2,205 research outputs found

    Design and analysis of feedback and feedforward control systems for web tension in roll-to-roll manufacturing

    Get PDF
    In Roll-to-Roll (R2R) manufacturing, efficient transport of flexible materials (webs) on rollers requires simultaneous control of web speed and tension. Webs experience disturbing forces during transport due to nonideal machine elements and processes such as printing, coating, lamination, etc. Since rotating machine elements are employed, these disturbances are in the form of periodic oscillations in web tension and speed. Design of efficient model-based web tension and speed control systems employing both feedback and feedforward actions that can adapt to changes in parameters and reject periodic disturbances were investigated in this research. Tools from adaptive and robust control theory and singular perturbation method were utilized for the design and analysis of these control systems.Model reference and relay feedback based adaptive Proportional-Integral (PI) tension control schemes were developed to regulate web tension; these schemes overcome the tedious tuning procedures required for fixed gain PI schemes when process parameters and conditions change. To directly control the roll speed when belt-pulley and gear transmissions are employed, a control scheme that uses both motor and load speed feedback is developed. In the presence of a compliant transmission system, it is shown that using pure load speed feedback must be avoided as it results in an unstable system. In situations where linearization of the nonlinear web tension governing equation is not possible due to changes in operating conditions, a nonlinear tension regulator is designed via a solution method employed in the nonlinear servomechanism problem. The feedforward action is synthesized by considering a discretized form of the tension governing equation in conjunction with adaptive estimation of periodic disturbance parameters. It is also shown that interaction between different subsystems of the R2R system may be minimized by employing feedforward action. The strategy of utilizing tension signal from the web tension zone downstream of the driven roller is shown to result in minimization of propagation of disturbances into further downstream tension zones. For each of the developed designs, experiments were conducted on a large R2R platform for different web materials and transport conditions to evaluate and compare their performance. Implementation guidelines are provided for ease of applying the designs to other industrial R2R machines

    Modeling, Analysis and Control of Print Registration in Roll-To-Roll Printing Presses

    Get PDF
    Print registration in roll-to-roll (R2R) printing process is investigated in this dissertation. Print registration is the process of aligning multiple images that are printed in consecutive print units. The quality of the print output depends on the proper alignment of these images. A new mathematical model for print registration is developed by considering the effect of key process variables, such as web tension and transport velocity, print cylinder angular position and velocity, and the compensator roller position. Sources of machine induced disturbances and their effect on print registration are also investigated and machine design recommendations to mitigate these disturbances are given. Propagation of disturbances between print units due to web transport is investigated. The interaction, or the disturbance propagation behavior, between print units is studied by developing a new interaction metric called the Perron Root based Interaction Metric (PRIM). The new interaction metric, for large-scale interconnected systems employing decentralized controllers, is developed using tools from the Perron-Frobenius theory. A systematic procedure to minimize interaction is given by designing pre-filters for decentralized control systems. The disturbance propagation behavior with two registration control strategies is compared using the PRIM and it is found that a compensator based registration control (CRC) has smaller magnitude of disturbance propagation when compared to a print cylinder angular position based registration control (PARC). It is also found that a simple, decentralized, memoryless, state feedback controllers stabilizes print units with CRC. Results from a number of model simulations and experiments are provided to support the recommendations and conclusions.Mechanical Engineerin

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives

    Robotized Warehouse Systems: Developments and Research Opportunities

    Get PDF
    Robotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of robotized handling systems, such as the shuttle-based storage and retrieval systems, shuttle-based compact storage systems, and robotic mobile fulfillment systems. For each system, we categorize the literature in three groups: system analysis, design optimization, and operations planning and control. Our focus is to identify the research issue and OR modeling methodology adopted to analyze the problem. We find that many new robotic systems and applications have hardly been studied in academic literature, despite their increasing use in practice. Due to unique system features (such as autonomous control, networked and dynamic operation), new models and methods are needed to address the design and operational control challenges for such systems, in particular, for the integration of subsystems. Integrated robotized warehouse systems will form the next category of warehouses. All vital warehouse design, planning and control logic such as methods to design layout, storage and order picking system selection, storage slotting, order batching, picker routing, and picker to order assignment will have to be revisited for new robotized warehouses

    Robust Loopshaping for Process Control

    Get PDF
    Strong trends in chemical engineering and plant operation have made the control of processes increasingly difficult and have driven the process industry's demand for improved control techniques. Improved control leads to savings in resources, smaller downtimes, improved safety, and reduced pollution. Though the need for improved process control is clear, advanced control methodologies have had only limited acceptance and application in industrial practice. The reason for this gap between control theory and practice is that existing control methodologies do not adequately address all of the following control system requirements and problems associated with control design: * The controller must be insensitive to plant/model mismatch, and perform well under unmeasured or poorly modeled disturbances. * The controlled system must perform well under state or actuator constraints. * The controlled system must be safe, reliable, and easy to maintain. * Controllers are commonly required to be decentralized. * Actuators and sensors must be selected before the controller can be designed. * Inputs and outputs must be paired before the design of a decentralized controller. A framework is presented to address these control requirements/problems in a general, unified manner. The approach will be demonstrated on adhesive coating processes and distillation columns

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Robotic Grasping of Large Objects for Collaborative Manipulation

    Get PDF
    In near future, robots are envisioned to work alongside humans in professional and domestic environments without significant restructuring of workspace. Robotic systems in such setups must be adept at observation, analysis and rational decision making. To coexist in an environment, humans and robots will need to interact and cooperate for multiple tasks. A fundamental such task is the manipulation of large objects in work environments which requires cooperation between multiple manipulating agents for load sharing. Collaborative manipulation has been studied in the literature with the focus on multi-agent planning and control strategies. However, for a collaborative manipulation task, grasp planning also plays a pivotal role in cooperation and task completion. In this work, a novel approach is proposed for collaborative grasping and manipulation of large unknown objects. The manipulation task was defined as a sequence of poses and expected external wrench acting on the target object. In a two-agent manipulation task, the proposed approach selects a grasp for the second agent after observing the grasp location of the first agent. The solution is computed in a way that it minimizes the grasp wrenches by load sharing between both agents. To verify the proposed methodology, an online system for human-robot manipulation of unknown objects was developed. The system utilized depth information from a fixed Kinect sensor for perception and decision making for a human-robot collaborative lift-up. Experiments with multiple objects substantiated that the proposed method results in an optimal load sharing despite limited information and partial observability
    • …
    corecore