1,788 research outputs found

    Solutions to decision-making problems in management engineering using molecular computational algorithms and experimentations

    Get PDF
    制度:新 ; 報告番号:甲3368号 ; 学位の種類:博士(工学) ; 授与年月日:2011/5/23 ; 早大学位記番号:新568

    A precision medicine initiative for Alzheimer's disease: the road ahead to biomarker-guided integrative disease modeling

    Get PDF
    After intense scientific exploration and more than a decade of failed trials, Alzheimer’s disease (AD) remains a fatal global epidemic. A traditional research and drug development paradigm continues to target heterogeneous late-stage clinically phenotyped patients with single 'magic bullet' drugs. Here, we propose that it is time for a paradigm shift towards the implementation of precision medicine (PM) for enhanced risk screening, detection, treatment, and prevention of AD. The overarching structure of how PM for AD can be achieved will be provided through the convergence of breakthrough technological advances, including big data science, systems biology, genomic sequencing, blood-based biomarkers, integrated disease modeling and P4 medicine. It is hypothesized that deconstructing AD into multiple genetic and biological subsets existing within this heterogeneous target population will provide an effective PM strategy for treating individual patients with the specific agent(s) that are likely to work best based on the specific individual biological make-up. The Alzheimer’s Precision Medicine Initiative (APMI) is an international collaboration of leading interdisciplinary clinicians and scientists devoted towards the implementation of PM in Neurology, Psychiatry and Neuroscience. It is hypothesized that successful realization of PM in AD and other neurodegenerative diseases will result in breakthrough therapies, such as in oncology, with optimized safety profiles, better responder rates and treatment responses, particularly through biomarker-guided early preclinical disease-stage clinical trials

    CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS

    Get PDF
    The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research

    Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish—Implications for Broodstock Provenance Sourcing and Larval Production

    Get PDF
    Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.publishedVersio

    Simultaneous clustering with mixtures of factor analysers

    Get PDF
    This work details the method of Simultaneous Model-based Clustering. It also presents an extension to this method by reformulating it as a model with a mixture of factor analysers. This allows for the technique, known as Simultaneous Model-Based Clustering with a Mixture of Factor Analysers, to be able to cluster high dimensional gene-expression data. A new table of allowable and non-allowable models is formulated, along with a parameter estimation scheme for one such allowable model. Several numerical procedures are tested and various datasets, both real and generated, are clustered. The results of clustering the Iris data find a 3 component VEV model to have the lowest misclassification rate with comparable BIC values to the best scoring model. The clustering of Genetic data was less successful, where the 2-component model could successfully uncover the healthy tissue, but partitioned the cancerous tissue in half

    Gene regulatory network modelling with evolutionary algorithms -an integrative approach

    Get PDF
    Building models for gene regulation has been an important aim of Systems Biology over the past years, driven by the large amount of gene expression data that has become available. Models represent regulatory interactions between genes and transcription factors and can provide better understanding of biological processes, and means of simulating both natural and perturbed systems (e.g. those associated with disease). Gene regulatory network (GRN) quantitative modelling is still limited, however, due to data issues such as noise and restricted length of time series, typically used for GRN reverse engineering. These issues create an under-determination problem, with many models possibly fitting the data. However, large amounts of other types of biological data and knowledge are available, such as cross-platform measurements, knockout experiments, annotations, binding site affinities for transcription factors and so on. It has been postulated that integration of these can improve model quality obtained, by facilitating further filtering of possible models. However, integration is not straightforward, as the different types of data can provide contradictory information, and are intrinsically noisy, hence large scale integration has not been fully explored, to date. Here, we present an integrative parallel framework for GRN modelling, which employs evolutionary computation and different types of data to enhance model inference. Integration is performed at different levels. (i) An analysis of cross-platform integration of time series microarray data, discussing the effects on the resulting models and exploring crossplatform normalisation techniques, is presented. This shows that time-course data integration is possible, and results in models more robust to noise and parameter perturbation, as well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as knock-out experiments, annotated transcription factors, binding site affinities and promoter sequences are integrated within the evolutionary framework to obtain more plausible GRN models. This is performed by customising initialisation, mutation and evaluation of candidate model solutions. The different data types are investigated and both qualitative and quantitative improvements are obtained. Results suggest that caution is needed in order to obtain improved models from combined data, and the case study presented here provides an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in comparison to microarray experiments, to identify overlapping features and possibilities of integration within the framework. The extension of the framework to this data type is straightforward and qualitative improvements are obtained when combining predicted interactions from single-channel and RNA-seq datasets

    Social network analysis and festival relationships:personal, organisational and strategic connections

    Get PDF
    corecore