirmed
daily cases.

(g) Network switches and cumula-
tive confirmed cases.

(h) Network switches and new con-
firmed daily cases.

Fig. 9. The daily patterns of smartphone usage and the number of daily confirmed cases of Covid-19.

TABLE IV
PEARSON CORRELATIONS BETWEEN SMARTPHONE USAGE AND COVID-19 CASES.

Delay
(day)

CPU usage Memory usage WiFi usage Network switch

Cumulative
(log)

New
confirmed

Cumulative
(log)

)
New

confirmed
Cumulative

(log)
New

confirmed
Cumulative

(log)
New

confirmed

0 -0.0632 -0.2670 -0.8163 -0.8119 0.8364 0.8053 -0.7649 -0.7809

1 -0.0383 -0.2339 -0.8119 -0.8091 0.8754 0.8253 -0.7838 -0.8234

2 -0.0541 -0.2444 -0.8315 -0.8369 0.8667 0.8263 -0.7830 -0.8369

3 -0.0240 -0.2081 -0.8277 -0.8399 0.8523 0.8312 -0.7772 -0.8430

have less mobility on the dates in that cluster. Although cluster

B dominates the dates after the outbreak, it also frequently

appears before the outbreak. As a result, similar to CPU usage,

Covid-19 only changes the proportion of different network

switch patterns but does not trigger the appearance of new

patterns.

Consequently, the outbreak of Covid-19 also profoundly af-

fects diurnal patterns of smartphone usage behavior, implying

that the diurnal sequences of smartphone usage can be used

to reflect the outbreak status.

C. Correlations Between Smartphone Usage and Covid-19
Daily Cases

We then analyze the correlations between smartphone usage

and Covid-19 daily cases. Specifically, we take the average

over the active users of each day and plot both the daily

sequences of smartphone usage and the number of daily

confirmed cases of Covid-19 in Fig. 9, from February 1,

2020 to March 30, 2020. For the figures of CPU usage,

memory usage, and network switches, we inverse the y-axis

for better visualization. From the results, we can observe that

memory usage, WiFi usage, and network switches have strong

correlations with both cumulative and new confirmed daily

cases. That is because smartphone usage behavior reflects

users’ physical activities, e.g., staying at home and mobility

intensity. Meanwhile, users’ physical activities will influence

and be affected by Covid-19. Therefore, smartphone usage

behavior can indirectly reveal Covid-19 trends. Moreover, in

Fig. 9(f) and Fig. 9(h), we discover a delay in the changing

trends between smartphone usage behavior and new confirmed

cases. In other words, smartphone usage changes earlier than

the number of cases.

Further, to better explore the delay phenomenon, we put

a set of delays on the daily sequences of smartphone usage

behavior from 0 to 3 days. Then, we compute the Pearson

correlation between shifted smartphone usage and Covid-19

sequences. The results are illustrated in Table IV. From the

results, we discover that different smartphone usage features

have various correlations with daily confirmed cases. Gener-

ally, memory usage, WiFi usage, and network switches have

significant linear correlations with Covid-19 daily confirmed

cases. The absolute values of their Pearson coefficients are

greater than 0.8. However, CPU usage has a weak Pearson

correlation, only around -0.26, with new confirmed cases of

Covid-19. These observations are consistent with the findings

in Section III-B. Moreover, when we delay usage behavior,

it will have a higher correlation with Covid-19 cases, which

corresponds to the observation that smartphone usage changes

earlier than Covid-19 cases. Also, different smartphone usage

variables show different typical time delays. In summary, the
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(a) Performance with LR classifier. (b) Performance with SVM classifier. (c) Performance with Xgboost classifier.

Fig. 10. Covid-19 outbreak stage inferences with different time delays.

correlations between smartphone usage behavior and daily

confirmed cases present a high potential of using smartphone

usage for daily outbreak stage inference of Covid-19.

IV. INFERENCE OF OUTBREAK STAGES

In this section, we study the second research problem, i.e.,

whether we can use smartphone usage data, e.g., CPU usage,

memory usage, and network connections, to infer the outbreak

stages of Covid-19. The outbreak stages reflect different

severities of the pandemic. Specifically, we try to determine

two points, i.e., the typical time delay of stage inference

using smartphone usage data and the performance of different

smartphone usage features in Covid-19 stage inference. Also,

to further improve inference performance, we propose an

embedding mechanism to fuse different smartphone usage

behavior features.

A. Inference Settings

Recalling Fig. 2, we can witness that the outbreak of Covid-

19 has shown three stages from March 1, 2020, to April 30,

2020. First, the dates from February 1, 2020, to March 1,

2020, are the early stage of Covid-19, with only a few cases

appearing. Second, during the dates from March 1, 2020, to

April 1, 2020, the daily confirmed cases increased dramati-

cally. Third, on the dates after April 1, 2020, the increasing

trend of Covid-19 cases is stable. Therefore, we label Covid-

19 outbreak stages with three classes, i.e., early, dramatic,

and stable. By doing so, the inference problem is converted

into a 3-class classification problem. Specifically, we infer the

outbreak stages of one day by using its diurnal sequences of

different smartphone usage behavior, including CPU usage,

memory usage, WiFi usage, and network switches. Also, to

evaluate the performance, we use Macro-F1 and Micro-F1 as

metrics. Macro-F1 treats all classes equally, computing the

F1-score independently for each class and then taking the

average. Alternatively, Micro-F1 aggregates the contributions

of all classes to compute the average F1-score. The higher the

value of Macro-F1 and Micro-F1, the better the performance.

For all experiments, we obtain the results by employing a five-

fold cross-validation policy on our dataset.

B. Delay Analysis of Stage Inference

As we have discussed in Section III, users’ smartphone

usage behavior can reflect their physical activities and the

outbreak stages of Covid-19. However, the reflection may

not be immediately expressed by the daily cases of Covid-19

due to the incubation period and diagnosis delay. Hence, we

explore the typical time delay of stage inference. Specifically,

we infer the outbreak stage of one day by utilizing the smart-

phone usage features of the days before it. We use inference

performance to evaluate the correlations between smartphone

usage and Covid-19 trends. In other words, better performance

indicates a higher correlation. Notably, different from the Pear-

son correlation, the task of inference can also reveal nonlinear

correlations. In practice, we conduct the inference with the

three most commonly used classification algorithms, logistic

regression (LR) [19], support vector machine (SVM) [20] and

Xgboost [21]. We infer the outbreak stages of one day by

concatenating all behavior types’ diurnal sequences, including

CPU usage, memory usage, WiFi usage, and network switches.

We show the results in Fig. 10. The LR classifier has poor

performance, and F1 scores fluctuate on different delays. That

is because the LR classifier only uses a logistic function to

model the correlation, which is more susceptible to outliers

tampering with the performance. Therefore, it is hard to

capture the relations between smartphone usage features and

Covid-19 outbreak stages with the LR classifier using the real-

word dataset that might have noisy data points. Alternatively,

as shown in Fig. 10(b) and Fig. 10(c), SVM and Xgboost

classifiers have better performance. Also, we can observe that

F1 scores achieve the highest value under a delay of 2 or 3

days. This observation confirms that the reflection of users’

smartphone usage behavior will emerge in Covid-19 trends

with a time delay of a few days, further validating our analysis

in Section III-C.

C. Performance of Different Usage Features

Next, we evaluate the performance of different smartphone

usage features and their combinations for the Covid-19 out-

break stage inference. Specifically, we explore four types of

smartphone usage features, i.e., CPU usage (CPU), memory

usage (Mem), WiFi usage (WiFi), and network switches (Net).

We combine a set of features by concatenating them together.

We perform the inference with the Xgboost classifier. The

performance of different combinations of features is shown

in Table V.

For the inference with a single feature, the performance

of using network switches is the best, indicating that users’

mobility intensity is most relevant to the Covid-19 status.

Meanwhile, WiFi and memory usage achieve relatively good

performance, implying that WiFi and memory usage also
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TABLE V
INFERENCE PERFORMANCE WITH DIFFERENT FEATURES.

Features Macro-F1 Micro-F1
CPU 0.590 0.584
Mem 0.702 0.697
WiFi 0.713 0.708
Net 0.757 0.753

CPU+Mem 0.666 0.663
CPU+WiFi 0.722 0.719
CPU+Net 0.609 0.685

Mem+WiFi 0.683 0.674
Mem+Net 0.735 0.730
WiFi+Net 0.707 0.696

CPU+Mem+WiFi 0.716 0.708
CPU+WiFi+Net 0.715 0.707
Net+Mem+WiFi 0.739 0.730
CPU+Mem+Net 0.766 0.764

CPU+Mem+Net+WiFi 0.733 0.721

GRU GRU GRU

Smartphone 
Usage

Embedding

GRU GRU GRU

Encoder Decoder

z

Fig. 11. Seq2Seq model for smartphone usage embedding.

reflect crucial human behavior related to Covid-19. In contrast,

the CPU usage feature is less related and with the lowest

inference performance. These inference results are consistent

with our findings in Section III. As for the inference with

multiple features, the performance is not simply a superpo-

sition of single features’ performance. In terms of Table V,

the best performance is achieved by using CPU, memory,

and WiFi usage. However, it only achieves the F1 score of

around 0.76, slightly higher than when merely using network

switches. Also, most cases of using multiple features have

lower performance than simply using network switches. These

results reveal that simple concatenation is insufficient to fuse

different behavior data, motivating us to develop a better fusion

mechanism to explore different features effectively.

D. Smartphone Usage Behavior Embedding

In this section, we propose an embedding model to fuse

different smartphone usage behavior effectively. Given a day,

we first construct a diurnal smartphone usage feature sequence

{ui}48i=1, where ui is a vector containing all four usage features

in the i-th timeslot of the day. We then utilize a Seq2Seq [22]

model to learn an embedding from the diurnal sequence. As

shown in Fig. 11, the model consists of an encoder and a

decoder, which are implemented with a GRU network [22].

The sequence {ui}48i=1 is fed into the encoder to obtain an

Fig. 12. Outbreak stage inferences with embeddings.

encoding vector of z. Then, z and a shifted usage sequence

{ui}47i=0 are fed into the decoder to reconstruct the original

sequence, where u0 is a vector that contains all 1. Moreover,

to encode comprehensive information in vector z, we engage

z in the reconstruction. Formally, the i-th unit of the decoder

takes ui−1 as input and outputs hidden state ĥi , we infer ûi

as,

ûi = σ(W [ĥi, z] + b), (1)

where [, ] is the concatenating operation, σ is the sigmoid

activating function, W and b are trainable parameters. Finally,

we train the model by minimizing the reconstruction loss,

L =

48∑
i=1

|ûi − ui|2. (2)

In our experiment, we train the model with the Adam

optimizer with a learning rate of 0.0001. The batch size is set

as the number of sequences, and we train the model for 200

epochs. By doing so, we obtain a usage embedding vector for

each day. To evaluate whether the embedding fuses different

usage features better, we conduct the inference on the original

features (Raw) and the original features concatenated with the

learned embeddings (Raw + Embedding). We again use the

Xgboost classifier as the inference model.

We compare the performance with embeddings, as shown in

Fig. 12. We can observe that, by combining with embeddings,

we improve the entire performance under different delay

settings. Especially when the delay is set as two days, the per-

formance of raw features combined with embeddings reaches

around 0.87 for both Macro-F1 and Micro-F1, which has an

over 20% improvement compared with the best performance

of only using raw features. These results demonstrate that the

learned embeddings fuse multiple features more effectively

indeed.

V. DISCUSSION AND LIMITATION

In this paper, we have investigated the impact of Covid-19

on smartphone usage based on a real-world dataset. However,

the number of users involved in our dataset is not very

large, i.e., covering 425 users, which is a limitation of our

work. The limited number of users involved may threaten the

representativeness of our conclusion. To alleviate the influence

caused by a limited number of users, we have taken several

adequate measures in our work. For example, we compared the

distribution of variables instead of the average and median. We

also used the p-value to verify statistical significance.
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Fig. 13. A potential causality diagram of smartphone usage and Covid-19
cases.

Although we have examined the correlation between smart-

phone usage behavior and Covid-19 cases, their causality

relationship still needs further exploration. In Fig. 13, we

depict a potential causality diagram of smartphone usage and

Covid-19 cases. People mobility and psychological state serve

as a confounder and mediator connecting smartphone usage

and Covid-19 cases, respectively. Smartphone usage is directly

affected by mobility and can act as a mobility indicator.

Also, smartphone usage is still affected by the psychological

states of users [13]. Meanwhile, the causation between people

mobility and Covid-19 cases is bidirectional. On the one hand,

frequent people mobility will trigger new Covid-19 cases. On

the other hand, Covid-19 will affect people’s mobility through

governmental policies and their psychological states. There-

fore, the causation between smartphone usage and Covid-

19 cases might be complex. As for checking the potential

causality diagram we proposed, we leave it to future work.

VI. RELATED WORK

Many previous studies have focused on characterizing

smartphone usage behavior. Shafiq et al. [23] presented the

diurnal pattern of smartphone network usage from various

granularities, i.e., bytes, packets, flows, and users. Peltonen et
al. [24] collected a one-year smartphone usage dataset from

25,323 users distributed in 44 countries. They then studied

how cultural features affect users’ smartphone usage behavior.

Srinivasan et al. [25] indicated that smartphone usage behavior

profoundly depends on contextual information. For example,

users use more WiFi connections at home. Moreover, Van

Canneyt et al. [26] exhibited that the occurrence of special

events, e.g., New year’s day, UEFA European Championship,

will disrupt users’ normal smartphone usage patterns. These

existing studies demonstrate that users’ smartphone usage

behavior will be sensitively impacted by diverse contextual

factors, including time, locations, and big events, which in-

spired us to investigate how the outbreak of Covid-19 affects

the smartphone usage behavior.

Also, some studies pointed out the strong link between

smartphone usage behavior and users’ physical attributes and

activities. Zhao et al. [27] analyzed one month of smartphone

usage data collected from 106,762 users. They then discovered

382 distinct types of users based on their usage behavior.

Also, they gave each cluster a meaningful label, such as night

communicators, evening learners, and financial users. Do et
al. [28] represented users’ smartphone usage traces in one day

as a bag-of-words, where one word refers to a smartphone

usage record with time features. They then applied an author-

topic model to infer the underlying structure of users’ physical

activities. Similarly, Li et al. [29] leveraged smartphone app

usage data to identify users’ daily activities. These studies

demonstrated that users’ physical activities profoundly shape

smartphone usage behavior, which shed light on using smart-

phone usage data to reflect human activities and further infer

Covid-19 outbreak stages.

Smartphone usage behavior is still affected by users’ psy-

chological states. For example, Saeb et al. [30] explored

smartphone sensors’ data, like accelerometer, screen, GPS,

and WiFi, which help estimate the depression and anxiety

of users. Their methods can also be applied to our dataset,

allowing us to detect the depression of users. During the

Covid-19 crisis, we need to pay more attention to mental

health in the population. Covid-19 may trigger psychiatric

disorders of people [31]. Elhai et al. analyzed gaming disorder

severity [32] and anxiety symptoms [33] during Covid-19.

Moreover, Montag et al. [13] pointed out that we can leverage

smartphone data to detect population mental states in real-time

to help fight the Covid-19 pandemic. They also developed

an app [34] for social scientists, which tracks smartphone

usage data by combining self-report data with objectively

recorded data. In practice, conducting population-scale digital

phenotyping might be challenging due to the lack of sufficient

labeled data. In that case, label-less learning should be a

helpful technology. For example, Chen et al. [35] proposed

a label-less learning for emotion cognition on a large-scale.

Some studies also analyzed physical activities during Covid-

19 by using smartphone app usage and sensory data. Nor-

bury et al. [36] discovered a positive relation between social

app usage and total footsteps (obtained from sensory data)

during the lockdown due to Covid-19. Couture et al. [37]

investigated county-to-county movements based on the GPS

data collected from smartphones. Unlike the above studies,

our work directly investigates the relation between smartphone

usage and the Covid-19 outbreak.

VII. CONCLUSION

We conduct the first comprehensive study of the impact

of Covid-19 on smartphone usage. Specifically, our analysis

covers the mobile users in North America with six-month

smartphone usage records from November 2019 to April 2020.

Overall, our findings indicate that users’ smartphone usage

indeed changes across the outbreak of Covid-19. However,

the outbreak has different effects on different usage behavior

in terms of changing trends, diurnal patterns, and correlations.

Also, we demonstrate the potential of using smartphone usage

data to infer the outbreak stages, achieving over 0.8 for

both Macro-F1 and Micro-F1. Our findings provide a novel

application of smartphone usage data and explore their values

for fighting against the epidemic.
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ABSTRACT

The prevalence of smartphones has promoted the popularity of

mobile apps in recent years. Although significant effort has been

made to understand mobile app usage, existing studies are based

primarily on short-term datasets with limited time span, e.g., a few

months. Therefore, many basic facts about the long-term evolution

of mobile app usage are unknown. In this paper, we study how mo-

bile app usage evolves over a long-term period. We first introduce

an app usage collection platform named carat, from which we have

gathered app usage records of 1,465 users from 2012 to 2017. We

then conduct the first study on the long-term evolution processes

on a macro-level, i.e., app-category, and micro-level, i.e., individ-

ual app. We discover that, on both levels, there is a growth stage

enabled by the introduction of new technologies. Then there is a

plateau stage caused by high correlations between app categories

and a pareto effect in individual app usage, respectively. Addition-

ally, the evolution of individual app usage undergoes an elimination

stage due to fierce intra-category competition. Nevertheless, the

diverseness of app-category and individual app usage exhibit op-

posing trends: app-category usage assimilates while individual app

usage diversifies. Our study provides useful implications for app

developers, market intermediaries, and service providers.
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1 INTRODUCTION

Since the introduction of the first Android-based smartphone the

‘HTC Dream’ in 2007 [28, 29], the usage of smartphones has signifi-

cantly evolved over the last ten years, extending from essential com-

munications to various applications, e.g., ordering food, shopping

online, and managing health [1, 10, 19, 20]. Such diverse demands

are supported by mobile apps, i.e., software applications designed

to run on mobile devices [30]. To satisfy various user requirements,

Google Play and Apple Store, i.e., the official Android and iOS app

markets, provide a wide range of apps for mobile users. As of 2019,

the number of apps in app markets has reached 2.7 million [21],

and the app economy is estimated to grow to 6.3 trillion dollars by

2021 [25]. Such a vast market attracts and motivates app develop-

ers, market intermediaries, and service providers to better develop,

disseminate, and deliver mobile apps.

In recent years, countless efforts have been made to study mobile

app usage. Existing studies principally explore users’ static behavior

based on short-term datasets collected in a given time window

ranging from one week [5, 23, 26], several months [6, 14, 15, 27, 32],

and up to one year [18]. However, existing research falls short in

studying the long-term evolution of users’ app usage since they are

limited by the short time span of their datasets.

Every year, mobile users will acquire new generations of smart-

phones, technologies, and apps. Both smartphone hardware and

software are significantly advancing over time. As a result, users’

mobile app usage will correspondingly evolve. The evolution of app

usage makes some previous findings based on short-term datasets

out-of-date and no longer applicable. Hence, in this dramatically

changing world, studying evolutionary trends and extracting gen-

eral laws behind mobile app usage enables us to gain insight be-

yond short-term observations. However, up to now, many basic

facts about the long-term dynamics of mobile app usage are unknown.

Therefore, exploring the long-term evolution of mobile app usage

is essential.

Understanding the long-term evolution of mobile app usage is

critical for industry because understanding such mechanisms can

enable companies to effectively improve user experience, enhance

apps’ competitive power, and grasp market opportunities during

development. For instance, for market intermediaries and service

providers, analyzing the evolution processes can help with track-

ing app preferences of users, monitoring the maturity of different

66



app categories, and forecasting the future flourishing apps. They

can further draw upon such insights to optimize the decisions for

maintaining and improving the entire app market. Moreover, the

long-term evolution study can help app developers grasp general

laws behind the long-lived app categories and apps. In this way, app

developers can make better decisions for developing and releasing

apps and improving the competitive power of their apps.

In this paper, we make the first effort towards understanding the

long-term evolution of mobile app usage. Specifically, our study

details how users’ usage changes over time at both s macro-level

and micro-level, i.e., app categories and apps, respectively. To this

end, we have collected a long-term app usage dataset by leveraging

an Android-based platform called Carat. The dataset covers around

1,500 users in over 80 countries and their app usage records for six

years from 2012 to 2017 (Section 2). We first use the dataset to make

a macro-level analysis on the evolution of app-category usage in

terms of four metrics, i.e., the number of used app categories, the

diversity of app-category usage, the popularity of app categories

and the correlations of app categories (Section 3). Next, we extend

our analysis to the micro-level, i.e., individual app granularity. We

characterize the evolution of app usage based on similar metrics.

Comparing the evolving trends between the macro-level and micro-

level, we delve into the reasons and summarize the general laws

of long-term usage evolution (Section 4). At last, we explore the

implications of our findings for app developers, market intermedi-

aries, and service providers (Section 5). Among the many insightful

results and observations, the following are the most prominent.

• The long-term usage evolution of app-categories and apps

exhibits different processes. A complete usage evolution of an

app-category undergoes two stages, i.e., a growth stage and

a plateau stage. However, apart from the above two stages,

apps have one more additional stage, i.e., an elimination

stage.

• The diversity of app-category usage declines over time due

to non-decreasing usage evolution processes. However, the

diversity of app usage increases greatly, showing large dif-

ferences between mobile users at the app level.

• The app usage shows a typical Pareto effect. A small group

of apps dominate usage in both the entire app market and

individual app categories. Also, we identify 12 essential apps

of different functionality for smartphones.

• The release of new technologies will trigger the growth stage

for both app categories and apps. This increasing trend will

not be influenced by the maturity of app categories and the

Pareto effect.

• The fierce intra-competition of apps results in an elimination

stage of app usage and the decrease in correlations between

apps in the same category. Also, the evolution of app us-

age will be affected by the degree of maturity of the app’s

category.

2 LONG-TERMMOBILE APP USAGE DATASET

2.1 Data Collection and Basic Analysis

It is difficult to collect a long-term app usage dataset for two main

reasons. 1) For privacy and safety concerns, mobile users are hesi-

tant to let a third party collect their data, especially for long-term

collection. 2) In the research community scholars can recruit vol-

unteers and use a monitoring app to collect app usage records.

However, executing such a long-term study is costly in terms of

both human labor and capital.

To overcome the above difficulties, we designed an Android-

based long-term data collection platform called Carat. Carat is a

mobile app that can record users’ smartphone usage data auto-

matically. First, to eliminate user privacy concerns, the user will

be informed of all data collection items when installing Carat in

the End-user License Agreement (EULA). We will not collect any

personal information. Furthermore, the data-gathering part of the

platform is open-source1 thus users can examine it easily. Second,

to reduce the expense of long-term data collection, we motivated

users to keep using Carat for long time periods. To this end, we

designed Carat as not only a simple data collection app but also a

collaborative energy diagnosis app. Carat can provide personalized

recommendations for improving smartphone battery life. Carat

gathers a data sample every time the battery level changes by 1%,

as allowed by the Android system. Each data sample contains a list

of apps being used, a user-specific identifier, battery level, times-

tamp, time zone, mobile country code, and mobile network type.

As of now, the Carat platform has gathered data from over 30,000

mobile users from over 100 countries2.

As our focus is on studying the long-term evolution of mobile

app usage, we select users with more than three years of records

and define them as long-term users. In the end, we obtain 1,465

long-term users with 12,457,867 records starting from January 2012

to December 2017. Since the user may uninstall and reinstall Carat

during the data collection period, the number of long-term users

changes over time, i.e., 2012 (965 users), 2013 (836 users), 2014 (1,010

users), 2015 (1,197 users), 2016 (1,114 users), 2017 (916 users). Also,

we crawl the apps’ category information directly from Google Play.

Table 1 summarizes the dataset used in our analysis.

Unlike previous works whose mobile app usage datasets are

collected only from one city [8, 23, 32] or one country [31], our

users are distributed across the world. The long-term users are from

87 countries. We use both time zones and mobile country codes

to determine the country of users. The majority of the users are

based in the USA (360 users). Also, there are many users in Finland

(278 users), India (60 users), Germany (52 users), and the UK (49

users). The diversity of the Carat dataset enables us to capture

the evolving trends of the worldwide app market, improving the

representativeness of our analysis results.

2.2 Ethical Considerations

We are very aware of the privacy implications of using the collected

data for research. We have taken adequate measures to safeguard

the privacy of the involved mobile users. As mentioned, we do

not collect any personal information from users. Also, the data-

gathering part of Carat is open-source. The mobile users are in-

formed of the data collection and management procedures and

grant their consent from their devices. The dataset is stored in a

secure local server protected by strict authentication mechanisms

1http://carat.cs.helsinki.fi/
2Sample of our collected data available at https://www.cs.helsinki.fi/group/carat/data-
sharing/.
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Table 1: Summary of our dataset.

# Users # Records # Apps # App Categories Attributes Date Area

1,465 12,457,867 25,068 32 Apps, time zone, timestamp, mobile network type 01/2012 - 12/2017 Over 80 countries

(a) CDF of the number of app categories
used by each unique user.

(b) Distribution of used app categories
across different years.

Figure 1: Evolution of app-category usage across six years.

and firewalls. A user-specific identifier is randomly generated when

a user first installs Carat. We only have users’ mobile country codes

rather than sensitive location information. Hence, we cannot asso-

ciate user-specific identifiers with physical users. All researchers

are regulated by a strict non-disclosure agreement to access the data.

This work has received approval from all authors’ local institutions.

3 EVOLUTION OF APP-CATEGORY USAGE

3.1 Number of App Categories

We begin our analysis by investigating the most intuitive metric

of app-category usage, i.e., the number of app categories used by

each user during a given year. Figure 1(a) presents the Cumulative

Distribution Function (CDF) of the number of used app categories

for all long-term users from 2012 to 2017. We observe that the

evolution of app-category usage undergoes two stages.

• Stage one (2012 - 2014). In this stage, the number of app

categories used by each user increased significantly. The

increasing trend suggests that during this stage, smartphones

were endowed with more functions, and people started using

smartphones in more diverse activities. In 2012, over 80% of

users used less than 14 app categories, while the number

increased to 20 by 2014. Moreover, the average number of

used app categories expanded from 12 in 2012 to 17 in 2014.

• Stage two (2014 - 2017). During this stage, the number

of used app categories remained stable over time, which

implies that both smartphones’ functions and users’ usage at

the app-category granularity became steady. As depicted in

Figure 1(a), the CDF curves for years from 2014 to 2017 are

very close to each other. The average number of used app

categories was around 17.

Alternatively, to better illustrate the changes in the number of

used app categories, we depict the distributions across different

years using box-plots in Figure 1(b). Compared with CDF curves,

box-plots describe data through their quartiles, enabling us to ob-

serve the changes in different groups of data [17]. In the box-plot,

candlesticks represent the minimum and the maximum values of

the data, while the boxed area contains the values between the 25%

Figure 2: Proportions of

mobile network types.

Figure 3: Jaccard distance of

app-category usage.

and 75% quatiles. The horizontal line depicts the median. The green

upper triangle denotes the mean. From 2012 to 2014, the values in

the interquartile range, i.e., the boxed area, increased significantly,

reinforcing Figure 1(a). However, after 2014, the third quartile is

constant, implying the group of users who use relatively more app

categories remained stable. Although the first quartile dropped

slightly until 2016, there was no discernible change in terms of the

average value. Especially in 2016 and 2017, the interquartile range

was the same, representing a steady state in users’ app-category

usage.

One possible reason for the increase in used app categories in

stage one is the development of mobile networks. From 2012 to

2014, many countries, including the USA, Finland, the UK, etc.,

started to deploy fourth-generation mobile networks (4G) [16]. By

2014, 4G mobile networks had been commercialized and used on

a large scale. In terms of the mobile network types in our dataset,

we present how the proportions of different mobile network types

changed from 2012 to 2017 in Figure 2. In our case, 2G and 3G refer

to second-generation and third-generationmobile networks, respec-

tively. We can observe that by 2014, around 30% of collected users

were using 4G networks, and the fraction grew steadily after that,

corresponding to the commercialization of 4G networks. Compared

to 3G providing up to 21.6 Mbit/s download rate, 4G networks can

support 1 Gbit/s or about 50 times that of 3G. As a result, mobile

networks no longer inhibit the usage of latency-sensitive apps and

data consuming apps, e.g., online gaming apps, online video apps,

and map apps. Therefore, more app categories are widely used

by mobile users to facilitate and color their lives. The details of

the changes in popularity across different app categories will be

discussed in Section 3.3.

3.2 Diversity of App-category Usage

We next study the diversity of app-category usage across different

users. In 2010, Falaki et al. [7] first demonstrated the diversity of

smartphone usage and strongly motivated the need for customizing

smartphones to different mobile users. Zhao et al. [32] illustrated

diversity in mobile app usage as well. Hence, we are interested in
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analyzing how the diversity of app-category usage changes over

time.

We apply Jaccard distance [13] to measure the difference in app-

category usage between two users. Jaccard distance is a commonly

used metric to measure the similarity between two sets. Denoting

Ca and Cb as the sets of app categories used by user A and user B,
respectively, the Jaccard distance is computed as,

J (A,B) =
|Ca

⋃
Cb | − |Ca

⋂
Cb |

|Ca
⋃
Cb |

. (1)

If the two users use the same app categories, i.e.,Ca = Cb , J (A,B) =
0. On the contrary, if the two users use completely different app

categories, i.e., Ca
⋂
Cb = , J (A,B) = 1.

For each year, we compute the Jaccard distance between every

two users and illustrate the distributions using box-plots, as shown

in Figure 3. We notice that the average pairwise distance, denoted as

the green triangle, shows a downtrend. Especially from 2013 to 2014,

the average value dropped dramatically from 0.42 to 0.32. Although

there was a slight increase after 2014, the average pairwise distance

was still much lower than that of 2013. Also, the distribution did

not significantly change from 2014 to 2017. The decaying distance

reflects that the diversity of app-category usage declined, and users’

requirements for smartphone functions tend to be consistent. We infer

that two reasons led to a decrease in the diversity of app-category

usage. First, the development of technologies, including in mobile

networks, smartphone hardware, and software, etc., caused more

app categories to become popular, and mobile users use similar app

categories. For instance, because of the low network throughput

and low quality of experience for online gaming, in 2012, only a

small group of game fans would use online gaming apps. However,

after the large-scale deployment of 4G networks, the quality of

experience of mobile online games improved significantly. People

become eager to download and play mobile online games. This

inference is supported by the increasing popularity of game apps

and will be discussed in detail in Section 3.3. Therefore, in this way,

users tend to use similar app categories. Second, the app ecosys-

tem pushes mobile users to use similar app categories. With the

widespread adoption of mobile apps, a robust app ecosystem has

formed, and the correlations of different app categories has become

stronger (detailed in Section 3.4). For example, mobile users may

share music, games, or books with their friends through social and

communication apps. Therefore, their friends have to install the

corresponding app categories if they want to open shared content.

As time goes by, people will gradually use similar app categories.

3.3 Popularity of App Categories

To understand which app categories are more competitive and

explore general laws in usage evolution, we next investigate how

the popularity of each app category changes over time. In our case,

we measure the popularity in terms of unique users, which is the

ratio of the users who used that app category to all long-term users.

For instance, if one app category has a popularity of 0.9, it means

that 90% of long-term users have used at least one app belonging

to that app category. Figure 4 shows the popularity of each app

category across different years. From 2012 to 2014, there were 26

app categories. In 2015, three new app categories were introduced,

i.e., ‘Art and design’, ‘Food and drink’, and ‘Maps and navigation’.

Figure 4: App category popularity across different years.

In 2016, there were two new categories, i.e., ‘Events’ and ‘House

and home’. In 2017, one new category, ‘Dating’ appeared. Therefore,

in total, we have 32 app categories.

We first focus on the prevalent app categories. We define an

app category as prevalent if its popularity is higher than 0.9. The

prevalent app categories represent the critical requirements and

preferences of mobile users. We discover that there are two types of

prevalent app categories distinguished by their evolution processes.

• Prior prevalent app category. This type refers to the cate-

gory whose popularity has exceeded 0.9 since 2012. There are

six prior prevalent categories, including ‘Communication’,

‘Music and audio’, ‘Productivity’, ‘Social’, ‘Tools’, and ‘Video

players’, which suggests smartphones have already acted as

communication devices and multimedia players since 2012.

• Posterior prevalent app category. This type refers to the

category whose popularity reached 0.9 after 2012, which

suggests changes in smartphone roles. There are four pos-

terior prevalent categories, i.e., ‘Entertainment’, ‘News and

magazines’, ‘Photography’, and ‘Travel and local’.

Compared to prior prevalent categories, posterior prevalent cate-

gories are more relevant to life services. The emerging of posterior

prevalent categories implies smartphones changed from commu-

nication tools to life assistants coloring users’ daily lives. This

shifting may be caused by the development of technologies in mo-

bile networks, smartphone hardware, and software. For example,

as analyzed in Section 3.1, the prevalence of ‘Entertainment’ might
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Figure 5: The growth rates of popularity across different app categories.
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(b) The hype cycle of popularity for different app categories in 2017.

Figure 6: The evolution of app category popularity.

be caused by the upgrade of mobile networks. The increment in

smartphone screen size may be responsible for the rise in the usage

of ‘News and magazines’ due to the improved reading experience.

‘Photography’ apps also benefit from the upgrade of smartphone

hardware. More powerful CPU and high-resolution cameras en-

able ‘Photography’ apps to process and render photos in real-time.

Also, we infer that ‘Travel and local’ apps became prevalent due to

the improvement in software services, like recommendations and

visualizations.

It is of great importance to study the growth rates of popular-

ity across different app categories for capturing users’ preferences

during the evolution of the app market. For each app category,

we compute its growth rate of popularity during two stages, i.e.,

2012-2014 and 2014-2017, respectively. Figure 5 shows the results.

From 2012 to 2014, except for prior prevalent app categories, the

popularity of other app categories increased. This trend suggests

that the app market for prior prevalent app categories has been ma-

ture since before 2012, and the entire app market experienced a boom

period from 2012 to 2014. The ‘Medical’ category had the highest

growth rate during stage one, growing more than nine times. Such

a high growth rate for the ‘Medical’ category verifies our previous

inference that smartphones are turning into users’ life assistants.

Additionally, the popularity of other life-related app categories,

like ‘Finance’, ‘Family’, ‘Shopping’, ‘Education’, and ‘lifestyle’, in-

creased significantly as well. During stage two, i.e., from 2014 to

2017, newly added categories are concentrated in life services, and

their popularity also underwent a significant increase. Especially

for ‘Food and drink’ and ‘Maps and navigation’, their popularity

grew over 67 times and 134 times, respectively. However, with the

exception of the newly added categories, the popularity of other

app categories stopped rising and became relatively stable during

this stage. The stable popularity indicates the app category has

become mature and also illustrates users’ high reliance on that app

category.

In terms of the popularity growth rates across diverse app cate-

gories, we present the hype cycles of popularity for app categories

in Figure 6. The hype cycle shows the relationship between the

maturity of app categories with their popularity. In the hype cy-

cle, we only focus on depicting changes in popularity rather than

exact values. Generally, if the app category is more mature then

its popularity is more stable. As shown in Figure 6, the evolution

of app category popularity undergoes two stages, i.e., growth of

popularity and plateau of popularity.

• Growth of popularity. In this stage, the popularity of the

app category increases. When an app category is newly

introduced, it will be at this stage initially. Furthermore, as

previously discussed, the development of technologies and

smartphone designs, like 4G networks and larger screen

sizes, will trigger an increase in multiple app categories’

popularity.

• Plateau of popularity. In this stage, the popularity of the

app category tends to be stable, which suggests that the
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Figure 7: The correlations of app categories across different years.

market in this app category is mature. For different app cate-

gories, their steady popularity is different because they have

different potential customers. For instance, the steady pop-

ularity for ‘Communication’, designed for almost all smart-

phone users, is around 1, while the steady popularity for

‘Education’ mainly used by students, is only 0.37.

Surprisingly, there is no discernible decline stage during the pop-

ularity evolution of app categories. We infer that there are three

factors that inhibit the formation of a decline stage, i.e., user habits,

user communities, and an app ecosystem. First, nowadays, peo-

ple are accustomed to using diverse apps to facilitate their daily

lives, e.g., ordering food and shopping online. Meanwhile, an app

category contains a group of apps with similar functionality that

typically differ from other app categories. Hence, it is hard for one

app category to substitute for another. As a result, users’ reliance

and a category’s irreplaceability will push users to continue to use

that app category. Second, for one app category, its users will form

a user community. The community will encourage users to keep

using that app category. Taking ‘Communication’ as an example,

if others are used to using ‘Communication’ apps, like Skype and

Whatsapp, to contact you, it is difficult for you to get rid of ‘Com-

munication’ apps and switch to make phone calls and sending SMS

messages. Third, with the development of the app market, a stable

and highly correlated app ecosystem has been formed (detailed in

Section 3.4). Various app categories are connected with and reliant

on others. Due to the high correlations among app categories, users

have to keep using multiple app categories together. For example,

for online shoppers, apart from ‘Shopping’ apps, they have to use

‘Finance’ apps for online payment as well.

3.4 Correlations of App Categories

To validate the previous inference about the app ecosystem, we

then study the correlations of app categories. In our case, we use

the co-usage of app categories for unique users to represent their

correlations. Given two app categories CA and CB , we denote the
number of unique users using an app either in categoryCA orCB as

D(CA
⋃
CB ), and the number of unique users using apps from both

categories CA and CB as D(CA
⋂
CB ). The correlation between

categories CA and CB is computed as,

Corr (CA,CB ) =
D(CA

⋂
CB )

D(CA
⋃
CB )
. (2)

The correlation Corr (CA,CB ) represents the probability that one

user uses both categories CA and CB .

Figure 7 displays the correlations of app categories in 2012, 2014,

and 2017, respectively. In the heatmap, each row or column repre-

sents one app category. The categories are sorted in descending

order by their first letter (the same as Figure 4). From Figure 7, we

can observe that the strength of correlations between app categories

generally increased from 2012 to 2014. Comparing the heatmaps

in 2014 and 2017, the correlations across various app categories were

high and tended to be stable, suggesting that a robust app ecosystem

had formed. In that app ecosystem, all app categories are closely re-

lated to each other. ‘Communication’ and ‘Social’ have the highest

correlations with other app categories. As the most popular app

categories, ‘Communication’ and ‘Social’ act as the bases of the app

ecosystem and the bridge to connect different categories. For exam-

ple, users may recommend useful apps or share interesting content

like news, music, and videos via ‘Communication’ and ‘Social’ apps

to others. Meanwhile, others may try the recommended apps or

use a viewer app to open the received content. Therefore, the frag-

mented and independent app categories are closely interconnected

and form a robust ecosystem.

3.5 Summary

From the macro-level analysis, we can conclude that mobile app-

category usage has indeed changed over the six years from 2012

to 2017. The functionality of smartphones has broadened from

fundamental communication needs to life assistants. Generally, the

evolution of app-category usage has two stages, i.e., a growth stage

and plateau stage. The growth stage is triggered by the release of

new technologies in multiple fields, including mobile networks,

smartphone hardware, and software. The plateau stage is caused

by both user factors, including user habits and user communities,

and app factors, including the high correlated app ecosystem. Due

to the stable evolution processes, users’ app-category usage tends

to be consistent, i.e., the diversity decreases, over time.

4 EVOLUTION OF APP USAGE

4.1 Number of Used Apps

We first analyze the number of apps used by each unique user.

As shown in Figures. 8(a) and 8(b), similar to app categories, the

evolution of app usage is also separated into two stages by the year

2014.

• Stage one (2012 - 2014). During this stage, users increased

the number of apps used on their smartphones. In 2012, a user

used up to 120 apps in one year, which is consistent with the
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(a) CDF of the number of used apps for each
user from 2012 to 2014.

(b) CDF of the number of used apps for each
user from 2014 to 2017.

(c) Distribution of the number of used apps
for each user across different years.

(d) The total number of used apps across dif-
ferent years.

Figure 8: The evolution of app usage from 2012 to 2017.

finding in previous work by Falaki et al. [7]. Nevertheless, in

2013, over 20% of users used at least 150 apps. In 2014, that

proportion rose significantly to around 40%. This boosting

period at the micro-level is consistent with the macro-level.

As analyzed before, the occurrence of this stage should be

motivated by the release of new technologies.

• Stage two (2014 - 2017). During this stage, the number of

apps used by each user decreased year by year, which is sig-

nificantly different from the trend at the macro-level. In 2017,

the proportion of users who used over 150 apps fell to 20%.

To examine the changes in detail, we depict the distribution

across different years using box-plots in Figure 8(c). We observe

that the minimum number of used apps almost did not change

over the six years and always stayed at around 12. The 12 app limit

suggests that one smartphone has at least 12 essential functions. We

will determine these 12 essential apps in Section 4.3. Moreover, from

2014 to 2017, compared with the minimum value and first quartile,

the third quartile and maximum value dropped more sharply. That

means the people who use many apps were significantly influenced

and tended to use fewer apps. We then compute the total number

of used apps across different years and present the results in Figure

8(d). However as opposed to Figures 8(a), 8(b), and 8(c), we aggregate

all apps used in that year by all long-term users. As shown in

Figure 8(d), the total number of apps used per year peaked in 2014

and then gradually declined. The decreasing trend implies that

low-quality apps started to be discarded by users after the boosting

period, i.e., stage one.

Because of the difference in trends during stage two at the macro-

level and the micro-level, we next study the relationship between

the numbers of apps and app categories used by each user. We show

the data in Figure 9, where each dot represents one unique user.

Generally, people who use more apps also use more app categories.

From 2013 to 2014, the data points moved to the right and down,

indicating that users started to use more apps and app categories

simultaneously. Interestingly, we discover a phase change in Figure

9(b). When the user used more than 15 app categories, the number

of used apps would increase dramatically. The different degrees of

maturity across app categories may cause this phase change. In 2014,

there were around 15 developed app categories with high degrees

of maturity, and their markets were dominated by three to five apps

in each category. As a result, users would focus on a small group of

governing apps when they used these app categories. Conversely,

when users utilized developing app categories lacking the governing

apps, they would try many of the apps in that category and then

select several high-quality apps. Thus, the number of used apps

would increase suddenly. Compared with 2014, the data points in

2015 and 2017 moved to the left, suggesting users used fewer apps,

but the distribution of the number of used app categories did not

change. Moreover, in Figure 9(d), we discover the phase change

faded, implying that governing apps have appeared in the previous

developing app categories.

4.2 Diversity of App Usage

We next explore a question: how the diversity of app usage changes

over time and whether the trend is consistent with app categories.

By applying Jaccard distance to measure the difference of app usage

between every two users, we depict the distribution of pairwise

Jaccard distances across different years in Figure 10. From 2012 to

2013, the average distance between two users jumped from 0.75

to 0.85, implying the diversity of app usage increased. The trend

is contrary to that at the macro-level in Figure 3. After 2013, the

distribution became stable, i.e., the strength of diversity stopped

increasing. However, users’ used apps were still extremely different

from others considering the minimum distance is nearly 0.7.

In summary, the diversity between users exhibits two opposite

evolutionary trends at the micro-level, i.e., apps, and the macro-level,

i.e., app categories, respectively. At the macro-level, mobile users

fully explore the functionality of smartphones and tend to use more

and similar app categories. On the other hand, at the micro-level,

mobile users have different preferences and use a diverse array of

apps.

4.3 Distribution of App Popularity

We further study the distributions of app popularity from 2012

to 2017. Figure 11 reports the CDF of app popularity (the ratio of

app users to all users). Our results reveal a typical Pareto effect

for app usage. Over 80% of apps have less than 0.01 popularity in

2012, while this number increased to 90% by 2017. The Pareto effect

suggests that although the set of apps used by one user are quite

different from others, the app market is still governed by a small

number of dominating apps. This observation is consistent across

all six years.

We next rank apps in terms of their popularity and select the top

20 apps for each year. We then discover that there are 16 dominating

apps that repeatedly appeared in the top 20 list every year. We post

the 16 apps and their rankings across different years in Figure
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(a) The number of used app categories and
apps across different users in 2013.

(b) The number of used app categories and
apps across different users in 2014.

(c) The number of used app categories and
apps across different users in 2015.

(d) The number of used app categories and
apps across different users in 2017.

Figure 9: The relationship between the number of used app categories and apps in different years.

Table 2: Twelve essential apps and their functionality.

App Functionality App Functionality App Functionality

com.sec.android.inputmethod Keyboard input com.sec.android.gallery3d
Image and video

viewing
com.sec.android.app.launcher

Home screen

application

com.google.android.apps.plus Google+, socializing com.google.android.talk
Message contacts,

video or voice calls
com.google.android.music Music palyer

com.google.android.apps.maps Maps and navigation com.google.android.gms
Google play

services
com.google.android.gm Gmail

com.google.android.youtube Watching videos
com.google.android.

googlequicksearchbox
Google search com.android.chrome Web browsing

Figure 10: Jaccard distance of

app usage.

Figure 11: CDF of the popu-

larity of apps.

12. Twelve out of the 16 dominating apps are part of the Android

operating system, and correspond to the 12 essential apps observed

in Figure 8(c). We list the 12 apps and their functionality in Table 2.

Apart from these 12 essential apps, there are also four dominating

apps from three prior prevalent app categories. Whatsapp and Push

service are from the ‘Communication’ category. Facebook is from

the ‘Social’ category, and Dropbox is from the ‘Tools’ category.

The rankings of dominating apps did not vary significantly during

the period. Google quick search box and Google Play services had

the most number of users. Also, the popularity of Chrome and

Whatsapp rose steadily every year.

4.4 App Usage Within App Categories

Up to now, we have discovered that the evolutionary processes at

the macro-level and the micro-level show considerable differences,

especially during stage two, i.e., from 2014 to 2017. Therefore, we

next delve into the reasons behind this phenomenon and investigate

how app usage changes in a particular app category. For the sake

Figure 12: Rank of popular apps across different years.

of representativeness, we actually select two typical app categories,

i.e., ‘News and magazine’ representing a posterior prevalent app

category and ‘Social’ representing a prior prevalent app category.

In our case, we apply the number of apps and app usage entropy

to measure the evolution processes. Figure 13 shows the results.

The entropy is a common metric to measure the randomness of a

system [9]. We use entropy to measure the centralization of app

usage in one specific app category, i.e., whether app usage in that
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(a) ‘News and magazine’ category. (b) ‘Social’ category.

Figure 13: Evolution of app usage in ‘News and magazine’

and ‘Social’ categories.

category concentrates on a few apps. The lower the entropy, the

higher the centralization of app usage.

In terms of Figure 13, for both ‘News and magazine’ and ‘Social’

categories, the number of apps peaked in 2014 and then decreased.

Their trends correspond to the trend for all apps, as shown in

Figure 8(d). Additionally, we have also examined the other app cat-

egories and found their trends are consistent as well. Consequently,

different degrees of maturity will not affect the evolution of the

number of apps in different app categories. In terms of the number

of intra-category apps, all app categories underwent two evolution

stages, i.e., growth stage and elimination stage. We infer that the

growth stage is caused by the release of new technologies, while the

weeding-out of low-quality apps by users causes the elimination

stage.

However, the evolution in entropy exhibits different trends in

‘News and magazine’ and ‘Social’ categories. For the ‘Social’ cat-

egory, entropy first increased and then kept steady. The increase

stage is caused by the growing number of apps in the category.

New apps disperse users’ concentration. On the other hand, the

Pareto effect leads to the plateau stage. As a prior prevalent app cat-

egory, ‘Social’ had a few governing apps dominating usage before

2012. Therefore, during the boosting period, the newly introduced

apps would compete with these old governing apps, and some

low-quality would be eliminated. Meanwhile, new governing apps

would emerge. As a result, in 2014, apart from the increasing en-

tropy, users’ usage was also hugely dominated by both previous

and new governing apps. Therefore, after 2014, the entropy did

not change dramatically. For the ‘News and magazine’ category,

the evolution in entropy still experienced the decrease stage. Since

‘News and magazine’ is a posterior prevalent app category, limited

by its maturity, it had few governing apps before 2012. Hence, its

entropy is deeply affected by the number of apps in the category.

In order to better understand the app elimination stage, we next

investigate how the correlations of apps in the same app category

changed from 2014 to 2017. Similar to Section 3.4, we use the co-

usage of apps for unique users to represent their correlations. For

consistency, we still use ‘News and magazine’ and ‘Social’ to repre-

sent posterior and prior prevalent app categories, respectively. In

Figure 14, we depict the correlations of the top 20 popular apps in

these two categories. In the heatmap, each row or column repre-

sents one app. The apps are listed in descending order in terms of

their popularity. Compared with app categories, the correlations

of apps in the same category is much lower, and most are below

0.2. Since the functionality of apps in the same category is similar,

(a) Correlations of apps in ‘News and magazines’ category.

(b) Correlations of apps in ‘Social’ category.

Figure 14: Correlations of apps in ‘News and magazine’ and

‘Social’ categories.

installing multiple apps from the same category is often redundant.

Also, due to intra-category competition, the correlations of apps

shrank over time in both categories. We still observe that in the

‘News and magazine’ category, apps’ correlations nearly followed a

uniform distribution in 2014, suggesting that at the beginning stage,

the correlations of apps are independent of their popularity. In 2017,

with the increase in the degree of the app category’s maturity, the

apps with high correlations tended to have high popularity. By

comparing the top 20 popular apps in both ‘News and magazine’

and ‘Social’ categories from 2014 to 2017, we then discover the

relationship between correlations and popularity of apps. The apps

with high correlations have a greater chance of gaining popularity

in the future.

4.5 Summary

In terms of the micro-level observations, users’ mobile app usage

exhibits different evolution processes from the macro-level. The

fierce intra-category competition leads to the occurrence of an elim-

ination stage and a decrease in the correlations of apps. Moreover,

because of the high overlapping functionality across apps and their

often perfect substitutability, mobile users have less reliance on an

individual app. Therefore, users’ app usage diversity is vast. Never-

theless, due to the Pareto effect, the most popular apps across users

are still consistent. Also, in terms of the entropy metric, the degree

of app category maturity will affect the evolution of app usage in

the category.
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5 RELATEDWORK AND DISCUSSIONS

5.1 Related Work

5.1.1 App Usage Analysis. Many previous studies have focused on

how individuals use their smartphones and mobile apps [11, 12, 18,

24, 32]. Generally, they discovered people’s app usage patterns by

clustering users into groups and providing comprehensive descrip-

tions of those groups. Zhao et al. [32] analyzed a short-term app

usage dataset of one month covering 106,762 users. They grouped

users into 382 clusters and gave a meaningful label to each clus-

ter, such as Night communicators, Evening learners, and Financial

users. In [12], Katevas et al. collected a four-week usage dataset

from 340 users and revealed five user profiles, including limited

use, business use, power use, and personality use. Jones et al. and

Cao et al. [3, 11] analyzed users’ app re-visitation patterns based

on a three-month dataset covering 165 users and identified three

distinct user clusters, i.e., checkers, waiters, and responsives. In

[18], Peltonen et al. collected an one-year app usage dataset from

25,323 users distributed in 44 countries. They clustered users based

on their cultural features and investigated how their cultural affili-

ations affect their usage behavior. However, existing studies only

concentrated on a limited time span ranging from one week to one

year, and did not investigate the long-term evolution of mobile app

usage.

5.1.2 App Evolution Analysis. Also, some scholars worked on ana-

lyzing app evolution [2, 4, 22, 25]. Carbunar et al. [4] crawled an app

dataset from Google Play including 160,000 apps over six months.

They studied the evolution of app properties, like downloads, price,

and update frequency. In [2], Calciati et al. studied how apps evolve

in their permission requests. They tracked over 14,000 releases of

227 Android apps and discovered a common trend of apps requiring

more permissions over time. Alternatively, in [22], Taylor et al. also

took quarterly snapshots of Google Play over two years and investi-

gated how permissions requested by apps changed over time. They

analyzed over 30,000 apps and discovered that Android apps are

not getting safer as they are updated. Wang et al. [25] crawled three

snapshots of Google Play in 2014, 2015, and 2017, and explored the

evolution of various app properties, including permission usage,

privacy policy declaration, advertising libraries, updates, and mali-

cious behavior. However, these studies only consider the evolution

of apps’ inherent properties instead of users’ actual usage. Due to

the lack of user involvement, it is hard for them to capture the real

trends of the app market and the preferences of users. In contrast,

our work is the first attempt to understand the evolution of users’

mobile app usage through data collected on smartphones over the

years.

5.2 Discussions

The most prominent discovery in our paper is that the usage evo-

lution at different levels exhibits different processes. The relevant

stakeholders should note this difference because they play different

roles at different levels of the app market. For example, Google is

responsible for maintaining the Android operating system. Market

intermediaries are in charge of managing app platforms, while app

developers should provide high-quality apps. The relevant stake-

holders should focus on the evolution of their corresponding level

and dynamically adjust their strategies to improve their services.

Also, we discover that the release of new technologies will trigger

increasing usage in both app categories and individual apps. Hence,

when a breakthrough occurs, all relevant stakeholders can grasp the

valuable opportunity to extend their market shares. One potential

opportunity is the deployment of 5G mobile networks.

We also discovered opposing trends in usage diversity between

app categories and apps. App category usage tends to be consis-

tent, while app usage across mobile users becomes quite different.

Therefore, the app market intermediaries, at a higher level, should

focus on the consistent requirements across mobile users instead

of customized services. However, as for app developers, seeking

to develop a commonly popular app for all mobile users may be

difficult. Instead, focusing on small groups of users and meeting

their personalized needs is a better choice.

We also notice the fierce intra-category competition between

apps causes an elimination stage of app usage, and different de-

grees of app category maturity will affect this competition. Hence,

app developers have to improve the competitiveness of their apps,

especially during the elimination stage. Also, when they design

new apps, they can take the maturity of app categories into ac-

count and choose a newly introduced or developing app category.

Additionally, we notice that correlation plays a vital role in app

usage. The apps with high correlations with others will become

more popular in the future. Hence, app developers can leverage

this finding to improve their apps’ competitiveness by adding both

inter- and intra-app category cooperation functions into their app

designs.

App usage shows a typical Pareto effect at all times. A small group

of apps dominate usage in both the entire appmarket and individual

app categories. We also identify twelve essential apps of differing

functionality for smartphones. In terms of these observations, the

market intermediaries can recognize a small group of popular apps

and put their installation packages as close as possible to end-users.

For example, with the help of network service providers, they can

cache the .apk files at the edges of networks.

6 CONCLUSION

We conduct the first comprehensive study of the long-term evolu-

tion of mobile app usage. Specifically, our analysis covers about

1,500 Android users with six-year app usage records from 2012

to 2017. Overall, our findings indicate that users’ app usage in-

deed changes over time. However, the evolution processes in app-

category usage and individual app usage are different in terms of

popularity distribution, usage diversity, and correlations. Our find-

ings provide insights for app developers to make better decisions on

developing apps and improve competitiveness. Also, our study can

help market intermediaries to manage app platforms and supply

high-quality services.
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Abstract—A city is composed of many regions providing different functions for urban residents (for example residential regions and
business regions). Additionally, due to daily urban dynamics, a region might provide different functions at different times of the day. In
this work, we propose a graph-based representation learning framework that reveals urban dynamic functions using mobile app usage
behavior and POIs. Specifically, we use a graph structure to model POIs and mobile app usage data jointly. In this graph, nodes
represent users, apps, and time-enhanced locations, and edges represent the co-occurrence of entities in app usage records. POI
distributions of regions are treated as location node features. Through leveraging meta-paths and graph neural networks, the proposed
framework is able to map time-enhanced location nodes into the same latent space, which captures both graph structure (i.e., mobile
app usage) and node feature (i.e., POIs) information. As a result, a region at a specific time interval is represented by an embedding
vector. We further evaluate our framework through a series of experiments conducted on real-world datasets. Specifically, we use the
learned region embeddings for the two distinct tasks of static land usage identification and regional economic level (GDP) prediction.
Our method outperforms the state-of-the-art approaches by over 20%. Moreover, we present three case studies to illustrate how region
functions change throughout the day by using learned dynamic region embeddings. Overall, the work not only lights the way for further
urban-related applications, but also shows the significant potential of mobile app usage data in urban analytics.

Index Terms—Functional regions, dynamic functions, app usage, representation learning.
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1 INTRODUCTION

Urbanization often leads to different regions of a city having
different functional roles to support urban residents’ diverse
demands [1], such as working, residence, studying, and
entertainment. These functional regions can be naturally
formed according to the lifestyles of residents. Alternatively,
the government or urban planners can artificially design
them. Studying urban functions provides essential informa-
tion useful in urban planning and management to help solve
many urban challenges [2]. Therefore, such studies play a
critical role in urban analysis.

Until very recently, most of our understanding of urban
functions focuses on static land usage. However, in practice,
a region often has multiple functions to meet the various
needs of local residents. For example, shopping malls and
residences are often co-located in a single region. Moreover,
due to diurnal urban dynamics and the multiple functions,
regions can exhibit different functions at different times of
the day [3]. Thus, static land usage analysis often fails to
cope with such complex and dynamic cases, and exploring
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the changes in regional functions during the day is essen-
tial. Studying dynamic functions enable us to gain insight
beyond static analysis to reveal regional characteristics from
multiple perspectives throughout the day.

In this work, we aim to reveal urban dynamic functions
by using spatiotemporal app usage data and points of in-
terests (POIs). Specifically, POIs implicitly reflect a regions’
static functions, while spatiotemporal app usage data depict
the dynamic app usage behavior across different regions.
In particular, mobile app usage data has three advantages
for understanding urban dynamic functions. First, many
existing studies have shown that mobile app usage behavior
in a region has a strong link with a region’s features. For
instance, mobile users prefer to use browser and multimedia
apps in the airport and transit stations while waiting [4].
Second, mobile app usage behavior, as a kind of spatiotem-
poral data, can depict the dynamic relations across different
regions and further help uncover dynamic functions. Third,
compared with other data sources, like taxi trips, mobile
app usage records can cover almost the entire urban area,
instead of just certain transit hot spots.

Revealing urban dynamic functions with mobile app
usage behavior and POIs, however, is non-trivial due to
three challenges. 1) As POIs and app usage behavior are
cross-domain data, jointly leveraging and combining these
datasets in a unified way is the first challenge. 2) Mobile
app usage data only explicitly includes relationships be-
tween entities of different types (e.g., region to app, app
to user, etc.) but not between entities of the same type (e.g.,
region to region). However, as we want to uncover regional
characteristics, we need to extract these hidden dynamic
region to region relationships from the app usage behavior.
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This task is fundamental but difficult. 3) In addition to
qualitative analysis, we are also interested in quantitatively
measuring the dynamic functions of regions. Therefore, de-
vising a method for quantitative analysis and for depicting
the intensities of different functions throughout the day is
another challenge.

To solve the mentioned challenges, we propose a graph-
based representation learning framework that reveals dy-
namic functions by leveraging three key designs. First, we
use a graph structure to combine cross-domain data, includ-
ing POIs and mobile app usage. Specifically, by introducing
user, app, and time-enhanced location nodes, we build a
heterogeneous graph representing dynamic app usage be-
havior. Each time-enhanced location node represents one
region at a specific time interval. Also, the POI distribution
of regions become node features. Second, to extract hidden
inter-regional relations from app usage data, we designed a
meta-path guided method to generate a relational location
graph from the heterogeneous app usage graph. The rela-
tional location graph only contains time-enhanced location
nodes, where edges represent a composite relation connect-
ing the two regions. Third, to conduct quantitative analysis,
we design a graph auto-encoder that leverages relational
graph attention networks to learn the dynamic embeddings
of regions, i.e., to map time-enhanced location nodes into the
same latent space. These embeddings measure the relation-
ship strengths between regions of different time slots and
determine the intensities of different functions of regions.

In summary, the main contributions of this work can be
summarized as follows.

• We investigated the problem of revealing urban dy-
namic functions by jointly using mobile app usage data and
POIs. To the best of our knowledge, this is the first study to
illustrate how region function changes throughout the day.

• We develop a graph-based framework to learn the
dynamic embeddings of regions. Specifically, we model
spatiotemporal app usage behavior by constructing a het-
erogeneous graph with the user, app, time-enhanced lo-
cation nodes, and POI distributions of regions as location
node features. By utilizing meta-paths and graph neural
networks, the framework can sufficiently integrate graph
structure (i.e., mobile app usage) and node features (i.e.,
POIs) information into region embeddings.

• We evaluate our proposed framework through a set
of experiments conducted on real-world datasets. We first
use region embeddings to identify static land usage. Our
method outperforms state-of-the-art baselines by over 20%.
Next, by using the learned dynamic region embeddings, we
present three case studies to reveal how region functions
change throughout the day. Eventually, we employ dynamic
embeddings to predict district economic levels and achieve
an accuracy of 84%, which illustrates the strong correlations
between dynamic functions and the economic development
of districts. Through a series of experiments, we show the
superiority and the effectiveness of our framework.

2 PRELIMINARY

In this section, we present a set of important preliminaries
for understanding our research problem and method.

2.1 Data Overview

2.1.1 Mobile App Usage

Mobile app usage data refers to a set of cyber activity
records generated by smartphone users using mobile apps.
As ubiquitous data, mobile app usage records are generally
collected using monitoring apps [5] or from network oper-
ators [6]. Such data has been essential in many ubiquitous
computing problems like app ecosystem modeling [7], user
profiling [8], and urban dynamics analysis [9].

Specifically, when a user launches or switches to a spe-
cific app, the app will move to the smartphone foreground;
this behavior is regarded as a use of that app and gener-
ates an app usage record. In general, an app usage record
includes 4W features, i.e., who, what, where, and when. In
other words, a raw app usage record can be represented as
4-tuple, i.e., r =< u, a, l, t >, where u represents the user
(who), a represents the app used (what), l represents the lo-
cation information (where), and t represents the timestamp
of that record (when). In terms of location information, mon-
itoring apps can collect the location from the smartphone
GPS sensor [10]. Alternatively, network operators can infer
the location information from the locations of the based
stations associated with the user [11].

In this work, we leverage a city-scale mobile app usage
dataset provided by a primary Internet Service Provider
(ISP) in China. The dataset was collected over one week in
April 2016 and covers the whole metropolitan area of Shang-
hai, one of the world’s largest cities. Each app usage record
of the dataset contains an anonymized user ID, app ID,
base station ID, and timestamp. The full dataset includes 1.7
million users, and their app usage records during the data
collection period. Specifically, we utilize a subset containing
the top 100000 users ranked by their total number of usage
records. We also note that the data subset scale could be
easily achieved using monitoring apps [5], [12] or collecting
from network operators [6]. Table 1 presents a descriptive
summary of the used dataset. As for location information,
we use the GPS-based location of the associated base station
in each record as an approximation. Fig. 1 depicts the
distribution of these 9858 base stations in Shanghai. We note
that such a dense deployment of base stations helps add
confidence that the location approximation is fairly accurate
thus bolstering our analysis.

2.1.2 Road Network

The road network data consist of a set of road segments
that naturally partition a city into multiple polygons that are
thus regarded as regions. Compared to using uniform grid-
based partition, a region bounded by major roads may be
simply a block or could be a community with more semantic
meanings, like residential, park, office, etc. [13].

In practice, we extracted the major road networks
of Shanghai from OpenStreetMap1, which provides free
crowd-sourced geographic data. Similar to [1], by using
major roads like highways and ring roads, we partitioned
the whole metropolitan area of Shanghai into 1,595 disjoint
regions. The skeleton of the road network is shown in Fig. 2.
In our case, we use regions as the atom unit.

1. https://www.openstreetmap.org/
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TABLE 1
Mobile app usage dataset descriptive summary.

# of Users # of Records # of Identified apps # of Base stations Duration Area

100,000 270,802,027 2,000 9,858 One week Shanghai

Fig. 1. Distribution of base stations of ISP in Shanghai. Fig. 2. Skeleton of road networks in Shanghai.

2.1.3 Point of Interest
Point of interest (POI) data consists of a set of POIs, which
represent various venues in the physical world, like shop-
ping malls, restaurants, and theatres. POI data implicitly
reflects the static functions of regions. For example, if a
region contains many shopping malls, that region could
be considered a commercial area. Generally, a POI has a
name, category, location (coordinates), and other attributes.
We crawled 782,528 POIs of Shanghai from the Baidu Map
service [14] to create a POI dataset. There are 15 POI cate-
gories, including restaurant, hotel, entertainment, industry,
residence, education, hospital, fitness center, shopping mall,
scenic spot, transportation facility, financial service, life ser-
vice, corporation & business, government & organization.

2.1.4 Land Use Map
A land use map reflects the official ground-truth of the static
functions of urban regions. In particular, the official land
use map2 published by the government of Shanghai uses
six different land use designation types, i.e., residence, busi-
ness, industry, public infrastructure, farming and forestry,
and ecological restoration area. We use this official data as
the land use dataset.

2.1.5 Urban Economy
The urban economy reflects the development level of differ-
ent urban regions, profoundly shaped by region functions
and urban dynamics. In practice, Gross Domestic Product
(GDP), the market value of all the final goods and services
produced, is a commonly used measurement to quantify an
area’s economy [15]. Hence, in this work, we also use GDP
to reflect the economic level of urban regions. Specifically,
we obtained the official GDP data of 188 administrative
districts in Shanghai from the Shanghai Economy Almanac
(2017) [16]. The almanac is the most authoritative, complete,
and systematic reference for Shanghai economic data.

2.2 Framework Overview
We present an overview of our proposed framework in
Fig. 3. The complete process of the framework can be de-

2. http://www.shanghai.gov.cn/newshanghai/xxgkfj/2035003.pdf

scribed as follows. First, based on road networks, we parti-
tion the city into multiple disjoint regions. These regions are
treated as atomic units to study dynamic region functions.
Then using this region data along with spatiotemporal app
usage data, we construct a heterogeneous app usage graph.
Next, we derive a relational location graph from the app
usage graph with the POI distribution as region features.
Then, we obtain dynamic region embeddings by feeding
the attributed relational location graph into a graph auto-
encoder model for training. The main purpose of the graph
auto-encoder model is to fuse both graph structure and node
feature information into the node embeddings. In our case,
each region at a specific time interval has a corresponding
embedding, representing the characteristics of that region
in that time interval. Finally, we verify our model using
three illustrative applications, including static land usage
identification, dynamic region functions analysis, and eco-
nomic level prediction. In practice, for static land usage
identification, we use the official land use map as the ground
truth, while for economic level prediction, we take GDP data
of administrative districts as the ground truth.

3 METHOD

3.1 App Usage Based Graph
Mobile app usage data contains dynamic relationships be-
tween users, apps, and locations. To encode such connec-
tions between different entities, we first build a heteroge-
neous app usage graph and then formalize it as a meta-path
guided homogeneous relational location graph.

3.1.1 Heterogeneous App Usage Graph
The interactions in mobile app usage behavior can be ab-
stracted as a heterogeneous graph containing three types
of entities, i.e., users, apps, and locations. Fig. 4 shows the
structure of the heterogeneous app usage graph, where U
refers to user nodes, A refers to app nodes, L refers to
time-enhanced location nodes, and the edges reflect the co-
occurrence of different objects in mobile app usage records.
We note that since particular regions can exhibit different
roles at different time slots, we use time-enhanced location
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Fig. 3. Overview of our proposed framework.

nodes to represent these dynamic relationships. Specifically,
each time-enhanced location node is denoted as lti repre-
senting the region i at time slot t. Therefore, the set of time-
enhanced location nodes contains R · T nodes, where R is
the number of regions, and T is the number of time slots.
For the sake of simplicity, in this paper, the term ‘location
node’ refers to ‘time-enhanced location node’ by default.

To distinguish different connection strengths between
nodes, we model the heterogeneous app usage graph as an
undirected weighted graph. There are three types of edges,
including user app edges e(u, a) that reflect the usage of apps
by users, user time-enhanced location edges e(u, lt) that reflect
the trajectories of users, and app time-enhanced location edges
e(a, lt) that reflect the spatiotemporal nature of app usage.
In detail, we illustrate the method to compute edge weight
as follows. We initially set all edge weights to zero, then for
each app usage record r =< u, a, l, t >, we increment the
edge weights w(u, a), w(u, lt), w(a, lt). After traversing all
records we obtain the final weights of all edges. Given the
heterogeneity of the app usage graph, including multiple
types of nodes and edges, we need to normalize the edge
weights across different edge types. Thus, we normalize
the weights using a co-occurrence count for each edge type
separately. Specifically, we apply max-min normalization.
For example, for user time-enhanced location edges e(u, lt),
we set the normalized edge weight as,

ŵ(u, lt) =

w(u, lt)− min
u, lt

(
w(u, lt)

)
max
u, lt

(w(u, lt))− min
u, lt

(w(u, lt))
, ∀u ∈ U, lt ∈ L, (1)

where ŵ(·) denotes the normalized edge weight, U is the
set of user nodes, and L is the set of time-enhanced location
nodes. We then apply analogous normalizations to the other
two types of edges, i.e., e(u, a), and e(a, lt), and obtain the
normalized weights ŵ(u, a), and ŵ(a, lt), respectively.

3.1.2 Homogeneous Relational Location Graph

As we are interested in uncovering urban dynamics, i.e.,
learning representations of the time-enhanced location
nodes, we next derive a homogeneous relational location
graph from the heterogeneous app usage graph.

Inspired by PathSim [17], we apply a meta-path based
method to the time-enhanced location nodes in the hetero-
geneous app usage graph. A meta-path defines a composi-
tional relation connecting two entities while still accounting
for the heterogeneity and semantics of nodes and edges
between those entities. Such a structure is widely used to

capture the similarity between nodes of the same type in a
heterogeneous graph [18], [19].

Definition 1. Meta-path [17]. A meta-path φ is defined as a
path generation rule on a heterogeneous graph in the form of V1 →
V2 → · · · → Vl, where V denotes node types. In other words,
a meta-path φ describes a composite connection relation between
nodes of node types V1 and Vl.

Definition 2. Meta-path reachable nodes. Given a meta-path
φ and a node v, the meta-path reachable nodes N φ

v of node v are a
set of nodes connected with node v through a path in the generated
path set Pφ based on meta-path φ.

The key idea behind a meta-path is to generate a set
of paths through the heterogeneous graph based on a
semantic-aware relation. For example, considering the app
usage graph, the meta-path of Location-User-Location (abbre-
viated as ‘LUL’) enables the system to start with a given
location node and find other location nodes visited by the
same user. In particular, as shown in Fig. 5, given the meta-
path ‘LUL’, L1 → U2 → L2 is an entity in the generated
path set and L1 and L2 are meta-path reachable based on
the meta-path ‘LUL’.

Moreover, we observe that two nodes of the same type
can be reachable via different meta-paths. By taking L1

and L2 in Fig. 5 as an example, apart from the meta-path
‘LUL’, they are also meta-path reachable based on the meta-
path Location-App-Location (abbreviated as ‘LAL’) through
the path L1 → A1 → L2 which describes the co-app-
usage relation between time-enhanced locations. Based on
different meta-paths, the meta-path reachable connections
reveal different semantic relations of nodes by exploiting
the structural information in the heterogeneous graph.

Next, we employ the meta-path reachable connections to
construct a homogeneous relational location graph, while
retaining the structural information of the heterogeneous
app usage graph. Specifically, there are two steps, i) path
set generation, ii) relational connection construction.

1). Path set generation. Given a meta-path φ, in this
step, we generate a set of node paths Pφ guided by this
meta-path. As the app usage graph is a weighted graph, we
use weighted random walks [20] to generate node paths by
considering the non-uniform preference of object selection.
In particular, using weighted random walks provides two
important benefits. First, it maintains the critical (high edge
weight) connections between nodes in the heterogeneous
graph. Second, it also avoids adding noise to the path sets by
filtering out weak (low edge weight) connections. By using
multiple meta-paths φ1, φ2, ..., φn, we can generate corre-
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Fig. 4. An example of a heterogeneous app usage graph. Fig. 5. An example of several meta-paths in an app usage graph.

Fig. 6. The corresponding meta-path guided location graphs of the
heterogeneous app usage graph from Fig. 4.

Fig. 7. The corresponding relational location graph containing all
graph structures of the meta-path guided location graphs from Fig. 6.

sponding path sets Pφ1
, Pφ2

, ..., Pφn
where n is the number

of meta-paths. Each path set has a semantic meaning and
represents a specific structure in the heterogeneous graph.

2). Relational connection construction. Given multi-
ple path sets Pφ1

, Pφ2
, ..., Pφn

generated in step (1), in
this step, we determine node connections in the location
graph. Specifically, for each path set Pφ, we build a meta-
path guided location graph where location nodes will be
connected if they are meta-path reachable. An example is
depicted in Fig. 6. For meta-paths ‘LAL’, ‘LUL’, ‘LUAUL’,
and ‘LAUAL’, we construct four meta-path guided homo-
geneous location graphs that correspond to those meta-
paths, respectively. For different location graphs, their edges
reflect different semantic meanings and relations. As all the
location graphs have the same node sets, i.e., the set of
time-enhanced location nodes, we can merge them using a
relational graph to distinguish edges with different seman-
tic meanings. Unlike a conventional graph, in a relational
graph, edges have type attributes, where different edge
types can represent different relations. An example is shown
in Fig. 7 in which we construct a corresponding relational
location graph that contains all connection structures of the
meta-path guided location graphs in Fig. 6. Specifically, we
distinguish different types of edges by different colors. In
this way, we construct a homogeneous relational location
graph in terms of the path sets Pφ1

, Pφ2
, ..., Pφn

generated
in step (1).

Using the above steps, we can derive a homogeneous
relational location graph from the heterogeneous app usage
graph. In particular, we denote the relational location graph
as Ghom = (L,EΦ,Φ, H), where L and EΦ denote the
sets of time-enhanced location nodes and relational edges,
respectively. Φ is the set of relation types (i.e., meta-paths),
and H is the set of node features.

3.1.3 Node Features

In order to leverage the POI data of regions, we assign a
feature vector h to each time-enhanced location node l ∈ L
in the homogeneous relational location graph Ghom. Specif-
ically, the time-enhanced location node features contain two

parts: static components hs and dynamic components hd,
where h = [hs,hd].

Static components hs. We use the density of nearby
POIs to represent the static components of location node
features. As illustrated in section 2.1.3, POI data depict vari-
ous venues located in the region, such as shopping malls,
theaters, parks, and office buildings. Thus, nearby POIs
describe the inherent characteristics of that region. Since
a region’s POI distribution does not change dynamically
over a single day, different time-enhanced location nodes
that represent the same region have the same POI features.
Namely, the POI features are static for individual regions.

In particular, we use the distribution of POI categories
within a region as the numerical features of corresponding
location nodes. Assuming the number of POI categories is
C , for an arbitrary time-enhanced location node lti ∈ L
standing for the region i at time slot t, it has a POI cate-
gory distribution vector hi

POI = [hi
POI1

, hi
POI2

, ..., hi
POIc

],
where hi

POIc
is the number of POIs of category c within

region i. Moreover, for different POI categories, their pop-
ularity varies dramatically. Thus, POIs are not uniformly
distributed across different categories. For instance, the
number of restaurant POIs is much higher than that of edu-
cation POIs. Therefore, to eliminate the imbalance among
different POI categories, we normalize the POI category
distribution vectors using the term frequency-inverse doc-
ument frequency (TF-IDF) [21]. Mathematically, for a time-
enhanced location node lti , its normalized POI feature vector
ĥi
POI = [ĥi

POI1
, ĥi

POI2
, ..., ĥi

POIc
] can be computed as,

ĥi
POIc

=
hi
POIc∑C

c=1 h
i
POIc

· log R

|{hi
POI : hi

POIc
> 0}|+ 1

,∀c = 1, ..., C,

(2)

where R is the number of regions,
hi
POIc∑C

c=1 hi
POIc

represents

the term frequency and R
|{hi

POI :h
i
POIc

>0}|+1
represents the

inverse document frequency. For each time-enhanced loca-
tion node, the static component of the node’s features hs is
the normalized POI feature vector, i.e., hs = ĥPOI .

Dynamic components hd. We use the human mobility
flows in a region within a time slot to represent the dynamic
components of location node features. In particular, human
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mobility flows describe people’s arrive-stay-leave behavior.
In detail, people arrive at a specific region and stay for
a certain period, and then leave that region. Many previ-
ous studies have shown that human mobility flows within
a region reflect that region’s dynamic characteristics [22].
Specifically, areas with similar flow patterns have similar
functions. We note that since human mobility flows in a
region change over time in a day, the mobility flow features
are dynamic for individual regions.

In our case, we use spatiotemporal mobile app data to
infer human mobility flows. Given a specific region and a
particular time slot, we use the difference in the number of
active users between adjacent time slots to describe the mo-
bility flows in that region during that time slot. Specifically,
we compute the number of active users who arrive at, stay
in, and leave from the region i in time slot t and denote
them as ARt

i , ST
t
i , LV t

i , respectively. Next, we normalize
the mobility flow features to the range of 0 to 1 by using
the max-min normalization method. Mathematically, given
a time-enhanced location node lti , its normalized mobility
flow features of ÂR

t

i is computed as,

ÂR
t
i =

ARt
i −min

i, t

(
ARt

i

)
max
i, t

(
ARt

i

)−min
i, t

(
ARt

i

) , ∀i = 1, 2, ..., R, t = 1, 2, ..., T,

(3)
where R and T are the number of regions and time slots
respectively. With analogous normalization operation, we
then obtain normalized features of ŜT and L̂V . In summary,
for each time-enhanced location node, the dynamic compo-
nent of the node’s features hd is the normalized mobility
flow features, i.e., hd = [ÂR, ŜT , L̂V ].

3.2 Auto-Encoder for Relational Location Graph

The information in the relational location graph Ghom =
(L,EΦ,Φ, H) is contained in both the network structure
and node features. Expressly, the node features represent the
internal characteristics of time-enhanced locations, while the
network structure depicts their relationships. In this section,
we aim to learn a numerical representation for each time-
enhanced location node by simultaneously considering both
node features and network structure.

3.2.1 Graph Auto-encoder

Specifically, we utilize a deep auto-encoder framework
for learning time-enhanced location embeddings. An auto-
encoder is an unsupervised neural network model, which
consists of two parts: a graph encoder and a graph decoder.
The whole architecture of the framework is shown in Fig. 8.
The encoder projects the original node feature matrix H to
a hidden representation Z . While the decoder attempts to
reconstruct the node feature matrix H ′ from the generated
hidden representation Z . The auto-encoder framework aims
to guarantee that the reconstructed node feature matrix H ′ is
as similar to the original feature matrix H as possible. Also,
in order to introduce network structure information into the
hidden representation Z , both graph encoder and decoder
characterize node features over the relational location graph
Ghom by using relational graph attention networks (i.e., Rel-
GAT).

3.2.2 Relational Graph Attention Network

In this section, we detail the implementation of the relational
graph attention network (i.e., Rel-GAT). In particular, the
relational graph attention network is derived from a graph
neural network [23] that leverages both the local graph
structure and node features for node embeddings. The
critical idea of a graph neural network is to aggregate and
propagate node features in terms of the graph structure. In
detail, the computation of graph neural networks is carried
out in two steps: (i) message propagating, (ii) aggregating
and updating. In the message propagating step, each node
passes its representation vector to its neighbors. In the
aggregating and updating step, each node first aggregates
the received representation vectors and then updates its
representation with the aggregation.

Since the homogeneous relational location graph car-
ries multiple edge types, i.e., relations, we enhance the
conventional propagation and aggregation operations to
relation-specific operations and further introduce the atten-
tion mechanism [24] to effectively measure the aggregation
weight between two nodes. We name the newly designed
graph neural network as the relational graph attention
network, Rel-GAT. Given a time-enhanced location node lti
representing location i at time slot t, after a single Rel-GAT
layer, its representation is computed as,

h
(k+1)

lti
= σ

⎛
⎜⎜⎜⎝

∑
φ∈Φ

∑
j∈Nφ

lti

(
α
(k)

φ,j,lti
·W (k)

φ · h(k)
j

)
+W

(k)
0 · h(k)

lti

⎞
⎟⎟⎟⎠ ,

(4)
where h

(k)

lti
is the representation vector of node lti in the k-th

layer of the neural network, N φ
lti

is the set of neighbors of

node lti under the edge relation φ, α(k)

φ,j,lti
is the aggregation

weight indicating the importance of node j’s representation
to the node lti under relation φ in the k-th layer of the neural
network, W (k)

φ is a relation-specific transformation matrix
of relation φ, σ(·) is an activation function. Intuitively, (4)
aggregates relation-specific transformed representations of
neighbors through a set of corresponding relational edges.
Additionally, to ensure that the representation of a node at
the (k+1)-th layer is informed by its previous representation
at k-th layer, we add a self-loop to each node and introduce
a relation-specific transformation matrix W0 for self-loop
connections.

Inspired by the graph attention network [25], we adopt a
shared attention mechanism to determine the aggregation
weight α

(k)

φ,j,lti
with node representations as inputs. The

attention mechanism can be expressed as,

α
(k)

φ,j,lti
=

exp

(
σ

(
cTφ

[
W

(k)
φ · h(k)

lti
‖W (k)

φ · h(k)
j

]))

∑
m∈Nφ

lti

exp

(
σ

(
cTφ

[
W

(k)
φ · h(k)

lti
‖W (k)

φ · h(k)
m

])) , (5)

where cφ is the attention vector under relation φ. ·T and
‖ represent transposition and concatenation operations, re-
spectively. Intuitively, the attention mechanism captures the
feature proximity between pairs of nodes. In other words,
two nodes with higher representational similarity will have
a larger aggregation weight.
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Fig. 8. The architecture of the graph auto-encoder. The graph encoder and decoder capture node features from the relational location graph by
using relational graph attention networks, i.e., Rel-GAT.

3.3 Learning and Training

As mentioned the graph encoder consists of a stack of
relational graph attention networks. Furthermore, following
the auto-encoder architecture, the graph decoder consists
of the same number of relational graph attention networks,
and the decoder’s hidden units are symmetric to the graph
encoder’s hidden units. Therefore, by providing node fea-
ture matrix H to the graph encoder, we will obtain a recon-
structed feature matrix H ′, i.e., the graph decoder’s output.
In this work, we take the Euclidean distance between H and
H ′ as the reconstruction loss, which is computed as,

L (
H,H′) =

∥∥H −H′∥∥2 . (6)

Guided by this loss function, we can optimize the graph
auto-encoder via the back-propagation method [26]. Specif-
ically, in the graph auto-encoder model, the relation-specific
transformation matrix Wφ and attention vector cφ of each
network layer are trainable parameters. After training, we
take the hidden representation Z , i.e., the output of the
graph encoder, as the embedding of the time-enhanced loca-
tion nodes, which represents information of both node fea-
tures and network structure. In this way, all time-enhanced
location nodes are projected into the same latent space. By
investigating how a region embedding changes over time,
we can reveal the urban dynamics accordingly.

4 EXPERIMENT

In this section, we evaluate our proposed model through
a set of experiments conducted on city-scale real-world
datasets. We first introduce the experimental setup, includ-
ing data preprocessing, baselines, and parameter settings.
Next, we analyze the learned dynamic region embeddings
and their semantic meanings in detail. We finally reveal the
relationship between regions’ dynamic functions and their
economic development.

4.1 Experiment Setup

4.1.1 Data Preprocessing
In this work, we focus on the whole metropolitan area of
Shanghai, one of the world’s largest cities. In particular,
we utilize five kinds of ubiquitous data, including mobile
app usage, road network, POI data, land use map, and
urban economic data. The details of the above datasets are
explained in section 2.1.

We first use the road network to partition the metropoli-
tan area of Shanghai into 1,595 disjoint regions. Next, we
employ a large-scale mobile app usage dataset collected in
Shanghai to construct the heterogeneous app usage graph.

As stated in section 2.1, we utilize a subset containing the
top 100000 users ranked by their total number of usage
records. Each app usage record contains an anonymized
user ID, app ID, base station ID, and timestamp. In practice,
we evenly divide one day into 12 time-slots. Through map-
ping base stations to regions and timestamps to time-slots,
we build a heterogeneous app usage graph by following the
procedure from section 3.1.1. The heterogeneous app usage
graph has 100000 user nodes, 2000 app nodes, and 19140
(1595× 12) time-enhanced location nodes.

4.1.2 Baselines
We compare our model with four commonly used and state-
of-the-art approaches for urban exploration.

• POI. An intuitive approach is to represent a region
using intra-region POI data. We use TF-IDF to measure
different POI categories’ importance to a region. Specifically,
each region can be represented by a C-dimensional vector,
where C is the total number of unique POI categories. This
baseline only considers the static features of regions.

• Hidden Markov model (HMM) [9]. HMM is a state-
of-the-art method for modeling urban dynamics with app
usage data. In this method, we build a state-sharing hid-
den Markov model by jointly using intra-region app usage
features and human mobility flows. For one region at a
time slot, it endows a state for that region. Each region
can be represented by a state sequence across all time slots.
However, this baseline cannot represent or model urban
dynamics precisely because of the limited number of states.

• DeepWalk [27]. DeepWalk extends the word2vec [28]
model to the scenario of network embedding. DeepWalk
uses local information obtained from truncated random
walks and the skip-gram model to learn node embeddings.
In the experiments, we employ DeepWalk on the hetero-
geneous app usage graph and obtain the embeddings of
time-enhanced location nodes. Specifically, each region can
be represented by a vector, which is the average of its em-
beddings in all time slots. In this case, the embedding only
reflects the graph structure and neglects the heterogeneity
of the graph.

• Metapath2Vec [18]. Metapath2Vec employs meta-path
based random walks to construct the heterogeneous neigh-
borhood of nodes and then leverages the skip-gram model
to perform node embeddings. In the experiments, we take
the heterogeneous app usage graph as input and use ‘LAL’,
‘LUL’, ‘LUAUL’, and ‘LAUAL’ as meta-path schemes. Like
DeepWalk, we represent each region by using the average
of its embeddings in all time slots. Although Metapath2Vec
takes the graph’s heterogeneity into account, the method is
still limited by the inability to leverage node features.
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TABLE 2
Performance of Graph Auto-encoder (our proposed model) and baseline methods for static land use identification. NMI refers to

normalized mutual information, ARI refers for adjusted rand index, and Imp. refers to improvement.

Model NMI Imp. on NMI ARI Imp. on ARI F-score Imp. on F-score

POI 0.3359 103.22% 0.2926 122.52% 0.3505 120.14%
DeepWalk 0.4459 53.08% 0.3937 65.38% 0.4971 55.22%
Metapath2Vec 0.5121 33.29% 0.4332 50.30% 0.5673 36.01%
HMM 0.5749 18.73% 0.5183 25.62% 0.6460 19.44%
Graph Auto-encoder 0.6826 - 0.6511 - 0.7716 -

• Graph Auto-encoder. Our proposed method. Given
the heterogeneous app usage graph, we construct the cor-
responding relational location graph guided by meta-paths
‘LAL’, ‘LUL’, ‘LUAUL’, and ‘LAUAL’. By feeding the rela-
tional location graph into the Rel-GAT-based graph auto-
encoder, we obtain the embeddings of time-enhanced loca-
tion nodes. Our model considers the graph’s heterogeneity
and uses meta-paths to leverage the semantics of differ-
ent types of edges and nodes. Also, we use graph neural
networks and an auto-encoder framework to fuse both
node features and graph structure information into node
embeddings.

4.1.3 Implementation Details and Parameter Settings
We implement our model with Pytorch3 and Deep Graph
Library4 and train on a NVIDIA GTX 2080Ti GPU. In the
training procedure, we randomly initialize parameters and
use Adam [29] to optimize the model with a learning rate of
0.001. The dimension of the attention vector c is 128. Also,
for the sake of fair comparison, we set the dimension of
the node embeddings to 64 for DeepWalk, Metapath2Vec, as
well as, Graph Auto-encoder.

4.2 Identifying Static Land Usage

For the task of identifying static land usage, we perform k-
means clustering on region representations to partition re-
gions into k clusters. Regions with similar static land usage
should, in theory, be assigned to the same cluster. Specifi-
cally, for the HMM baseline each region is represented by
a state sequence across all time slots. While for the graph
embedding methods, including DeepWalk, Metapath2Vec,
and our model (i.e., Graph Auto-encoder), we represent
each region by using the average of its embeddings in all
time slots, which is computed as,

zli =
1

T

T∑
t=1

zlti , (7)

where zlti is the embedding of time-enhanced location node
lti representing the region i at time slot t, and T is the total
number of time slots. We note that zli merges all dynamic
embeddings together and represents the typical embedding
of the region i across all time slots.

To validate identification performance, we use the of-
ficial land use map of Shanghai as the ground-truth. As
depicted in Fig. 9(a), the map classifies land use into 6 cat-
egories, i.e., residence, business, industry, public infrastruc-
ture, farming and forestry, and ecological restoration area.

3. https://pytorch.org/.
4. https://www.dgl.ai/.

Therefore, we partition regions into 6 clusters by using k-
means and setting k = 6. Next, we use the following metrics
to evaluate the region clustering results of our proposed
method and baselines.

• Normalized Mutual Information (NMI). NMI is a
widely used metric to measure the purity of clustering
results from an information-theoretic perspective. NMI is
computed as,

NMI =
I(L,C)

[H(L) +H(C)]/2
, (8)

where L is the set of ground-truth labels, and C is the set
of clustering labels. I(L,C) denotes the mutual informa-
tion between ground-truth and clustering labels. H(L) and
H(C) represent the entropy of ground-truth and clustering
label sets, respectively. The scale of NMI ranges from 0 (no
mutual information) to 1 (perfect correlation). Thus, a higher
NMI indicates that the clustering results are closer to the
ground-truth.

• Adjusted Rand Index (ARI). ARI is the corrected-for-
chance version of the Rand index [30]. First, the Rand Index
(RI) computes a similarity measure between clustering la-
bels and ground-truth labels, which is computed as,

RI =
TP + TN

TP + FP + TN + FN
, (9)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives. ARI makes a correction
for chance by establishing a baseline, i.e., random labeling,
which is defined as,

ARI =
RI − Expected RI

max(RI)− Expected RI
. (10)

Thus, ARI is ensured to have a value close to 0 for random
labeling and equal to 1.0 when the clustering results match
ground-truth perfectly. That is, the higher the ARI, the better
the clustering performance.

• F-score. F-score is a measure of clustering accuracy,
which is calculated from precision and recall.

F-score = 2 · Precision ·Recall

Precision+Recall
, (11)

Specifically, the higher the F-score, the better the clustering
results. The maximum F-score is 1 and minimum is 0.

The evaluation results are shown in Table 2. From the
results, we have the following key observations. 1). Graph
Auto-encoder performs the best among all methods by a
large margin. Compared with the best baseline, Graph Auto-
encoder shows an improvement of 18.73%, 25.62%, and
19.44%, in terms of NMI, ARI, and F-score, respectively.
2). The network embedding methods, including DeepWalk
and Metapath2Vec, show better performance than the POI
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(a) The official land use map of Shanghai. (b) The clustering results of POI.

(c) The clustering results of HMM. (d) The clustering results of Graph Auto-encoder (our proposed model).

Fig. 9. The official land use map of Shanghai and region clustering results of POI, HMM, and Graph Auto-encoder. Each cluster is denoted by a
unique color.

method, implying that mobile app usage data are more
informative for region profiling compared with POI distri-
bution. Moreover, the results demonstrate the effectiveness
of using graph structures to model app usage behavior
and the inter-relations between regions. Also, likely due to
the use of meta-path, the performance of Metapath2Vec is
slightly better than DeepWalk. 3). HMM shows the best
performance among all baselines. The main reason is that
HMM jointly uses mobile app usage and human mobility
flows as region features. However, compared with Graph
Auto-encoder, HMM only leverages individual region fea-
tures and neglects interactions between regions, which leads
to performance degradation.

Furthermore, in order understand the clustering differ-
ences in depth, we select the models of POI, HMM, and
Graph Auto-encoder and visualize the clustering results
in Fig 9, where color denotes regions in the same cluster.
We notice that using POI distributions can identify the
central business area (red) and residence area (yellow). An
important reason is that the POI categories of residence,
restaurant, shopping mall, and corporation & business are
popular and have sufficient records. On the other hand,
since the other POI categories are less common, the land-

use types like public infrastructure and industry can not be
easily identified. Although we use TF-IDF to mitigate this
uneven distribution of POI data, the model still does not
perform well compared with other baselines. Alternatively,
through leveraging mobile app usage data, HMM can dif-
ferentiate the public infrastructure areas (purple), e.g., the
airport. This supports the findings of previous studies [4],
[31] that mobile users at airports have unique app usage
patterns. Moreover, as HMM also leverages human mobility
flow patterns, HMM has the ability to recognize the farming
and forestry area (light green) and ecological restoration
area (dark green) to some extent. In terms of Fig. 9(d), we
observe that our proposed model, Graph Auto-encoder, can
accurately identify all six land-use types. The main reason is
that apart from intra-region features, Graph Auto-encoder
also builds a relational location graph to leverage various
inter-relations among regions.

In summary, through the land use identification task
we demonstrate the effectiveness of learned embeddings in
representing region properties. More importantly, we obtain
six anchor embeddings, i.e., centroids of the six clusters,
representing the six types of region functions. Specifically,
we use zR, zB , zI , zP , zF , and zE to denote the anchor



JOURNAL OF LATEX CLASS FILES 10

(a) The map of Region A. (b) The dynamic region functions of Region A.
Fig. 10. The map of Region A and the intensities of the six region function types, including residence, business, public infrastructure, farming and
forestry, and ecological restoration area.

(a) The map of Region B. (b) The dynamic region functions of Region B.
Fig. 11. The map of Region B and the intensities of the six region function types, including residence, business, public infrastructure, farming and
forestry, and ecological restoration area.

embeddings of residence, business, industry, public infras-
tructure, farming and forestry, and ecological restoration
area, respectively. Given these anchor embeddings, with
distinct semantic meaning, we can further reveal how the
region functions change over the course of a day.

4.3 Revealing Dynamic Region Functions
In this section, we aim to investigate the changes in region
functions throughout the day. In particular, for a region i at
time slot t, we measure its region functions by computing
the cosine similarity between its embedding zlti and the
anchor embeddings. For example, a regions intensity of
residence function zRlti

is computed as,

zRlti
= cos(zlti , zR), (12)

where cos(·) represents the cosine similarity, and zR denotes
the anchor embedding of residence. Similarly, we can obtain
the function intensities of business, public infrastructure,
farming and forestry, and ecological restoration area and
denote them as zBlti

, zIlti , zPlti , zFlti , and zElti
, respectively. In this

way, we convert the time-enhanced region embedding zlti
into a vector [zRlti

, zBlti
, zIlti

, zPlti
, zFlti

, zElti
] with semantic mean-

ings, representing the intensities of six region function types.
Given a region, we reveal its dynamic region functions

by depicting how the region’s intensities of the six region
function types change over the course of a day. Due to space
constraints, we only show our analysis of three regions.

Region A. First, we take Shanghai Hongqiao interna-
tional airport as an example to analyze how its intensities

of the six region function types change throughout the day.
As shown in Fig. 10(b), Region A, i.e., the international air-
port, has a higher intensity of public infrastructure function
compared with other function types. This corresponds to
the official land use map, marking the airport as public
infrastructure. Moreover, we detect that Region A has a
business function during the daytime, which might be due
to duty-free shops and restaurants located in the airport. As
a result, by using time-enhanced location embeddings, we
can reveal region functions from all perspectives. In other
words, apart from the most significant function type, we
can still ascertain the intensity of other types of functions.

Region B. The map of Region B and its dynamic region
functions are depicted in Fig. 11. Specifically, the area of
Region B is denoted by a red dotted polygon in Fig. 11(a). In
the official land use map, Region B is classified as a residence
type. We can observe that there are five major residential
areas in Region B, denoted by yellow dots. Also, in terms
of Fig. 11(b), Region B has a high intensity of residence
function throughout the day, corresponding to the official
land use map classification. Moreover, we still notice that the
intensity of residence function of Region B fluctuates over
the day, peaking at night with valleys at around 11.00 and
16.00. One possible reason is the working rhythm of people.
When people leave home and go to work, the intensity of the
residence function is weakened due to population decrease.

Meanwhile, a large shopping mall is located in Region B,
indicated by a red dot, which causes Region B to exhibit a
business function to some extent. As depicted in Fig. 11(b),
the intensity of business function rises during the daytime
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(a) The map of Region C. (b) The dynamic region functions of Region C.
Fig. 12. The map of Region C and the intensities of the six region function types, including residence, business, public infrastructure, farming and
forestry, and ecological restoration area.

and reaches a peak at around 18.00. Between 14.00 and 18.00,
the intensity of business function overrides the residence
function, which indicates that the most significant region
function changes from residential to business.

Region C. We depict the map of Region C and its
dynamic region functions in Fig. 12. In the official land
use map, Region C is marked as industrial. Nevertheless,
according to Fig. 12(a), Region C is a mosaic consisting
of seven industry areas (marked by brown dots), four
residence areas (marked by yellow dots), and one market
(marked bya red dot). From Fig. 12(b), we can observe that
the industry function, as the most significant function type,
has the highest intensity during the daytime, from 6.00
to 20.00. Alternatively, after 20.00, the residence function
becomes the dominating function type. Again, the main
reason is likely daily working rhythms. Moreover, a market
is located in Region C, which gives the region a business
function. However, compared with residence and industry,
the business function intensity is weak.

In summary, we have successfully identified and re-
vealed dynamic region functions based on the learned
time-enhanced location embeddings. Although we only dis-
cussed three specific regions, the same analytic approach
can be used to describe other remaining regions.

4.4 Predicting Economic Levels of Districts
Naturally, an area’s urban functions are highly related to
the area’s economic development. In this section, we aim
to predict districts’ economic levels by using the dynamic
functions as input features. In practice, we use GDP data
as a measure of economic development for each district.
From the Shanghai Economy Almanac (2017) [16], we obtain
the official GDP data of the 188 administrative districts of
Shanghai, ranging from 21.75 to 671.11 and with an average
of 142.665. Next, we discretize the GPD data into three lev-
els, i.e., [21.75, 42.66), [42.66, 242.66), and [242.66, 671.11].

Since one administrative district contains multiple re-
gions, we represent its intensities of dynamic functions by
averaging all regions in that district. For instance, given a
district d, its intensity of residence function at time slot t is
expressed as,

zRd,t =
1

Nd

∑
i in d

(zRlti
), (13)

5. The unit is 100 million RMB.

where i in d denotes the region i in district d, Nd represents
the number of regions in district d, zRlti

is the intensity
of residence function of region i at time slot t. With a
similar method, we calculate the intensities of other types
of functions. As we have six types of functions and twelve
time-slots, for one district, we obtain a vector of 72 (6× 12)
dimensions to indicate the intensities of the six function
types over the day. We then take this vector as an input
to predict its economic level.

We conduct a 5-fold cross-validation experiment using
three popular classifiers, i.e., logistic regression, support
vector machine, and random forest, to predict district eco-
nomic levels. Table 3 presents the classification performance
in terms of precision, accuracy, and F-score. We can observe
that random forest achieves the best performance with an
F-score of 0.8265, outperforming the linear classifiers, i.e.,
logistic regression and support vector machine. Also, such a
high F-score and accuracy illustrates the strong correlations
between dynamic functions and the economic development
of administrative districts.

We further explore the importance of dynamic functions
for predicting economic level by computing the mean de-
crease impurity (MDI) of all input features when using the
random forest model. Specifically, the MDI of a feature is
calculated as the total reduction of the criterion brought by
that feature, which is also known as the Gini importance.
The higher the MDI, the more important the feature. Fig. 13
shows the MDI score of six function types across different
time slots for predicting the economic level. We can observe
that the same function type has different importances at
different time slots, thus validating the use of dynamic
functions. Specifically, the intensities of residence and busi-
ness functions have higher importance in the evening, i.e.,
between 18.00 and 22.00. While, the intensities of industry,
farming and forestry, and ecological restoration functions
are of higher importance in the morning. Such differences
might be caused by human flow interactions across different
functional areas throughout the day.

In summary, through the application of economic devel-
opment prediction, we confirm the strong correlations be-
tween dynamic functions and the economic development of
administrative districts. Also, the importance (for economic
development prediction) of different function types varies
over the day.
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TABLE 3
Performance of several classifiers using district-level dynamic function features for economic (GDP) level prediction.

Method Precision Accuracy F-score

Logistic regression 0.6655 0.8157 0.7330
Support vector machine 0.7780 0.4211 0.5215
Random forest 0.8616 0.8421 0.8265

Fig. 13. The importance of different dynamic function features for economic (GDP) level prediction of districts.

5 DISCUSSION

5.1 Implications

Overall, the proposed method and results illustrate the
expressive power of such graph based methods to capture
important urban dynamics. In terms of the actual impli-
cations, given the ubiquity of mobile networks and the
ability to collect app usage data, countries and cities could
use our method to validate their existing region function
classifications. Specifically, the city could first meticulously
validate a sample of region functions and then use that
sample to train our method models. Then they could apply
these models to the entire city and check regions where
there is a discordance between the model and the existing
function class.

Additionally, the ability to provide dynamic region func-
tions could help in public and private (e.g., business) de-
cision making by allowing more nuanced decisions about,
for example, funding or public support for certain regions.
As another example, regions (even potentially across cities)
with similar dynamic region functions likely face similar
urban problems, such as those related to mobility, zoning,
and development, and thus studying similar regions can be
useful for cross-pollination of creative urban solutions.

5.2 Limitations

There are also several limitations of our study that are
worth mentioning and discussing. Firstly, the datasets them-
selves imply some limitations just based on their nature.
Specifically, for the app usage dataset, since the dataset is
collected by the ISP, any apps that do not produce significant
network traffic are not captured, though the number of
such apps should be minimal. Additionally, our dataset only
covers one major city; thus, additional studies with other
cities (with different regional function landscapes) could
help further validate our results. Such validation would

be especially important in cases of transfer learning across
varying cities. Relatedly, the app usage dataset only covers
a single week, thus preventing longitudinal analysis from
seeing how these dynamic functions evolve over longer
timescales (like months for seasonal changes or years for
infrastructure and building changes).

6 RELATED WORK

6.1 Spatiotemporal App Usage Behavior Analysis
Many prior studies have shown that mobile app usage
behavior is strongly linked to spatial context. For instance,
Mehrotra et al. [10] collected mobile app usage data from
26 students over two weeks. After employing the analysis
of variance (ANOVA) method, they determined that users
are more attentive to app notifications at college, libraries,
and residential areas. While, users are less receptive to
app notifications at religious institutions. Do et al. [4] and
Bohmer et al. [31] found that users prefer to use web and
multimedia apps in the airport while waiting for trips.
Moreover, Graells-Garrido et al. [11] analyzed a city-scale
app usage dataset and found different app usage patterns
on different street types, i.e., main street, secondary street,
and pedestrian. For example, on main streets message apps
consume more traffic, while dating apps are used more on
pedestrian streets.

Alternatively, some studies leverage spatial context for
better app usage prediction. For example, Parate et al. [32]
split the app usage sequence into a variable-length Markov
chain according to the prior user location, thereby achieving
location-aware app usage transition modeling and predic-
tion. Chen et al. [33] proposed a graph-based model call CAP
to iteratively learn node embeddings from app-location,
app-time, and app-category graphs. They then combined
node embeddings with a user representation to predict the
future app. Further, Xia et al. [34] designed a recurrent neu-
ral network-based model to simultaneously capture spatial
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and temporal app usage patterns for prediction. Specifically,
in their model, app usage history, locations, and time are
jointly embedded. The next used app and visited location
are then jointly predicted.

Different from previous works focusing on app-oriented
tasks, in this work, we leverage mobile app usage data in
a location-oriented task by exploring app-location relation-
ships. Our study opens the door to utilizing spatiotemporal
app usage data in urban analytics.

6.2 Graph-based Representation Learning

Graph-based representation learning aims to learn low-
dimensional vectors to represent nodes in a graph by ex-
ploring graph structure information. Inspired by word em-
bedding [28], a series of algorithms were proposed to learn
node representations based on the skip-gram model [27],
[35]. In general, they first applied a random walk method
on the graph to generate a series of node sequences. They
then treated node sequences as the equivalent of sentences
and feed them into the skip-gram model to obtain node
embeddings. In particular, Perozzi et al. [27] employed the
original random walk algorithm. While Grover et al. [35]
used a biased random walk procedure to explore different
graph structures. For heterogeneous graphs, Dong et al. [18]
proposed a meta-path-based random walk approach to ex-
plore the semantics of different node types.

Alternatively, many graph embedding methods are
based on graph neural networks (GNNs). Unlike random
walk-based methods, graph neural networks learn node
representations by considering both graph structure and
node features. Kipf et al. [23] proposed an influential model,
graph convolutional network, which performs convolu-
tional operations by using the graph Laplacian matrix.
Furthermore, Velivckovic et al. [25] proposed the graph
attention network that applies an attention mechanism to
determine the relative importance of neighbor information
for the target node. However, these models can only cope
with supervised learning tasks, and thus they cannot be
directly used in our scenario. Therefore, in our work, we
design a graph auto-encoder model to extend GNNs to
unsupervised learning cases.

7 CONCLUSIONS

In this paper, we reveal urban dynamic functions by jointly
leveraging spatiotemporal mobile app usage behavior and
POI data. We propose a graph-based representation learning
framework that maps time-enhanced regions into the same
latent space. Thus, a region at a specific time interval is
represented by an embedding vector. For one region, the re-
gion’s dynamic embeddings characterize how its functions
change over the course of a day. A series of experiments,
including static land usage identification, dynamic region
functions analysis, and economic (GDP) level prediction,
demonstrate the superiority and the effectiveness of our
framework. The study brings a new angle to urban analytics
by leveraging mobile app usage data and lights the way
for further urban-related applications, including urban plan-
ning, urban dynamic modeling, and economic analyses.
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