

Solutions to Decision-Making Problems in

Management Engineering Using Molecular

Computational Algorithms and

Experimentations

KIM, Ikno

May 2011

Waseda Univers i ty Doctora l Disser tat ion

Solutions to Decision-Making Problems in

Management Engineering Using Molecular

Computational Algorithms and

Experimentations

KIM, Ikno

Graduate School of Information, Production and Systems

Waseda University

May 2011

Ikno Kim

Solutions to Decision-Making Problems in Management

Engineering Using Molecular Computational Algorithms

and Experimentations

To my respectable parents, Yonggui Kim and Okhee Hyun

All uncredited Figures and Tables in this dissertation are designed and drawn by Ikno Kim.

Contents

Acknowledgements i
Abstract iii

1 Introduction 1

2 Fundamentals of Molecular Biology

for Molecular Computational Algorithms 5

2.1 Chromosomes 5
2.2 Deoxyribonucleic Acid 6

2.2.1 Linear polymer of deoxyribonucleotides 8
2.2.2 Phosphodiester bonds 8
2.2.3 Hydrogen bonds 9

2.3 Ribonucleic Acid 12
2.3.1 Chemical synthesis of RNA 12
2.3.2 Eukaryotic RNA polymerases 12
2.3.3 Translation system 13

3 Molecular Experiments, Instrumentation,
 and Manipulations 14

3.1 Denaturing and Renaturing 14
3.2 Restriction Enzyme Methods 15
3.3 DNA Ligations 16
3.4 Cloning Plasmids 17
3.5 Polymerase Chain Reaction Technique 20
3.6 Affinity Separation Methods 21
3.7 Gel Electrophoresis Apparatuses 21

4 Minimising the Maximum Production Completion Time Based on
 a Job-Shop DNA-Based Algorithm 23

4.1 Overview 23
4.2 Background and Motivations 24
4.3 Production Scheduling in Different Volumes 25

4.3.1 Production scheduling in high volumes 25
4.3.2 Production scheduling in intermediate volumes 26

4.4 Process-Focused Production Scheduling 27
4.5 Job-Shop Scheduling 28

4.5.1 Production scheduling in low volumes and high varieties 29
4.5.2 Production problem of job-shop scheduling 30

4.6 Encoding Operational Pairs in DNA 32
4.6.1 Operational pair matrix 32
4.6.2 DNA substrings 35

4.7 Manipulating DNA Plasmids for the Algorithm 36

4.7.1 Application of manipulating DNA plasmids 37
4.7.2 DNA plasmids and their properties 38
4.7.3 Purifications of DNA plasmids 41
4.7.4 Amplifications of DNA plasmids 43

4.8 Experimental Studies and Results 43
4.8.1 Experimental studies 43
4.8.2 Results of the experimental studies 46

4.9 Computational Times and Solvable Sizes 46
4.10 Concluding Remarks 50

5 Identifying Cohesive Subsets Based on
 a Fuzzy DNA-Based Algorithm 51

5.1 Overview 51
5.2 Background and Motivations 52
5.3 Cohesive Subsets in the Real World 53
5.4 Measures of Cohesive Subsets 54

5.4.1 Measure of the strength of relations 55
5.4.2 Measure of the density 55
5.4.3 Measure of the probability 57

5.5 Clique Relations for Cohesive Subsets 58
5.6 Component Relations for Connections 60
5.7 Cohesive Subsets with Fuzziness 62

5.7.1 Fuzzy clique relations 62
5.7.2 Fuzzy similarity relations 64
5.7.3 Fuzzy hierarchical subsets 66

5.8 Fuzzy Operational Network 67
5.8.1 Model of the network 68
5.8.2 Workforces in a clique relation 70
5.8.3 Maximum number of workforces in a clique relation 70

5.9 Detection of Cohesive Subgroups with DNA 71
5.10 Experimental Studies and Results 73

5.10.1 Experimental studies 73
5.10.2 Results of the experimental studies 73

5.11 Identification of Cohesive Subgroups 74
5.12 Density Analysis 77

5.12.1 Comparison of the two networks 77
5.12.2 Density analysis results 77

5.13 Classification Method Applied to Clustering 81
5.14 Computational Times and Solvable Sizes 81
5.15 Concluding Remarks 85

6 Modelling Interpretive Structures Based on
 a Hierarchical DNA-Based Algorithm 86

6.1 Overview 86
6.2 Background and Motivations 87
6.3 Interpretive Structural Modelling 88

6.4 ISM Representations 90
6.4.1 Digraph representation 92
6.4.2 Matrix representation 93

6.5 Crossing Minimisation Methods 93
6.5.1 Level-by-level sweep method 93
6.5.2 Integer programming method 95
6.5.3 Crossing minimisation problem in dense two-level graphs 96

6.6 Mathematical ISM Method 98
6.7 DNA-Based ISM Method 101
6.8 Encoding Element Nodes in DNA 103

6.8.1 Strong components 104
6.8.2 Double-encoded substrings 108
6.8.3 Complementary substrings 111

6.9 Experimental Studies and Results 113
6.9.1 Experimental studies 113
6.9.2 Results of the experimental studies 117

6.10 Approach to Solving a Communication Problem 119
6.11 Computational Times and Solvable Sizes 120
6.12 Concluding Remarks 124

7 Minimising Decision Rules Based on
 a Rough DNA-Based Algorithm 125

7.1 Overview 125
7.2 Background and Motivations 126
7.3 Computational Method with Rough Sets 126

7.3.1 Rough set theory 127
7.3.2 Information system 128
7.3.3 Model of a decision table 129

7.4 Present Computational Algorithm 130
7.4.1 Discernibility matrix 130
7.4.2 Decision matrix 131

7.5 New Computational Algorithm 132
7.5.1 Digraph setting 133
7.5.2 DNA encoding process 137

7.6 Experimental Studies and Results 142
7.6.1 Experimental studies 142
7.6.2 Results of the experimental studies 149

7.7 Computational Times and Solvable Sizes 157
7.8 Concluding Remarks 161

8 Conclusions 162

Bibliography 165
List of Publications 174

i

Acknowledgements

1) Since I first started studying at the Graduate School of Information, Production and Systems,

Waseda University, I have been able to acquire knowledge in a great number of concepts:
communications, methodologies, methods, models, perceptions, and technologies, as well as
theories of information, production, and systems engineering. The school has provided me
with a great opportunity to understand and take a broad view of the various aspects of the
world’s engineering and scientific knowledge. That experience has resulted in my desire to
contribute widely to the engineering and scientific endeavours. Collaboration on new and
innovative ideas will continue to make large and positive contributions to developing
cooperative international relationships.

2) It has already been nine years since I first met Professor Junzo Watada. I was looking at

many professors’ laboratories when I first decided to study in Japan. I found Professor
Watada’s article on the online board of the Human Informatics laboratory in the Department
of Technology Management, Osaka Institute of Technology. Its managerial and financial
analyses, using soft computing techniques and methods, were different from the general
concepts of industrial engineering. It introduced me to a new world of industrial engineering
and management, and greatly affected my decision to study human informatics for industrial
engineering and management.

Since the courses Professor Watada taught, such as Decision Support Systems,
Management Information Systems, Human Informatics, and Soft Computing, involved
material that was new to me, they were quite interesting. When I was a sophomore, I heard
about his transfer. He called me and suggested that join him at the Graduate School of
Information, Production and Systems, Waseda University. Because I have always wished to
study in his laboratory, I was very happy to hear his suggestion.

The various research projects and warm interpersonal relationships at the Management
Engineering Laboratory were very beneficial and meaningful to me. In particular, I remember
helping Professor Watada with the several international conferences that he held. I still
appreciate having had the several opportunities that he gave me to help him, because I
learned much from helping him. I was able to meet excellent professors and students from all
over the world at those conferences. Through these precious experiences, I was able to
foster global perspective and become an international researcher, even though I was a
graduate student studying in Japan.

Looking back, I felt that I often did not meet Professor Watada’s expectations, and that
he worried about my lack of abilities and skills. Even though I felt that way, he always had

ii

faith in me and was there for me. It was truly a great help for me. Like a lighthouse that
shows ships the correct direction in the middle of raging waves, he has been a compass to
my life. I sincerely appreciate his teaching. Just as he was my proud professor, I will always
be a proud student of his. I will never forget his sincere, welcoming, warm, and kind-hearted
care.

3) I would greatly like to thank my respectable committee members, Professor Takeshi

Yoshimura, Professor Tomohiro Murata, Professor Osamu Yoshie, Professor Toshitsugu
Ueda, Professor Harutoshi Ogai, and Professor Masahiro Nakano of the University of
Occupational and Environmental Health, for spending their time to make many meaningful
comments and suggestions about my work. I will never forget their kindness and support.

4) I wish to express my sincere appreciation to Professor Ichiro Shigaki of the Osaka Institute of

Technology, Japan, who taught me the theoretically important concepts and ideas of
industrial engineering and management studies, and who guided me to the right way of
studying in Japan.

5) I would truly like to express my gratitude to Professor Witold Pedrycz of the University of

Alberta, Canada, who had a lot of important comments and ideas for me, and who took care
of me during my stay there.

6) Whenever I visit Taiwan asking for help, Professor Jui-Yu Wu of the Taipei Medical University,

Taiwan always welcomed me, taught me biochemistry and molecular engineering, and
allowed me to stay in his laboratory. I greatly appreciate the teaching and comments that he
gave to me during my research period there. I will also never forget his kindness, hospitality,
goodness, and friendly treatment.

7) I greatly appreciate, with thankful hearts, my respectable parents, Yonggui Kim and Okhee

Hyun, who sent me to Japan, and who always believe in me. I really appreciate my two elder
brothers, Youngno Kim and Hakno Kim, who kindly treat me. I greatly appreciate my
respectable parents-in-law, Joohyung Baek and Gabjin Oh, who always take care of me. I
finally appreciate my sweetheart, Sunghee Baek, who always encourages and loves me.

May 2011

Ikno Kim
Graduate School of Information, Production and Systems

Waseda University

iii

SOLUTIONS TO DECISION-MAKING PROBLEMS IN MANAGEMENT

ENGINEERING USING MOLECULAR COMPUTATIONAL ALGORITHMS AND

EXPERIMENTATIONS

Ikno Kim

Doctor of Engineering

Graduate School of Information, Production and Systems

Waseda University

Abstract

Since the concept of a biologically computational paradigm was first pioneered, this
novel concept has provided the ability to develop new types of computational algorithms
by exploiting and implementing existing algorithms. However, we were unable to find
information regarding interdisciplinary molecular types of algorithms for management
engineering decision-making problems. This dissertation will present, for the first time,
general molecular algorithms that have been (1) constructed by molecular engineering
mechanisms and techniques, such as manipulating DNA molecular structures and
characteristics; and (2) integrated with other field methods and techniques. These new
types of general molecular algorithms are proposed here, and we refer to them as in-
terdisciplinary types of molecular computational algorithms in our new studies. The
computational model that makes use of interdisciplinary types of molecular computa-
tional algorithms for solving decision-making problems in management engineering is
referred to, in this dissertation, as molecular decision support computation. Since inter-
disciplinary types of molecular computational algorithms are essentially designed and
used for the development of molecular decision support computation, interdisciplinary
types of molecular computational algorithms can also be simply called molecular com-
putational algorithms from the viewpoint of developing molecular decision support
computation. The aim of our studies is to show novel and various types of molecular
computational algorithms implemented by novel molecular engineering experimenta-
tions, termed molecular computational experimentations. In this dissertation, there are
four different configurations of novel molecular computational algorithms used for solv-
ing decision-making problems in management engineering: (1) a job-shop DNA-based
algorithm used to classify the given schedules into both feasible and unfeasible sched-
ules and determine the minimised maximum production completion time; (2) a fuzzy
DNA-based algorithm used to identify cohesive subsets with their density analyses; (3)
a hierarchical DNA-based algorithm used to model complicated interpretive structures;
and (4) a rough DNA-based algorithm used to minimise decision rules in a rough set
approach. Finally, these four molecular computational algorithms, each with its own
proposed molecular computational experimentation, will illuminate significant concepts
and open up ways of developing mainframe, flexible, and practical applications of mo-
lecular decision support computation for decision-making problems in management
engineering.

Chapter 1

Introduction

Since the 1970s, scientists have been learning how to freely reproduce and transform
deoxyribonucleic acid (DNA), a material that holds significant information about hu-
man life. Experimental and theoretical methods of molecular genetics that handle DNA
have developed rapidly, particularly in the area of recombinant DNA sequencing, and
these methods have been used and applied in many fields.

Adleman [1] suggested that molecular computation is one method that has been ap-
plied in in vitro approaches for implementing DNA molecular structures and character-
istics when combined with biochemical tools and techniques. He first solved the Ham-
iltonian path problem (one computationally intractable problem) using DNA molecules.
Since his pioneering investigation first showed molecular-level computations, many re-
searchers, such as biochemical scientists and information engineers, have not only paid
special attention to solving this computationally intractable problem, but have also real-
ised the great potential for developing a computing machine that is propelled and con-
trolled by free natural biochemical energies and techniques at a nanometric level.

Many computational advantages have become apparent, since the computational
mechanisms of DNA molecules have been viewed as arithmetical elements. Molecular
computation mainly works with high level functions by initiating biochemical reactions
with nucleic acids and various enzymes in a liquid solution. The applied methods of
molecular computation are executed in a significantly shorter time by DNA mole-
cule-based arithmetical elements, which provide valuable DNA molecular functions.
This permits the creation of a super-parallel computing system, which deals with a solu-
tion search space that can be enlarged exponentially in accordance with an increase in
the required variables and samples.

Molecular computation does not implement integrated circuits consisting of semi-
conductors, such as the von Neumann architecture-based computers that are normally
employed. Information processing by electronic computers is basically conducted with
binary digits, whereas information processing by DNA molecules is conducted with
four different bases: adenine, thymine, guanine, and cytosine. In addition, DNA mole-
cules are represented as forming molecular chains with regular DNA sequences of sugar
and phosphate groups. A single DNA molecule is a polymer with a string of nucleotides,
and these nucleotides are bound by a method different from that of both phosphodiester
and hydrogen bonds.

Since molecular computation was investigated by Adleman, it has provided signifi-
cant and exploitable ideas and concepts, which have enabled us to express new types of
general molecular algorithms, methods, computing paradigms, and application-based
research. For instance, one method of cleaving and catalysing DNA molecular se-
quences using both restriction enzymes and DNA ligations is actually a molecular engi-

CHAPTER 1

INTRODUCTION

2

neering method, which can also be used as an applied general molecular method. How-
ever, many scientists and engineers pay particular attention to solving computationally
intractable problems, such as combinatorial problems or mathematical issues, because
they can be implemented using biological and chemical experimental techniques.

In this dissertation, we show how to handle and implement new types of general
molecular engineering experimentations (termed molecular computational experimenta-
tions) in order to strengthen general molecular algorithms and general molecular engi-
neering experimentations. While implementing these novel experimental methods, we
also propose several integrations of general molecular algorithms (each of which in-
cludes its own molecular computational experimentation for each purpose), advanced
mathematical information engineering, and completely different field methodologies.
These multiple integrated algorithms (termed interdisciplinary types of molecular com-
putational algorithms) are associated with various forms in different engineering and
science fields. We focus on both decision support computation and molecular engineer-
ing mechanisms and techniques associated with various areas of engineering and sci-
ence fields. Hence, when we consider the computational model for solving deci-
sion-making problems in management engineering (the model makes use of interdisci-
plinary types of molecular computational algorithms), we refer to this model as mo-
lecular decision support computation. Interdisciplinary types of molecular computa-
tional algorithms are designed and used for the development of the main frame of mo-
lecular decision support computation, meaning that when we adopt the viewpoint of
developing molecular decision support computation, interdisciplinary types of molecu-
lar computational algorithms can also be simply referred to as molecular computational
algorithms. Four different molecular computational algorithms for molecular decision
support computation, each with its own molecular computational experimentation, are
used for management of the engineering decision-making problems discussed in this
dissertation; each design was based on theoretical concepts of molecular and genetic
characteristics and molecular engineering experimental functions. As shown in Figure
1.1, the rest of this dissertation is organised into eight chapters.

In Chapter 2, nanoscale molecular biochemistry is explained in general terms, de-
scribing select fundamental structures and the chemical reactions DNA and ribonucleic
acid (RNA); these are all related to the theoretical concepts of designing molecular
computational algorithms and experimentations. The contents of this chapter provide an
important foundation regarding DNA molecules and their biological features and
chemical reactions for the interdisciplinary approaches described in the following chap-
ters.

Chapter 3 details molecular experiments, instrumentation, and manipulations to de-
termine the final experimental methods for each of the four proposed molecular compu-
tational algorithms shown in Chapters 4, 5, 6, and 7. These notes explain the biological
and chemical experimental backgrounds. The three molecular technologies, corre-
sponding to experiments, instrumentation, and manipulations, are significant for de-
signing molecular computational algorithms and experimentations.

In Chapter 4, a molecular computational algorithm, here termed a job-shop
DNA-based algorithm, is described. This is composed of a job-shop scheduling method
and a general molecular algorithm. The algorithm includes our proposed adapted mo-
lecular computational experimentation, and deals with minimising the maximum pro-
duction completion time in job-shop scheduling. Searching for both feasible and unfea-

CHAPTER 1

INTRODUCTION

3

sible production schedules is often exploited in information, production, and other wide
range areas when handling production scheduling data sets. The organisation of the
given machines and their job orders and processing times has to be constructed using
the job-shop scheduling method. In Chapter 4, we discuss the use of the job-shop
DNA-based algorithm as a vehicle for scheduling and elaborate on this molecular com-
putational algorithm in the context of scheduling the given jobs with our encod-
ing-based experimentation. Moreover, by showing the numerical results of computa-
tional running time and size comparisons, we demonstrate how well the job-shop
DNA-based algorithm works.

Another molecular computational algorithm is described in Chapter 5. This algo-
rithm is here termed a fuzzy DNA-based algorithm, which is composed of fuzzy-based
methods and a general molecular algorithm. The algorithm also includes our proposed
adapted molecular computational experimentation. We focus on two different methods,
corresponding to both fuzzy-based and molecular engineering methods. We have deter-
mined that these two quite differently characterised methods can be integrated to form
an adaptable method and serve as a new molecular computational algorithm. With re-
gard to reasoning in identifying cohesive subsets, we go on to discuss how to combine
fuzzy membership grades with the general molecular algorithm to create the fuzzy
DNA-based algorithm. The numerical results of computational running time and size
comparisons are given to evaluate the use of the fuzzy DNA-based algorithm.

Chapter 6 describes a third molecular computational algorithm, here termed a hier-
archical DNA-based algorithm; this is composed of an interpretive structural modelling

Molecular Decision Support
Computation for Management
Engineering Decision-Making

Problems

Job-Shop DNA-Based
Algorithm

Molecular Computational
Experimentation

Chapter 4

Molecular Computational Algorithms
(Interdisciplinary Types of Molecular

Computational Algorithms)

SOLUTIONS TO DECISION-MAKING PROBLEMS IN MANAGEMENT

ENGINEERING USING MOLECULAR COMPUTATIONAL ALGORITHMS

AND EXPERIMENTATIONS

Molecular Computational Experimentations

Chapters 2 & 3

(1) Job-Shop Scheduling Method
(2) Fuzzy-Based Methods

(3) ISM Method
(4) Rough Set Method

+
General Molecular Algorithms

Fuzzy DNA-Based
Algorithm

Molecular Computational
Experimentation

Chapter 5

Hierarchical DNA-Based
Algorithm

Molecular Computational
Experimentation

Chapter 6

Rough DNA-Based
Algorithm

Molecular Computational
Experimentation

Chapter 7

Figure 1.1. Structure of the proposed molecular computational algorithms and experimentations
for management of the engineering decision-making problems.

CHAPTER 1

INTRODUCTION

4

method and a general molecular algorithm. The algorithm involves our proposed
adapted molecular computational experimentation. We designed this algorithm for the
modelling of interpretive structures. In other words, the algorithm is used to hierarchi-
cally structure contextual problems in complex and unpredictable issues or situations.
We focus on a directed graph of the complicated contextual relations that can be trans-
formed into DNA molecular sequences to create a novel and biochemically intelligent
way of encoding molecular sequences through hierarchical structural modelling. Further,
we elaborate on our novel development of the molecular engineering type-setting en-
coding method that provides different fitting types for each of the elements to create the
hierarchical DNA-based algorithm. We also show, with the numerical results of compu-
tational running time and size comparisons, how well the hierarchical DNA-based algo-
rithm works.

In Chapter 7, we describe a fourth molecular computational algorithm, here termed a
rough DNA-based algorithm. This is composed of a rough set method and a general
molecular algorithm. We also propose the algorithm’s own adapted molecular computa-
tional experimentation. The algorithm is used to derive all possible minimal lengths to
be used as decision rules, by classifying the given objects into subsets of the most or-
ganised and simplified objects to aid decision makers. The rough DNA-based algorithm
shows a possible integrated knowledge support system combined with rough set con-
cepts and molecular engineering methods and techniques. Moreover, the numerical re-
sults of computational running time and size comparisons are shown to evaluate the use
of the rough DNA-based algorithm.

In Chapter 8, we review each of the four molecular computational algorithms (the
job-shop DNA-based algorithm, the fuzzy DNA-based algorithm, the hierarchical
DNA-based algorithm, and the rough DNA-based algorithm) with their own molecular
computational experimentations, which were used to solve the four particular deci-
sion-making problems in management engineering. These are presented and explained
in Chapters 4, 5, 6, and 7, respectively. Finally, we conclude this dissertation with a
summary and suggestions for future molecular decision support computation. This
computation makes use of newer and more advanced molecular computational algo-
rithms for the management engineering issues.

Chapter 2

Fundamentals of Molecular Biology
for Molecular Computational
Algorithms

2.1 Chromosomes

Since the late 19th century, microscopy techniques and applied methods have made
great advances; the most significant of these developments has enabled us to see the
structure of cells. It is now clearly understood that animal and plant cells are composed
of a central body, a cell nucleus, membranes and an amorphous cytoplasm [2]. Although
there are many different types of components in the cell, we focus on chromosomes (the
concomitant elongated bodies contain DNA molecules). One cell is a precise, small and

Figure 2.1. Example of human chromosomes in a stage of mitosis during the eukaryotic cell
cycle. Creative Commons Attribution-Share Alike 3.0: Steffen Dietzel, 2006.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

6

functional unit of an organism that contains a nucleus. Some or all of the genetic infor-
mation in the cell nucleus comes from the chromosome structures. Each single chro-
mosome is essentially composed of an organised arrangement of DNA molecules and
proteins.

A single chromosome consists of DNA molecules in a folded arrangement. There
are several hierarchical levels of organisation in the chromosome, but here we focus on
the first level that mainly consists of the DNA molecules. In the first level, the DNA
molecules are combined with histones to make a beaded flexible fibre (histone fibre).
The diameter of the histone fibre is 11nm (110Å); this measurement is roughly derived
by considering (1) a sevenfold reduction in the DNA molecule lengths; and (2) five
times the free DNA width. The diameter of the histone fibre is only evident when the
concentration of salts is low. If the concentration of salts is slightly increased, the link-
ing of the DNA molecules becomes invisible to electron microscopy [3, 4]. Figure 2.1
shows human chromosomes in a stage of mitosis.

2.2 Deoxyribonucleic Acid

Deoxyribonucleic acid, abbreviated as DNA, is polymer biological material within the
cells of living matter, which acts as a blueprint for the organism; it performs various
functions in order to build the organism and to maintain life. The structure of the human

(a) (b) (c)

Figure 2.2. Three typical forms of three-dimensional DNA structural views: (a) A-form; (b)
B-form; (c) Z-form. Creative Commons Attribution-Share Alike 3.0: Richard Wheeler, 2007.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

7

N

N

NH

N

NH2

(a) (b)

Figure 2.3. Adenine: (a) structural formula; (b) space-filling model, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

NH

NH

O

O

CH3

(a) (b)

Figure 2.4. Thymine: (a) structural formula; (b) space-filling model, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

N

NH

NH

N

NH2

O

(a) (b)

Figure 2.5. Guanine: (a) structural formula; (b) space-filling model, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

8

genome, corresponding to DNA molecule-based sequences referred as body layout, con-
tains approximately twenty-two thousand genes; 99.9% of them are shared by all hu-
mans, and the remaining 0.1% determines the specific characteristics for each individual
according to inheritance. This polymer biological material contains genetic information
by all living organisms on the earth [5]. As shown in three-dimensional view in Figure
2.2, there are three typical forms of DNA structures [6].

2.2.1 Linear polymer of deoxyribonucleotides

A standard linear polymer of the repeating base units that is constructed by a large DNA
molecule is basically composed of five-carbon sugar, phosphoric acid, and the four ni-
trogen-containing bases. There are four types of nitrogen-containing bases, which cor-
respond to adenine (abbreviated as A), thymine (abbreviated as T), guanine (abbreviated
as G), and cytosine (abbreviated as C). Each of these four bases A, T, G, and C is repre-
sented as both a structural formula and a space-filling model, shown in Figures 2.3(a)
and (b) to 2.6(a) and (b), respectively. As shown in Figures 2.3 and 2.5, the two bases of
a double-ring structure correspond to both adenine and guanine, which are referred as
purines. As shown in Figures 2.4 and 2.6, the other two bases of a single-ring structure
correspond to both thymine and cytosine, which are referred as pyrimidines [3, 7].

2.2.2 Phosphodiester bonds

A nucleoside is formed by a compound of each of the four bases that are linked to the
sugar deoxyribose. If a phosphate group is clearly attached to deoxyribose, the nucleo-
side becomes a nucleotide. In DNA, nucleotides must be joined to a polynucleotide
chain. In order to do this, the phosphate is attached to the 5′ carbon of the first sugar
linked to the hydroxyl group that is attached to the 3′ carbon of the second sugar. During
these chemical attachments, the sugars of adjacent nucleotides are linked in component
connections through the phosphates by forming phosphodiester bonds [3]. Figure 2.7

N

NH

NH2

O

(a) (b)

Figure 2.6. Cytosine: (a) structural formula; (b) space-filling model, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

9

shows an example of a group of covalent bonds that is also referred to as a phosphodi-
ester bond. In addition, chemical compounds with covalent bonds are basically con-
structed by nonmetal elements, from nanometre-size DNA molecules to macromole-
cules, such as polythene.

2.2.3 Hydrogen bonds

An important factor in DNA is the binding of two single polynucleotide strands within a
pure liquid into a specific form by means of hydrogen atoms, which are shared by two
negatively charged atoms. The attachment of two single polynucleotide strands is made
by a group of bonds, referred to as a hydrogen bond. In particular, a hydrogen bond
plays a primary role in the formation of higher-order structure DNA molecules, such as

N
O

O

O

O
-

O
-

OP

N
O

O

O

O
-

OP

N
O

O

O

O
-

OP

N
O

O

O

O
-

OP

N
O

O

OH

O
-

OP

N

N
N

NH2

N

NH2

O

N

NH
N

NH2

O

N

NH2

O

N

N
N

NH2

(a) (b)

Figure 2.7. Phosphodiester bonds: (a) structural formula; (b) space-filling model, drawn by Ikno
Kim using ACD/ChemSketch 5.12.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

10

the secondary structure formation of protein by the formation of a right-handed helix. In
hydrogen bonds, there are some exact bonding patterns that occur through normal base
pairs. Adenine always bonds with only thymine, while guanine always bonds with only
cytosine. This phenomenon is referred to as Watson-Crick complementarity [8]. A pho-
tograph of the DNA reconstruction model of Watson-Crick complementarity is shown in
Figure 2.8.

The exact patterns of hydrogen bonds may be seen from building a model of DNA.
If a purine of one chain always bonds with a pyrimidine of the other chain, then the di-
mensions of the bases become the same as the length of the DNA molecule. Hence, one
of two purines should selectively bond with one of two pyrimidines. Each of the base
pairs is symmetrical in process, and this allows it to be inserted into the double
right-handed helix. Again, one complementary base pairing consists of both A and T,
and the other complementary base pairing consists of both G and C. From these two
complementary base pairings, all of the backbone sugar-phosphate groups clearly have
orientations that allow DNA to assume the same structure as any of the DNA sequence
bases. Thus, the symmetry of the DNA molecule is associated with the two single
polynucleotide strands, each of which runs in opposite directions to become a helix of
double DNA strands [2, 9]. Two hydrogen bonds between two different complementary
bases, holding A and T together, are shown in Figure 2.9. Three hydrogen bonds be-
tween two different complementary bases, holding G and C together, are shown in Fig-
ure 2.10. The structure of the DNA molecules is essentially formed by both strong

Figure 2.8. Photograph of the DNA reconstruction model of Watson-Crick complementarity,
taken by Ikno Kim at Science Museum London.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

11

N

NNH

N N

H

HH

H
NH

N

O

O

CH3

H H

(a)

(b)

Figure 2.9. Adenine and thymine (two different complementary bases) are being held by two
hydrogen bonds: (a) structural formulas; (b) space-filling models, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

N

NH

N

O

H

H

H

H

N

NNH

N

N

O

H

H

H

H

(a)

(b)

Figure 2.10. Guanine and cytosine (two different complementary bases) are being held by three
hydrogen bonds: (a) structural formulas; (b) space-filling models, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

12

phosphodiester bonds and weak hydrogen bonds.

2.3 Ribonucleic Acid

Ribonucleic acid, abbreviated as RNA, exists inside the cytoplasm and is related to the
biosynthesis of protein. RNA forms protein in the living organism based on the DNA
genetic information. The function of protein in the human body is to create skin, bones,
muscles, and blood, all of which require protein.

2.3.1 Chemical synthesis of RNA

In gene expression, the synthesis of the RNA molecules is copied from the DNA seg-
ment, meaning each of the RNA molecules derives from a single DNA strand in tran-
scription. For chemical synthesis of RNA, one strand serves as a template in the region
of the DNA molecule. The RNA precursors of the four ribonucleoside 5′-triphosphate
group are different from the DNA precursors. The significant difference is that for RNA
molecules the sugar should be ribose rather than deoxyribose, and thus thymine is re-
placed by uracil (abbreviated as U). A sugar-phosphate bond is chemically formed be-
tween one nucleotide of the 3′-hydroxyl group and the next nucleotide of the
5′-triphosphate to be lined up in the RNA synthesis [3, 10]. Figures 2.11(a) and (b) show
both a structural formula and a space-filling model, corresponding to uracil. In the DNA
molecule template, the four bases A, T, G, and C are transformed into the four bases A,
U, G, and C.

2.3.2 Eukaryotic RNA polymerases

RNA polymerases in eukaryotes have subunits of holoenzyme and are composed of
three different types, which are denoted as RNA polymerase I, II, and III. A more de-
tailed explanation follows.

NH

NH

O

O

(a) (b)

Figure 2.11. Uracil: (a) structural formula; (b) space-filling model, drawn by Ikno Kim using
ACD/ChemSketch 5.12.

CHAPTER 2

FUNDAMENTALS OF MOLECULAR BIOLOGY FOR MOLECULAR COMPUTATIONAL ALGORITHMS

13

Three of the RNA polymerase functions are (1) RNA polymerase I, which produces
the transcript that starts the processing into ribosomal RNA; (2) RNA polymerase II,
which is responsible for transcribing all protein-coded genes and for a large number of
small nuclear RNA molecules; and (3) RNA polymerase III, which transcribes all of the
transfer RNA genes and a large number of ribosomal subunits in a component [3, 11].
Each of these three different RNA polymerases has a particular RNA transcript.

2.3.3 Translation system

Each of the RNA sequences determines amino acid sequences in all of the information
transfer processes, and the amino acid sequences become linked together throughout all
of the chemical processes. The entire series of these processes is referred to as a trans-
lation system. In this system, there are essentially four types of RNA; these are messen-
ger RNA (abbreviated as mRNA), transfer RNA (abbreviated as tRNA), ribosomal RNA
(abbreviated as rRNA), and transfer-messenger RNA (abbreviated as tmRNA). A more
detailed explanation follows [12-14].

Four of the RNA types are (1) mRNA, which carries a protein sequence information
to the specific ribosomes, and is necessary to provide the sequence coding that deter-
mines the sequence of amino acids; (2) tRNA, which is attached to a specific amino acid
and is a small version of RNA, in which the sequence of amino acids is determined by
the sequence base using an adaptor molecule set; (3) rRNA, which is a catalytic com-
ponent for specific ribosomes, and is regularly divided into four rRNA molecules in eu-
karyotic ribosomes; and (4) tmRNA, which exists in plastids and bacteria, catches on
proteins of the encoded mRNA molecules, and covers the stalling ribosomes.

Chapter 3

Molecular Experiments,
Instrumentation, and Manipulations

3.1 Denaturing and Renaturing

Each of the DNA molecules in a double strand is composed of two single DNA strands
attached together. One double DNA strand contains a large number of base chain pairs,
constructing a double right-handed helix. In normal physiology, none of the double
DNA strands ever spontaneously separates to become two single DNA strands. However,
if double DNA strands in the helix structure are exposed to close to boiling temperatures,
they become denatured or melted into single DNA strands. This occurrence is referred
to as denaturing, and is explained below.

The high temperatures break the hydrogen bonds of the base chain pairs in a double
right-handed helix between complementary DNA strands. In the denaturation of double
DNA strands, a pair of guanine and cytosine strands is more stable than a pair of ade-
nine and thymine strands, because guanine attaches to cytosine with three hydrogen
bonds and adenine attaches to thymine with only two hydrogen bonds. The temperature
required to break the guanine and cytosine pair is therefore slightly higher than that re-

3'

3'

5' 5'
GTCGACTA

GTTCCCCG
GTTAATGA

CGTTGCTC
TCTCCGAG

GAGAGGAA
ACGTTGCT

CTCTCCGA
GGAGAGGA

AACGCTAA
AGTGAGCG

ATCCTCCA
GAGCCCGG

TTAATGAC
GTTGCTCT

CTCCGACG
AT

CAGCTGATCAAGGGG
CCAATTACTGCAACG

AGAGAGGCTCCTCTC
CTTTGCAACGAGAGA

GGCTCCTCTCCTTTG
CGATTTCACTCGCTA

GGAGGTCTCGGGCC
AATTACTGCAACGAG

AGAGGCTGCTA

CAGCTGATCAAGGGGCCAATTACTGCAACGAGAGAGGCTCCTCTCCTTTGCAACGAGAGAGGCTCCTCTCCTTTGCGATTTCACTCGCTAGGAGGTCTCGGGCCAATTACTGCAACGAGAGAGGCTGCTA

GTCGACTAGTTCCCCGGTTAATGACGTTGCTCTCTCCGAGGAGAGGAAACGTTGCTCTCTCCGAGGAGAGGAAACGCTAAAGTGAGCGATCCTCCAGAGCCCGGTTAATGACGTTGCTCTCTCCGACGAT

5'

5'

3'

3'

Denaturing Renaturing

 Figure 3.1. Both denaturing and renaturing of a double DNA strand [2].

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

15

quired to break the adenine and thymine pair [15].
The reverse of denaturing is referred to as renaturing or annealing. The denatured or

differently created two single DNA strands (both of them containing exactly the same
matched bases) are renatured or annealed to each other when the temperature cools. The
annealing process or reaction has recently been referred to as hybridisation, and this
spontaneous reaction is now emerging as a powerful tool in molecular engineering. In
particular, the complementary location can be detected in a tissue section in order to la-
bel DNA fragments and to observe the existence of annealed DNA strands [2, 16]. Fig-
ure 3.1 illustrates a double DNA strand that has been denatured and annealed under its
hydrogen bonds.

3.2 Restriction Enzyme Methods

In the exploration of recombinant DNA by molecular computation, breaking the specific
sites of DNA molecules and isolating some particular DNA fragments are achieved by
molecular engineering methods, which are referred to as restriction enzyme methods.
Restriction enzymes are also referred to as nucleases that break apart DNA molecules,
where they match the restriction site of the short sequence nucleotides. The common
restriction sites of the enzyme are constructed from four, five or six nucleotides, includ-
ing their complementary parts on the DNA base sequence. Several hundred restriction
enzymes have been isolated from microorganisms, and each of these has been identified
as having different restriction sites [17].

DNA fragments with different lengths are obtained by amplifying various DNA base
sequences and by breaking them apart using restriction enzyme methods. In other words,
the enzyme recognises specific DNA base sequences and breaks at a certain position.
For instance, one restriction enzyme is referred to as BamHI (microorganism: Bacillus
amyloliquefaciens H), which has six bases of the restriction site (base sequences: one
strand is represented as 5′-GGATCC-3′, and the other strand is also represented as
5′-GGATCC-3′), broken at the position between one G and the next G [18]. Three ex-
amples of the common restriction enzymes (BamHI, PstI, and EcoRI) are shown in Fig-
ure 3.2.

The restriction enzymes that act as nucleases, breaking at the position of an internal
edge in a DNA strand, are known as type II restriction endonucleases, and all have a

3'

5' 3'

5'3'

5' 3'

5'

 EcoRI
(Escherichia coli)

CTTAAG

GAATTCCTGCAG

GACGTC

 PstI
(Providencia stuartii)

 BamHI
(Bacillus amyloliquefaciens H)

5'

3'
CCTAGG

GGATCC

5'

3'

Figure 3.2. Three examples of the restriction enzymes (BamHI, PstI, and EcoRI) with DNA base
sequences, sources, and breaking sites [3].

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

16

common mode of action. The expected frequency in any of the DNA base sequences is
able to be calculated by 4n, since the possibility of four bases is considered. Here, n is
the specific length of the recognised sequence, and the length of base occurrences of
three alternative sites can be predicted: (1) every 256-base pair indicates tetranucleotide
sites; (2) every 1024-base pair indicates pentanucleotide sites; and (3) every 4096-base
pair indicates hexanucleotide sites. The cutting mechanisms in the restriction enzymes
are either blunt-ended or sticky-ended [19]. Figure 3.3 shows an example of a restriction
enzyme (EcoRII) from the protein databank.

Restriction enzymes are used to add the enzyme to the DNA molecules with a buffer.
Some restriction enzymes work only in a specific buffer that contains different salt con-
centrations to ensure a reliable result. It is recommended that most common restriction
enzyme reactions be incubated at 37˚C. The amount of the restriction endonuclease is
required to have a complete digest of 1μg for substrate DNA in a volume reaction of
0.05ml under three optimal solutions of salt concentration, potential hydrogen (pH), and
temperature for one hour [20].

3.3 DNA Ligations

DNA ligases repair an unstable double DNA strand, in which one of the single DNA
strands or both single DNA strands contain one or more DNA nucleotides that are not
bonded together. The attaching formations of phosphodiester bonds are required to be
catalysed by DNA ligases for many important purposes in the area of the recombinant
DNA experiment using molecular computation, such as for making a sustainable form
of a unified double DNA strand complex.

The plasmid vector and DNA fragments are fused to become one DNA molecule by
a biochemical process, known as a DNA ligation process. T4 DNA ligases [21] are
commonly used to seal single DNA strand gaps for catalysing phosphodiester bonds in
duplex DNA. T4 DNA ligases clearly work for both blunt-ended and sticky-ended types
in the DNA ligation process. A ligation buffer with the enzyme contains adenosine

Figure 3.3. Example of the restriction enzyme (EcoRII) dimer structure. Creative Commons
Attribution-Share Alike 3.0: Thomas Splettstoesser, 2008.

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

17

triphosphate (ATP), which is labile at normal laboratory room temperature [22]. All va-
rieties of enzymes and buffers should be kept on ice once they have been removed from
the freezer. Figure 3.4 shows an example of the DNA ligation process.

3.4 Cloning Plasmids

In cloning DNA molecules, DNA ligases are associated with either the encoded bacte-
riophage or the origin bacteria. All eubacteria include a single ligase of the encoded de-
pendent enzyme. In the eukaryote example of the encoded ATP-dependent ligases, the

H

O

H

Ligase binding

DNA ligase molecule
 + ATP

O

O

O

P

O

3'

5'

CTTAA

G

H

O

O

 AATTC

 G
5'

3'
O

P

OHO

HO O

P

O

3'

5'
 G

 AATTC

O

H

O

H

G

CTTAA

5'

3'
O

P

O

O OH

O

O

H

O

O

P

OHO

O

H

OHO

O

P

O

 AATTC

 G
5'

3'

3'

5'

CTTAA

G

Figure 3.4. Example of the DNA ligation process of DNA strands after being cut by the restric-
tion enzyme (EcoRI) [7].

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

18

high energy of the intermediate enzyme can be formed by pyrophosphate hydrolysis.
The DNA ligases are able to clone various DNA molecules, such as DNA and RNA hy-
brids, blunt-ended duplexes, and single DNA strands [23].

A plasmid is a circular extra-chromosomal genetic element and a double DNA
strand. To replicate DNA molecules autonomously in archaeal, bacterial, and eukaryotic
cells, the plasmid is associated with an important phenomenon of replication. Figure 3.5
illustrates an example of the plasmid map. A vector is another plasmid of a DNA mole-
cule. The term “dealing with vectors” is often used in the genetic engineering field to
indicate a carrier of a plasmid or bacteriophage. The term “dealing with clones” is used
when a single DNA fragment is linked to the vector [24].

The entire human genomic DNA is estimated to represent approximately 750,000
clones. In fact, about 90% of the genome can only be represented as a clone library, be-
cause the probability is associated with any particular fragments of DNA molecules that
are ligated into a single plasmid. A restriction enzyme exists in the phage vector and
digests the genome, where the DNA molecule is incubated with limited enzymes. Thus,
this part of the digest creates a range of DNA fragment sizes. As shown in Figure 3.6,
each of the four kinds of vectors indicates the average inserts and the approximate
number of clones. In terms of screening the length of DNA fragments, we have to focus
on two attributes (a unique DNA sequence and a complementary binding). The unique
DNA sequence has an occurrence probability that can be calculated by identifying both
the different and the total nucleotide numbers in that DNA sequence [7]. An example of
the occurrence probability graph for DNA sequences is shown in Figure 3.7.

pLS88
4772 bp

STRB

SUL(R)

STR(R)

KN(R)

UNIQUE SEQUENCE

ClaI (3205)

EcoRI (913)HindIII (3632)

NcoI (1488)

SmaI (3388)

XmaI (3386)

PstI (6)

PstI (809)

AvaI (56)

AvaI (1141)

AvaI (2600)

AvaI (3112)

AvaI (3386)

Figure 3.5. Example of the plasmid map (Vector NTI software).

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

19

Bacterial artificial
chromosome

Cosmid

Lambda

Plasmid

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000

Av erage Insert (base pairs)

G
en

om
e

of
 C

lo
ne

s

Figure 3.6. Comparison of the given four vectors and the approximate number of clones [7].

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

0 2 4 6 8 10 12 14 16 18

Number of Nucleotides

O
cc

ur
re

nc
e

P
ro

ba
bi

lit
y

(1
/)

Figure 3.7. Example graph of the occurrence probabilities for DNA sequences, increased by the
number of nucleotides [7].

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

20

3.5 Polymerase Chain Reaction Technique

To amplify specific DNA sequences into about a half a million by using the simultane-
ous primers of DNA complementary strands, a molecular engineering technique in vitro
is used, known as the polymerase chain reaction (PCR) technique. PCR works by using
two different types of primer extensions that limit the region of DNA for amplifications,
and it repeats the template-specific DNA synthesis reaction of specific DNA base se-
quences by using a heat-resistant DNA polymerase. The PCR technique was specifically
developed to analyse the characteristics of DNA and RNA molecules.

For the reaction, the PCR technique requires both nucleosides and the energy to
synthesise DNA molecules with DNA polymerases, primers, templates, and buffers. In
particular, DNA polymerases are important components, because they are naturally oc-
curring specific enzymes that are biochemical macromolecules, and can be used to
catalyse formations of DNA or RNA molecules for repairs [25]. The step of synthesising
the DNA molecules is repeated by heating the latest synthesised DNA molecules until
they separate, and then cooling them to allow formation of the primers that anneal to the
complementary sequences of the DNA molecules. With each of the cycles (heating and
cooling), the number of DNA molecules will exponentially increase by conducting each
with primer extensions. The predominant reactions create products of DNA molecules,
and some of the products are clearly flanked by the primer extensions after several cy-
cles.

Although the enzyme may not synthesise enough DNA molecules or the reaction
may decrease in intensity, the DNA molecules continue to increase exponentially during

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

800,000,000

900,000,000

1,000,000,000

1,100,000,000

1,200,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Cy cles

N
um

be
r

of
 C

op
ie

s

Figure 3.8. Example graph of the number of DNA copies (per cycle) obtained by using the PCR
technique [25].

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

21

the cycles of heating and cooling. For optimal amplification, the number of cycles is
variable depending on each step of amplification or on the amount of initial material. To
produce an amount from 100ng to 1μg of DNA molecules, corresponding to a sin-
gle-copied human sequence coming from 50ng of genomic DNA molecules, it generally
requires approximately 25 to 35 cycles of both heating and cooling. The features of
PCR remain stable even when the most of the reactions are repeated at high tempera-
tures. The heat-stable enzyme of the Thermus aquaticus (Taq) DNA polymerase is es-
sentially used to simplify the process, and because this enzyme is rapidly and smoothly
active at high temperatures [26].

When conducting the PCR technique, condition setting varies depending on the
model of thermal cycler being used. However, any PCR machine can be used to amplify
or copy DNA molecules for designing molecular computational algorithms. Figure 3.8
shows the number of DNA copies obtained per cycle by using the PCR technique.

3.6 Affinity Separation Methods

A molecular engineering separation method with affinity chromatography is used to ex-
tract one or more specific micromolecules or macromolecules or separate them from
others. This method is referred to as an affinity separation method. The key role of the
affinity separation method scales with a complex mixture of molecules from biochemi-
cal extractions, fermentation broths, or cell homogenates [27].

Extraction using magnetic beads has become a useful affinity separation method for
collecting and dispersing material within an aqueous solution. This extracting method is
also used to separate and extract biochemical matter automatically. In recent years, one
use of the technology with magnetic beads is to extract DNA molecules by using fluo-
rescent labels [28]. In this affinity separation method, fluorescently-labelled DNA seg-
ments have specific base sequences of ligations, which can bond to magnetic beads.
This method involves two techniques: (1) one technique enables the bonding to mag-
netic beads; and (2) the other technique identifies each magnetic bead with a solidified
DNA segment that is differentiated with a particular fluorescent label. The technology
can also deal with multiple DNA molecules, which can be extracted and tested simulta-
neously. The many potential methods and techniques of affinity separation are expected
to be automated as a high throughput processor of magnetic beads.

3.7 Gel Electrophoresis Apparatuses

Different sizes of DNA or RNA fragments, specific DNA substrings, DNA strands, and
vectors or plasmids commonly result from certain actions (such as digestion) with vari-
ous types of restriction endonucleases [7]. The different sizes of the DNA molecule
structures clearly reveal their various speeds as they move through the electrically
charged gel.

DNA molecules (or proteins) are transferred inside the electrically charged gel by
generating electric current to separate DNA molecules according to their physical char-
acteristics and then measuring the length of DNA molecules. This molecular engineer-
ing mechanism is referred to as a gel electrophoresis method, and it is carried out with a
gel electrophoresis apparatus. The two most common gel electrophoresis apparatuses
are referred to as the agarose gel electrophoresis apparatus and the polyacrylamide gel

CHAPTER 3

MOLECULAR EXPERIMENTS, INSTRUMENTATION, AND MANIPULATIONS

22

electrophoresis apparatus. The gel electrophoresis apparatus is useful not only for
measuring the length of DNA molecules, but also because it can detach the given DNA
fragments from their structures. Figure 3.9 shows an agarose polymer structure that is
used for separations in agarose gel electrophoresis.

When clarifying the characteristics of proteins that are included within multiple
samples, or when testing multiple proteins that are included within one sample, those
proteins can be separated based on their electrophoretic mobility by using sodium do-
decyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The SDS-PAGE appa-
ratus also performs gel electrophoresis using polyacrylamide gel; this method separates
both proteins and nucleic acids, and is used to obtain pure protein samples. SDS-PAGE
is also used for analysis when studying mass, electrical charge, degree of purity, and
testing for existence of proteins [29].

To design molecular computational algorithms and support several DNA experi-
mentations, we used a machine, called BioCalculator, which was a fully automatic ma-
chine for analysing nucleic acids. The machine automatically measured the length of
DNA strands or fragments and provided clear linear band results.

OO

H

HH
OH

H

H OH

CH2OH

O

H

H

CH2

H

H

O

OH

OO

H

HH

H

OH

H OH

CH2OH

O

H

H

CH2

H

H

O

OH

O

O

OH

H

n

Figure 3.9. Agarose polymer structure, drawn by Ikno Kim using ACD/ChemSketch 5.12. Aga-
rose is used for performing agarose gel electrophoresis.

Chapter 4

Minimising the Maximum Production
Completion Time Based on a Job-
Shop DNA-Based Algorithm

4.1 Overview

In this chapter, a classical job-shop scheduling (we simply call it job-shop scheduling)
method, which is the general scheduling method used for job-shop scheduling problems,
is progressively combined with molecular engineering methods and techniques to create
a single DNA-based algorithm. This algorithm is termed a job-shop DNA-based algo-
rithm, which has been specifically designed to minimise the maximum production com-
pletion time (also known as the makespan).

Various types of products or parts that involve their own spending production proc-
ess times can arise suddenly and should be managed and controlled through production
processes in production facilities with different purposes to scheduling. This kind of
production scheduling indicates process-focused production scheduling, which deals
with low volume and high variety requirements.

The job-shop scheduling method is basically used for solving process-focused pro-
duction scheduling problems (it is not limited to production scheduling problems). In
this production scheduling case, the main purpose of using the job-shop scheduling
method is to minimise the maximum production completion time by organising and
scheduling the given information about machines, their job orders and each of their own
single production process times.

Although the job-shop scheduling method is widely employed for solving proc-
ess-focused production scheduling problems, computational time consuming of
job-shop scheduling still exists in process-focused production management. The prob-
lem occurs when handling a large number of machines and their job orders. It is difficult
to schedule them to detect an optimal schedule that corresponds to the minimised
maximum production completion time. This time offers beneficial and productive ways
of scheduling. In job-shop scheduling, minimising the maximum production completion
time is an intractable scheduling problem. Further, machine sequences should be con-
sidered regarding how all of the given jobs are sequenced by their machine orders.

An example of the problem in job-shop scheduling is shown in this chapter. The
example problem involves machines and their job orders with machine sequence orders
and process times. The job-shop DNA-based algorithm is used to classify the possible

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

24

existing schedules into both feasible and unfeasible schedules, and to select the mini-
mised maximum production completion time. This chapter describes several biological
and chemical experimental methods and techniques as well as its own molecular com-
putational experimentation, which are all included in parts of the job-shop DNA-based
algorithm.

4.2 Background and Motivations

Production companies or organisations continually enhance their productive facilities to
offer and distribute a range of new products. At the same time, they should also update
their production or other purpose scheduling to last the shortest time, facilitating them
to provide their products and satisfy customer or other receiver demands. To fully sat-
isfy these needs, many researchers have proposed solutions for production scheduling
problems. Since the beginning of the 1960s, Giffler et al. [30] have proposed several
solutions for production scheduling problems. As a result, many researchers started to
become interested in solving production scheduling problems.

To solve job-shop scheduling problems, many meaningful branch and bound algo-
rithms and methods have been proposed. Carlier et al. [31] proposed a branch and
bound method focusing on a one-machine scheduling problem. Brucker et al. [32] pro-
posed a fast branch and bound algorithm and Streeter et al. [33] proposed a new branch
and bound algorithm by exploiting local search power. Recently, Artigues et al. [34]
have proposed a branch and bound method that sets specific times.

A genetic algorithm has become a popular method, and applied methods have been
proposed and widely used to provide solutions to job-shop scheduling problems. Ya-
mada et al. [35, 36] clearly described the use of genetic algorithms while Lin et al. [37]
studied parallel genetic algorithms. Cheung et al. [38] employed heuristics and genetic
algorithms that set specific times and Wu et al. recently showed genetic ant colony al-
gorithms.

Several tabu search methods have also been proposed. For example, Hertz et al. [39]
described a tabu search approach. Thamilselvan et al. [40] recently proposed an inte-
grated genetic and tabu search algorithm, and Buscher et al. [41] proposed an integrated
algorithm to solve the lot streaming problem. Further, a number of meaningful heuristic,
meta-heuristic, and other soft computing and evolutionary algorithms and methods have
been proposed cf. [42-48].

In this chapter’s study, from the viewpoint of molecular computation and engineer-
ing, we discuss a molecular computational algorithm (the job-shop DNA-based algo-
rithm), composed of a job-shop scheduling method and a general molecular algorithm
that includes its own molecular computational experimentation. The algorithm is used to
finally resolve the minimised maximum production completion time.

Regarding common job-shop scheduling problems, we should consider machine se-
quences, meaning that each of the given jobs has its own machine sequence. Therefore,
the job-shop DNA-based algorithm is first associated with consideration of machine
sequences. Moreover, the algorithm includes molecular cloning techniques in its new
molecular encoding method, which handles the direct relations of machines and their
job orders.

Enormous amounts of computation are required, particularly for a large number of
machines and job orders with various production process times. Even the job-shop

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

25

scheduling of a small number of machines and their job orders brings with it an intrac-
table computational problem [49], meaning that a job-shop scheduling problem is an NP
(non-deterministic polynomial-time) -hard problem. Moreover, if some unpredictable
products or parts emerge with large numbers with high variety requirements, the solu-
tion becomes even more difficult.

4.3 Production Scheduling in Different Volumes

Common scheduling [50] within an organisation determines the point of time when re-
sources from that organisation are closely associated with the utilisation of facilities and
human resources. Regardless of the basic nature of corporate activities, common sched-
uling occurs in most organisations. For instance, to meet the goals for their productions,
workforces, facilities, maintenance, etc., most production companies need to build some
specific production schedules. As Figure 4.1 shows, common production scheduling can
be classified into three (high, intermediate, and low) different volume requirements.

In decision-making processes, production scheduling needs to be complete before
the actual products are produced. Many different parts of the decision-making processes
on scheduling designs and developments are made long before any of scheduling is
planned. These decision-making processes on scheduling include the capacity of pro-
ductions, product designs, facility selections, machine selections, workforce selections,
etc. with their daily, weekly, monthly, overall, and other period scheduling.

In this section, we consider and describe two different types of scheduling that deal
with high and intermediate volume requirements. The two types of scheduling are basi-
cally focused on production processes, meaning that these scheduling styles are (1)
production scheduling in high volume requirements; and (2) production scheduling in
intermediate volume requirements.

4.3.1 Production scheduling in high volumes

The characteristics of production scheduling in high volume requirements [50] deal with
standardised facilities and activities that enable the same or similar operations for dif-

Production Scheduling in High Volume
Requirements

Production Scheduling in Intermediate Volume
Requirements

Production Scheduling in Low Volume and High
Variety Requirements

• Flow Shops
• Flow-Shop Scheduling
• Flow-Shop Systems

• Medium Shops
• Medium-Shop Scheduling
• Medium-Shop Systems

• Job Shops
• Job-Shop Scheduling
• Job-Shop Systems

Figure 4.1. Common production scheduling classified into three different requirements: (1) high
volume requirements; (2) intermediate volume requirements; and (3) low volume and high vari-
ety requirements.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

26

ferent products. The goal is to facilitate the flow of products through high volume re-
quirements, so as to maximise the operational rate of labour and facilities. The places
where high volume products are produced are referred to as flow shops. Production
scheduling in high volume requirements is referred to as flow-shop scheduling. The
systems using this flow-shop scheduling are referred to as flow-shop systems. Figure 4.2
shows a representation of flow shops in general production machines. In fact, in some
cases, such flow-shop scheduling can cover intermediate volume requirements and low
volume requirements as well [51].

Due to its repetitive nature, operational loads and orders are significant variables of
the flow-shop system in decision making. This system should be designed to facilitate
work within the system that deals with specialised materials and equipment, since all
the items are produced in each of the same orders.

One important aspect in the design of the flow-shop system should be line balancing.
A well balanced system enhances not only the productivity, but also the operational rate
of facilities and labour. In designing this system process, potential complaints could
arise in work relationships in the overall work specialisations, and these problems
should be considered. Such problems culminate in exhaustions, long absences, mistakes,
etc., due to boredoms and repetition, which might mean less productivity and unex-
pected quality products. The inherent characteristics of the flow-shop system resolve
most of the problems that still exist in production scheduling.

4.3.2 Production scheduling in intermediate volumes

Like flow-shop scheduling, production scheduling in intermediate volume requirements
[50] also deals with standardised products. The reason is that its output is not large
enough for continuous productions and it is therefore more economical to produce in-

...

J 1 J 2 ... J n

J n...J 2J 1J 1 J 2
... J n

J n...J 2

W m

W 2W 1

J 1

Figure 4.2. Representation of flow shops in general production machines and their job orders.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

27

termediate volumes. In this chapter’s study, the places where intermediate volume
products are produced are referred to as medium shops. Production scheduling in inter-
mediate volume requirements is referred to as medium-shop scheduling. The systems
using this medium-shop scheduling are referred to as medium-shop systems.

Companies focusing on production scheduling in intermediate volume requirements
often seek to reduce or eliminate the production time, which consequently leads to
down times of the medium-shop system for equipment replacements. Tactically, some
preparations for down times might be modular operations and flexible facilities. How-
ever, the difficulties come from the fact that the use of product parts is not always the
same as it is in theoretical models. Some products can run out faster than expected and
need to be filled up more quickly. The main reason for this is that many different types
of products are processed simultaneously. This makes it difficult to build such produc-
tion schedules for optimal running.

The approach used in this medium-shop system is to match the main schedule,
which is basically developed based on customer orders and demand forecasting. Such
production companies use their own assembly processes based on material requirements
planning to determine the required amount of parts and the timing. Decision makers
compare the expected demand and production volume requirement to build feasible
production scheduling.

4.4 Process-Focused Production Scheduling

In the previous section, we described the two different types of scheduling that are con-
trolled by their different (high and intermediate) volume requirements. In this section,
we consider not only the volume requirements, but also different variety requirements.

In different kinds of production lines or areas with (1) different volume require-
ments; and (2) different variety requirements, production scheduling problems often
arise. This is because single or group customers or receivers demand faster receipt and
more specific products from production companies or organisations acting as their sup-
pliers.

When building production process strategies, production scheduling should be con-
sidered and set for each different feature of specific production process strategies. Gen-
erally, there are several different types of production process strategies related to sched-
uling. One production process strategy is mainly associated with process-focused pro-
duction scheduling [52]. This scheduling is devoted to meeting low volume require-
ments (this is different from the high and intermediate volume requirements described
in the previous section) and high variety requirements. The places where low volume
and high variety products are produced are referred to as job shops. In our production
industries, we could say that most production includes process-focused production fa-
cilities. Production scheduling in low volume and high variety requirements is referred
to as job-shop scheduling. The systems using this job-shop scheduling are referred to as
job-shop systems. As Figure 4.3 illustrates, we can recognise where job-shop scheduling
comes from and process-focused production scheduling is positioned between volume
and variety. As machine shops, if production facilities focus on process productions,
then those facilities have high product flexibilities and highly variable costs with low
utilisations.

The recent trend in production would satisfy the needs of individual customers or

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

28

receivers (they can also be groups of customers or receivers), each of which has its own
special order, and affect how we provide the ordered products to them on time or as
early as possible. In this case, production factories might be required to produce the or-
dered products in low volumes and high varieties. These factories obviously build and
organise process-focused production scheduling for a forward-looking scheme. How-
ever, the management of this scheme is complicated, and it would become more com-
plicated if the number of product parts increases. The main problem of complexity is to
deal with a large number of machines and their job orders. The most important point is
that we have to develop methods or algorithms that can control the system and over-
come this computational complexity problem.

4.5 Job-Shop Scheduling

Four different types of production facilities [52], with different approaches to different
scheduling styles, can be suggested. These are (1) work cells; (2) repetitive production
facilities; (3) product-focused production facilities; and (4) process-focused production
facilities. In simple terms, (1) work cells focus on production facilities that deal with
group families of similar components; (2) repetitive production facilities focus on such
assembly lines or channels; (3) product-focused production facilities deal with high
volume and low variety requirements; and (4) process-focused production facilities deal
with low volume and high variety requirements. Here, these process-focused production
facilities include job-shop scheduling in terms of building production scheduling used
for those production facilities. Figure 4.4 shows a representation of job shops in general
production machines.

A job-shop scheduling problem is an intractable scheduling problem, because a
great number of jobs need to be processed in each of the specific machines within a de-

High Variety

Low Variety

Low Volume High Volume

Product-Focused
Production
Scheduling

Mass-Customised
Production
Scheduling

Process-Focused
Production
Scheduling

Job-Shop
Scheduling

Figure 4.3. Representation of the locations of both job-shop scheduling and process-focused
production scheduling.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

29

termined time or at the earliest time. The main purpose of using the job-shop
DNA-based algorithm is to determine the minimised maximum production completion
time in job-shop scheduling. In this section, we describe job-shop scheduling in more
detail to identify the main purpose of the algorithm.

4.5.1 Production scheduling in low volumes and high varieties

Recall that job-shop scheduling corresponds to production scheduling in low volume
and high variety requirements [50] in terms of productions. The characteristics of pro-
duction scheduling in low volume and high variety requirements are different from the
characteristics of production scheduling in high and intermediate volume requirements.
Hence, job-shop scheduling and systems are different from flow-shop and medium-shop
scheduling and systems.

In job-shop systems, products are produced according to each of the machines and
each of the job orders. In addition, these machines and job orders are comprised of
various types of complicated preparation work. Due to these various machines and job
orders, it is not easy to plan job-shop scheduling properly. The matter is further compli-
cated by the fact that the companies cannot even plan a schedule before each of the ac-
tual job orders is placed. The job-shop system generally causes two basic issues, which
are how to (1) allocate job loads to each of the machines; and (2) sequence the given
jobs based on their machine orders. Job-load allocations include assigning certain jobs
to certain machines. If jobs can be done by one machine, the allocation will not create
an issue, but there could be one if there are more than two jobs and multiple machines
for them. In this case, a specific rule for allocations is necessary. The job-load alloca-
tions aim to minimise the costs required for their preparations, and the main purpose is
to minimise the maximum production completion time.

...

J 2

J n

...

J 1

W m

W 2W 1

Figure 4.4. Representation of job shops in general production machines and their job orders.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

30

A tool called a Gantt chart is often used in association with job-load allocations for
job-shop scheduling. The main purpose of the Gantt chart is to visually organise the ac-
tual or planned use of resources within a time frame. Time is usually on the horizontal
line and resources on the vertical line; this chart reflects the use of resources and idle
times. The Gantt chart can be used for job-shop scheduling by adjusting production
process times and allocating job loads, and the chart represents all the specific produc-
tion completion times of either the machines or jobs.

There are two different types of job loading to machines. One is called infinite
loading, and the other one is called finite loading. Under infinite loading, jobs are as-
signed regardless of the machine’s capacity, in which case loading can be excessive or
low, depending on their production process times. The common rule is that infinite
loading creates waiting lines for some or all machines.

Finite loading scheduling considers required production process times for the ma-
chine capacity, so that the machine capacity does not go overboard when planning the
actual starting and stopping times. The output from finite loading is the specific forecast
of production process times for each machine and any scheduling should be updated
frequently.

4.5.2 Production problem of job-shop scheduling

Job-shop scheduling in production is always concerned with machine sequences for
each of the given job orders. In the production of job-shop scheduling, we confront one
main problem, which is how we can determine an optimal production schedule com-
posed of the most reliable minimised maximum production completion time. This is the
main achievement reached by using the job-shop DNA-based algorithm.

To define our focused problem of job-shop scheduling in production, an example of
a digraph, representing job flows of job shops, is shown in Figure 4.5. The example di-
graph is composed of two nodes (the beginning and finishing nodes) and eight nodes

Machine 4Machine 1Machine 2Machine 3

20 min28 min10 min22 min

13 min23 min14 min25 min

FB

(W 4, J 1)

(W 4, J 2)(W 1, J 2)

(W 1, J 1)(W 3, J 1)

(W 2, J 2)(W 3, J 2)

(W 2, J 1)

Figure 4.5. Example of a digraph composed of machines and job orders with their production
process times for job-shop scheduling. The dashed arcs indicate conjunctive arcs, and the con-
tinuous arcs indicate disjunctive arcs.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

31

(the eight operational pair nodes). Here, each of the eight operational pair nodes is
composed of one arbitrary machine and one arbitrary job. We generated this simple
example of the job-shop scheduling digraph as shown in Figure 4.5. In an attempt to
properly describe our algorithm structure, this simple example can exhibit significant
potential to cover a large volume of machines and their job orders.

The job-shop scheduling digraph can be described in a mathematical way [53, 54].
The digraph is denoted by G. The beginning node and the finishing node are denoted by
B and F, respectively. The arbitrary operational pair is denoted by either (Wi, Jj) or (i, j),
where i is the production process step of the machine (i = 1, 2,…, m) and j is the pro-
duction process step of the job (j = 1, 2,…, n). When the operational pair (i, j) precedes
the operational pair (k, j), this arc of the two operational pairs is represented as (i, j)→(k,
j). In addition, the digraph consists of two different types of arc subsets. The first arc
subset consists of conjunctive arcs (the dashed arcs in the example digraph). The other
arc subset consists of disjunctive arcs (the continuous arcs in the example digraph).

The production completion time of job j on machine i is denoted by Ti, j, and the
time job j required for the job-shop system to process, denoted by Tj. Thus, the average
of Tj is defined as

n

j

j
nn

j T
nn

TTTT
T

1

121 1
. (4.1)

In addition, the maximum production completion time is particularly denoted by Tmax,
and defined as

j
nj

nn TTTTTT

1
121max max),,,,max(. (4.2)

Here, the maximum production completion time corresponds to the completion time of
the last remaining job that leaves the job-shop system.

In Figure 4.5, a feasible production schedule of the maximum production comple-
tion time corresponds to the longest path among the given operational pair nodes (ex-
cept the beginning and finishing nodes). This longest path starts at one of the opera-
tional pair nodes and ends at another of the operational pair nodes. The longest path
consists of a subset of operational pair nodes, where the first operational pair node (one
or more operational pair nodes) starts at time zero and the last operational pair node
(one or more operational pair nodes) completes at a specific time, which corresponds to
the maximum production completion time.

The main issue of job-shop scheduling in this chapter’s study is how to minimise the
length of the production completion time and to select disjunctive arcs, which minimise
the length of the longest path. This longest path is referred to as the critical path. The
program of minimising the maximum production completion time is defined as follows:

minimise Tmax (4.3)

subject to

jiji vuT ,,max for all (i, j)∈N (4.4)

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

32

jijijk vuu ,,, for all (i, j)→(k, j)∈C (4.5)

liliji vuu ,,, or jijili vuu ,,, for all (i, l) and (i, j) (4.6)

0, jiu for all (i, j)∈N, (4.7)

where (1) vi, j, i = 1, 2,…, m and j = 1, 2,…, n, is the production process time; (2) ui, j, i =
1, 2,…, m and j = 1, 2,…, n, is the variable of the starting time for the operational pair (i,
j); (3) N is the set of all the operational pairs (i, j); and (4) C is the set of all the routing
constraints.

4.6 Encoding Operational Pairs in DNA

A novel molecular encoding method has been designed to be included in the job-shop
DNA-based algorithm. In this section, we describe how to encode all the given opera-
tional pair nodes in DNA through our purposely designed matrix.

4.6.1 Operational pair matrix

All of the operational pair nodes are connected at their arcs, corresponding to both con-
junctive and disjunctive arcs. However, for the molecular encoding method, the con-
junctive and disjunctive arcs have exactly the same characteristics. These two different
arcs are expressed as continuous arcs only. Both the beginning and finishing nodes have
also been removed. This new digraph type for the molecular encoding method is called
a DNA-digraph, as shown in Figure 4.6. In this chapter’s study, the DNA-digraph is
transformed into a matrix form, called an operational pair matrix.

In the DNA-digraph, assuming that n given operational pair nodes are composed of
both m machines W1, W2,…, Wm and n jobs J1, J2,…, Jn. A set of all the operational pair
nodes is denoted as Qs, which can express an operational pair matrix, and this matrix is
denoted by Q, representing

),(),(),(

),(),(),(

),(),(),(

21

22221

11211

nmnn

m

m

JWQJWQJWQ

JWQJWQJWQ

JWQJWQJWQ

Q

. (4.8)

The structure of this operational pair matrix is composed of operational pair entries, and
all of the entries consist of both m machines and n jobs. If there are some machines that
include fewer job orders than other machines, then the symbol ‘ϕ’ is used for the empty
entries. Further, in the operational pair matrix, each of the given entries should be freely
allocated to each of the specific entries based on the machine sequences, depending on
their job orders.

In general, we set (1) W1, W2,…, Wm that are labelled as machine 1, machine 2,…,
machine m, respectively; and (2) J1, J2,…, Jn that are labelled as job 1, job 2,…, job n,
respectively. Figure 4.7 shows the DNA-digraph of the example job-shop scheduling
digraph. A set of the existing operational pair nodes is represented as Qs = {(W1, J1),

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

33

(W1, J2), (W2, J1), (W2, J2), (W3, J1), (W3, J2), (W4, J1), (W4, J2)}, and an operational pair
matrix Q is constructed as

),(),(),(),(

),(),(),(),(

24232221

14131211

JWQJWQJWQJWQ

JWQJWQJWQJWQ
Q . (4.9)

If this matrix is allocated based on the rules of the given machine sequences, as shown
in Figure 4.7, then the machine sequence-based operational pair matrix Q becomes

),(),(),(),(

),(),(),(),(

24212223

14111312

JWQJWQJWQJWQ

JWQJWQJWQJWQ
Q . (4.10)

This matrix of the example DNA-digraph is mainly used when encoding the DNA sub-
strings.

The relation between any of two operational pair nodes in the DNA-digraph is de-
noted by e, where e is the relation connecting these two operational pair nodes. The re-
lation between two operational pair nodes, if it is an arbitrary operational pair node (Wα,

. . .

. . .

. . .

(W 1, J 1)

. . .

(W 1, J n)(W 1, J 2) (W m, J 2) (W m, J n)

. . .

(W m, J 1)

. . .

(W 2, J 2) (W 2, J n)

. . .

(W 2, J 1)

Figure 4.6. DNA-digraph for minimising the maximum production completion time in job-shop
scheduling.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

34

Jα), has a relational connection with another arbitrary operational pair node (Wβ, Jβ),
representing (Wα, Jα)e(Wβ, Jβ), and (Wα, Jα)ē(Wβ, Jβ) is represented as no relational con-
nection. For direct relations of the DNA-digraph, the representation of the arcs among
operational pair nodes, a directional arrow of the operational pair node (Wα, Jα) reaches
another operational pair node (Wβ, Jβ), representing

 for ,,2,1and,,,)),(),,((nlJWJWal . (4.11)

Additionally, a set of all existing arcs from the operational pair node (Wα, Jα) to the op-
erational pair node (Wβ, Jβ) is denoted as A, where A consists of all the possible arcs,

Last-Ordered
 Machine

Last-Ordered
 Machine

First-Ordered
 Machine

First-Ordered
 Machine

(W 3, J 2)

(W 2, J 2)

(W 1, J 2)

(W 4, J 2)(W 4, J 1)

(W 3, J 1)

(W 2, J 1)

(W 1, J 1)

Figure 4.7. Example DNA-digraph composed of eight operational pair nodes, including the
first-ordered and last-ordered machines.

(W 4, J 2)

(W 4, J 1)

(W 3, J 2)

(W 3, J 1)

(W 2, J 2)

(W 2, J 1)

(W 1, J 2)

(W 1, J 1)

(W 4, J 2)(W 4, J 1)(W 3, J 2)(W 3, J 1)(W 2, J 2)(W 2, J 1)(W 1, J 2)(W 1, J 1)

0

0

0

0

0

0

0

0

0

1

0

0

1

0 0

0

00

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

0

0

0

0

0

1

1

010

1

Figure 4.8. Binary adjacency matrix of the example DNA-digraph.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

35

representing A = {a1, a2,…, an}.
The arc set is properly represented as a matrix with binary numbers, called a binary

adjacency matrix. As Figure 4.8 shows, the binary adjacency matrix of the example
DNA-digraph comes with rows and columns labelled as follows:

Ljijir ji),(allfor 8,,2,1 and,, , (4.12)

where i is the row label, j is the column label, and L is the set of all row and column la-
bels. This example matrix has been constructed by setting ri, j = 1 wherever there are any
arcs directed from an arbitrary operational pair node (Wα, Jα) to another arbitrary opera-
tional pair node (Wβ, Jβ), meaning both (Wα, Jα)→(Wβ, Jβ) and (Wα, Jα)e(Wβ, Jβ), while
the example matrix is also constructed by setting ri, j = 0 elsewhere, meaning (Wα,
Jα)ē(Wβ, Jβ). In a systematic way, ordering rows and columns of the binary adjacency
matrix is the best way of transforming them into DNA sequences.

4.6.2 DNA substrings

For the job-shop DNA-based algorithm, two different types of DNA substrings are cre-
ated to build an initial library of DNA fragments. Each type of the two different DNA
substrings has its own row and column labels, which are defined for encoding the DNA
substrings of operational pair nodes in single-stranded DNA (ssDNA).

In the DNA-digraph, if any two different single operational pair nodes are connected
by an arc, then two different DNA substrings of those two different single operational
pair nodes are unified to become one single DNA substring, which is called a dou-
ble-encoded substring.

Type 1 is created from the double-encoded substrings, and type 2 is created from the
complementary substrings of two different double-encoded substrings. The two types of
DNA sequences (both double-encoded substrings and complementary substrings) are
structured in ssDNA.

Firstly, type 1 is indicated as a double-encoded substring that is composed of two
different operational pair nodes (Wα, Jα) and (Wβ, Jβ). For type 1, there are two different

b

3'5'

a

3' upper- -upper5'

(W , J)(W , J)a b

a(W , J)a b(W , J)b

a(W , J)a b(W , J)b

Figure 4.9. Double-encoded substring of type 1.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

36

operational pair nodes, in which there is an arc that indicates the direction from the op-
erational pair node (Wα, Jα) to the operational pair node (Wβ, Jβ). A double-encoded sub-
string of this direction is denoted as (Wα, Jα)-3′

upper→5′upper-(Wβ, Jβ). The two different
operational pair nodes are encoded as a single DNA oligonucleotide that consists of two
unique sites, and each of the single encoded DNA oligonucleotides has a length of DNA
base pairs (bp: after hybridisations and end-filling DNA). Each of the lengths is created
based on its production process times. For the example digraph in Figure 4.5, as shown
in Tables 4.1 and 4.2, 1 minute was set with a length of 1 bp (for instance, 50 bp equals
50 minutes). As Figure 4.9 shows, (1) one arbitrary operational pair node (Wα, Jα) cor-
responds to (Wα, Jα)-3′

upper with this pair node’s own length; and (2) the other arbitrary
operational pair node (Wβ, Jβ) corresponds to 5′upper-(Wβ, Jβ) with this pair node’s own
length.

Secondly, type 2 is indicated as a complementary substring, attaching two different
double-encoded substrings. The functions of DNA ligations and hybridisations [55, 56]
make connections of all three different operational pair nodes, meaning that these three
nodes are sequentially lined up together and become double-stranded DNA (dsDNA).
Figure 4.10 shows the attachment of three different linked operational pair nodes, de-
noted as (Wα, Jα) for the starting node, (Wλ, Jλ) for the middle node, and (Wβ, Jβ) for the
ending node. A complementary substring of the middle operational pair nodes is created
to link these three operational pair nodes together. This complementary substring is de-
noted as a complementary encode 5′lower-(Wλ, Jλ)|(Wλ, Jλ)-3′lower for type 2.

4.7 Manipulating DNA Plasmids for the Algorithm

Our concept of applying manipulated DNA plasmids (we call them ‘DNA plasmids’ in-
stead of ‘plasmids,’ because RNA plasmids are extremely rare) to the problem of
job-shop scheduling is described in this section. In addition, we describe how this ap-
plication is related to machine sequences and job orders involving molecular encoding
sequences. Moreover, to help understand our approach to manipulating DNA plasmids
for the job-shop DNA-based algorithm, we describe techniques for manipulating DNA
plasmids with their further characteristics of molecular biology (cloning plasmids was

5'3'

l

5'lower - -| lower3'

a(W , J)a b(W , J)b(W , J)l

l(W , J)l l(W , J)l

l(W , J)ll(W , J)l

Figure 4.10. Complementary substring of type 2.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

37

briefly described in Chapter 3).

4.7.1 Application of manipulating DNA plasmids

Our concept of manipulating DNA plasmids, as applied to the job-shop scheduling
problem for the job-shop DNA-based algorithm, is to focus on two different features of
directed paths (cyclic operational paths and acyclic operational paths) in the
DNA-digraph.

The job-shop scheduling digraph consists of two different arc types (conjunctive and
disjunctive arcs). A subset of the determined disjunctive arcs is denoted by D, and this
job-shop scheduling digraph is denoted by G(D). This digraph is composed of both (1)
the subset D; and (2) a subset of conjunctive arcs. If and only if G(D) has no directed
cyclic paths, the subset D can be a feasible production schedule [53, 54]. In other words,
recall that the DNA-digraph is created by the given operational pair nodes and their
continuous arcs (there is no distinction between conjunctive and disjunctive arcs). In
this DNA-digraph, if there is one cycle of operational pair nodes, then it is impossible to
process that production schedule. This schedule is incompatible with common job-shop
scheduling.

In the DNA-digraph, cyclic paths of operational pair nodes correspond to unfeasible

Table 4.1. Upper DNA sequences in ssDNA used for hybridisations and ligations.

Substring DNA Sequence (5' to 3') Substring DNA Sequence (5' to 3')

(W 1, J 1)-3' upper GTAAGAGTAACC 5' upper -(W 1, J 1) CCGGAGTGAAG

(W 1, J 2)-3' upper ACCTATGAGGCTGG 5' upper -(W 1, J 2) ATAAAACTGCCGTG

(W 2, J 1)-3' upper GCAACCGCCTTCA 5' upper -(W 2, J 1) ACGACCCGGACG

(W 2, J 2)-3' upper CGTGG 5' upper -(W 2, J 2) CACTT

(W 3, J 1)-3' upper AGTTGCA 5' upper -(W 3, J 1) TTCCTAG

(W 3, J 2)-3' upper CCGCTATAATT 5' upper -(W 3, J 2) GTCTCTTTGCC

(W 4, J 1)-3' upper AACCACA 5' upper -(W 4, J 1) CCATAG

(W 4, J 2)-3' upper GAATACCGTT 5' upper -(W 4, J 2) TCGGCAGGCG

Table 4.2. Lower DNA sequences in ssDNA used for hybridisations and ligations.

Complementary Substring DNA Sequence (5' to 3')

5' lower -(W 1, J 1)|(W 1, J 1)-3' lower GGTTACTCTTACCTTCACTCCGG

5' lower -(W 1, J 2)|(W 1, J 2)-3' lower CCAGCCTCATAGGTCACGGCAGTTTTAT

5' lower -(W 2, J 1)|(W 2, J 1)-3' lower TGAAGGCGGTTGCCGTCCGGGTCGT

5' lower -(W 2, J 2)|(W 2, J 2)-3' lower CCACGAAGTG

5' lower -(W 3, J 1)|(W 3, J 1)-3' lower TGCAACTCTAGGAA

5' lower -(W 3, J 2)|(W 3, J 2)-3' lower AATTATAGCGGGGCAAAGAGAC

5' lower -(W 4, J 1)|(W 4, J 1)-3' lower TGTGGTTCTATGG

5' lower -(W 4, J 2)|(W 4, J 2)-3' lower AACGGTATTCCGCCTGCCGA

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

38

production schedules, whereas acyclic paths of operational pair nodes correspond to
feasible production schedules. From this constant scheduling rule, cyclic paths of opera-
tional pair nodes can be represented as circular DNA fragments, whereas acyclic paths
of operational pair nodes can be represented as linear DNA fragments. Figure 4.11 il-
lustrates how both cyclic and acyclic paths of operational pair nodes are represented as
both circular and linear DNA fragments (circular and linear types of DNA strands).
Here, circular DNA fragments correspond to DNA plasmids, meaning that techniques
for manipulating DNA plasmids enable us to distinguish linear DNA fragments from
circular DNA fragments. For example, Figure 4.12 shows a complicated DNA-digraph
(twenty-five operational pair nodes), in which one cyclic path of four operational pair
nodes is illustrated, and this schedule becomes an unfeasible production schedule.

4.7.2 DNA plasmids and their properties

Self-replicating DNA molecules are independent molecules that correspond to DNA
plasmids [57, 58]. The general self-replicating process of a DNA plasmid is shown in
Figure 4.13. They are not regarded as a part of chromosomes, but they are the cellular
DNA molecules, containing significant genetic information. There are two reasons why
they are not considered as parts of the cellular genome: (1) DNA plasmids exist in

Hydrogen
 Bonds

Phosphodiester
 Bonds T

C
T

T
A

A

A

G
A

A
T

T

(W 1, J 1)

(W 2, J 2) (W 1, J 2)

(W 2, J 1)

3'5'

3' 5'

G T T A T G T A T C
T

T

C
C

G
T

A
G

T
A

T
G

T
C

T
T

C
C

A
A

G
T

T
A

T
T

C

C
T

G
GCTATTAGTATTCCTTATC

T
T

G

T
A

A
G

G
C

A
T

T
G

G
T

C
G

T
A

A
T

T
C

T
T

A
A

G

A
C

C
G

A G T G T A T T A
C A A T A C A T A G

A
A

G
G

C
A

T
C

A
T

A
C

A
G

A
A

G
G

T
T

C
A

A
T

A
A

G

G
A

C
CGATAATCATAAGGAATAGA

A
C

A
T

T
C

C
G

T
A

A
C

C
A

G
C

A
T

T
A

A
G

A
A

T
T

C

T
G

G
C T C A C A T A A T

(a)

G G T
C A

5'

3'
G C A T T A A G A A T T C

G C A T TT T C C G T A A C

GAAT
AC

G

3'

CTCGGT

T TAAC
A TATTG5'

AATACA

ATACA
CTATG

AG
T C

T
T

A
A

G
A

A
T

T
A

C
G

T G G C T C A
C

A
T

A
A

3'

3'

5'

5'

A
C T

GC
A

A
T

G

C

C
T

TACAAGATAAGGAAT

G
T

T
A

C

G

G
A

A
TGTTCTATTCCTTA

(W 2, J 1)

(W 1, J 2)(W 2, J 2)

(W 1, J 1)

G
T

T

A
T

G
T

A T C T T C C G T A G T A T G T C T T C C A A G T T A T T C

C
T

G
G

C
T

A

T
T

A G
T

A C
A

A

T
A

C
A T A G A A G G C A T C A T A C A G A A G G T T C A A T A A

G

G
A

C
C

G
A

T

A
A

T C
A

T

(b)

Figure 4.11. Representations of both cyclic and acyclic operational pair nodes and their DNA
strands: (a) cyclic path and its one circular DNA fragment; (b) acyclic path and its two linear DNA
fragments.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

39

 Cyclic
Operational
 Pair Node

 Cyclic
 Operati-
 onal Pair
 Node

 Cyclic
Operational
 Pair Node

Cyclic Operational
 Pair Node

(W 5, J 1)

(W 3, J 1)

(W 2, J 1)

(W 6, J 2)

(W 2, J 2)(W 4, J 2)

(W 1, J 3)
(W 2, J 3)

(W 4, J 3)

(W 6, J 3)

(W 6, J 4)

(W 3, J 4)

(W 4, J 7)

(W 4, J 5)

(W 2, J 4)

(W 6, J 5)
(W 1, J 5)

(W 2, J 5)

(W 2, J 6)

(W 2, J 7)

(W 5, J 8)
(W 2, J 8)

(W 1, J 6)

(W 6, J 9)(W 1, J 9)

Figure 4.12. Complicated DNA-digraph composed of twenty-five operational pair nodes.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

40

different cell species, moving from one host species to another; and (2) DNA plasmids
either exist or do not exist in a specific host species cell. Although DNA plasmids have
expressible genetic information, they are not considered as all-time genetic elements of
cells and are not required for cellular growth.

Self-replicating nucleic acids are referred to as replicons. The specific replication
units do not encode the enzymes needed for their own replications, having their own
replication origins for the initiation of DNA synthesis. In addition, they do not produce
their own nucleotides. In this way, DNA plasmids can be replication units, which rely
on the energy, raw materials, and other enzyme activities of the host cells.

DNA plasmids can be regarded as living organisms growing in the host cells. The
reason for this is that DNA plasmids are neither like living cells nor simply parts of cells.
In other words, DNA plasmids can be regarded as viruses that have been moving from
one cell to another, but have lost their mobility and are now being circulated. DNA
plasmids retain the properties of some viruses in that they still need the replication en-
zymes of the host cells. However, different from viruses, DNA plasmids do not damage
the cells, since they neither have a protein coat nor leave the cells. The reason for this is
that DNA plasmids are also divided when the cell divides, and all of the daughter cells
also have copies of the DNA plasmids.

In general, one characteristic feature in the properties of DNA plasmids is that a
DNA plasmid is a circular DNA molecule. They can have one or multiple copies and
can contain several to hundreds of genes. DNA plasmids are always replicated within
the host cells, and most DNA plasmids generally live in bacteria. In fact, almost half of
the cells in nature have one or more DNA plasmids, and the higher organisms also have
them.

The copy number is the number of DNA plasmid copies in a bacterial cell. Most
DNA plasmids have one or two copies per chromosome. The copy number affects the
antimicrobial resistance gene from DNA plasmids. As the copy number per cell in-
creases, the antimicrobial resistance gene becomes greater and the resistance becomes

Replication
 Origin Synthesised

 Strands

Deoxyribonucleic
 Acid

Figure 4.13. General self-replicating process of a DNA plasmid [57].

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

41

stronger accordingly. The size and copy number of DNA plasmids [59] are important in
cloning or for other purpose experiments. The DNA plasmid size generally ranges from
1 kilo base pairs (kbp) to 250 kbp. However, various and either smaller or larger sizes of
DNA plasmids might be created in their own purpose experiments from time to time.

4.7.3 Purifications of DNA plasmids

The DNA plasmid-containing cells are cultured in a liquid medium and processed as a
cell extract. Proteins and RNA are removed from the cell extract, and DNA molecules
are concentrated by the ethanol precipitation. However, DNA plasmid purifications [59]
require a procedure for separating the pure plasmid DNA molecules from the many
bacteria chromosomal DNA in the cells.

In practice, it is difficult to separate the two different types of DNA. However, in
order to use DNA plasmids for cleaning, they must be separated. Here, this separation
should be carried out, since it is not good to have even a small amount of polluted bac-
terial DNA that has been generated during the gene cloning experiment. Fortunately,
several useful methods have been suggested for the removal of bacterial DNA in DNA
plasmid purifications. Using these techniques, pure plasmid DNA molecules can be
separated. Two of the techniques (size-based separations and conformation-based sepa-
rations) are briefly described as follows:

Firstly, for the technique of size-based separations, size is one physical difference
between bacterial DNA and plasmid DNA molecules. Most DNA plasmids are ex-
tremely small in size. Hence, plasmid DNA molecules can be effectively purified by
separating small DNA molecules from large ones.

When the cells are carefully dissolved in cell extractions, little of the chromosomal
DNA is damaged. The obtained DNA fragments are still large (in fact, they are larger
than the DNA plasmids). Here, cell disruption should be performed carefully to prevent
the overall destruction of the bacterial DNA. The most common method is the centrifu-
gation method. Using this method, the cleared lysate, composed of the plasmid DNA
molecules, can be obtained causing almost no damage to the bacterial DNA.

Secondly, for the technique of conformation-based separations, bacterial DNA and
DNA plasmids have totally different confirmations. When applied to polymers, such as
DNA molecules, conformation means the overall spatial arrangement of DNA mole-
cules, such as either circular or linear DNA molecules. Although a DNA plasmid is a

Figure 4.14. Supercoiled DNA molecule of dsDNA [59].

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

42

circular type, it can be broken into one or more linear DNA fragments. By separating
the linear DNA molecules from the circular DNA molecules, solely pure plasmid DNA
molecules can be obtained.

Before considering the method for separating the two different types of DNA mole-
cules (circular and linear DNA molecules) based on the conformational difference of
DNA plasmids, the overall conformation of plasmid DNA molecules should be under-
stood. Most DNA plasmids actually exist in cells as a special feature of DNA molecules,
called supercoiled DNA molecules, as illustrated in Figure 4.14. For example, during the
DNA plasmid replication, the double right-handed helix conformation of plasmid DNA
molecules is partially unwound to become supercoiled. Supercoiled conformations can
be covalently regarded as closed-circular DNA molecules when the two polynucleotide
strands are complete. If one of the two polynucleotide strands is broken, the plasmid
DNA molecules turn into open-circular DNA molecules as the double right-handed helix
conformation goes back to the general, relieved state. Supercoiling is important in DNA

Figure 4.15. General steps of a purification method [59].

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

43

plasmid purifications, since supercoiled DNA molecules can be easily separated from
unsupercoiled DNA molecules. Here, unsupercoiled DNA molecules correspond to lin-
ear DNA molecules.

For separation based on the conformation, one method could be alkaline denatura-
tion. While unsupercoiled DNA molecules are denatured within a narrow pH (potential
hydrogen) range, supercoiled DNA molecules are not. In the narrow pH range, between
12.0 ~ 12.5, the hydrogen bonds of the unsupercoiled DNA molecules are denatured.
Following the addition of acid collect the denatured DNA molecules as they remain en-
tangled. The final step is to extract the supercoiled DNA molecules (circular DNA
molecules) in the supernatant after the insoluble materials are gathered together by cen-
trifugation. Figure 4.15 illustrates the steps of this purification method.

4.7.4 Amplifications of DNA plasmids

The basic purpose of DNA plasmid amplifications [59] is to increase the copy number
of DNA plasmids. If only the specifically desired plasmid DNA molecules are amplified,
the probability of finding them is obviously increased. In addition, the DNA plasmid
amplification methods can be usefully applied and practiced in various ways for de-
signing molecular computational algorithms in decision making.

DNA plasmids, in which the copy number is higher than twenty or more, can be rep-
licated without protein synthesis. Taking advantage of this property, bacterial culture
can be carried out for plasmid DNA molecule purifications. As the cell density arrives at
a satisfactory level, the protein synthesis inhibitor is added and the culture is kept at
constant temperature for more than 12 hours. Meanwhile, the plasmid DNA molecules
are continuously replicated, but the chromosome replication and cell division are main-
tained. In this way, a large quantity of plasmid DNA molecule copies can be produced.

4.8 Experimental Studies and Results

In this chapter’s study, we applied a splicing operation model [60] to the job-shop
DNA-based algorithm in order to minimise the maximum production completion time
through the encoding process in DNA with molecular engineering techniques. The
method of splicing operations links two different encoded DNA sequences together by a
DNA ligation. In this section, we describe our experimental studies and show their re-
sults by solving the example job-shop scheduling problem using the job-shop
DNA-based algorithm.

4.8.1 Experimental studies

To show the experimental results represented by the length of DNA strands, a program
was compiled using Vector NTI software based on its own designed molecular experi-
mentation. The job-shop DNA-based algorithm shows the minimised maximum produc-
tion completion time based on simulated experimental studies.

The main processes of the molecular experimental part are to (1) detect all the cir-
cular DNA fragments; (2) remove all of the circular DNA fragments; (3) resolve all of
the linear DNA fragments; and (4) select the shortest length DNA strand in the possible
feasible production schedules. Here, the circular and linear DNA fragments correspond

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

44

to cyclic and acyclic operational paths, respectively. The shortest length DNA strand
corresponds to the schedule of the minimised maximum production completion time.

Two different types of DNA substrings correspond to a double-encoded substring
and a complementary substring. Moreover, two different operational pair nodes are in-
cluded in one single double-encoded substring, and each of the complementary sub-
strings is described by each concatenation of two different double-encoded substrings.
All of the DNA substrings should be generated to encode the DNA sequences of dou-
ble-encoded substrings (type 1) and their complementary substrings (type 2). The simu-
lated experimental protocol study is composed of eight steps as follows:

Step 1 (digraph): The DNA-digraph is created by the direct relations among the given
operational pair nodes (m machines and n jobs) based on their machine sequences and
job orders.

Step 2 (encoding): For the DNA-digraph, the DNA sequences of double-encoded sub-
strings (type 1) and their complementary substrings (type 2) are encoded on the basis of
the molecular encoding method. For the processes of hybridisations and ligations, in the
DNA-digraph, the DNA sequences of the existing arcs of the operational pair nodes are
generated and encoded in ssDNA.

Step 3 (loading): All the encoded DNA sequences of the double-encoded and comple-
mentary substrings should be prepared and placed into a test tube using pipettes.

Step 4 (hybridisation and ligation): All the encoded DNA sequences of the dou-
ble-encoded and complementary substrings are heated and cooled for hybridisation.
Here, the placed oligonucleotides of the DNA mixture are heated to approximately 94˚C
and cooled to approximately 20˚C at 1˚C/min. After the hybridisation process, a DNA
ligation process should be executed. This process is for catalysing, repairing, and seal-
ing DNA sequences.

Step 5 (separation and removal-1): Recall that circular DNA fragments correspond to
cyclic operational paths, and linear DNA fragments correspond to acyclic operational
paths. The topological differences between circular and linear DNA fragments are fo-
cused on separating circular DNA fragments from linear DNA fragments. A gel electro-
phoresis method can be used to distinguish circular DNA fragments from linear DNA
fragments by using standard DNA markers running in parallel. These distinguished cir-
cular DNA fragments are all removed.

Step 6 (affinity separation and removal-2): All the separated DNA strands (the linear
DNA fragments) are prepared after the separation process. In all of these linear DNA
fragments, we only focus on specific DNA sequences, starting from the first-ordered
machines to the last-ordered machines. For the example DNA-digraph, as Figure 4.7
shows, (1) the two first-ordered machines correspond to both (W2, J1) and (W3, J2); and
(2) the two last-ordered machines correspond to both (W4, J1) and (W4, J2). A technique
of affinity separation is used to separate these specific DNA sequences of strands from
other DNA stands (these others are all removed) using the complementary sites and
magnetic beads.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

45

Step 7 (simulated gel electrophoresis): All the hybridised, ligated, and twice-separated
DNA strands are again separated according to their sizes using simulated gel electro-
phoresis. The lengths of the DNA strands are also measured by simulated gel electro-
phoresis. The possible number of both feasible and unfeasible production schedules of
DNA strands (denoted by X) is obviously limited. The number of circular types (unfea-
sible production schedules) of DNA strands (denoted by Y) has been removed in Step 5,
thus the linear types (feasible production schedules) of DNA strands only appear in the
results of the simulated gel electrophoresis.

Step 8 (selection): In order of size, from top to bottom in the simulated gel electropho-
resis results, the results clearly show the longest operational paths to the shortest opera-
tional paths. However, the schedules from the longest paths to the (X − Y)th length of
the operational path are the only possible feasible production schedules, in which we
select the (X − Y)th length (the shortest length in the possible feasible production sched-

(W 1, J 1)

(W 2, J 1)

(W 3, J 1)

(W 4, J 1) (W 4, J 2)

(W 1, J 2)

(W 2, J 2)

(W 3, J 2)

Critical Path

 Figure 4.16. Representation of the finally resolved critical path of the example DNA-digraph.

Critical Path

99 min

(W 4, J 1)(W 4, J 2)

(W 3, J 1)(W 3, J 2)

(W 2, J 2)(W 2, J 1)

(W 1, J 1)(W 1, J 2)

Machine 4

Machine 3

Machine 2

Machine 1

Figure 4.17. Representation of the finally resolved critical path of the Gantt chart of the example
digraph.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

46

ules) of the DNA strand that corresponds to the schedule of the minimised maximum
production completion time.

4.8.2 Results of the experimental studies

The splicing operation method with its molecular encoding processes was applied to the
job-shop DNA-based algorithm, which determined all of the feasible production sched-
ules, including the schedule of the minimised maximum production completion time.

In the molecular encoding processes, each of the double-encoded substrings was
described by each of the operational pair nodes, corresponding to the DNA sequence,
and each of the complementary substrings was described by each of the concatenations
of the double-encoded substrings. The previous session also described the several bio-
chemical techniques that were used to achieve our purpose of determining the mini-
mised maximum production completion time.

In the example DNA-digraph, the number of either feasible or unfeasible production
schedules was sixteen, the number of the detected unfeasible production schedules was
four, and the possible feasible production schedules became twelve, thus we obviously
selected the 12th length long of the DNA strand. The simulated gel electrophoresis re-
sults for the example DNA-digraph contain the shortest length DNA strand as well as its
complementary DNA strand, represented by upper and lower DNA strands, as shown in
Table 4.3. Further, for the example job-shop scheduling digraph, Figures 4.16 and 4.17
illustrate the critical path of the DNA-digraph and the critical path of the Gantt chart,
respectively.

At the same time, the job-shop DNA-based algorithm can be expanded to deal with
a large number of machines and their job orders by taking the advantage of encoding a
variety of combinatorial numbers of DNA sequences to generate DNA substrings.

4.9 Computational Times and Solvable Sizes

In this section, the same number of machines and jobs was set, and we represent the
number of either machines or jobs instead of the number of operational pair nodes. The
number of either machines or jobs and the number of continuous arcs are compared, and
this comparison is shown in Figure 4.18.

Table 4.3. Results of the finally determined upper and lower DNA strands and their DNA se-
quences. After the upper and lower DNA strands were hybridised, the shortest length in the
possible feasible production schedules was 99 bp.

Upper and Lower DNA Strands DNA Sequence (5' to 3') Oligo Length

(W 2, J 1)-3' upper→ 5' upper -(W 2, J 2)(W 2, J 2)-3' upper →

5' upper -(W 1, J 2)(W 1, J 2)-3' upper→5' upper -(W 1, J 1)(W 1,

J 1)-3' upper →5' upper -(W 4, J 1)

GCAACCGCCTTCACACTTCGTGGATAAAACTGCCGTGACC

TATGAGGCTGGCCGGAGTGAAGGTAAGAGTAACCCCATAG
80

5' lower -(W 2, J 1)|(W 2, J 1)-3' lower 5' lower -(W 2, J 2)|(W 2, J 2)-

3' lower 5' lower -(W 1, J 2)|(W 1, J 2)-3' lower 5' lower -(W 1,

J 1)|(W 1, J 1)-3' lower 5' lower -(W 4, J 1)|(W 4, J 1)-3' lower

TGTGGTTCTATGGGGTTACTCTTACCTTCACTCCGGCCAG

CCTCATAGGTCACGGCAGTTTTATCCACGAAGTGTGAAGG

CGGTTGCCGTCCGGGTCGT

99

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

47

Although n operational pair nodes are composed of both m machines W1, W2,…, Wm
and n jobs J1, J2,…, Jn, we set the same number of both machines and jobs. Thus, in this
section, one machine and one job imply one operational pair node, two machines and
two jobs imply four operational pair nodes, three machines and three jobs imply nine
operational pair nodes, and so on. In other words, the number of machines was always

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Machines or Jobs

N
um

be
r

of
 C

on
tin

uo
us

 A
rc

s

Figure 4.18. Comparison graph of the number of either machines or jobs and the number of
continuous arcs.

Table 4.4. Comparisons of approximated running times for the exponential-time algorithm and
the prepared job-shop DNA-based algorithm.

Number of
Machines or Jobs

The Exponential-
Time Algorithm

The Prepared DNA-
Based Algorithm 1.06 hours 1.20 days 5.58 days 44.64 days

< 1.00 second 18.00 minutes 36.00 years 100,000,000,000,000,000.00 years

10 30 50 100

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

48

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Running Time (sec)

N
u

m
be

r
of

 M
a

ch
in

e
s

o
r

Jo
b

s

Figure 4.19. Comparison graph of approximated running times in seconds: (1) green colour
indicates the exponential-time algorithm; and (2) blue colour indicates the prepared job-shop
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Running Time (hour)

N
u

m
b

er
 o

f
M

a
ch

in
e

s
o

r
J

o
bs

Figure 4.20. Comparison graph of approximated running times in hours: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared job-shop
DNA-based algorithm.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

49

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Running Time (day)

N
u

m
be

r
of

 M
a

ch
in

es
 o

r
Jo

bs

Figure 4.21. Comparison graph of approximated running times in days: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared job-shop
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

Running Time (y ear)

N
u

m
b

er
 o

f
M

a
ch

in
es

 o
r

J
o

bs

Figure 4.22. Comparison graph of approximated running times in years: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared job-shop
DNA-based algorithm.

CHAPTER 4

MINIMISING THE MAXIMUM PRODUCTION COMPLETION TIME BASED ON A JOB-SHOP DNA-BASED ALGORITHM

50

set to be equal to the number of jobs for this graph comparison, although the number of
machines could be different from the number of jobs.

To measure the efficiency of using the job-shop DNA-based algorithm, comparisons
of approximated running times were created as shown in Table 4.4. The table deals
separately with the exponential-time algorithms and the prepared job-shop DNA-based
algorithm (we are ready to detect solutions). The number of operational pair nodes was
set to correspond to the inputs of size 10, 30, 50, and 100 separately. Figures 4.19 to
4.22 show four graphic comparison representations of approximated running times for
the exponential-time algorithm and the prepared job-shop DNA-based algorithm.

We suppose that a processor executes a million high levels of instructions a second,
and the exponential-time algorithm uses an operation of 2n [61]. The approximated run-
ning times of the prepared job-shop DNA-based algorithm were measured and calcu-
lated based on previous experimental reports, our experimental experiences, and genetic
engineering notes [62-66].

The main problem here is how to clearly and precisely determine the minimised
maximum production completion time with a large number of machines and their job
orders, which is an NP-hard problem. This means that no polynomial-time algorithm
has yet been discovered for job-shop scheduling problems.

4.10 Concluding Remarks

The efficiency of the newly proposed minimisation method in job-shop scheduling us-
ing the job-shop DNA-based algorithm has been evaluated and measured by our mo-
lecular engineering experimental studies. The results of these studies have also been
presented in this chapter. The job-shop DNA-based algorithm was used to minimise the
maximum production completion time based on molecular engineering methods and
techniques, as shown graphically.

A new way of handling the problem related to the machine sequences in job-shop
scheduling was through the job-shop DNA-based algorithm used for the efficient dis-
covery of feasible production schedules, including the most reliable production schedule
that provided the minimised maximum production completion time.

The novel concept of developing a DNA-digraph was first proposed in this chapter,
and the job-shop DNA-based algorithm came with a new molecular encoding method
that encoded the DNA sequences of double-encoded substrings and their complemen-
tary substrings. These two different types of DNA substrings were manipulated in the
molecular engineering experimental processes to provide the experimental results.

The characteristics of the newly proposed DNA-digraph related to the problem of
job-shop scheduling involved two different features of directed paths. These features
corresponded to cyclic operational paths and acyclic operational paths represented as
circular and linear DNA fragments, respectively. This novel idea could be applied to
other process-focused production scheduling problems, particularly regarding adaptable
types of products with low volume and high variety requirements.

Chapter 5

Identifying Cohesive Subsets Based
on a Fuzzy DNA-Based Algorithm

5.1 Overview

One systematically reinforced and integrated algorithm composed of both fuzzy-based
methods and a general molecular algorithm for decision making is a molecular compu-
tational algorithm (termed a fuzzy DNA-based algorithm). This algorithm is presented in
this chapter. Further, we show an applied real-world reorganisational problem in a fuzzy
operational network, and describe how to solve it by using the fuzzy DNA-based algo-
rithm.

From the viewpoint of a graph theory application, an undirected graph should be
considered, in which the particular nodes and their edges with cohesiveness exist, be-
cause the nodes and edges are able to be adapted to become objects and connection
chains for real-world applications. Here, a relation of those nodes and edges with cohe-
siveness in a subset is a clique relation in the undirected graph. If a subset of the clique
relation includes the maximum number of nodes, compared to any other clique relations,
then this subset is the most cohesive subset in the given clique relations. In addition, an
indispensable relation for cohesiveness is a component relation, which makes a connec-
tion between two different determined cohesive subsets, or two different nodes that can
update the path between two significant subsets, making the path shorter. Moreover, us-
ing fuzzy membership grades provides us with a means to casually represent the crite-
rion of relational strengths among nodes in an undirected graph.

When dealing with a large number of nodes in an undirected graph, finding out op-
timal maximal and maximum clique relations is an intractable problem. To identify co-
hesive subsets, the fuzzy DNA-based algorithm is used for determining all of the possi-
ble clique relations, as well as the component relations in descending order, covering
both the maximal and maximum clique relations and their connectors, and also for de-
termining all of the possible fuzzy relations in a fuzzy undirected graph.

For solving the applied reorganisational problem, the chosen problem is one intrac-
table problem that we have taken from various types of intractable operational problems,
which is required in order to be able to reorganise the given workforces to create better
or optimally operational connections in work-operational situations. This reorganising
process can be optimally executed by identifying all of the possible cohesive subgroups
(for this case involving the reorganisational problem, it should be subgroups, not sub-
sets) in the fuzzy operational network.

The fuzzy DNA-based algorithm is used firstly to detect all of the possible work-

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

52

forces in clique and component relations, secondly to find workforces in fuzzy relations,
and finally to reorganise the determined workforces into fuzzy similarity subgroups.
Moreover, the efficiency of performing the fuzzy DNA-based algorithm is proved by
measuring the densities of the identified cohesive subgroups in several ways.

5.2 Background and Motivations

Although advanced information sciences and technologies are exploited to install a
large amount of useful information data, both creating a new optimal set, and determin-
ing several optimal subsets of those bunches of complicated data are still intractable
problems. To solve these sorts of problems, various applied models and methods have
been proposed in different areas [67, 68]. In particular, numerous concepts are often
formulated, which become interesting issues on the integrated application side [69, 70].
One problem in determining optimal subsets is associated with detecting the maximal
and maximum clique relations in an undirected graph. Finding these two clique relations
are intractable problems among several key problems in graph theory [71].

For the applied reorganisational problem, the problem is basically associated with
routine tasks and productive work. Routine tasks involved in regular work affairs, repeat
manufacturing, production, and operational systems hold little appeal in modern indus-
trial and organisational societies. These routine tasks rarely provide workforces with
opportunities and often cause feelings of lack of achievement, lack of psychological
growth, and lack of satisfaction [72]. The productive work among workforces is obvi-
ously enhanced by reducing routine tasks. To reduce routine tasks and enhance produc-
tive work, the given workforces are required to be reorganised by identifying cohesive
subgroups in work-operational situations.

Watada et al. [73, 74] have studied the problems of operational tasks in human re-
sources and organisational relations by utilising fuzzy-based methods. To recover and
improve work connections in a productive way, operational managers often execute
work rotation, which is widely practiced, and has been proven to be effective in the
manufacturing control fields [75].

Work rotation breaks up the monotony of highly specialised routine tasks by calling
on different abilities, experiences, and skills, which can also be expressible as fuzzy
membership grades [76], adapted for use in the fuzzy DNA-based algorithm. In execut-
ing work rotation, the two important points to take into account are (1) to analyse how
all of the given workforces are being built up with cohesiveness in fuzzy operational
connection levels; and (2) to determine how accurately cohesive subgroups are being
reorganised by an operational manager. However, the main problem in this work rota-
tion process is how to detect the most cohesive subgroups (in which the relations should
be the maximal and maximum clique relations) while dealing with a large number of
workforces.

Reorganising a huge number of workforces induces an NP-hard problem. In the real
world, workforces and their operational connections exponentially rise when dealing
with a large number of multiple organisations. Figure 5.1 shows an example of a social
information network, representing complicated relationships among actors. For applica-
tion of the fuzzy operational network, the actors can be converted into the workforces.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

53

5.3 Cohesive Subsets in the Real World

If a graph has one or more connections among nodes, but no direction for each of all the
edges, then this graph is called an undirected graph. If the undirected graph has some
implicit reasons, then this undirected graph is called an undirected network. If a par-
ticular subset of specific nodes is closely related to each other via strong relations
among the nodes of embedded sets, then this subset is called cohesive.

In the real world, there are a large number of different and various types of undi-
rected networks, in which cohesive subsets should be distinguished properly from each
other in order to make better decisions or derive optimisation solutions for any related
processes. Cohesive subsets can be adapted to such areas as subgroups, subparts, subar-
eas, etc., in many real applications or problems.

Cohesive relations in manufacturing control networks are often referred to as the
close interpersonal relationships in manufacturing control situations or affairs. These
are relations that enable nodes, corresponding to operators, as representing manufactur-
ing control networks that exchange or share their related manufacturing information,
create solidarity, or act collectively [77, 78]. Numerous direct contacts among all cohe-
sive subgroups, which are combined with few or null ties to outsiders, dispose a group

Figure 5.1. Example of a social information network. Creative Commons Attribution-Share Alike
3.0: GUESS, 2009.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

54

toward a close interpersonal relationship in manufacturing control networks, but also
dispose the relationship to being one of homogeneity of thought, behaviour, and identity.
Examples of formal cohesive subgroups often include the personnel department, pro-
duction department, quality control department, finance department, etc., for the enter-
prise organisational example, whereas informal cohesive subgroups often include the
subgroups among operators who rarely exchange or share their related manufacturing
information for any production or organisational example cases [79].

In the case of social information and organisational networks, if a subset of nodes,
corresponding to actors in representing social information and organisational networks,
is cohesive, then the subgroups of actors are dense, direct, frequent, intense, positive, or
have strong ties in comparison to their non-cohesive counterparts [80, 81]. Figure 5.2
shows an example of the two possible cohesive subgroups that are selected in an undi-
rected network.

5.4 Measures of Cohesive Subsets

When measuring structural variables on a distinct set of existing nodes in an undirected
graph, this set of nodes is called a one-mode network in the case of social information
and organisational networks, since all nodes come from one set. While measuring dif-
ferent types of structural variables on two or more subsets of existing nodes, two or
more subsets of nodes are referred to as two- or higher-mode networks [79]. For an ex-
ample of organisational networks, actors come from different subgroups, one subset
consists of profit organisational actors, and the other one consists of non-profit organ-
isational actors. Here, the flows of relationships or supports between profit and
non-profit organisational actors can be measured.

Cohesive subsets are related to pairwise relations in one-mode networks. In two- or
higher-mode networks, cohesive subsets focus on relations existing among nodes

Figure 5.2. Example of the two possible cohesive subgroups (blue colour) in an undirected
network.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

55

through their joint relations. Thus, cohesive subsets can be represented as any types of
subsets, and can be measured by different measurement methods, since the undirected
graph exhibit the nodes being connected to each other with relational edges.

5.4.1 Measure of the strength of relations

One way of measuring cohesive subgroups was proposed by Bock et al. [82], and this
method measures the ratio of the strength of relations for repeatedly constructing sub-
groups. This measurement basically identifies subsets of the items that are highly corre-
lated by analysing sets of tested items. Assuming that the entire nodes are n nodes in an
undirected graph, ns nodes are in a subset in this undirected graph, and this subset is
denoted by Ps, then the ratio of the strength of relations can be measured by the degree
to which strong relations are included in (rather than being outside) the subset, and this
is defined as

)()1(

,,

ss

Pi Pj
ji

ss

Pi Pj
ji

nnn

x

nn

x
s ss s

, (5.1)

where xi, j, i and j = 1, 2,…, n corresponds to all possible connections among the given
nodes in the undirected graph. From this ratio, the denominator is the average strength
of the relations coming from subset nodes to outsiders, and the numerator is the average
strength of relations that are included in the subsets.

5.4.2 Measure of the density

The density of subsets can also be calculated from a dichotomous relation of the nu-
merator of the ratio of the strength of relations (5.1). For the density calculations in

(a) (b)

Figure 5.3. Comparison of two undirected graphs. Both (a) and (b) have the same inclusive-
ness.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

56

evaluating cohesive subsets, there are three common methods used: inclusiveness, den-
sity, and the density in a valued undirected graph [79].

First, inclusiveness defines the number of nodes that are completely included in the
various connected parts of the undirected graph. The most useful measurement of inclu-
siveness for comparing various types of undirected graphs is the number of connected
nodes expressed as a proportion of the total number of nodes. Thus, the proportion of
the inclusiveness is denoted by Π, and can be calculated by

10for
n

CN
, (5.2)

where CN is the number of existing connected nodes in the undirected graph. Figure 5.3
shows an example of two undirected graphs that have the same inclusiveness, but the
number of edges in each graph is different.

Second, the density defines the number of edges without considering valued rela-
tions in an undirected graph. The density is expressed as a proportion of the maximum
possible number of edges. The density, without considering valued relations, is denoted
by Δ, and the density can be derived from

10for
2/)1(

nn

CE
, (5.3)

where there are n(n ‒ 1) / 2 possible unordered pairs of nodes, and thus n(n ‒ 1) / 2 pos-
sible edges that could be presented in the undirected graph, and CE is the number of ex-
isting edges in the undirected graph.

Finally, the density in a valued undirected graph defines the number of edges; in this

0.4

0.2

0.2

0.6

0.2

 (a) (b)

Figure 5.4. Comparison of two undirected graphs. (a) does not include any of the valued rela-
tions but (b) includes fuzzy valued relations.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

57

case, valued relations should be considered in the undirected graph. Here, the values can
be represented as any possible numerical numbers, such as fuzzy membership grades.
One can average the values that are attached to the edges across all edges to generalise
the notion of density to a valued undirected graph. The density in a valued undirected
graph can also be expressed as a proportion of the maximum possible number of edges.
The density considering valued relations is denoted by δ, and the density in a valued
undirected graph is calculated by

10for
)max(

1

CEw

w

i
i

n

i

i

, (5.4)

where wi is the value of that edge. This measurement derives the average strength of
edges in the valued undirected graph. In Figure 5.4, an example of two different undi-
rected graphs is shown, where one is not considered with any of the valued relations,
and the other one is considered with fuzzy valued relations.

5.4.3 Measure of the probability

The use of the hypergeometric probability function was proposed by Alba [83]. This
measurement calculates the probability of observing CEs edges in a subset of ns nodes,
which are taken from the total nodes and edges in an undirected graph with n nodes and
CE edges. The observed number of edges in the subset is equal to OE, and the hyper-
geometric probability is defined as

2

)1(
2

)1(
2

)1(
2

)1(

)Pr(

ss

ss

s

nn

nn

OE
nn

CE
nn

OE

CE

OECE . (5.5)

This hypergeometric probability is able to recognise and draw a random sample without
any replacement of ns(ns ‒ 1) / 2 dyads that are included in the subset, and the observed
CEs edges come from the undirected graph of n(n ‒ 1) / 2 dyads and CE = x+, + / 2 rela-
tions.

For considering OE or more edges in the probability, we sum the probabilities from
the above hypergeometric probability equation (5.5) for values of OE from CEs to its
maximum possible number of edges, which either presents the possible number of ex-
isting edges in the subset, corresponding to ns(ns ‒ 1) / 2, or presents the observed num-
ber of edges in the subset, corresponding to CE = x+, + / 2. The formula of this type of
probability can be calculated by

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

58

)
2

)1(
,min(

2

)1(
2

)1(
2

)1(
2

)1(

)Pr(

ss nn
CE

OEh

ss

ss

s

nn

nn

h
nn

CE
nn

h

CE

OECE . (5.6)

This formula has the probability of the observed OE or more edges in a subset of size ns,
which comes from the undirected graph with CE edges. From the above probability
equation (5.6), we can recognise whether the observed frequency of edges within the
subset is greater than those expected or not. Here, this probability can also be inter-
preted as a specific value for the null hypothesis, in which there is no difference be-
tween the density of the subset and the density of the whole set.

5.5 Clique Relations for Cohesive Subsets

The most important concept, and a powerful way of identifying cohesive subsets in an
undirected graph, is to detect all possible nodes in clique relations. The most cohesive
subset is called a clique or clique relation, which is a useful and powerful point for the
subset that has these formal properties. For example, all of the possible clique relations
should be considered in finding out each of all the strong ties among actors in a social
information or organisational network.

In an undirected graph, a clique relation is a maximal complete undirected subgraph
composed of three or more nodes. All of the nodes in a clique relation are completely
adjacent to each other, since any of the other nodes are not adjacent to all of the nodes in
this clique relation [84]. Hence, in an undirected graph, if there is a subset of two con-
nected nodes, each of them is not considered to be included in a clique relation.

The clique relation also has specified mathematical properties [85]. In graph theory,
an undirected graph where every pair of nodes is clearly connected by an edge, is called
a complete graph.

Definition 5.1. An undirected graph G = (Ns, Es) has a clique relation C, which is a set
of nodes C⊆Ns. The undirected subgraph of G is induced by C and is complete, i.e. {Ni,
Nj}∈Es for all distinct nodes Ni, Nj∈C.

The two terms using the maximal clique relation and the maximum clique relation
are totally different. If a clique relation of an undirected graph is maximal, called a
maximal clique relation, then this clique relation should not be included in any of the
other cliques in the undirected graph. If a clique relation of an undirected graph is the
maximum relation, called a maximum clique relation, then this clique relation is a
maximal clique, which is composed of the largest number of nodes.

Both the maximal clique relation and the maximum clique relation have strong and
complete relationally cohesive subsets, because their inclusiveness and density should

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

59

be 1 in the measurements of the densities. Moreover, the maximum number of nodes in
a clique, corresponding to the maximum clique relation, is the strongest and most cohe-
sive subset in the given undirected graph.

Definition 5.2. An undirected graph G = (Ns, Es) has a clique relation C, which is
maximal if no clique relation NC exists in G, such that C⊆NC and C ≠ NC.

Definition 5.3. An undirected graph G = (Ns, Es) has a clique relation C, which is a
maximum if no clique relation exists in G with more nodes than C. The cardinality of C
is the number of nodes that are contained in C.

When considering both the maximal clique relation and the maximum clique rela-
tion, recall that the maximum clique relation of the undirected graph is the undirected
subgraph that can also be the maximal clique relation of the undirected graph.

Lemma 5.1. Each of all possible maximum clique relations C⊆Ns of an undirected
graph G = (Ns, Es) is a maximal clique relation.

Proof. Assume that C⊆Ns is a maximum clique relation of an undirected graph G = (Ns,
Es), but it is not a maximal clique relation. When a clique relation is NC⊆Ns, such that
C⊆NC and C ≠ NC, then the clique relation NC has more nodes than the clique relation
C, meaning the hypothesis is contradictory that C is both a maximum and maximal
clique relation. ■

One hereditary graph property is a clique relation of an undirected graph. The prop-
erty is shared by all of the undirected subgraphs included in the given undirected graph,
and these undirected subgraphs are induced properly by some cohesive subset of the
given clique relation.

Lemma 5.2. Assume that two clique relations are in the same undirected graph, which
are given by (1) C⊆Ns as a clique relation of an undirected graph G = (Ns, Es); and (2)
B⊆C also as a clique relation of G.

Proof. Let both C⊆Ns be a clique relation of an undirected graph G = (Ns, Es) and B⊆C
also be a clique relation of G, then both {Ni, Nj}∈Es for all distinct nodes Ni, Nj∈C and
{Ni, Nj}∈Es for all distinct nodes Ni, Nj∈B. Thus, B⊆Ns is also clearly a clique rela-
tion. ■

Figure 5.5 shows an example of two different clique relations of each undirected graph,
where one does not include any of the valued relations, and the other one includes fuzzy
valued relations.

In order to extract all of the larger possible clique relations in an undirected graph,
we briefly explain the proposed extraction process [85]. To extend a clique relation to a
large clique relation, assuming that R⊆Ns \ C is the specific set of candidate nodes,
where R = {Nj∈Ns \ C | {Ni, Nj}∈Es for all Ni∈C}. Each of the candidate nodes in R is

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

60

turned and removed to be added to C. The set R can be updated by removing the nodes
that are not completely adjacent to the selected candidate nodes. Thus, the selected can-
didate nodes in C can be removed after the sets R and C are updated.

Detecting all of the possible maximal clique relations in an undirected graph, and
even extracting all of the possible clique relations of cohesive subsets from a small
number to a large number of clique relations in the real possible undirected networks,
are intractable problems, meaning NP-hard problems [86]. For this chapter’s study,
when dealing with a large number of nodes and edges (corresponding to workforces and
their operational connections in the case of a fuzzy operational network), there is always
the restriction of selecting the number of workforces and their operational connections;
in detecting their clique relations of cohesive operational connections in work-opera-
tional situations.

5.6 Component Relations for Connections

A component relation is also an important property for connecting cohesive subsets,
because component relations can make some of the determined clique relations of cohe-
sive subsets have connections or can link some important or meaningful nodes to each
other. For example, after determining all of the possible clique relations of cohesive
subgroups among workforces in a fuzzy operational network, component relations
among workforces are needed to be known in order to be able to designate them to pos-
sibly being a communicator within two or more cohesive subgroups for better cohesive
relations.

Another important reason, when dealing with component relations, is that we are
able to clearly recognise an undirected graph that has complicated connections [80]. If a
path between every pair of nodes exists in an undirected graph, meaning all of the nodes
are reachable, then we say the undirected graph is connected. If there are two or more

0.2

0.4
0.2

0.4

0.6 0.2

0.2

0.4

0.6
0.8

(a) (b)

Figure 5.5. Comparison of clique relational undirected graphs. (a) does not include any of the
valued relations but (b) includes fuzzy valued relations.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

61

node subsets or one or more independent nodes in an undirected graph, meaning the un-
directed graph either consists of two or more undirected subgraphs or includes one or
more isolated nodes, then we say the undirected graph is disconnected. In Figure 5.6, an
example of two different undirected graphs is shown; one is a connected undirected
graph and the other one is a disconnected undirected graph. Figure 5.7 shows an exam-
ple of two different undirected graphs, including fuzzy valued relations; one is a con-
nected undirected graph and the other one is a disconnected undirected graph.

(a) (b)

Figure 5.6. Comparison of two undirected graphs. (a) is a connected undirected graph and (b) is
a disconnected undirected graph.

0.6

0.2

0.2

0.8

0.4

0.2

0.8

0.4

0.2

0.4

0.2

(a) (b)

Figure 5.7. Comparison of two undirected graphs. (a) is a connected undirected graph with
fuzzy valued relations and (b) is a disconnected undirected graph with fuzzy valued relations.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

62

5.7 Cohesive Subsets with Fuzziness

A pair relation of two nodes in an undirected graph can be expressible as a numerical
weight, meaning each of all the edges can have its own weight. The assigned weights
are able to represent the criterion of relational strengths. One method to represent and
analyse the relational strengths is a fuzzy set method [87, 88]. The fuzzy set permits
membership grades in the interval from 0 to 1. In the fuzzy set, fuzzy membership
grades can be exploited to casually represent the criterion of relational strengths in an
undirected graph. Thus, many possible methods based on the fuzzy set (fuzzy-based
methods) [89, 90] can be applied to the identification problem of determining cohesive
subsets.

5.7.1 Fuzzy clique relations

An undirected graph that includes fuzzy membership grades is called a fuzzy undirected
graph. Again, if the fuzzy undirected graph has some implicit reasons, then this fuzzy
undirected graph is called a fuzzy undirected network. In the fuzzy undirected graph, the
mathematical properties of cyclic and tree relations, and of fuzzy cyclic and tree rela-
tions should be considered and defined before dealing with a fuzzy clique relation. A
mathematical property of the fuzzy clique relation is different from the maximal and
maximum clique relations, and is an important relation for identifying cohesive subsets
when dealing with fuzzy membership relations. All of the mentioned relations are de-
fined respectively in mathematical ways [91, 92] in the following manner.

The fuzzy undirected graph with a set Ns of nodes and a set Es of edges is defined to
be relation Es⊆Ns × Ns on a set Ns. A fuzzy relation is represented as μ: Ns × Ns → [0, 1]
and an edge is represented as (Ni, Nj)∈Ns × Ns, which has weight, representing μ(Ni,
Nj)∈[0, 1]. Fuzzy undirected graphs are considered for simplicity, i.e. the fuzzy relation
is symmetric, and each of all the edges should be regarded as each of the unordered
pairs of nodes.

Definition 5.4. A fuzzy undirected graph is represented as G = (σ, μ), which is a pair of
functions σ: Ns → [0, 1] and μ: Ns × Ns → [0, 1], where for all Ni, Nj in Ns, then μ(Ni, Nj)
≤ σ(Ni)∧σ(Nj) is obtained.

Definition 5.5. An undirected subgraph of the fuzzy undirected graph Gs = (τ, v) is
called a fuzzy undirected subgraph of G if τ(Ni) ≤ σ(Ni) for all Ni∈Ns and v(Ni, Nj) ≤
μ(Ni, Nj) for all Ni, Nj∈Ns.

Definition 5.6. In a fuzzy undirected graph, a sequence of distinct nodes N0, N1, N2,…,
Nn is called a path, denoted by ρ, such that μ(Ni-1, Ni) > 0, 1 ≤ i ≤ n. Here, n ≥ 0 is
called the length of ρ, and the consecutive pairs of nodes (Ni-1, Ni) are called the arcs of
ρ. The weight with the weakest arc of ρ is the strength of ρ.

Definition 5.7. ρ is also called a cyclic relation if N0 = Nn, and n ≥ 3. A fuzzy undirected
graph that has no cyclic relations is called an acyclic relation, and a connected acyclic
graph is called a tree relation.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

63

Definition 5.8. (1) If and only if (supp(σ), supp(μ)) becomes a tree relation, then (σ, μ)
is a tree relation; and (2) (σ, μ) is also called a fuzzy tree relation if and only if (σ, μ)
includes a fuzzy spanning subgraph (σ, v) that is a tree relation, such that ∀(u,
t)∈supp(μ) \ supp(v), μ(u, t) < v∞(u, t), meaning there is a path in (σ, v) between u and t,
and this strength is greater than μ(u, t). Here, the support of σ represents supp(σ).

Definition 5.9. (1) If and only if (supp(σ), supp(μ)) becomes a cyclic relation, then (σ, μ)
is a cyclic relation; and (2) (σ, μ) is also called a fuzzy cyclic relation if and only if
(supp(σ), supp(μ)) is a cyclic relation and ∄ unique (Ni, Nj)∈supp(μ), such that μ(Ni, Nj)
= ∧{μ(u, t) | (u, t)∈supp(μ)}.

Definition 5.10. If a fuzzy undirected subgraph of G is Gs = (τ, v), which is induced by

0.4

0.8

0.40.6

0.8

0.4

(a) (b)

0.4 0.4

0.6
0.4

0.8

0.6

0.4 0.6

0.8

0.8

0.8
0.4

(c) (d)

Figure 5.8. Examples of four fuzzy undirected graphs: (a) a cyclic relation; (b) a fuzzy cyclic
relation; (c) a clique relation; (d) a fuzzy clique relation.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

64

SNs⊆Ns, where SNs is a subset of Ns, then Gs becomes a clique relation if (supp(τ),
supp(v)) is a clique relation, and Gs is called a fuzzy clique relation if Gs is a clique re-
lation, and every cyclic relation is a fuzzy cyclic relation in (τ, v).

For a numerical example of the above definitions, in Figure 5.8, an example of four
fuzzy undirected graphs depicts the differences (1) between a cyclic relation and a fuzzy
cyclic relation; and (2) between a clique relation and a fuzzy clique relation.

5.7.2 Fuzzy similarity relations

To identify cohesive subsets in a fuzzy undirected graph, fuzzy similarity relations
among nodes should be considered, and these are represented in mathematical ways [93,
94]. The concept of this fuzzy similarity relation is to consider all of the possible com-
plete subsets of nodes, which can become cohesive subsets in the fuzzy undirected
graph.

Definition 5.11. Let ε be a fuzzy relation among nodes on a set Ns, and the following
notions are defined as (1) ε is κ-reflexive if ∀Ni∈Ns, ε(Ni, Ni) ≥ κ, where κ∈[0, 1]; (2)
ε is irreflexive if ∀Ni∈Ns, ε(Ni, Ni) = 0; and (3) ε is weakly reflexive if all Ni, Nj are in
Ns and for all κ∈[0, 1], ε(Ni, Nj) = κ ⇒ ε(Ni, Ni) ≥ κ.

Lemma 5.3. The fuzzy relations among nodes ε ◦ ε-1 should be weakly reflexive and
symmetric if ε is a fuzzy relation from Ns into Q.

Proof. (1) ε ◦ ε-1 is weakly reflexive, which is proved by (ε ◦ ε-1)(Ni, Ni′) = ∨{ε(Ni,
Nj)∧ε-1 (Nj, Ni′) | Nj∈Q} ≤ ∨{ε(Ni, Nj)∧ε(Ni, Nj) | Nj∈Q} = ∨{ε(Ni, Nj)∧ε-1 (Nj, Ni) |
Nj∈Q } = (ε ◦ ε-1)(Ni, Ni); and (2) ε ◦ ε-1 is symmetric, which is proved by (ε ◦ ε-1)(Ni,
Ni′) = ∨{ε(Ni, Nj)∧ε-1(Nj, Ni′) | Nj∈Q} = ∨{ε-1(Nj, Ni)∧ε(Ni′, Nj) | Nj∈Q} = ∨{ε(Ni′,
Nj)∧ε-1(Nj, Ni) | Nj∈Q } = (ε ◦ ε-1)(Ni′, Ni). ■

A family composed of non-fuzzy subsets of nodes is denoted by Dε, which is de-
fined as Dε = {M⊆Ns | (∃0 < κ ≤ 1)(∀Ni∈Ns)[Ni∈M ⇔ (∀Ni′∈M)[ε(Ni, Ni′) ≥ κ]]},
where ε is a weakly reflexive fuzzy relation and a symmetric fuzzy relation among
nodes on Ns, and M is a set of maximal nodes. Accordingly, if Dε

κ = {M⊆Ns |
(∀Ni∈Ns)[Ni∈M ⇔ (∀Ni′∈M)[ε(Ni, Ni′) ≥ κ]]} is given, then κ1 ≤ κ2 ⇒ Dε

κ2 ≼ Dε
κ1

can be shown, where ‘≼’ is denoted as a covering fuzzy relation, meaning every node in
Dε

κ2 is a subset of a node in Dε
κ1.

If ∀Ni, Ni′∈H and ε(Ni, Ni′) ≥ κ where H is a complete subset of nodes of Ns, then
H is called κ-complete with respect to ε. Here, a κ-complete subset that is not contained
in any other κ-complete subset of nodes is called a maximal κ-complete subset.

Lemma 5.4. Dε is the family composed of all of maximal κ-complete subsets of nodes in
a fuzzy undirected graph with respect to ε for 0 ≤ κ ≤ 1.

Proof. There exists 0 < κ ≤ 1 such that ∀Ni′∈M, ε(Ni, Ni′) ≥ κ if M∈Dε and Ni, Ni′′∈M,

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

65

thus ε(Ni, Ni′′) ≥ κ and M is κ-complete. M⊆H and H is κ-complete if H is a subset of X
where Ni∈X. Let Ni∈H, since H is κ-complete, ∀Ni′∈M, ε(Ni, Ni′) ≥ κ, and since
M∈Dε, Ni∈M, thus H⊆M. Hence, M is maximal. Then let M be a maximal κ-complete
subset, and let Ni∈X, then Ni∈M ⇔ ∀Ni′∈M, ε(Ni, Ni′) ≥ κ and M∈Dε. ■

Lemma 5.5. There exists one or more κ-complete subsets of nodes M∈Dε such that {Ni,
Ni′}⊆M, whenever ε(Ni, Ni′) > 0 is fulfilled.

Proof. If Ni = Ni′ is fulfilled, {Ni} is certainly κ-complete for κ = μR(Ni, Ni) where μR is a
fuzzy set relation R. Let us suppose Ni ≠ Ni′, then ε(Ni, Ni′) = ε(Ni′, Ni) by symmetry, ε(Ni,
Ni) ≥ ε(Ni, Ni′) and ε(Ni′, Ni′) ≥ ε(Ni, Ni′) by weak reflexivity, and also {Ni, Ni′} is shown
as κ-complete where κ = ε(Ni, Ni′). The family composed of all of κ-complete subsets is
denoted by Fκ, which has a maximal node set M. In addition, this node set is maximal in
the family composed of all of κ-complete subsets of nodes, since any of the sets include
M, which includes {Ni, Ni′} as well, thus M∈Dε by Lemma 5.4. ■

A subclass of Dε is noted to fulfil the condition of Lemma 5.5 that covers the node
set Ns. For the fuzzy undirected graph, let ε be the fuzzy similarity relations of nodes on
Ns = {N1, N2,…, Nn}. In this case of the fuzzy undirected graph, all of the n nodes can
be partitioned into families, each of which is composed of the maximal complete sub-
sets on the basis of Lemma 5.5, but if the clique relations of nodes are automatically se-
lected from the previous maximal complete subsets, then one or more clique relations
are not included in the family.

An example is given here in order to better understand fuzzy similarity relations.
Assume that κ is the fuzzy similarity relations of six nodes, representing Ns = {N1, N2,…,
N6}, as shown in Figure 5.9. In this example of the fuzzy undirected graph, the family
consists of the three maximal complete subsets of nodes, which are {N1, N2, N6}, {N1,
N3, N5}, and {N2, N3, N4}. These three maximal complete subsets fulfil the condition of
Lemma 5.5. Here, the family does not contain the subset {N1, N2, N3}. The set Dε

κ of
this example becomes

0.2,0 if

}},,{},,,{},,,{},,,{{

0.4,0.2 if

}},{},,{},,,{},,,{{

0.6,0.4 if

}}{},,{},,,{{

0.8,0.6 if

}}{},{},{},{},,{{

,0.10.8 if

}}{},{},{},{},{},{{

432531621321

4342531621

462531

642153

654321

NNNNNNNNNNNN

NNNNNNNNNN

NNNNNN

NNNNNN

NNNNNN

D , (5.7)

where κ is not transitive. Here, as an example, we note the subset {N1, N2, N6} that is the

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

66

maximal κ′-complete subset ∀0 < κ′ ≤ κ, where κ = 0.4, since κ(N1, N4) = κ(N2, N5) =
κ(N6, N3) = 0, and this subset is one of the existing subsets in the example fuzzy undi-
rected graph, as shown in Figure 5.9.

5.7.3 Fuzzy hierarchical subsets

A classification of the given nodes in a fuzzy undirected graph is an important process
for resolving sufficient nodes, which can connect the determined cohesive subsets or
other meaningful nodes. Here, those resolved nodes play roles of component relations to
figure out how each of the determined cohesive subsets makes links to each other
through the node connectors. Particularly, we deal with the fuzzy undirected graph that
is able to be classified into hierarchically different α-cut levels in fuzzy mathematical
ways [95-97].

The concept of the α-cut levels with the aforementioned equations described in the
fuzzy clique relations and similarity relations can be applied to real classification prob-
lems. We seek the specific and characterised hierarchical blocks of fuzzy sets in differ-
ent levels. The classified fuzzy undirected subsets of nodes are used to better identify
cohesive subsets in the fuzzy undirected graph. For example, the extension process of
classifying the whole group of the real adapted fuzzy undirected network into hierar-
chical similarity subgroups, each of which has its own implication of one or more char-
acteristics, is executed again in order to provide better information.

Definition 5.12. An α-cut of a fuzzy undirected graph that is included in both σ and μ
for α∈[0, 1], which are the fuzzy set relations, is represented as

})(|{ isi NNN (5.8)

0.8

0.60.6

0.6

0.4

0.4

0.40.4

5N

N6

N3

2N

N4

1N

0.2

Figure 5.9. Example of the fuzzy undirected graph representing the fuzzy similarity relations.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

67

and

}),(|),{(jissji NNNNNN , (5.9)

where μα⊆σα × σα, then (σα, μα) is a fuzzy undirected graph with the fuzzy-based node
set σα and fuzzy-based edge set μα.

Now, any member of the fuzzy node set σα is denoted by Sσ, which is defined in Ns by a
union of α-cuts, representing

]1,0[

 S , (5.10)

and any member of the fuzzy relation set μα is denoted by Sμ, which is defined in Ns × Ns
by a union of α-cuts, representing

]1,0[

 S . (5.11)

Further, the similarity relation based on the α-cut is denoted by L, the α-cut of L is de-
noted by Lα, a universe denoted by U, and the concept of Lα has been basically estab-
lished [98]. If L is a similarity relation in U, then ∀α∈]0, 1], and each Lα should be an
equivalent relation in U. In reverse, if there are Lα, where 0 < α ≤ 1, which is a nested
sequence that has distinct equivalent relations in U, if and only if Lα1⊂Lα2 with α1 > α2,
L1 is non-empty, and dom(Lα) = L1∀α, then a similarity relation in U is

LL , (5.12)

where α = 1 is included in any of the choices of α’s in]0, 1]. The equivalence relation
concept of this similarity relation based on the α-cut is able to be used for hierarchically
organising a fuzzy undirected graph to deal with the fuzzy hierarchical subset purposes.

5.8 Fuzzy Operational Network

The applied reorganisational problem in a fuzzy operational network is given for an
empirical study, and is solved by the fuzzy DNA-based algorithm. The fuzzy opera-
tional network mainly has two different properties, compared to normal operational
networks. One different property is that of the fuzzy operational network that corre-
sponds to a fuzzy undirected graph that has implicit operational values, which are rep-
resented as fuzzy membership grades to each connected pair of all workforces. The
other different property is that the fuzzy operational network is composed of fuzzy op-
erational connection levels among workforces in either clique relations or component
relations with fuzzy membership grades, representing more specific operational connec-
tion levels in operations.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

68

5.8.1 Model of the network

In this chapter’s study, possibly existing workforces of the organisation are selected to
artificially generate an operationally relative network associated with fuzzy membership
grades, which are based on workforces’ records, descriptions, and other important crite-
ria of operational content. This connection level can be defined mathematically [99] in
the following manner.

Let us suppose n workforces are given in a fuzzy operational network with opera-
tional connections denoted by μ(Ni, Nj), which measure a fuzzy operational connection
level between workforces Ni and Nj. Here, μ(Ni, Nj)∈[0, 1], Ni ≠ Nj, and μ(Ni, Nj) = μ(Nj,
Ni). The fuzzy operational connection level is denoted by ~ ζ, and is in the n workforces,
defined as

]1,0[,),(:~ jiji NNNN . (5.13)

The multiple fuzzy operational levels among workforces are illustrated with a fuzzy un-
directed network. In the same manner as a fuzzy undirected graph, the fuzzy operational
network is also denoted by G = (Ns, Es), where Ns is a workforce set of G and Es is a set
of operational connections. In the fuzzy operational network, whenever Ni ~ ζ Nj with
respect to a given ζ∈[0, 1], there is a fuzzy operational connection level (Ni, Nj)∈Es
that connects workforce Ni with workforce Nj.

The operational network with fuzzy operational connection levels is parameterised
by ζ, which has a set of the constant number of workforces, and a varying set of fuzzy
operational connection levels, and thus the fuzzy operational network is defined as fol-
lows:

]1,0[),,(ss ENG , (5.14)

where

 0;, sss EEE , (5.15)

which represents the more similar operational connection level of ζ, referring to the
higher connections among the workforces.

Figure 5.10 shows the fuzzy operational network for this model. In the model fuzzy
operational network, there are 40 workforces and operational connections with fuzzy
membership grades. The 40 workforces are labelled Ni, i = 1, 2,…, 40. Although this
fuzzy operational network involves only 40 workforces, it seems unorganised and com-
plicated. The unorganised network can be reorganised, or optimally organised, by exe-
cuting work rotation. The terms of work rotation are important for the operational man-
ager to be able to enhance productive work. Hence, the operational manager should
discover all of the workforces in each of all the clique component relations for work ro-
tation.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

69

Subgroup 3 Subgroup 4

Subgroup 2

40

39

38

37 36

35

34

33

32
31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5
4

3

2

1

0.8

0.4

0.2

0.6

0.6

0.2

0.2

0.2

0.6

0.2

0.2

0.6

0.6

0.2

0.4

0.4

0.6
0.4

0.4

0.4

0.4

0.8
0.4

0.2

0.2

0.2

0.2

0.4

0.2

0.2

0.2

0.6

0.2

0.6

0.4

0.2

0.4

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.6

0.6

0.2

0.8

0.4

0.4

0.6

0.2

0.8

0.2

0.6

0.2

0.4

0.2

0.4

0.2

0.4

0.2

0.2

0.4

0.4

0.2

0.2

0.4

0.8

0.2

0.4

0.4

0.2

0.2

0.8

0.2

0.6

0.2

0.4

0.2

0.2

0.2

0.4

0.2

0.2

0.4

0.2

0.2

0.2

0.6

0.2

0.4

0.2

0.4

0.2

0.2

0.2

0.4

0.2

0.2

0.2

0.4

0.4

0.2

0.2

0.2

0.2

Subgroup 1

Figure 5.10. Model of a fuzzy operational network consisting of workforces.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

70

5.8.2 Workforces in a clique relation

A fuzzy operational network, without considering fuzzy membership grades, can be
composed of specific workforces in one or more clique relations. Recall that the clique
relation is composed of at least three workforces. If there is a subset that is composed of
only two workforces with an operational connection, then we call this subset as an in-
dependent relation in this chapter’s study. For work rotation, the clique relation is a use-
ful starting point for specifying formal properties, and has well-specified mathematical
properties, and captures much of the intuitive notion of the cohesive subsets.

All of the workforces of the clique relation should be adjacent to each other and to
the fuzzy operational network. For this chapter’s study, the term “clique relation” is
used for those workforces (three or more) who are adjacent to one another in a subgroup,
and the term “independent relation” is used for a set of two connected workforces who
are adjacent to each other. Workforces in a clique relation are represented mathemati-
cally [100, 101].

The complement fuzzy operational network of the fuzzy operational network G can
be created and is denoted by CG, which becomes CG = (Ns, CEs), where

}),(and,,|),{(sjijisjijis ENNNNNNNNNCE . (5.16)

The subset of the workforce set can be represented as SNs⊆Ns, and the subset of the
workforce set in the fuzzy operational network is defined as

),()(sssss SNSNESNSNG , (5.17)

where SNs induces the subgroup of workforces. If ∀Ni, Nj∈Ns and (Ni, Nj)∈Es, then a
fuzzy operational network G = (Ns, Es), without considering fuzzy membership grades,
can be complete, and is called a complete operational network. The workforces in a
clique relation are denoted by C, meaning a subset of the workforces is composed of
completely connected workforces with their operational connections.

5.8.3 Maximum number of workforces in a clique relation

In the fuzzy operational network, the maximum number of workforces in a clique rela-
tion can be represented by a subgroup of the workforces who are all completely adjacent
to each other, showing the most cohesive subgroup and their strong connections in
work-operational situations.

A complete operational network contains operational connections, each of which
connects every pair of workforces. A fuzzy operational network G = (Ns, Es) is said to
be complete if all its workforces are pairwise adjacent. The clique relation number of G
is denoted by η(G), and this number is the size of the maximum number of workforces
in a clique relation. The number of clique relations is defined as follows:

}in s workforceofrelation clique a is |:max{|)(GSNSNG ss , (5.18)

where the cardinality of the subset SNs is the number of workforces, and |SNs| is the

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

71

number of its workforces, meaning the objective of the maximum number of workforces
in a clique relation is to find a clique relation of the maximum cardinality in G [102]. In
other words, the maximum number of workforces in a clique relation is used to deter-
mine the maximum number of workforces in a subgroup, in which each workforce is
connected with all other workforces.

5.9 Detection of Cohesive Subgroups with DNA

A set of possible fuzzy operational data is examined to aid in finding subgroups of
workforces who have relatively strong connections in operational situations. The data
set can become visible by displaying functions of a network, which can also be trans-
formed to a matrix. We note one detection approach to represent the matrix of the fuzzy
operational network as a socio-matrix [103]. If we deal with fuzzy membership grades,
the socio-matrix is called a fuzzy socio-matrix, which should initially be created in the
process of the fuzzy DNA-based algorithm. Creating the socio-matrix is the most im-
portant analytical procedure to analyse and recognise connection strengths of each pair
of all the given workforces for detecting all of the possible workforces in each of all the
clique relations and each of all the component relations.

Figure 5.11 shows a fuzzy socio-matrix of the model fuzzy operational network. The
matrix consists of 40 rows and 40 columns labelled xi, j, i and j = 1, 2,…, 40. Each of all

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

40

10

9

8

7

6

5

4

3

2

1

00000.200.60N 0

0

40N

0

0

0

0.2

0

0.6

0

0

00

0

0

0

0

0

0

0

0

N10

0

0.2

0

0

0

0

0.2

0

0

N9

0

0

0.2

0

0

0

0

0

0

N8

0

0.2

0.4

0

0

0

0

0.2

0

N7

0

0

0

0

0

0

0

0

0

N6

0

0

0

0

0

0

0

0

0

N5

0

0

0

0

0

0

0

0

0

N4

0

0

0

0

0

0.4

0.2

0

0

N3

0.2

0

0

0

0

0.2

0

0.2

0

N21N

N

N

N

N

N

N

N

N

N

N

0

0

0

0

0

0

0

0

0.2

Figure 5.11. Fuzzy socio-matrix of the model fuzzy operational network.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

72

the operational connection values comes from a workforce Ni to a workforce Nj, and xi, j
records which pairs of workforces are adjacent to each other. If workforces Ni and Nj are
adjacent, then 0 < xi, j ≤ 1.0, and if workforces Ni and Nj are not adjacent, then xi, j = 0.
Moreover, an operational connection between two workforces can be either present or
absent. If an operational connection is present, then it goes both from Ni to Nj and from
Nj to Ni, thus, xi, j = xj, i in the fuzzy socio-matrix. If an operational connection is absent,
then it is xi, j = 0, meaning that two workforces are not adjacent.

The fuzzy DNA-based algorithm is proposed for this chapter’s study based on the
algorithm of the maximal clique problem solution that was proposed by Ouyang et al.
[104], and we extend the algorithm to determine all the workforces in clique and com-
ponent relations from small to large values of cohesiveness, and the maximum number
of workforces in a clique relation in the fuzzy case of the reorganisational problem. The
proposed algorithm proceeds as follows:

Step 1: Workforces in either a clique relation or an independent relation are represented
by either “present” or “absent” in n workforces. If the workforce is included in the
clique relation or the independent relation, then we set the value to 1 meaning present,
otherwise it is 0, meaning absent.

Step 2: All the possible combinations among the encoded workforce DNA sequences
are created from 2n, basically by using two techniques, which are parallel overlap as-
sembly (POA) and polymerase chain reaction (PCR). The POA technique is used to
amplify the groups of the initially encoded workforce DNA sequences into all of the
possible combinatorial connections among the given workforces. The PCR technique is
used to amplify and to detect only specific DNA strands, each of which has the path
from the starting labelled workforce to the ending labelled workforce.

Step 3: An existing operational connection between a pair of two workforces in the
fuzzy operational network, we call a valid connection, whereas a non-existent opera-
tional connection is called an invalid connection. In other words, all of the given work-
forces are connected to each other by their operational connections, which are valid
connections. Any of two workforces that do not have any operational connections are
invalid connections, corresponding to the operational connections in the complement
fuzzy operational network. In this step, all of the operational connections should be dis-
tinguished into either valid connections or invalid connections by checking all of the
possible connections in both the fuzzy operational network and the complement fuzzy
operational network.

Step 4: Each of the given workforces has been encoded by its own DNA sequences,
each of which also includes its own available restriction enzyme site. By using the
available restriction enzymes, all of the invalid connections can be removed in the fuzzy
operational network. All of the valid connections can be sorted by removing the invalid
connections based on cutting at the restriction enzyme sites. After removing all the in-
valid connections among workforces, the remaining data pool is sorted in order to select
the existing DNA sequences from 2 bits to n bits of value 1.

Step 5: All the subgroups of workforces in each clique relation are found, which corre-

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

73

spond to all the lengths of DNA strands using a simulated gel electrophoresis apparatus.
In this step, the shortest DNA strand corresponds to the maximum number of work-
forces in a clique relation, and the second shortest DNA strand corresponds to the sec-
ond largest maximum number of workforces in a clique relation. Each subgroup of
workforces in component relations are distinguished and marked by checking all of the
resolved clique relations.

Step 6: Step 4 is repeated until all the workforces in a clique relation are obtained. This
step is completed when there is only one independent relation remaining, representing a
set of two connected workforces in the fuzzy operational network.

5.10 Experimental Studies and Results

To detect all of the possible workforces in each of both clique relations and independent
relations, the proposed algorithm uses novel simulated experimental studies and results.
In this section, we describe simulated experimental studies and results to resolve spe-
cific workforces who are included in each clique and component relation using the al-
gorithm.

5.10.1 Experimental studies

For the simulated experimental studies, we basically design all of the DNA sequences
that are formed in double-stranded DNA (dsDNA). The 40 workforces are given for the
model network, and each workforce represents the DNA sequence in a binary number
that is either 1 or 0, meaning either present or absent, as explained above.

Two kinds of DNA sequences are given by a binding sequence and a value sequence
[104]. 80 DNA oligonucleotides are created for the simulated experimental studies. The
binding sequence is denoted by Eui for the upper DNA strand and Eli for the lower DNA
strand, while the value sequence is denoted by Ni, which also corresponds to each of all
the workforces. The binding sequences are used for connecting each workforce of the
DNA sequence, and the value sequences are used for distinguishing whether or not the
binding sequences contain a particular workforce. Both Eui and Eli are set to have a
length of 10 base pairs (bp: after hybridisations and replications). Ni has a length of 0 bp
if the value is 1 (present), and 6 bp if the value is 0 (absent). In addition, each DNA oli-
gonucleotide consists of two different binding motifs. It is important when encoding
DNA sequences, each of which has a different pattern for each workforce and contains
its own available restriction enzyme site. One is denoted by 5′-EuiNiEui+1-3′, where i = 1,
3, 5,…, 39 represents odd numbers. The other one is denoted by 5′-Eli+1NiEli-3′, where i
= 2, 4, 6,…, 40 represents even numbers. Based on the sticking operation [105], these
two different DNA strands (upper and lower DNA strands) of single-stranded DNA
(ssDNA) stick to each other by the annealing process, and they become a dsDNA se-
quence.

5.10.2 Results of the experimental studies

For the reorganisational problem, three main biochemical techniques were used in the
simulated experimental studies. First, both POA and PCR were used to amplify DNA

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

74

strands. Second, 40 available restriction enzymes were applied to remove all comple-
mentary sequences, corresponding to all of the invalid connections in the complement
fuzzy operational network. Finally, the simulated gel electrophoresis was used for re-
peatedly selecting all of the final products of the shortest DNA strands that corre-
sponded to all of the possible workforces in each of the clique relations and independent
relations.

Each of the determined clique relations and component relations was obtained using
the simulated experimental studies. A program compiled using Vector NTI software was
used to represent the length of DNA strands. Further, a DNA sequence table was also
created based on the expected results of all the determined possible workforces in each
clique and component relation. The final results of the DNA sequence table were cre-
ated by monitoring the length of the DNA strands in the simulated gel electrophoresis.
Each clique and independent relation included one or more lengths of 0 bp (empty
spaces) in the DNA sequence, meaning that the value was 1 and was present in each
subgroup. In each subgroup, one or more empty spaces represented any possible com-
ponent relations among the workforces. Those workforces linked two different sub-
groups and were found by noting all of the empty spaces, each of which was vertically
located in the same columns.

All of the possible workforces in each clique and independent relation were deter-
mined based on the above results. In more detail, in the fuzzy operational network, there
were fifteen subsets in clique and independent relations, denoted by Pi, i = 1, 2,…, 15,
which were also composed of two connected subgroups by operational connections.
One large connected subgroup is denoted by LP1, and the other connected subgroup is
denoted by LP2. The workforce numbers and the DNA strand length of each subgroup
for the two connected subgroups are described as follows:

Firstly, in LP1, (1) the maximum clique relation of workforces was detected as P1 =
{N2, N7, N9, N18, N20, N21, N25, N31, N32, N39} that was connected at a distance of 590 bp
by ten workforces; (2) the clique relation of seven workforces was found as P2 = {N3,
N8, N19, N22, N33, N37, N38} that was connected at a distance of 608 bp; (3) the clique re-
lation of six workforces was found as P3 = {N1, N15, N16, N23, N27, N29} that was con-
nected at a distance of 614 bp; (4) three subsets (P5, P6, and P7) of three workforces
were found at a distance of 632 bp; and (5) four subsets (P10, P11, P12, and P13) of two
connected workforces were found at a distance of 638 bp. Secondly, in LP2, (1) the
maximum clique relation of workforces was detected as P4 = {N6, N12, N28, N40} that
was connected at a distance of 626 bp by four workforces; (2) two subsets (P8 and P9)
of three workforces were found at a distance of 632 bp; and (3) two subsets (P14 and
P15) of two connected workforces were found at a distance of 638 bp.

5.11 Identification of Cohesive Subgroups

All of the specific workforces in each clique and component relation are determined
based on the simulated experimental studies and results. Moreover, we extend this to
detect all of those workforces in fuzzy relations in order to identify cohesive subgroups
for the final purpose. Obviously, the results, containing both (1) clique and component
relations; and (2) fuzzy relations, make work rotation execution more efficient, and pro-
vide better and much more useful information to operational managers.

The specific workforces in a similarity subgroup certainly have a similar operational

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

75

22

33

38

8

19

37

22

33

38

8

19

37

22

33

38

8

19

37

38

38

19

19

33

33

37

22

37

8

8

 1.0

 0.8

 0.6

 0.4

Subset 15

Subset 14

Subset 13

Subset 12

Subset 11

Subset 10

Subset 9

Subset 8

Subset 7

Subset 6

Subset 5

Subset 4

Subset 3

14

14

14

22

14

Subset 2

Subset 1

 0.2

36

34

24

40

17

28

6

4

13

12

26

10

15

11

16

1

5

35

29

30

23

27

2

18

9

25

39

32

31

20

21

7

3

10

26

3

12

13

4

6

28

17

40

24

34

36

7

21

20

31

32

39

25

9

18

2

27

23

30

29

35

5

1

16

11

15

27

29

16 27

29

16

12

6

28

40

34

36

12

6

28

40

34

36

36

34

24

40

17

28

6

4

13

12

14

26 26

3

26

10

23

30

35

5

11

15

23

30

35

5

11

15

18

9

25

39

32

31

20

21 21

20

31

32

39

25

9

18

15

11

16

1

5

35

29

30

23

27

2

18

9

25

39

32

31

20

21

7

13

4

17

24

10

7

2

3

1

24

17

4

13

10

Reorganised
 Subgroup 4

Reorganised
 Subgroup 3

Reorganised
 Subgroup 2

Reorganised
 Subgroup 1

1

3

7

2

Figure 5.12. Similarity hierarchical structure of the reorganised subgroups composed of the
identified cohesive workforce subsets in different fuzzy hierarchical levels.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

76

connection. In a fuzzy operational network, this connection is represented by a fuzzy
connection among workforces. Exploiting the α-cuts of the aforementioned equations,
fuzzy sets in the mathematical processes described earlier will reorganise all of the
workforces into fuzzy similarity relations, which are all divided into fuzzy hierarchical
levels. All of the workforces in fuzzy relations can be determined and can be reorgan-
ised into similarity subgroups to identify cohesive subgroups according to the defini-
tions and lemmas explained in the previous sections.

To detect all the possible workforces in fuzzy relations, let σ(Ni) = 1.0 for all
Ni∈Ns, and let each μ also be the fuzzy subset of each of all of the two-workforce com-
binations. All of the workforces in similarity subgroups, corresponding to fuzzy similar-
ity relations, are determined by calculating the given fuzzy membership grades
(strengths of the operational connections). An α-cut of a fuzzy set can be exploited by
dividing those workforces into hierarchical similarity levels.

Figure 5.12 illustrates the similarity hierarchical structure that is created by all of the
obtained and calculated results. In the structure, all of the possible workforces have
been reorganised into five different fuzzy hierarchical levels, representing five different
α-cuts, which have been taken at α ≥ 0.2, α ≥ 0.4, α ≥ 0.6, α ≥ 0.8, and α ≥ 1.0. In addi-
tion, Figure 5.13 shows the comparison analysis between the densities in fuzzy mem-
bership grades and the rates of DNA bp. In Figure 5.12, we can recognise that the hier-
archically reorganised subgroups 1 and 2 are clearly connected by α ≥ 0.2 between the
two workforces (N1 and N2) that are particularly recognised to be operational connectors
between the reorganised subgroups 1 and 2. In addition, the hierarchically reorganised
subgroups 2 and 3 are clearly connected by α ≥ from 0.2 to 0.4 between the two work-
forces (N3 and N7) that are particularly recognised to be operational connectors between
the reorganised subgroups 2 and 3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subset Number

Density in Fuzziness (0.2)

Density in Fuzziness (0.4)

Density in Fuzziness (0.6)

Density in Fuzziness (0.8)

Rate of DNA bp

Figure 5.13. Comparison graph of the densities in fuzziness and the rate of DNA bp in each
identified cohesive workforce subset.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

77

5.12 Density Analysis

The density analysis of the finally identified cohesive subgroups is focused on measur-
ing the efficiency of using the fuzzy DNA-based algorithm, which consists of
fuzzy-based methods and a general molecular algorithm. The previous fuzzy operational
network, shown in Figure 5.10, is the network prior to being reorganised based on the
results of the fuzzy DNA-based algorithm. We compare the previous fuzzy operational
network with the reorganised fuzzy operational network, shown in Figure 5.12, by ana-
lysing the densities of these two networks.

5.12.1 Comparison of the two networks

The reorganised fuzzy operational network was compared to the previous fuzzy opera-
tional network to prove the efficiency of the reorganised network. For this process, we
calculated the inclusiveness and the densities of the two networks. The calculating
method was explained in the previous section, but we briefly describe the measure of
the densities for the case of the applied reorganisational problem in the fuzzy opera-
tional network.

Inclusiveness in the fuzzy operational network was basically calculated by examin-
ing the total number of workforces minus the number of isolated workforces. The
measurement of inclusiveness is conducted by looking at the number of connected
workforces who are represented as a proportion of the total number of workforces in the
fuzzy operational network. In the fuzzy operational network, the given operational con-
nections among the workforces are considered without fuzzy membership grades,
meaning each of all the operational connections does not involve any values. Another
proportion of the maximum possible number of operational connections among the
workforces can be expressed as the density. To generalise the notion of the density to
the fuzzy operational network, one can average the fuzzy membership grades attached
to the operational connections across all of the operational connections. The other pro-
portion of the maximum possible number of operational connections among the work-
forces can be graphically expressed and represented as the density with fuzzy member-
ship grades.

5.12.2 Density analysis results

Table 5.1 shows the results of inclusiveness (proportion), density, density in fuzzy
membership grades, and other comparators that were used to compare the two different
networks.

Each of the four identified cohesive subgroups had a comparison of the previous
fuzzy operational network and the reorganised fuzzy operational network, each of which
was also divided into the different α-cut levels. Figure 5.14 shows the comparisons of
the previous subgroups and the reorganised subgroups in level 0.2. Figure 5.15 shows
the comparisons of the previous subgroups and the reorganised subgroups in level 0.4.
Figure 5.16 shows the comparisons of the previous subgroups and the reorganised sub-
groups in level 0.6. Figure 5.17 shows the comparisons of the previous subgroups and
the reorganised subgroups in level 0.8. From all of the density results, we measured the
efficiency of identifying cohesive subsets for the reorganisational problem using the

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

78

Table 5.1. Results of inclusiveness, density, and density in fuzzy membership grades for both
previous and new subgroups in each level.

Number of Operational Density in Fuzzy
Connections Membership Grades

Subgroup 1 4 0.500 0.089 0.313

New Subgroup 1 20 1.000 0.444 0.450

Subgroup 2 6 0.600 0.133 0.292

New Subgroup 2 45 1.000 1.000 0.378

Subgroup 3 8 0.900 0.178 0.469

New Subgroup 3 26 1.000 0.578 0.471

Subgroup 4 2 0.400 0.044 0.250

New Subgroup 4 14 1.000 0.311 0.464

Subgroup 1 1 0.200 0.022 0.500

New Subgroup 1 11 1.000 0.244 0.614

Subgroup 2 1 0.200 0.022 0.500

New Subgroup 2 17 1.000 0.378 0.588

Subgroup 3 5 0.700 0.111 0.600

New Subgroup 3 13 0.900 0.289 0.692

Subgroup 4 0 0.000 0.000 0.000

New Subgroup 4 7 0.900 0.156 0.679

Subgroup 1 0 0.000 0.000 0.000

New Subgroup 1 4 0.600 0.089 0.813

Subgroup 2 0 0.000 0.000 0.000

New Subgroup 2 4 0.600 0.089 0.875

Subgroup 3 1 0.200 0.022 1.000

New Subgroup 3 7 0.700 0.156 0.857

Subgroup 4 0 0.000 0.000 0.000

New Subgroup 4 5 0.800 0.111 0.750

Subgroup 1 0 0.000 0.000 0.000

New Subgroup 1 1 0.200 0.022 1.000

Subgroup 2 0 0.000 0.000 0.000

New Subgroup 2 2 0.400 0.044 1.000

Subgroup 3 1 0.200 0.022 1.000

New Subgroup 3 3 0.500 0.067 1.000

Subgroup 4 0 0.000 0.000 0.000

New Subgroup 4 0 0.000 0.000 0.000

Subgroup 1 0 0.000 0.000 0.000

New Subgroup 1 0 0.000 0.000 0.000

Subgroup 2 0 0.000 0.000 0.000

New Subgroup 2 0 0.000 0.000 0.000

Subgroup 3 0 0.000 0.000 0.000

New Subgroup 3 0 0.000 0.000 0.000

Subgroup 4 0 0.000 0.000 0.000

New Subgroup 4 0 0.000 0.000 0.000

1.0

Level Inclusiveness DensitySubgroup No.

0.2

0.4

0.6

0.8

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

79

Subgroup 1
New

Subgroup 1
Subgroup 2

New
Subgroup 2

Subgroup 3
New

Subgroup 3
Subgroup 4

New
Subgroup 4

Density

Density in Fuzziness

Inclusiveness
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.14. Comparisons of inclusiveness, density in fuzziness, and density between previous
and newly reorganised subgroups in α-cut level 0.2.

Subgroup 1
New

Subgroup 1
Subgroup 2

New
Subgroup 2

Subgroup 3
New

Subgroup 3
Subgroup 4

New
Subgroup 4

Density

Density in Fuzziness

Inclusiveness
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.15. Comparisons of inclusiveness, density in fuzziness, and density between previous
and newly reorganised subgroups in α-cut level 0.4.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

80

Subgroup 1
New

Subgroup 1
Subgroup 2

New
Subgroup 2

Subgroup 3
New

Subgroup 3
Subgroup 4

New
Subgroup 4

Density

Density in Fuzziness

Inclusiveness
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.16. Comparisons of inclusiveness, density in fuzziness, and density between previous
and newly reorganised subgroups in α-cut level 0.6.

Subgroup 1
New

Subgroup 1
Subgroup 2

New
Subgroup 2

Subgroup 3
New

Subgroup 3
Subgroup 4

New
Subgroup 4

Density

Density in Fuzziness

Inclusiveness
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.17. Comparisons of inclusiveness, density in fuzziness, and density between previous
and newly reorganised subgroups in α-cut level 0.8.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

81

fuzzy DNA-based algorithm.

5.13 Classification Method Applied to Clustering

The fuzzy DNA-based algorithm was designed for classifying the specific labelled
nodes (workforces) into subsets (subgroups), and reorganising them into fuzzy similar-
ity relations (fuzzy hierarchical levels) based on their fuzzy relations (fuzzy operational
connection levels). These processes enabled us to identify their cohesiveness. Moreover,
we would like to mention that, from this chapter’s study, the classification method using
the fuzzy DNA-based algorithm can be applied to clustering coordinated patterns. In
other words, without considering specific labels, we can switch (1) workforces to pat-
terns; (2) subgroups to clusters; and (3) fuzzy operational connection levels to distance
values.

A large number of heterogeneous patterns often emerge in different kinds of situa-
tions. For instance, various types of Web documents keep increasing in various divi-
sions or departments of each information database through the rapid expansion of the
Internet. Further, in bioinformatics, the genetic data render huge and unpredictable het-
erogeneous patterns. To analyse, design, and improve a given system composed of large
amounts of granular data, an appropriate technique is required to extract the necessary
information and knowledge for better decision making. The widely practiced techniques
include clustering analysis.

Clustering techniques often play profound roles in information and communication
technology as well as other management engineering applications and techniques. They
serve to cluster valuable information and knowledge objects in various ways in order to
analyse, control, design, improve, organise, and visualise complicated and heterogene-
ous pattern data.

For a stable system, the objective of clustering heterogeneous patterns is to sort the
data into clusters based on their high degrees of resemblance among the data of the
same cluster and low resemblance among the data of different clusters. However, the
main issue in clustering heterogeneous patterns includes the uncertainty data, which
may be clustered. Thus, the quality of the system can be properly evaluated by cluster-
ing the uncertainty data.

A general molecular algorithm can be integrated with mathematical methods to be-
come a new molecular computational algorithm (including its own adapted molecular
computational experimentation) for the clustering of heterogeneous patterns and other
complex coordinated patterns. The new molecular computational algorithm for cluster-
ing heterogeneous patterns provides a novel method of cluster analysis. In addition, the
main reason for combining mathematical methods is to reduce the number of DNA
fragments in encoding DNA sequences. Switching clustering to classification enables us
to approach adaptations and applications for fuzzy coordinated values of heterogeneous
patterns in real-world applications.

5.14 Computational Times and Solvable Sizes

When mathematically dealing with discrete algorithms, people may require a reasonable
running time that should be clearly quantified. For natural combinatorial problems,
search spaces exponentially grow depending on the input size, where the size increases

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

82

by one and the number of its possibilities multiplicatively increases [106, 107]. A com-
parison of the number of workforces and the number of operational connections is
shown in Figure 5.18.

Table 5.2 shows comparisons of approximated running times to organise workforces

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Workf orces

N
um

be
r

of
 O

pe
ra

tio
na

l C
on

ne
ct

io
ns

Figure 5.18. Comparison graph of the number of workforces and the number of operational
connections.

Table 5.2. Comparisons of approximated running times for the exponential-time algorithm and
the prepared fuzzy DNA-based algorithm.

Number of
Workforces

The Exponential-
Time Algorithm

The Prepared DNA-
Based Algorithm

10 30 50 100

< 1.00 second 18.00 minutes 36.00 years 100,000,000,000,000,000.00 years

2.89 minutes 27.96 minutes 1.31 hours 5.30 hours

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

83

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Running Time (sec)

N
u

m
b

er
 o

f
W

or
k

fo
rc

e
s

Figure 5.19. Comparison graph of approximated running times in seconds: (1) green colour
indicates the exponential-time algorithm; and (2) blue colour indicates the prepared fuzzy
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Running Time (hour)

N
u

m
b

er
 o

f
W

o
rk

fo
rc

e
s

Figure 5.20. Comparison graph of approximated running times in hours: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared fuzzy
DNA-based algorithm.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

84

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Running Time (day)

N
um

be
r

of
 W

or
kf

or
ce

s

Figure 5.21. Comparison graph of approximated running times in days: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared fuzzy
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

Running Time (y ear)

N
um

b
er

 o
f

W
o

rk
fo

rc
e

s

Figure 5.22. Comparison graph of approximated running times in years: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared fuzzy
DNA-based algorithm.

CHAPTER 5

IDENTIFYING COHESIVE SUBSETS BASED ON A FUZZY DNA-BASED ALGORITHM

85

with operational connections for cohesiveness, in which the number of workforces cor-
responds to the inputs of size 10, 30, 50, and 100. The table deals separately with the
exponential-time algorithm and the prepared fuzzy DNA-based algorithm (we are ready
to detect solutions). For the graphic representations, Figures 5.19 to 5.22 show a graphic
comparison of approximated running times for the exponential-time algorithm and the
prepared fuzzy DNA-based algorithm.

For the exponential-time algorithm, we suppose that a processor executes a million
high levels of instructions a second, and the exponential-time algorithm uses an opera-
tion of 2n [106]. For the prepared fuzzy DNA-based algorithm, we measured and calcu-
lated the approximated running times of the algorithms on the basis of previous experi-
mental reports, our experimental experiences, and genetic engineering notes [62-66].

If we suppose that there are two different typical algorithms that are an exponen-
tial-time algorithm and a polynomial-time algorithm, obviously the polynomial-time
algorithm is efficient. However, in this chapter’s study, reorganising a large number of
workforces induces an NP-hard problem, which means that a polynomial-time algo-
rithm has not been properly and truly discovered yet for this reorganisational problem.

5.15 Concluding Remarks

In this chapter, a new molecular computational algorithm was proposed, and was com-
bined with several fuzzy-based methods to create a fuzzy DNA-based algorithm. This
algorithm was used to identify cohesive subsets and was applied to the reorganisational
problem to identify cohesive subgroups in a fuzzy operational network for work rota-
tion.

The fuzzy DNA-based algorithm was exploited to identify various types of cohesive
subgroups. In particular, the algorithm was used to efficiently detect all of the work-
forces in each clique relation and component relation, including the maximal and
maximum numbers of workforces in clique relations and independent relations. The
molecular engineering detection was able to reveal four cohesive subgroups. Further,
the fuzzy-based molecular engineering detection was able to finally identify cohesive
subgroups by calculating fuzzy relations of the fuzzy operational network. The fuzzy
DNA-based algorithm reduced routine tasks and enhanced productive work for opera-
tional processes. The density analysis of the reorganised subgroups in the two different
networks also produced reliable results to prove the efficiency of the fuzzy DNA-based
algorithm.

This chapter implies that an unconventional potential approach to creating a novel
integrated algorithm that can identify cohesive subgroups in executing work rotation for
real-world applications is possible. For the manufacturing control field or other opera-
tional management fields, the fuzzy DNA-based algorithm has the possibility of being
used for any applied reorganisational problems. In addition, in this chapter’s study, we
showed the possibilities of using the fuzzy DNA-based algorithm in various ways to
approach applications of relationally intractable problems.

Chapter 6

Modelling Interpretive Structures
Based on a Hierarchical DNA-Based
Algorithm

6.1 Overview

This chapter introduces a novel molecular computational algorithm that is used for
building a new interpretive structural modelling (ISM) method (a new decision-making
method), which models interpretive structures. In other words, the algorithm is used for
structuring a model of interpretively problematic situations into hierarchical levels using
DNA molecules with molecular engineering techniques. This algorithm is termed a hi-
erarchical DNA-based algorithm. Further, we show an example of a contextual problem
that will be solved by using the hierarchical DNA-based algorithm.

For decision making, an ISM method is often associated with classifying compli-
cated contexts, composed of contextual content, into subgroups to construct a hierar-
chically restructured digraph, which properly provides comprehensible information and
results. Those complicated contexts may be represented as a set of relational elements,
and this relational set is represented as a digraph. The ISM method may be the key tool
(a classification support tool) of the problem-solving process when the same or similar
problems have conceptualising interactions in different departments, systems or other
various kinds of organisational groups.

The issue of computational complexity is of profound relevance when dealing with
complex relations or problems involving a large number of ideas or problems, corre-
sponding to elements or element nodes in a digraph. Structuring the problem with a
large number of elements in an ISM process, where minimising the crossings among
those elements, is an intractable problem. To address this problem, the hierarchical
DNA-based algorithm is used for minimising all crossings among the given elements to
appropriately construct a hierarchically restructured digraph. The restructured digraph
provides an easier and more reliable way to build an efficient and reliable decision sup-
port system.

In this chapter, we show an example of a contextual problem that is solved by using
the hierarchical DNA-based algorithm. This chapter also presents a new approach for
applying a computational molecular method to ISM to measure the efficiency of the al-
gorithm, exploited by advanced bioscience technologies, in calculating a large number
of elements to be an innovative ISM method.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

87

6.2 Background and Motivations

In many different areas, such as science, engineering, organisational and social sciences,
etc., complex and unpredictable issues or situations, composed of a set of given problem
contexts, often emerge and should be simplified to be understandable information. ISM
has been used as one method that simplifies such complicated contextual issues by con-
structing a structural digraph.

Since Warfield [108-110] first developed ISM, also referred to as structural model-
ling of problematic situations [111], ISM has become a methodology and a useful deci-
sion support tool. ISM assists in the consideration of a set of relational elements that is
composed of individual and group perceptions, ordinarily through idea-generation sup-
port tools, such as affinity diagrams [112], the KJ method [113, 114], brainstorming
methods [115], and persuasive writing methods [116]. The relational elements of the set
are connected by contextual relations.

In executive decision making, the different contexts of organisational problems of-
ten come from different areas of the organisations, and the given organisational prob-
lems can be a set of elements. The element set is selected as a possible statement of a
relationship, represented as a relational digraph. This relational digraph can be simpli-
fied and restructured for constructing a hierarchically restructured digraph based on the
mathematical process underlying the ISM concepts [117, 118]. Hence, ISM can be an

New Solution Space

Solution Space

New Problem Space

Implementation
 Space

Problem Space

Figure 6.1. Example of an idea or problem digraph in different spaces.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

88

important part of the problem-solving process when the same roles or problems have
conceptualising interactions among the contextual elements in different organisations
[119-121].

The complex issues of the contextual relations among the element set in the ISM
process are represented as a digraph in order to construct a hierarchically restructured
digraph to develop an understanding of complex situations. However, with a large
number of elements with relational directions, which are complicated and intercon-
nected according to the elements’ contextual relations, properly constructing a hierar-
chically restructured digraph in a computational complexity becomes extremely difficult.
Moreover, while collecting contextual issues in the real world, the number of elements
and their directions increase significantly. Figure 6.1 shows an example of a digraph
that is composed of different spaces.

Constructing a hierarchically restructured digraph with many relational elements is
problematic, because the calculation time and the number of relational elements in-
crease at the same time. In the first digraph shown, if there are a number of elements
that connect to each other with many complicated relations, corresponding to arcs for a
digraph representation, then the number of arcs is obviously huge.

The main concept of the ISM process is how to reduce as many connected arc
crossings possible, meaning the crossing minimisation problem should be considered to
construct a properly simplified hierarchical digraph. This requires placing the elements
to minimise the crossings. Thus, the main problem of minimising arc crossings in a di-
graph is the combinatorial problem of selecting appropriate element ordering for each
level. However, arc crossing minimisation with a large number of elements in a digraph
and computational complexity is an NP-complete problem [122-124], which still re-
mains difficult in constructing a hierarchically restructured digraph.

6.3 Interpretive Structural Modelling

In the organisational or administrative world, decision makers may have unresolved
problems and always confront various types of unpredictable new issues. As a matter of
fact, most decision makers are afraid of making major role decisions, and even minor
irritant issues do not make decision makers feel completely comfortable. A small issue
sometimes or often becomes a big issue, and decision makers must take responsibility
for their decisions and should be afraid of making wrong decisions, which obviously
harm the decision makers’ enterprises and careers.

In the real world, there is no perfect decision support tool, and it is impossible to
build a perfect optimal decision support tool when dealing with complex issues and
many collected ideas, because no decision support tool can perfectly dispose of catas-
trophic failures and can tie up unexpected assignments even from stable operations.
However, we use true decision support tools to minimise these problems. One true deci-
sion support tool is an ISM method that organises the given ideas, synthesises many
ideas, and provides a visual digraph to understand complex situations better. ISM con-
nects the ideas to create a situation model without breaking any relations. Thus, ISM is
exploited to deal with a higher level of the problem-solving process [125].

The ISM method is useful as an aid not only to a single decision maker but also to
groups or subgroups whose perceptions regard mutual complex issues, because ideas
often come from different departments or organisations, and decision makers attempt to

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

89

Figure 6.2. Brief representation of how to create an idea or problem digraph in a deci-
sion-making process of the ISM method: (1) generate ideas or problematic points; (2) extract
and enumerate the generated ideas or problematic points; (3) make direct relations among
ideas or problematic points; and (4) classify them into the similar or exactly same groups.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

90

collect as many as ideas possible from many groups to create many samples and resolve
ideas [126]. Individuals and groups use ISM to develop an understanding of complex
issues. Particularly, individual or group members use ISM to add benefits to discussions
and controversies based on exploiting the final result of a visually restructured digraph
in different levels, called a hierarchically restructured digraph. All members in a group
may also synthesise from the clarified and restructured result.

A comprehensive method of visually understanding a complex issue or situation is
to transform the given ideas into a pairwise-based digraph. Each pair of the given ideas
can be represented as a binary direction. If two ideas have either one direct relation or
two direct relations (two parallel arrows indicate opposite directions) to each other, then
those two ideas have one or two contextual relations. In contrast, two ideas have no di-
rect relations, and then those two ideas have no contextual relations. ISM basically in-
cludes all of the given ideas without eliminating ideas, meaning any one of the ideas
could conflict with each other, and those ideas can all be analysed in the spaces. Here,
we can determine any possible spaces, including related ideas. For problem-solving, or-
dinarily two large spaces are generated: the problem space and the solution space.
Sometimes three spaces are added to include the implementation space. For relational
subpart analysis, any number of ideas can be classified into any number of subparts,
which can also be spaces.

The number of ideas in either generating or prioritising ideas is no restriction for
any subject type, since the matter can be analysed. Figure 6.2 illustrates the ordinary
steps of the ISM method before starting to construct a hierarchically restructured di-
graph. Since an objective digraph is determined for the ISM process, the terms for using
ideas and direct relations in this chapter’s study are called an element or element node
and an arc, respectively, for the digraph representation.

ISM is basically used (1) to utilise the proposed cogitations or conceptions in a sys-
tematic way to solve a complex issue or situation; and (2) to communicate the finalised
cogitations or conceptions with others. The main reason for implementing a digraph is
to conceptually represent a structural model of the proposed and finalised cogitations or
conceptions. A digraph is composed of element nodes and arcs, and the digraph can be
easily converted into a structural model and readily revised and inspected to capture the
perceptions of the issue or situation. Before a hierarchically restructured digraph is de-
termined, the entire process of constructing a digraph of complex issues or situations is
often performed based on a human-machine interaction. This interaction is implemented
to subjectively judge (1) whether two element nodes (two ideas) are connected by one
or two parallel arcs (one or two direct relations) or not connected; and (2) which of two
element nodes should be directed to the other element node by one or two parallel arcs.

6.4 ISM Representations

To graphically represent the complex issues or situations of the given ideas and direct
relations, we can transform the ideas into element nodes and transform direct relations
into arcs to efficiently construct a digraph based on graph theory. This digraph is a
pairwise-based digraph, which is concerned with the existence of each of the direct rela-
tions between two of the element nodes in the digraph. Further, the finalised digraph
representation can be transformed into a matrix representation based on the existing
ideas and their direct relations in the digraph.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

91

Group 5

Group 4

Group 3

Group 2

1

2

3

4

5

6

12

11

10

9

8

7

13

14

15

16

17

18

24

23

22

21

20

19

25

26

27

28

29

30

Group 1

Figure 6.3. Example of a contextual digraph composed of the finalised ideas and their perceived
direct relations in different groups.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

92

6.4.1 Digraph representation

For the digraph representation, let us assume that n given element nodes are denoted by
v1, v2,…, vn, and the set of these element nodes is denoted by V = {v1, v2,…, vn}. The
current direct relation between any two element nodes is denoted by e, a directed line
connecting those two element nodes. A direct relation between an element node vi and
an element node vj is represented by vievj. In contrast, viēvj represents no direct relation
between two element nodes. In addition, when an element node vi has a directional ar-
row (an arc) that reaches element node vj, each of the existing arcs is represented as

jinlvva jil for,,2,1,),(. (6.1)

A set of these arcs from the element node vi to the element node vj is denoted by A,
where A is composed of all the possible arcs that represent A = {a1, a2,…, an}. For an
example of a contextual problem, an example digraph in Figure 6.3 has been con-
structed with 30 specific related ideas and the direct relations in five different groups.

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v 1

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

29

28

27

26

25

24

23

22

21

0

0

0

0

0

0

030 0 1 0 0 0 0 0 0000000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0 0

0

0

0 0

0

0

0

0

1

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

10

00 0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0 0 0 0 0 0 0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

0

1

1

0

0

0

1

0

1

0

0

0

30

0

1

0

0

0

0

0

29

0

0

0

0

1

0

1

28

0

0

0

1

0

0

1

27

0

1

0

0

0

0

0

26

0

0

0

0

0

0

25

0

0

0

0

0

0

24

0

0

0

0

0

1

0

23

0

0

0

0

0

0

0

2221

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

1

00000000

0

0

0

00

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

10

1

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0 1

0

0 0

0 001

00

0

010

00

0 0

00

0

10

0

0100

0 0

1

0

0

0

0

0 0

1

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0 0

0

0

1

0

0

0

0

0

00

0

1

00

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

1

0

0

0

0

0

0 0 0 1 0 0 0001000020 0

0

0

0

0

0

0

11

12

13

14

15

16

17

18

19

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1

0

0

1

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

11 12

1

0

0

0

1

0

0

13

0

0

0

0

0

1

0

14

0

0

1

0

0

0

15

0

0

0

0

0

0

16

1

0

0

0

0

0

0

17

0

0

0

0

0

0

0

18

0

0

0

0

0

0

0

19

0

0

0

0

0

0

0

20

0

0

1

0

0

0

0

01

0

0

1

1

0

0

0

10

0

0

0

0

0

0

0

9

0

1

0

0

0

0

8

0

0

0

0

0

0

0

7

1

0

1

0

0

1

6

0

0

0

1

0

0

1

5

0

0

0

0

1

0

1

4

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

21v

10

9

8

7

6

5

4

3

2

1

0

0

0

1

0

0

0

Figure 6.4. Binary adjacency matrix of the example digraph.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

93

6.4.2 Matrix representation

As shown in Figure 6.3, in the example digraph, the 30 specific ideas are represented by
30 element nodes that are labelled vi, i = 1, 2,…, 30, and the set of the 30 element nodes
is represented as V = {v1, v2,…, v30}. In addition, in this example digraph, a set of nu-
merous arcs among the given element nodes can be denoted by A. Further, the two sets
in the example digraph, A and V, can be properly expressed as a matrix. For the case of
the example digraph, a binary adjacency matrix (the meaning of the binary adjacency
matrix was described in Chapter 4) is shown in Figure 6.4. The binary adjacency matrix
of the example digraph is denoted here by B. In addition, B has rows and columns la-
belled as

jijit ji for 30,,2,1 and,, . (6.2)

This matrix is constructed by setting ti, j = 1 wherever there is an arc in the example di-
graph from an element node vi to an element node vj, meaning vievj, and by setting ti, j =
0 elsewhere, meaning viēvj. This example digraph of the contextual problem will be hi-
erarchically restructured by using the hierarchical DNA-based algorithm.

6.5 Crossing Minimisation Methods

Several heuristic methods have been proposed to reduce and minimise crossings among
element nodes in an undirected graph and a digraph. In this section, we generally define
and explain crossing minimisation problems and methods. The different types of meth-
ods [124] are explained below and are helpful in showing the hierarchical DNA-based
algorithm for ISM.

6.5.1 Level-by-level sweep method

To reduce crossings among element nodes between two different levels, the
level-by-level sweep method can be used as one method [127, 128]. To describe the
method, an element node should be first ordered at level 1, denoted by T1. Next, the
element node ordering of level Ti-1 should be held and fixed while the element nodes are
recorded in level Ti for i = 2, 3,…, h. Here, the crossings between Ti-1 and Ti are reduced
to deal with the two-level crossing minimisation.

Let us consider a bipartite graph as an undirected graph G = (T1, T2, Es), where T1
and T2 are two different levels, each of which includes element nodes, and Es is a set of
edges connected between T1 and T2. Each specific element node is denoted by vα and
represented as vα∈Ti, i = 1, 2, and is given by a unique ξ-coordinate ξi(vα) in order to
specify element node orderings for T1 and T2. Here, both ξ1 and ξ2 specify the number of
crossings among element nodes in G, denoted by crossing(G, ξ1, ξ2). We obtain the
minimum number of crossings in ordering the element nodes in T1, denoted by opti-
mum(G, ξ1), representing

),,(min),(211
2

GcrossingGoptimum . (6.3)

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

94

The undirected bipartite graph G = (T1, T2, Es) and the permutation ξ1 of T1 are given to
find the permutation ξ2 of T2, minimising the given crossings among the given element
nodes, such that crossing(G, ξ1, ξ2) is equal to optimum(G, ξ1).

For each pair of element nodes, represented as vα, vβ∈T2, the crossing number is
denoted by cα, β and defined as the number of edge crossings between vα and vβ, when
ξ2(vα) < ξ2(vβ). Further, cα, α = 0 is also defined for all vα∈T2. Figure 6.5 shows an ex-
ample of the bipartite digraph, composed of two levels. To compute crossing(G, ξ1, ξ2)
and give a simple lower bound for optimum(G, ξ1), we note the following lemma.

Lemma 6.1. If an undirected bipartite graph G = (T1, T2, Es) is composed of two levels,
ξ1 is an ordering of T1, and ξ2 is an ordering of T2, then

)()(

1

1 1

,,21

22

2 2

),,(

vv

n

i

n

ij

jiccGcrossing (6.4)

and

vv

ccGoptimum
,

,,1),min(),(, (6.5)

where all unordered pairs of the element nodes correspond to the sum in the top level.

Proof. Each one of all the orderings of T2 includes an optimal ordering, has either ξ2(vα)

 9 Crossing
Intersections

Lower Level

Upper Level

116 7 8 9 10

54321

Figure 6.5. Example of the bipartite digraph composed of both upper level and lower level, in
which nine crossing intersections between the element node 2 and the element node 3 with their
arcs are shown.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

95

< ξ2(vβ) or ξ2(vβ) < ξ2(vα), and is noted for equality (6.4) and inequality (6.5). ■

To solve the two-level crossing problem, we discussed one heuristic method above,
which was the level-by-level sweep method used to reduce crossings among element
nodes.

6.5.2 Integer programming method

Similar to the level-by-level sweep method, an integer programming method is also
used for the two-level crossing problem. The integer programming method reduces
crossings among element nodes between two different levels [129, 130]. To describe
this method, we recall that an undirected bipartite graph has been denoted as G = (T1, T2,
Es) above, and a binary vector is newly defined with ξ that can be an element of either 0
or 1.

The binary vector contains each possible entry, which is denoted by ξα, β for vα < vβ
and ξα, β = 1; otherwise, ξα, β = 0 if vα is located on the left side of vβ. The number of
crossings among the element nodes can be deduced based on Lemma 6.1 as follows:

2

))1((),,(,,,,21

Tvv

ccGcrossing

2

)(,,,,,

Tvv

ccc

2 22

,,,,,

Tvv TvvTvv

ccc

2 2

,,,,)(
Tvv Tvv

ccc

 , (6.6)

in which the constant exists; thus, the two-level crossing problem is stated again as fol-
lows:

2

,,,)(minimise
Tvv

cc

 (6.7)

.in nodeselement distinct of

 pairs allfor }1,0{ (2) and ;in nodeselement

distinct of allfor 10)1(subject to

2

,2

,,,

Tv

vT

vvv

 (6.8)

The optimal value of ρ is represented as ρ*, and the cost function of this optimal value is
not the same as the number of crossings that should be minimised.

The integer programming method could be successfully used for small undirected
bipartite graphs, but there is still no guarantee they will be terminated in polynomial
time.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

96

6.5.3 Crossing minimisation problem in dense two-level graphs

For dense two-level graphs, a crossing problem should also be considered to minimise
crossings among element nodes [131]. Again, both crossing(G, ξ1, ξ2) and optimum(G,
ξ1) are given to describe the problem and show that crossing(G, ξ1, ξ2) should be close
to optimum(G, ξ1) for any orderings of T2.

If both vα and vβ include many common neighbours, then both cα, β and cβ, α are ob-
viously large numbers. Hence, the degree of an element node vγ is denoted by degree(vγ),
and the number of the existing common neighbours of both vα and vβ is denoted by ςα, β,
which is related to each pair of element nodes.

Lemma 6.2. If an element node vα and an element node vβ are included in T2, then we

have (1) cα, β + cβ, α + ςα, β = degree(vα) × degree(vβ); (2) cα, β ≥

2

, ; and (3) cα, β ≤

degree(vα) × degree(vβ) ‒

2

1, .

For dense two-level graphs, we derive the maximum number of crossings among the
element nodes, and this maximum number is basically close to the minimum number of
crossings.

Theorem 6.1. We suppose (1) an undirected bipartite graph G = (T1, T2, Es) is a
two-level graph; (2) |T1| = |T2| = n; and (3) |Es| = ψn2. Then, we represent

1
),(

),,(max
lim

1

21

1

2

 Goptimum

Gcrossing
. (6.9)

Proof. The notation cα, β ≥

2

, is considered for the above theorem. Both cα, β and

cβ, α are obviously large numbers, since ςα, β is equal to ςβ, α. From Lemma 6.1, both
crossing(G, ξ1, ξ2) and optimum(G, ξ1) are used to represent another notation as follows:

||),(),,(,

)()(

,121

22

 ccGoptimumGcrossing
vv

 . (6.10)

From Lemma 6.2, a new notation is also represented as

22

1
)()(|| ,,

,,

vreedegveedegrcc . (6.11)

Thus, we obtain

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

97

)()(

2
,

22

))()((

vv

vreedegveedegr

),(),,(121 GoptimumGcrossing , (6.12)

since

2
,

,,

22

1

. (6.13)

In addition, we obtain both an upper bound that is represented as

)()(

422

22
22

||
)()(

vv

s nE
vreedegveedegr , (6.14)

and a lower bound that is represented as two equations

122
2

)(

)()(

,

Tvvv

vdegree

 (6.15)

and

2||)(
1

nEvdegree s

Tv

. (6.16)

These two equations derive the notation, representing

22

)(

1

n
n

vdegree

Tv

 . (6.17)

Both (6.15) and (6.17) are deduced as

)1(2

)1(

2

2

2

232

2

)()(

2
,

22

n

nn

n

n
n

n

vv

 . (6.18)

From (6.12), (6.14), and (6.18), we have

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

98

)1(2

)1(

2
),(),,(

23242

121

n

nnn
GoptimumGcrossing

 , (6.19)

which becomes

2

1
),(),,(22

121 nnGoptimumGcrossing , (6.20)

and similarly shows

)(
2

),(3
42

1 n
n

Goptimum
 . (6.21)

Finally, from both (6.20) and (6.21), the theorem follows the deduced O(ψ / n), which is
(crossing(G, ξ1, ξ2) ‒ optimum(G, ξ1)) / optimum(G, ξ1). ■

The above described problems and methods deal only with two levels, meaning
more levels become more intractable in an undirected graph and a dense two-level
graph, but the two-level crossing problem, corresponding to the crossing minimisation
problem, is an NP-complete problem [132].

6.6 Mathematical ISM Method

A mathematical ISM method has been used in various significant works [133-135] as an
approach for constructing a hierarchically restructured digraph. In a digraph, an element
node vj is said to be reachable from an element node vi if a direct path from vi to vj is an
arc. The length of the path corresponds to the number of such arcs. Therefore, the binary
adjacency matrix B shows a reachability example in a path of length 1. To obtain a
reachability matrix, the identity matrix I is added to B, expressed as R = B + I, where R
is the starting point to reach the reachability matrix, and the resulting matrix is raised to
successive powers based on Boolean algebra [136] until no new entries are obtained.
Hence, each successive multiplication preserves the entries of the previous power, and
matrix equality or inequality can be determined based on an entry-by-entry comparison,
which can be expressed as follows:

 RIBIBIBIBB mm 12
 . (6.22)

When (6.22) is satisfied, R is called the reachability matrix. In the reachability matrix,
the path length becomes n-1 when at most n element nodes exist, because all of the ISM
mathematical operations are Boolean. Further, the finalised reachability matrix is used
to construct a particular digraph, called a reachability digraph.

The utility of the reachability matrix should be used to clearly develop a hierarchical
restructuring of the digraph. In the reachability matrix, the entries labelled by rows and
columns are denoted by ri, j. Hence, for each element node vi in V, two sets can be de-
fined from the reachability matrix R as follows:

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

99

}1|{)(, jijs rVviR , (6.23)

}1|{)(, ijjs rVviA , (6.24)

where Rs(i) is a reachability number set of element nodes that should be reachable from
vi, and As(i) is an antecedent number set of element nodes that should be able to reach vi.
In other words, in the reachability matrix R, there is a set of element node numbers Rs(i)
whose columns have an entry of 1 in row i, and a set of element node numbers As(i)
whose rows have an entry of 1 in column j. Here, a set of the intersections of Rs(i) and
As(i) is defined as follows:

)}()()(|{ iRiAiRVvZ sssi . (6.25)

Two different arbitrary element nodes vα and vβ are included in the same subdigraph if

)()(ss RR ; (6.26)

otherwise, they are partitioned into different subdigraphs

)()(ss RR . (6.27)

In a mathematical ISM method, it is necessary to examine all given element nodes to
determine whether they are partitioned or not based on (6.26) and (6.27). Figure 6.6 il-
lustrates a mathematical ISM method flowchart.

For a mathematical ISM procedure, the steps of constructing one or more hierarchi-
cally restructured digraphs are as follows:

Step 1: Collect, classify, resolve, and enumerate the finalised ideas, representing ele-
ment nodes using idea-generation support tools.

Step 2: A digraph can be created based on the given ideas and their direct relations, cre-
ated by the contextual binary directions of individual or group members. Here, the bi-
nary directions correspond to binary numbers.

Step 3: A binary adjacency matrix can be created by transforming the digraph that is
composed of element nodes and arcs. Then the reachability matrix can be calculated
with (6.22), and the intersection set Z with (6.23), (6.24), and (6.25).

A particular set of element nodes that belongs to this intersection set Z is shown in
(6.25). This particular set is obtained for division into hierarchical levels, and obtained
for constructing (1) a particular matrix, called a structural matrix; and (2) a particular
digraph, called a structural digraph, in the following steps:

Step 4: Examine all the element nodes in the set Z to determine whether they are com-
posed of a single digraph or partitioned in different digraphs based on both (6.26) and

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

100

Construct a new binary
 adjacency matrix B

Are there

Rs(i) As(i)

Multiple digraphs

Single digraph

Rs() Rs()

END

Construct hierarchically
 restructured digraph(s)

R = B + I

m = 2

NO

YES

Is R equal
 to R ?

m = m + 1

m

m - 1

 Construct a reachable
skeleton matrix R = Rm'

Construct a reachable
 condensation matrix

Find the same characters
 among element nodes

Construct a structural matrix
 and a structural digraph

m = m + 1

 Are all the
element nodes
 selected?

NO

YES

 Remove the selected
 element nodes at level m

NO

 i > n,
n is the number of
 element nodes

YES

i = i + 1

 The element node vi

 is denoted as the
level m element node

Is
equal to Rs(i)?

i = 1, m =1

NO

YES

NO

 any instances
where is
 equal to ?

YES

Find a reachability set Rs(i)
and an antecedent set As(i)

' m
Construct a reachability
 matrix R = R

m - 1

m

m = m + 1

Is R equal
 to R ?

YES

NO

m = 2

R = B + I

ti, j = 0

 Construct a binary
adjacency matrix B

ti, j = 1

NOIs vi adjacent
 to vj ?

YES

Construct a digraph

YES

NO

vievjvievj

 Does vi

have a direct relation
 with vj ?

Enumerate ideas

START

Figure 6.6. Flowchart of a mathematical ISM method.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

101

(6.27).

Step 5: All the element nodes that satisfy (6.25) are selected, and all of these selected
nodes are denoted as level 1 element nodes.

Step 6: The selected element nodes at level 1 should be removed, and the selection of
element nodes that satisfy (6.25) should be repeated; these selected element nodes are
denoted as level 2 element nodes.

Step 7: Similarly, the selected element nodes should be removed, and the element nodes
should be selected again, until all the element nodes have been removed. Additionally,
when all the element nodes disappear in n repetitions, those element nodes are observed
to be divided into an n-level hierarchy.

Step 8: Both a structural matrix and a structural digraph can be constructed by repre-
senting each level of all divided element nodes.

Several more steps should be processed using complicated mathematical operations to
finally construct a hierarchically restructured digraph using both the structural matrix
and the structural digraph obtained from the above steps, because the structural digraph
with the n-level of hierarchy is difficult to understand, even if the digraph contains a
small number of element nodes or arcs. The remaining steps for constructing a hierar-
chically restructured digraph are the following:

Step 9: Transform the structural matrix and the structural digraph to construct a par-
ticular matrix, called a reachable condensation matrix, which can be determined by re-
ducing specific element nodes that contain the exact same characters and are adjacent to
each other.

Step 10: Transform the reachable condensation matrix to again construct a particular
matrix, called a reachable skeleton matrix, which can be determined by calculating the
reachable condensation matrix with Boolean algebra until no new entries are obtained.

Step 11: Construct one or more hierarchically restructured digraphs, which are repre-
sented by the finalised reachable skeleton matrix.

6.7 DNA-Based ISM Method

In this chapter’s study, the hierarchical DNA-based algorithm is used to construct a hi-
erarchically restructured digraph, which is the main purpose of the calculation in the
ISM process. The hierarchical DNA-based algorithm is basically executed by using
DNA oligonucleotides to achieve DNA computation. An ISM method using the hierar-
chical DNA-based algorithm is abbreviated as a DNA-based ISM method.

The first step in designing the hierarchical DNA-based algorithm is to encode the
DNA sequences based on the binary adjacency matrix that is obtained from the digraph.
After that, several kinds of molecular engineering techniques that use the encoded DNA
sequences can be used to implement the hierarchical DNA-based algorithm to construct

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

102

Encode types 2-2, 3, 4, and 5

YES

 Do any of
type 1 remain?

NO

Become type 2-1

Construct hierarchically
 restructured digraph(s)

END

YES

NO

 Do any of
types 5 and 6
 remain?

Affinity separation

Gel electrophoresis

Hybridisation and ligation - 2

Find the circular DNA fragment(s),
 types 1-1 and 1-2

Hybridisation and ligation - 1

Encode both type 1 and 6

START

Enumerate ideas

 Does vi

have a direct relation
 with vj?

vievj vievj

NO

YES

Construct a digraph

YES

Is vi adjacent
 to vj?

NO

ti, j = 1

 Construct a binary adjacency matrix B

ti, j = 0

Figure 6.7. Flowchart of a DNA-based ISM method.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

103

one or more hierarchically restructured digraphs.
A DNA-based ISM method flowchart is shown in Figure 6.7. For the DNA-based

ISM procedure, the method for constructing one or more hierarchically restructured di-
graphs is shown in the following steps:

Step 1: The finalised ideas, representing element nodes, are collected, classified, re-
solved, and enumerated by idea-generation support tools.

Step 2: A pairwise comparison evaluates the direct relations among the given ideas. In
that case, the contextual binary directions of individual or group members are shown as
binary numbers, and a digraph can be created.

Step 3: A binary adjacency matrix can be created by transforming the digraph, and the
DNA sequences for the hierarchical DNA algorithm can be encoded based on the binary
adjacency matrix.

Step 4: Several molecular engineering techniques, including hybridisation and ligation,
a simulated gel electrophoresis apparatus, polymerase chain reaction (PCR), and affinity
separation, are used to distinguish the encoded DNA sequences, measure the length of
the DNA strands, amplify the DNA strands, and separate the DNA strands into each hi-
erarchical level in each hierarchically restructured digraph.

Step 5: One or more hierarchically restructured digraphs can be constructed based on
the selected DNA strands that have been classified into each level by the simulated ex-
perimental studies and results.

6.8 Encoding Element Nodes in DNA

In the finalised digraph, each of the existing element nodes and each of the existing arcs
are encoded in the best way for ISM to exploit the binary adjacency matrix B, as shown
in Figure 6.4, which can also be called a directional matrix in the term of the
DNA-based ISM method. In a DNA-based process, unlike the mathematical ISM proc-
ess, it is not necessary to raise the directional matrix to successive powers, based on
Boolean algebra, to become a reachability matrix, a structural matrix, a reachable con-
densation matrix, and a reachable skeleton matrix. Instead, a systematic way of ordering
rows and columns of the directional matrix can be transformed into DNA sequences in
contextual relations.

The directional matrix of the example digraph has been created and is shown in
Figure 6.4. This matrix of n × n has 30 rows and 30 columns, and it has a set of element
nodes V = {v1, v2,…, v30}. Each directional order of two element nodes has its own row
and column, and the rows and columns are labelled ti, j, i and j = 1, 2,…, 30 in the direc-
tional matrix. Recall that if there is an arc from an element node vi to an element node vj,
then ti, j = 1; otherwise, ti, j = 0. To construct an initial library of DNA fragments for the
ISM process, eight different types are created. Each of the eight different types has its
own row and column labels, which are defined for encoding element nodes in sin-
gle-stranded DNA (ssDNA).

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

104

6.8.1 Strong components

Type 1 represents two element nodes, in which the direction of the arrow indicates the
direction from the element node vi to the element node vj. For the example digraph, type
1 can be encoded from the given DNA substrings, shown in Table 6.1. Type 1 represents
a double-encoded substring (the meaning of the double-encoded substring was de-
scribed in Chapter 4), which is each of all two different single element nodes in the di-
graph. Type 1 is basically encoded for detecting types 1-1 and 1-2. Here, type 1-1 is
called strong chain components, and type 1-2 is called strong cyclic components. In ad-
dition, type 1 is encoded for adapting the non-components to type 2-1 after detecting
types 1-1 and 1-2. This means that the remaining encoded DNA substrings of type 1 will
be used for type 2-1. Between the element node vi and the element node vj, there could
be either a single direction or a set of two parallel arrows that indicate opposite direc-
tions. For type 1, all of the row and column labels in a directional matrix are denoted by
i and j for detecting types 1-1 and 1-2, and the entries are defined as

 Ejijinjit ji , all and,,,,2,1 andfor1, , (6.28)

where E is the set of all possible row and column labels in direct relations. Each of the
different element nodes is encoded as an oligonucleotide consisting of two unique sites.
Thus, vi was set with the length of 25 base pairs (bp: after hybridisations and end-filling
DNA), and vj with the length of 25 bp. After the hybridisation and ligation process of all
the double-encoded substrings and their complementary substrings, if one or more cir-
cular DNA fragments are found, the circular DNA fragments, corresponding to either
type 1-1 or 1-2, will be encoded again.

As shown in Figure 6.8, type 1-1 refers to strong chain components that were cre-
ated for encoding types 2-2 or 3 or 4. Types 2-2, 3, and 4 are either double (type 2-2) or
half (types 3 and 4) of a double-encoded substring. In a digraph, type 1-1 represents a
mutually connected subset of two or more element nodes, in which any of its element
nodes is mutually connected to any other element nodes within a set of two parallel ar-
rows that indicate opposite directions. For type 1-1, the row labels are denoted by both p
and y, and the column labels are denoted by both x and q for encoding element nodes in
DNA. The entries are defined as

,,,,for1,, QqYyXxNptt sqyxp

 Ebqyyxqpqyxp , all and,,,, , (6.29)

where (1) Ns is a subset of a set N that includes all the given element node numbers in a
digraph, representing Ns⊆N. Here, if Ns = N, then all element nodes are mutually con-
nected to the others in the digraph; (2) Y is equal to X, X is a proper subset of Ns, and Q
is a subset of Ns, meaning Y = X, X⊂Ns, and Q⊆Ns; and (3) Eb is a mutually connected
subset of all row and column labels in the set E. In addition, Eb includes some of the
row labels and column labels that should be included in this mutually connected subset.
In addition, a subset of arcs for type 1-1 in A is denoted by A1-1, which is defined as

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

105

 qyqy evvqyQqYyAvvA and,,,|),(11 . (6.30)

Hence, for type 1-1, a set of each element node vy in this subset, where the element node
number y is transformed into the subset of element node numbers D(y), which is defined
as

}1|{)(,, qyxpq ttVvyD . (6.31)

Thus, for type 1-1, the element node subset is denoted by vD(y), which was set with the
length of 25 bp, where y = 1, 2,…, n and each new sequentially obtained subset of the
row labels y in the directional matrix will be independently re-denoted by I, II,…, n,
each of which represents a subset of element node numbers. These element nodes are
encoded as an oligonucleotide consisting of one unique site. Here, type 1-1 should be
encoded with type 2-2 or 3 or 4.

At the same time, if there are any element node numbers that are not included in the
subset of element node numbers D(y), y = I, II,…, n and those element nodes consis-
tently have directed cycles either from or to the element node subset vD(y), then the ele-
ment nodes should be included in the element node subset vD(y) and become type 1-2. As

...

...

vn

v2v1

...

...

(a)

v1

vn

...

v2

(b)

Figure 6.8. DNA encoding types (a) and (b) of strong chain components.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

106

shown in Figure 6.9, the paths between the element nodes and the element node subset
vD(y) are strong cyclic components. For these directed cycles, by excluding the element
nodes in the element node subset vD(y), let us denote Ec, which is a cyclic directed subset
of all row and column labels in the set E, and Ac, which is a subset of arcs in a set A.
Finally, we denote a subset of element node numbers C(y) that is transformed by y,
where y is the number of each element node wy, y = 1, 2,…, n, each of which has di-
rected cycles either from or to the element node subset vD(y). Here, a subset of all of the
row and column labels for type 1-2 is denoted by Es, which contains all elements of the
subsets Eb and Ec, defined as

EcEbEs . (6.32)

A subset of all the arcs for type 1-2 is denoted by A1-2, which contains all elements of
the subsets A1-1 and Ac, defined as

cAAA 1121 . (6.33)

In addition, a subset of all the element node numbers for type 1-2 is denoted by G(y),

...vD(I) vD(II) vD(n)

...w1 w2 wn

 (a)

wnw2w1 ...

vD(n)vD(II)vD(I) ...

 (b)

Figure 6.9. DNA encoding types (a) and (b) of strong cyclic components.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

107

Table 6.1. DNA sequences in ssDNA for hybridisation and ligation-1. The underlined letters in-
dicate the available restriction enzymes (AatII, AclI, AfeI, AflII, AgeI, ApaI, ApaLI, AseI, AvrII,
BamHI, BglII, BsrBI, BseYI, BsiWI, BspHI, ClaI, EcoRI, HindIII, MluI, NcoI, PsiI, PstI, PvuI, SalI,
SnaBI, SpeI, SphI, SspI, StuI, and XhoI from ©New England BioLabs, Inc.), and the small letters
indicate the complementary sites of the available restriction enzymes. CS stands for comple-
mentary substring.

Substring DNA Sequence (5' to 3') CS DNA Sequence (5' to 3')

v 1 GTCGACTAGTTCCCCGGTTAATGAC L 1 GTCATTAACCGGGGAACTAGTCgacgtcATTAACCGGGGAACTAGTCGAC

v 2 GTTGCTCTCTCCGAGGAGAGGAAAC L 2 GTTTCCTCTCCTCGGAGAGAGCaacgttTCCTCTCCTCGGAGAGAGCAAC

v 3 GCTAAAGTGAGCGATCCTCCAGAGC L 3 GCTCTGGAGGATCGCTCACTTTagcgctCTGGAGGATCGCTCACTTTAGC

v 4 AAGTCGTTAACATATTGTTACCCTT L 4 AAGGGTAACAATATGTTAACGActtaagGGTAACAATATGTTAACGACTT

v 5 GGTGCCCAATGACGTAGCTATAACC L 5 GGTTATAGCTACGTCATTGGGCaccggtTATAGCTACGTCATTGGGCACC

v 6 CCCATTGTATTTTGCACAGGTGGGG L 6 CCCCACCTGTGCAAAATACAATgggcccCACCTGTGCAAAATACAATGGG

v 7 CACTTTAGCCAACGGGTTTCAGGTG L 7 CACCTGAAACCCGTTGGCTAAAgtgcacCTGAAACCCGTTGGCTAAAGTG

v 8 AATTCACATTTCACAGATAGGTATT L 8 AATACCTATCTGTGAAATGTGAattaatACCTATCTGTGAAATGTGAATT

v 9 AGGTCTGGGGATCCCGGCAAGACCT L 9 AGGTCTTGCCGGGATCCCCAGAcctaggTCTTGCCGGGATCCCCAGACCT

v 10 TCCTGAGGGCGTATATTTGCAGGGA L 10 TCCCTGCAAATATACGCCCTCAggatccCTGCAAATATACGCCCTCAGGA

v 11 TCTAGGGTCCAACATAGGCGGCAGA L 11 TCTGCCGCCTATGTTGGACCCTagatctGCCGCCTATGTTGGACCCTAGA

v 12 CTCCATAAACTACGATGGCATTCCG L 12 CGGAATGCCATCGTAGTTTATGgagcggAATGCCATCGTAGTTTATGGAG

v 13 AGCTCCCTACTCAGACGCAGTCCCC L 13 GGGGACTGCGTCTGAGTAGGGAgctgggGACTGCGTCTGAGTAGGGAGCT

v 14 ACGTGTAACGTACTCATCCCGGCGT L 14 ACGCCGGGATGAGTACGTTACAcgtacgCCGGGATGAGTACGTTACACGT

v 15 TGACCAACTGATTCTCGGCAAATCA L 15 TGATTTGCCGAGAATCAGTTGGtcatgaTTTGCCGAGAATCAGTTGGTCA

v 16 GATCAATCTACGGAGCGACAGTATC L 16 GATACTGTCGCTCCGTAGATTGatcgatACTGTCGCTCCGTAGATTGATC

v 17 TTCCGTGATTATCAACAGCTGTGAA L 17 TTCACAGCTGTTGATAATCACGgaattcACAGCTGTTGATAATCACGGAA

v 18 CTTTTGTCTAGCAGTTCTAAGTAAG L 18 CTTACTTAGAACTGCTAGACAAaagcttACTTAGAACTGCTAGACAAAAG

v 19 CGTTGTCTTTTGCCATGGTCCCACG L 19 CGTGGGACCATGGCAAAAGACAacgcgtGGGACCATGGCAAAAGACAACG

v 20 TGGTGGTAAAAGCCTCCAAGTCCCA L 20 TGGGACTTGGAGGCTTTTACCAccatggGACTTGGAGGCTTTTACCACCA

v 21 TAATTAGATTGATCATACCTACTTA L 21 TAAGTAGGTATGATCAATCTAAttataaGTAGGTATGATCAATCTAATTA

v 22 CAGGCGTAGCGGACTTTAGGCCCTG L 22 CAGGGCCTAAAGTCCGCTACGCctgcagGGCCTAAAGTCCGCTACGCCTG

v 23 TCGTGTCAACCACAGTTCGGATCGA L 23 TCGATCCGAACTGTGGTTGACAcgatcgATCCGAACTGTGGTTGACACGA

v 24 GACAAGCGGCGTACATCACTGAGTC L 24 GACTCAGTGATGTACGCCGCTTgtcgacTCAGTGATGTACGCCGCTTGTC

v 25 GTATATTGTATGTGCAACGTCCTAC L 25 GTAGGACGTTGCACATACAATAtacgtaGGACGTTGCACATACAATATAC

v 26 AGTTCGCCCAAGTGGCGCCATCACT L 26 AGTGATGGCGCCACTTGGGCGAactagtGATGGCGCCACTTGGGCGAACT

v 27 TGCTAGTTCCTGTGTTAGCTCTGCA L 27 TGCAGAGCTAACACAGGAACTAgcatgcAGAGCTAACACAGGAACTAGCA

v 28 ATTGGCAGCTCTTTGAACATGCAAT L 28 ATTGCATGTTCAAAGAGCTGCCaatattGCATGTTCAAAGAGCTGCCAAT

v 29 CCTTCAACGGTCGAGAAGCCTCAGG L 29 CCTGAGGCTTCTCGACCGTTGAaggcctGAGGCTTCTCGACCGTTGAAGG

v 30 GAGTCCATAGTACCTCGGATGACTC L 30 GAGTCATCCGAGGTACTATGGActcgagTCATCCGAGGTACTATGGACTC

Table 6.2. DNA sequences in ssDNA for hybridisation and ligation-2. The underlined letters in-
dicate the available restriction enzymes (AatII, AclI, AfeI, AflII, AgeI, ApaI, and ApaLI from ©New
England BioLabs, Inc.), and the small letters indicate the complementary sites of the available
restriction enzymes. CS stands for complementary substring.

Substring DNA Sequence (5' to 3') CS DNA Sequence (5' to 3')

v D (I) GTCCGACCAAGTTGCGCAGGTGGAC L D (I) GTCCACCTGCGCAACTTGGTCGgacgtcCACCTGCGCAACTTGGTCGGAC

v D (II) GTTAACTATAGCTTGAAGCTTCAAC L D (II) GTTGAAGCTTCAAGCTATAGTTaacgttGAAGCTTCAAGCTATAGTTAAC

v D (III) GCTTGCTCTTCTTCTGATGAATAGC L D (III) GCTATTCATCAGAAGAAGAGCAagcgctATTCATCAGAAGAAGAGCAAGC

v D (IV) AAGAGTCGTGAAGTCGATTCTTCTT L D (IV) AAGAAGAATCGACTTCACGACTcttaagAAGAATCGACTTCACGACTCTT

v D (V) GGTAACTTCGATGGTTAAAATAACC L D (V) GGTTATTTTAACCATCGAAGTTaccggtTATTTTAACCATCGAAGTTACC

v D (VI) CCCACATCAAAGGCTCAGAGGCGGG L D (VI) CCCGCCTCTGAGCCTTTGATGTgggcccGCCTCTGAGCCTTTGATGTGGG

v D (VII) CACAAGTCGCCTTTCACATTCGGTG L D (VII) CACCGAATGTGAAAGGCGACTTgtgcacCGAATGTGAAAGGCGACTTGTG

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

108

which contains all elements of the element node number subsets D(y) and C(y), and is
defined as

)()()(yCyDyG . (6.34)

Thus, the element node subset is denoted by vG(y), which was set with the length of 25
bp for type 1-2, where y = 1, 2,…, n and each new sequentially obtained subset of the
row labels y are also independently re-denoted by I, II,…, n, each of which represents a
subset of element node numbers. These element nodes are also encoded as an oligonu-
cleotide consisting of one unique site. Here, type 1-2 should also be encoded with type
2-2 or 3 or 4.

6.8.2 Double-encoded substrings

First, type 2-1 comes from the remaining encoded DNA substrings of type 1, which ex-
cluded the encoded DNA substrings of both type 1-1 and 1-2, meaning that type 2-1 is a
double-encoded substring of two element nodes in one direction, as shown in Figure
6.10. In other words, there are two specific element nodes for type 2-1, in which the di-
rection of the arrow indicates the direction from the element node vi to the element node
vj. For type 2-1, the row and column labels are denoted by i and j for encoding two ele-
ment nodes in DNA, a subset of all the row and column labels is denoted by Ed, and the
entries are defined as

and,,,,2,1 andfor1, jinjit ji

EhEgEfEsjiEji),(all since ,),(all . (6.35)

In addition, for type 2-1, a subset of arcs in A is denoted by A2-1, which is defined as

 ,,,,2,1 and|),(12 jinjiAvvA ji

432221),(alland, AAAAvvevv jiji . (6.36)

For type 2-1, there are two specific element nodes that are encoded as an oligonucleo-

vi vj

vi5' 3'vj

Figure 6.10. Double-encoded substring of type 2-1.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

109

tide consisting of two unique sites. Thus, vi was set with the length of 25 bp, and vj with
the length of 25 bp.

At the same time, type 2-2 is a double-encoded substring of two subsets of element
nodes in one direction. In other words, as shown in Figure 6.11, there are two specific
subsets of element nodes for type 2-2, in which the direction of the arrow indicates the
direction from the element node subset (vD(α) or vG(α)) to the other element node subset
(vD(β) or vG(β)). For type 2-2, the row and column labels are denoted by sα and sβ for en-
coding two subsets of element nodes in DNA, both sα and sβ are the subset members of
either D(y) or G(y), a subset of all the row and column labels is denoted by Ef, and the
entries are defined as

and,),(or)(andfor1,
ssyGyDsst ss

EhEgEdEsssEss),(all since ,),(all . (6.37)

In addition, for type 2-2, a subset of arcs in A is denoted by A2-2, which is defined as

 ,),(or)(and|),(22
ssyGyDssAvvA ss

431221),(alland, AAAAvvevv ssss

. (6.38)

For type 2-2, there are two specific subsets of element nodes that are also encoded as an
oligonucleotide consisting of two unique sites. Thus, both vD(α) and vG(α) were set with
the length of 25 bp, and both vD(β) and vG(β) with the length of 25 bp.

Second, type 3 is basically encoded with either type 1-1 or 1-2. As shown in Figure
6.12, type 3 represents a double-encoded substring of the element nodes, in which the
element node vi is directed to the two or more element nodes included in either the ele-
ment node subset vD(y) or vG(y) and is satisfied in either type 1-1 or 1-2. In other words,
for type 3, the element node vi has one or more directional arrows that indicate the one
or more directions from the element node vi to the two or more element nodes included
in either the element node subset vD(y) or vG(y). For type 3, the row and column labels are
denoted by i and s for encoding an element node and a subset of element nodes in DNA.
s is a subset member of either D(y) or G(y), a subset of all the row and column labels is

3'5'

vD()

vG()
or orvG()

vD()

orvG()vD() vD() vG()or

a

a

a a

b

b

b b

Figure 6.11. Double-encoded substring of type 2-2.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

110

denoted by Eg, and the entries are defined as

and,),(or)(,,,2,1for1, siyGyDsnit si

EhEfEdEssiEsi),(all since ,),(all . (6.39)

In addition, for type 3, a subset of arcs in A is denoted by A3, which is defined as

 ,),(or)(,,,2,1|),(3 siyGyDsniAvvA si

4221221),(alland, AAAAvvevv sisi . (6.40)

For type 3, the single element node and the subset of the element nodes are encoded to-
gether as an oligonucleotide consisting of two unique sites. Thus, vi was set with the
length of 25 bp and both vD(y) and vG(y) were set with the length of 25 bp.

Finally, type 4 is also basically encoded with either type 1-1 or 1-2. As shown in
Figure 6.13, type 4 also represents a double-encoded substring of the element nodes in
the same manner as type 3, but the element node vj is directed from the two or more
element nodes included in either the element node subset vD(y) or vG(y). In other words,
for type 4, the element node vj has one or more directional arrows that indicate the one
or more directions from the two or more element nodes included in either the element
node subset vD(y) or vG(y) to the element node vj. For type 4, to encode a subset of ele-
ment nodes and an element node in DNA, the row and column labels are denoted by s
and j, a subset of all of the row and column labels is denoted by Eh, and the entries are
defined as

and,,,,2,1),(or)(for1, jsnjyGyDst js

EgEfEdEsjsEjs),(all since ,),(all . (6.41)

In addition, for type 4, a subset of arcs in A is denoted by A4, which is defined as

 ,,,,2,1),(or)(|),(4 jsnjyGyDsAvvA js

3'5' vi

vi

orvG(y)vD(y)

vD(y)

vG(y)
or

Figure 6.12. Double-encoded substring of type 3.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

111

3221221),(alland, AAAAvvevv jsjs . (6.42)

For type 4, the subset of the element nodes and the single element node are encoded to-
gether as an oligonucleotide consisting of two unique sites. Thus, both vD(y) and vG(y)
were set with the length of 25 bp in the same manner as type 3, and vj was set with the
length of 25 bp.

Based on the above defined subsets of the row and column labels, the set of all pos-
sible row and column labels in direct relations is E, which can be expressed as

EhEgEfEdEsE , (6.43)

and the set of all possible arcs in the digraph based on the above defined subsets of arcs,
which can be expressed as

43221221 AAAAAA . (6.44)

The two same or different types 2-1, 2-2, 3, and 4 of the double-encoded substring are
attached by types 5 and 6.

6.8.3 Complementary substrings

First, type 5 is created for attaching two different double-encoded substrings that are (1)
types 2-2 and 2-2; (2) types 2-2 and 4; (3) types 3 and 2-2; and (4) types 3 and 4 lined
up sequentially. As shown in Figure 6.14, type 5 represents a complementary substring
between (1) types 2-2 and 2-2; (2) types 2-2 and 4; (3) types 3 and 2-2; and (4) types 3
and 4, which are all sequenced in a 5′ to 3′ direction. Each subset of these complemen-
tary substrings is encoded. Here, a subset of the element nodes is encoded as an oli-
gonucleotide, consisting of two complementary substrings sequentially. Thus, both LD(y)
and LG(y) were set with the length of 50 bp for type 5, where y is independently denoted
by I, II,…, n, based on both vD(y) and vG(y).

Second, type 6 is temporarily created for attaching each of the different dou-
ble-encoded substrings to detect one or more circular DNA fragments, corresponding to
type 1-1 or 1-2. Further, type 6 is re-created for attaching specific double-encoded

5' 3'

vj

vjvD(y) vG(y)or

orvG(y)

vD(y)

Figure 6.13. Double-encoded substring of type 4.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

112

5'3'

vi vj

vj

or LG(y)LD(y)

vi

vD(y)

vG(y)
or

vD(y)

vG(y)
or

vD(y)

vG(y)
or

vD(y)

vG(y)
or

a

a
orvG()

vD()

a

a
orvG()

vD()

b

bvD()

vG()
or

b

bvD()

vG()
or

Figure 6.14. Complementary substring of type 5.

vj

3' 5'

vi

vh vj

Li

vi

vi

vi

vh
vD(y)

vG(y)
or

vD(y)

vG(y)
or

a

a
orvG()

vD()

b

bvD()

vG()
or

Figure 6.15. Complementary substring of type 6.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

113

substrings that are (1) types 2-1 and 2-1; (2) types 2-1 and 3; (3) types 4 and 2-1; and
(4) types 4 and 3 lined up sequentially. As shown in Figure 6.15, type 6 also represents a
complementary substring between (1) types 2-1 and 2-1; (2) types 2-1 and 3; (3) types 4
and 2-1; and (4) types 4 and 3, which are all sequenced in a 5′ to 3′ direction. Each ele-
ment node of these complementary substrings is encoded. Thus, each element node ex-
cept the element nodes included in either the element node subset vD(y) or vG(y) is en-
coded as an oligonucleotide consisting of two complementary sequential sites. There-
fore, Li, i = 1, 2,…, n was set to a length of 50 bp.

6.9 Experimental Studies and Results

In this chapter’s study, a splicing operation model [60] is also applied to the DNA-based
ISM method based on the DNA encoding process. The splicing operation method is
used for a formal model of the recombinant behaviour of DNA molecules that act under
the influence of restriction enzymes and ligases [137].

To concatenate the crosswise DNA fragments, two different kinds of encoded DNA
sequences should be spliced. As shown in Tables 6.1 and 6.2, for the example digraph,
the pattern of each DNA substring is described by each element node and subset of ele-
ment nodes that correspond to DNA sequences, and the pattern of each complementary
substring is described by each concatenation of DNA fragments.

6.9.1 Experimental studies

To execute the simulated experimental studies, the hierarchical DNA-based algorithm
was proposed for ISM using the splicing operation method. A program compiled using
Vector NTI software was used to represent the length of DNA strands. The hierarchical
DNA-based algorithm performs to construct one or more hierarchically restructured di-
graphs based on simulated experimental studies.

To distinguish the features of the circular DNA fragments from other DNA frag-
ments, all of the double-encoded substrings, corresponding to type 1, from the given
DNA substrings in Table 6.1 and their complementary substrings, corresponding to type
6, should be first generated to determine types 1-1 and 1-2, corresponding to one or
more circular DNA fragments, from the hybridisation and ligation-1 process.

Two methods can be used to properly determine one or more circular DNA frag-
ments. For one method, the different topologies of circular DNA fragments and linear
DNA fragments are focused to distinguish circular DNA fragments from linear DNA
fragments (described in Chapter 4). For the other method, restriction enzyme sites are
added to each DNA substring and complementary substring, so that restriction sites are
available on the circular DNA fragments. After this additional process, we can do a re-
striction digest and run the digested and undigested DNA in parallel on an agarose gel.
Thereby, the two different types of DNA should have different mobility.

In this chapter’s study, the function of restriction enzymes is to cleave and denature
one or more circular DNA fragments to measure the total length of circular and linear
DNA fragments. To measure them together, the detected circular DNA fragments should
be cleaved, denatured, and become linear DNA fragments. Figure 6.16 illustrates the
molecular encoding method by which the positioning element node is associated with
the DNA substring. The PCR technique is used to generate all the double-encoded sub-

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

114

strings and their complementary substrings.
A nucleotide precursor is referred to a single deoxyadenosine triphosphate (dATP)

that can be used for DNA synthesis. As shown in Figure 6.17, in particular phosphorus,
denoted as 32P, has a radioactive isotope, which is clearly carried by incorporated nu-
cleotides. Here, those incorporated nucleotides label a single DNA molecule [138]. A
method of nick translations is used for labelling regions of the hybridised DNA mole-
cules (see Figure 6.18), and a method of end filling is also used for the hybridised DNA
molecules (see Figure 6.19). These two methods are references only.

A simulated experimental protocol study was designed and corresponds to Step 4 in
the process of the DNA-based ISM method above, which is based on the hierarchical
DNA-based algorithm for ISM using the splicing operation method, and the simulated

vh

5'

Li

vjvivh

Restriction
 Enzymevi vjvi

5'

3'

3'

Lh Lj

DNA Substrings

Complementary Substrings

CAGCTGATCAAGGGGCCAATTACTGCAGCTGATCAAGGGGCCAATTACTGCAACGAGAGAGGCTCCTCTCCTTTGCAACGAGAGAGGCTCCTCTCCTTTGCGATTTCACTCGCTAGGAGGTCTCGCGATTTCACTCGCTAGGAGGTCTCG

GTCGACTAGTTCCCCGGTTAATGACGTTGCTCTCTCCGAGGAGAGGAAACGTTGCTCTCTCCGAGGAGAGGAAACGCTAAAGTGAGCGATCCTCCAGAGC

Figure 6.16. Example of the DNA encoding scheme; how DNA substrings and their comple-
mentary substrings are bound for three direct element nodes.

N
O

O

OH

P

O

O
-

P

O

O

O
-

O
-

O
-

O

O

P

N

NH2

O

Figure 6.17. Structural formula of deoxyadenosine triphosphate.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

115

experimental protocol study of Step 4 is composed of six substeps as follows:

Substep 1 (hybridisation and ligation-1): For the given digraph, all of the encoded ele-
ment nodes of DNA sequences (type 1) and their complementary substrings (type 6) are
artificially synthesised and placed in a test tube. For this hybridisation, the DNA se-
quences and their complementary substrings are heated to approximately 94˚C and
cooled to approximately 20˚C at 1˚C/min. In addition, DNA ligases must be added for
ligation among DNA strands.

Substep 2 (detection and distinction): One or more circular DNA fragments that corre-
spond either to type 1-1 or 1-2, which are marked respectively, as either D(y) or G(y), y
= I, II,…, n to distinguish them, are detected and encoded again for types 2-2, 3, 4, and
5. In this process, if either type 1-1 or 1-2 is isolated, meaning not connected to any
other element nodes, the DNA fragment should be located in level 1. After circular
DNA fragments are detected, linear DNA fragments are distinguished from the detected
circular DNA fragments. The non-components of element nodes in the digraph corre-
spond to the linear DNA fragments (the remaining encoded DNA substrings of type 1),
which are clearly used for type 2-1.

Substep 3 (hybridisation and ligation-2): All of the encoded element nodes of DNA se-
quences, corresponding to types 2-1, 2-2, 3, and 4, and their complementary substrings,
corresponding to types 5 and 6, are hybridised to each other and ligated in the same
manner as Substep 1.

Substep 4 (simulated gel electrophoresis): DNA strands can be separated according to
their sizes using the simulated gel electrophoresis apparatus. Two parts of the simulated
gel electrophoresis are prepared. For the first part of the simulated gel electrophoresis,
the detected and marked circular DNA fragments (Substep 2) are transferred to wells.
For the second part of the simulated gel electrophoresis, the hybridised DNA strands
(Substep 3) are transferred to wells. For the first part of the wells, although the length of
circular DNA fragments can be separately measured, we cleave and denature circular
DNA fragments using restriction enzymes to measure both circular and linear DNA
fragments at the same time. For the second part of the wells, we focus on the longest
DNA strand that obviously contains as many different element nodes as possible. Thus,
all of each group of the same length as the longest DNA strands should be selected.

Substep 5 (affinity separation): In this chapter’s study, affinity separation is employed
to distinguish among the given element nodes. The longest DNA strands should be
heated to approximately 94˚C to become ssDNA before the method of affinity separa-
tion is applied. The complementary substrings of all of both the subsets of element
nodes (type 5) and the single element nodes (type 6) are prepared and attached to mag-
netic beads. The complementary substrings of two kinds of subsets correspond to all the
possible beginning and ending element nodes, represented as both vstart and vend, which
are used to verify whether or not each group of the same length as the longest DNA
strand is composed of all possible beginning and ending levels. After this verification,
the complementary substrings are used to distinguish among the given element nodes in
the longest DNA strands. These element nodes should be included in each of the middle

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

116

Region

Region

Region
Region

Region

Region

5'
TACTGCAA

CGAGAGAG
GCTCCTCT

CCTTTG
GAGAGGAA

ACGTTGCT
CTCTCCGA

GGAGAG
AGTGAGCG

ATCCTCCA
GAGCCCGG

TTAATG

GGCTCCTC
TCCTTTGC

GATTTCAC
TCGCTA

GGCCAATT
ACTGCAAC

GAGAGAGG
CTGCTA

GTCGACTA
GTTCCCCG

GTTAATGA
CGTTGC

CAGCTGAT
CA

CTCCGACG
AT

3'

5'

3'

3'

5'

3'

CTCCGACG
AT

CAGCTGAT
CA

GTCGACTA
GTTCCCCG

GTTAATGA
CGTTGC

GGCCAATT
ACTGCAAC

GAGAGAGG
CTGCTA

GGCTCCTC
TCCTTTGC

GATTTCAC
TCGCTA

AGTGAGCG
ATCCTCCA

GAGCCCGG
TTAATG

GAGAGGAA
ACGTTGCT

CTCTCCGA
GGAGAG

TACTGCAA
CGAGAGAG

GCTCCTCT
CCTTTG

5'

Figure 6.18. Method of nick translations used for labelling DNA molecules [59].

3'

3'

3'

3'

 AGGGGC

CAATTACT
GCAACGAG

AGAGGCTC
CTCTCCTT

TGCAACGA
GAGAGGCT

CCTCTCCT
TTGCGATT

TCACTCGC
TAGGAGGT

CTCGGGCC
AATTACTG

CAACGAGA
GAGGCTGC

TA

GTCGACTA
GTTCCCCG

GTTAATGA
CGTTGCTC

TCTCCGAG
GAGAGGAA

ACGTTGCT
CTCTCCGA

GGAGAGGA
AACGCTAA

AGTGAGCG
ATCCTCCA

GAGCCCGG
TTAATGAC

GTTGCTCT

5'

5'

End

End

5'

5'

GTCGACTA
GTTCCCCG

GTTAATGA
CGTTGCTC

TCTCCGAG
GAGAGGAA

ACGTTGCT
CTCTCCGA

GGAGAGGA
AACGCTAA

AGTGAGCG
ATCCTCCA

GAGCCCGG
TTAATGAC

GTTGCTCT

 AGGGGC

CAATTACT
GCAACGAG

AGAGGCTC
CTCTCCTT

TGCAACGA
GAGAGGCT

CCTCTCCT
TTGCGATT

TCACTCGC
TAGGAGGT

CTCGGGCC
AATTACTG

CAACGAGA
GAGGCTGC

TA

Figure 6.19. Method of end fillings used for labelling DNA molecules [59].

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

117

levels.

Substep 6 (check): If there are remaining complementary substrings, corresponding to
both types 5 and 6, those were not annealed to any of the longest DNA strands in the
first group, meaning that two or more hierarchically restructured digraphs are sure to
exist, then we should select another group of the same length as the second longest
DNA strands from the simulated gel electrophoresis, and perform the same affinity
separation process. The groups should be selected until all remaining complementary
substrings are annealed to some of the longest DNA strands.

6.9.2 Results of the experimental studies

For the example digraph, the expected final results of the simulated gel electrophoresis
are shown in Figure 6.20, which illustrates all of the selected DNA strands. In Figure
6.20, each lane represents its own length of DNA strand in a different number of ele-
ment nodes. A larger number among the element nodes corresponded to a longer DNA
strand, whereas a smaller number among the element nodes corresponded to a shorter
DNA strand. More detailed results in Figure 6.20 are explained below.

First, all of the detected, cleaved, and denatured circular DNA fragments were rep-
resented in lanes 1 to 7. Lane 1 was for the subset D(I) = {1, 5, 6, 10, 16} at a distance
of 250 bp, lane 2 was for the subset D(II) = {2, 3, 8, 13, 14, 29} at a distance of 300 bp,
lane 3 was for the subset D(III) = {4, 30} at a distance of 100 bp, lane 4 was for the sub-
set D(IV) = {7, 15, 20} at a distance of 150 bp, lane 5 was for the subset D(V) = {9, 18,
23} at a distance of 150 bp, lane 6 was for the subset D(VI) = {11, 17, 21, 22, 24} at a
distance of 250 bp, and lane 7 was for the subset D(VII) = {12, 27, 28} at a distance of
150 bp.

Second, the first group of the same length as the longest DNA strand was repre-
sented in all possible routing directions. The first group was composed of lanes 8 to 11.
Lane 8 was for the route vD(V) → vD(I) → vD(VII) → vD(III) at a distance of 200 bp, lane 9
was for the route vD(V) → vD(I) → vD(VII) → vD(VI) at a distance of 200 bp, lane 10 was for
the route vD(V) → v19 → vD(VII) → vD(III) at a distance of 200 bp, and lane 11 was for the
route vD(V) → v19 → vD(VII) → vD(VI) at a distance of 200 bp.

Finally, the second group of the same length as the second longest DNA strand was

Figure 6.20. Representation results of the simulated gel electrophoresis. Lane M is for marker.
Lanes 1 to 7 are for the cleaved and denatured circular DNA fragments. Lanes 8 to 11 indicate
one group of the same length as the longest DNA strand in all possible routing directions. Lanes
12 to 14 indicate the other group of the same length as the longest DNA strand in all possible
routing directions.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

118

1

2

3

4
5

6

12

11

10

9

8

7

13

14

15

16

17

18

24

23

22

21

20

19

2526

27

28

29

30

Level 1

Hierarchically
Restructured
 Digraph 2

Hierarchically
Restructured
 Digraph 1

Level 2 Level 3 Level 4

Figure 6.21. Result of the two hierarchically restructured digraphs lined up from the beginning
level to the ending level.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

119

also detected and comprised lanes 12 to 14. Lane 12 was for the route vD(IV) → vD(VII) →
vD(III) at a distance of 150 bp, lane 13 was for the route vD(IV) → vD(VII) → vD(VI) at a dis-
tance of 150 bp, and lane 14 was for the route vD(II) → v25 → v26 at a distance of 150 bp.
The above two groups included all of the element nodes from v1 to v30 that clearly ex-
isted in the example digraph.

Based on the studies and results of the simulated experimentations, the hierarchi-
cally restructured digraphs have been constructed and are shown in Figure 6.21. The
new hierarchical digraphs were constructed from the selected groups of the same length
of the longest DNA strands, identified by their beginning and ending elements, and from
distinguishing the complementary substrings of the element nodes in Substep 5. We
identified which element was included in which level and how they were sequentially
lined up from the beginning level to the ending level by checking which complementary
substring of either element node subset or element node was annealed to which one in
the next place.

In the simulated experimental studies and results, two different types of the hierar-
chically restructured digraphs were determined, which meant that it was necessary to
execute Substep 6. The hierarchically restructured digraph 1 is mainly composed of
both the 4-level digraph and the 3-level digraph, and the hierarchically restructured di-
graph 2 is composed only of the 3-level digraph, as shown in Figure 6.21.

6.10 Approach to Solving a Communication Problem

For an empirical study, we approach a communication problem that is introduced in this
section, and describe the possibility that this problem can be solved by the hierarchical
DNA-based algorithm. The communication problem is particularly hard to solve when
dealing with a large number of contextual data from the compounded communication
channels or sources. In this case, we are able to use the hierarchical DNA-based algo-
rithm to solve this problem.

In our advanced communication and information societies, single individuals or
groups often or continue to receive, provide, and exchange their contextual information
with each other in their communications. If a large number of communicators are in-
cluded in some communication channels, their communication contexts are obviously
complex to be handled properly.

In complex communications, when groups or subgroups propose different ideas and
opinions, misunderstandings easily arise among communicator interchanges. Repre-
senting the given complex communications among communicators with their contextual
relations makes it easier to properly handle all of their different contextual contents of
ideas and opinions. After the given complex communications are represented with their
contextual relations, we can extract, segment, and organise the complex communica-
tions (already represented with their contextual relations). Based on the representation
with their contextual relations, the intended communicators are transformed into an
element node set, and their directions of communication codifications and decodifica-
tions can also be transformed into an arc set. Thus, the transformed element node and
arc sets are finally represented as a digraph. Figure 6.22 illustrates the transforming
process to construct a digraph.

The main roles of using the hierarchical DNA-based algorithm for this approach are
(1) to deal with the first constructed digraph from the transforming process; (2) to con-

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

120

struct one or more hierarchically restructured digraphs; and (3) to provide comprehen-
sive and understandable visible information (coming from the constructed hierarchically
restructured digraphs) to decision makers who manage or organise complex communi-
cations with contextual relations.

6.11 Computational Times and Solvable Sizes

A comparison of the number of element nodes and the number of arcs is shown in Fig-
ure 6.23. In addition, the comparisons of approximated running times are shown in Ta-
ble 6.3. The number of ideas corresponds to the inputs of size 10, 30, 50, and 100 sepa-
rately for the exponential-time algorithms and the prepared hierarchical DNA-based al-
gorithm (we are ready to detect solutions). Four graphic comparison representations of
approximated running times are properly shown in Figures 6.24 to 6.27 for the expo-

Communicators

Complex Communications

Codification and
Decodification Directions

A Set of Element Nodes and a
Set of Arcs

Element Nodes and Arcs

Graphical
Digraph

Contextual
Relations

+

Figure 6.22. Transforming process for constructing a graphical digraph.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

121

nential-time algorithm and prepared hierarchical DNA-based algorithm.
For the exponential-time algorithm, we suppose that a processor executes a million

high levels of instructions a second, and the exponential-time algorithm uses an opera-
tion of 2n [106]. Based on previous experimental reports, our experimental experiences,
and genetic engineering notes [62-66], we measured and calculated the approximated

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Element Nodes

N
um

be
r

of
 A

rc
s

Figure 6.23. Comparison graph of the number of element nodes and the number of arcs.

Table 6.3. Comparisons of approximated running times for the exponential-time algorithm and
the prepared hierarchical DNA-based algorithm.

Number of
Element Nodes

The Exponential-
Time Algorithm

The Prepared DNA-
Based Algorithm 5.79 minutes 55.93 minutes 2.63 hours 10.61 hours

< 1.00 second 18.00 minutes 36.00 years 100,000,000,000,000,000.00 years

10 30 50 100

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

122

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Running Time (sec)

N
um

b
er

 o
f

E
le

m
e

n
t

N
o

de
s

Figure 6.24. Comparison graph of approximated running times in seconds: (1) green colour
indicates the exponential-time algorithm; and (2) blue colour indicates the prepared hierarchical
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Running Time (hour)

N
um

be
r

of
 E

le
m

en
t

N
od

e
s

Figure 6.25. Comparison graph of approximated running times in hours: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared hierarchical
DNA-based algorithm.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

123

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Running Time (day)

N
u

m
be

r
of

 E
le

m
e

nt
 N

od
es

Figure 6.26. Comparison graph of approximated running times in days: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared hierarchical
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

Running Time (y ear)

N
um

b
er

 o
f

E
le

m
en

t
N

od
es

Figure 6.27. Comparison graph of approximated running times in years: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared hierarchical
DNA-based algorithm.

CHAPTER 6

MODELLING INTERPRETIVE STRUCTURES BASED ON A HIERARCHICAL DNA-BASED ALGORITHM

124

running times of the prepared hierarchical DNA-based algorithm.
Generally speaking, a polynomial-time algorithm is efficient, compared to an expo-

nential-time algorithm when dealing with running complexities. In this chapter’s study,
the main problem is how to clearly and precisely minimise arc crossings among a huge
number of element nodes to construct one or more hierarchically restructured digraphs.
This problem is an NP-complete problem, meaning a polynomial-time algorithm has not
been truly discovered yet for minimising all crossings among element nodes.

6.12 Concluding Remarks

In this chapter, a new ISM method was efficiently measured using the proposed algo-
rithm to create a hierarchical DNA-based algorithm. The hierarchical DNA-based algo-
rithm was used for ISM to construct one or more hierarchically restructured digraphs
based on bioscience techniques and simulated experimental studies.

In the mathematical algorithm of the ISM method, we needed to raise the binary ad-
jacency matrix to successive powers based on Boolean algebra for the matrix to become
a reachability matrix. This must be repeated to calculate a structural matrix, also re-
peated to calculate a reachable condensation matrix, and again be repeated to calculate a
reachable skeleton matrix. Moreover, for the mathematical algorithm, we must examine
all the given elements to discover whether they were partitioned or not, based on calcu-
lating each of the given pair elements, including either the same or different subparts. In
contrast, the hierarchical DNA-based algorithm of the ISM method, based on encoding
each of the specific elements, allowed us to directly obtain a reachable skeleton matrix,
and awaked the partition status from the final results. This meant we did not need to
examine all of the elements, whether they were partitioned or not. The hierarchical
DNA-based algorithm was an efficient and improved algorithm to determine the key
results for decision makers.

This chapter has shown a novel algorithm that was easily adapted to the splicing
operation method in encoding element nodes in DNA for ISM, thereby constructing two
hierarchically restructured digraphs for the example digraph. Beyond that, this algo-
rithm can be applied to expand with effort to other interpretive or relationally connected
models that are composed of directed graphs.

Chapter 7

Minimising Decision Rules Based
on a Rough DNA-Based Algorithm

7.1 Overview

A new knowledge support system is needed for decision making. A new cutting-edge
approach to enhancing cooperative data processing using both computer-based and mo-
lecular engineering technologies is demonstrated in this chapter. This new molecular
computational algorithm is created to derive decision rules of minimal length in rough
sets and is termed a rough DNA-based algorithm. This algorithm is designed particu-
larly for handling a large number of objects and their attributes in data processing.

With the development of information technology, proposers or decision makers in
each branch can smoothly exchange and distribute their decision lists or other informa-
tion in the form of data. Moreover, in various operations of collaborative decision mak-
ing, conflicts exist between individual proposers that may result in large amounts of
uncertain data. In this case, different types of objects and their data attributes can be re-
duced and classified to provide comprehensible information. The best method might be
a rough set method, in which large data sets are handled, because it is particularly ap-
plicable to cooperative data processing. The rough set method is a new knowledge dis-
covery method for a data classification system. This method has emerged with the need
to distinguish the distinctive features of given objects and their data attributes.

The large numbers of objects that often emerge from many different proposers in
database handling pose an intractable problem for computing all minimal length deci-
sion rules of given objects. To address this dilemma, a new computational method using
the rough DNA-based algorithm is discussed and demonstrated. This algorithm per-
forms by deriving decision rules of minimal length, thereby identifying a new potential
algorithm. A new knowledge support system approach based on this algorithm also
shows the potential for an integrated knowledge support system, including both com-
puter-based and molecular engineering technologies, and offers a better method for data
processing.

The rough DNA-based algorithm is used (1) to detect all subsets of low approxima-
tions classified into each decision class; and (2) to determine all minimal length deci-
sion rules by handling given objects and their related attributes based on the detected
decision classes. In this chapter, the rough DNA-based algorithm, including mathemati-
cal rough set concepts and molecular engineering techniques, can be measured for the
efficiency of minimising decision rules, therefore demonstrating its possibility as a new
integrated algorithm for building a new knowledge support system.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

126

7.2 Background and Motivations

In dynamic and flexible environments of uncertain data interactions, achieving a resolu-
tion to certain problems or issues in data mining may arise as a result of dispute resolu-
tion. Many applied information and database technology systems [139-141] make it
possible to solve this problem and promptly provide data, such as ideas, features, deci-
sions, information, and knowledge. The powerful ability of these new systems can be
used to classify specific objects and their specific attributes in data between the propos-
ers in knowledge collaboration.

A rough set method is a new methodology that is used for grasping characteristics of
the classified objects and object attributes in the case of data processing. The rough set
method is based on rough set theory, which was first described by Pawlak [142]. It of-
fers a new way of machine learning, discovering knowledge in data, and pioneering a
new type of knowledge support system. Rough set theory also became an important
base of reasoning, providing understandable information derived from different data,
inductive classification, and knowledge reduction.

In rough sets, a decision table is often used for representing given objects, attributes,
and decision attributes. The decision table must be interpreted in terms of a set of if-then
decision rules that are used to improve or support decision making. The main purpose of
modifying decision rules is to reduce and simplify them efficiently.

Several algorithms and applications were edited by Slowinski [143]. These algo-
rithms and applications used rough sets to minimise subsets of decision rules and ap-
proaches to making decisions under uncertainties. Grzymala-Busse [144, 145] proposed
a computational method of all minimal length decision rules used for managing uncer-
tainty in expert systems. Subsequently, Ziarko [146] studied a decision matrix in a deci-
sion system. An incremental identification for minimising decision rules was proposed
by Skowron et al. [147] who exemplified the discernibility functions and matrix. A new
incremental algorithm for minimising all minimal length decision rules was proposed by
Shan et al. [148] who tried to identify decision rules in a different way.

In their data processes, a number of different or even the same proposers exchange,
provide, and receive their objects, including attributes, in different types of settings.
Here, many objects are evident in real situations, and these objects are difficult to han-
dle for the easy application of rule reductions, which would provide better and simpler
information to users or providers. In rough sets, the most essential and difficult problem
is how to minimise decision rules and compute all minimal length decision rules for
each entry of both a condition attribute and a condition attribute value, because this in-
tractable problem is an NP-hard problem [148, 149] that still exists in dealing with
mathematical concepts in rough set theory.

7.3 Computational Method with Rough Sets

In this section, the rough set method (the rough set theory-based method) is generally
defined with the example of a model decision table, which is helpful in showing the
rough DNA-based algorithm for minimising decision rules.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

127

7.3.1 Rough set theory

Based on a concept of mathematics underlying set theory, the rough set has been devel-
oped as rough set theory. It was proposed by Pawlak [142] who first introduced many
innovations, such as a new formal computational machine, foundations of granular
computation, and perceptional knowledge discovery, among others [150]. His studies of
several rough set theory researches [151, 152] also identified several advantages for (1)
evaluating significant data, which analysed hidden data; (2) minimising sets of decision
rules; and (3) discovering novel knowledge in knowledge support system areas.

Various pieces of information and knowledge are roundly used in executing knowl-
edge cooperative data processing between proposers, in which knowledge can be repre-
sented in a mathematical way [149, 153]; the knowledge can be interpreted for its abil-
ity to classify specific objects. Let us assume that a set of these kinds of objects is a
universe denoted by U. A constraint set on objects is referred to as a disjoint relation of
classifying objects. The constraint set is denoted by T in each of objects x and y, and
each is an element of a universe U, representing (x, y)∈T, but (x, y) is not equal to (y, x)
and both (x, x) and (y, y) can each be elements of T. If there are three different elements
x, y, and z, the constraint set T satisfies the following three properties:

(1) (x, x)∈T for all x∈U, meaning reflexivity;
(2) if (x, y)∈T then (y, x)∈T, meaning symmetry; and
(3) if (x, y)∈T and (y, z)∈T then (x, z)∈T, meaning transitivity.

If a relation satisfies these three properties, then the relation is called an equivalence
relation. Here, an equivalence relation on a universe is considered, and this relation is
denoted by Ξ. In rough set theory, the form of a pair (U, Ξ) is given by elementary
knowledge. If x is an element of U, expressing x∈U, then the equivalence class of x is
defined as

}),(|{][yxUyx , (7.1)

where all of the objects in [x]Ξ are collected to be a part of the same category for the ini-
tial partition, and x is the element of the restored category. Elementary granules of
knowledge are the categories of this form [x]Ξ, known as equivalence classes of the
equivalence Ξ.

The equivalence relation Ξ is often called a discernibility relation and when it is
used, all the objects of universe U can be divided into three disjoint sets. These are
called the lower approximation, the upper approximation, and the boundary region. For
any subset X⊆U, the three disjoint sets represent the plural objects that (1) are precisely
in X (class 1); (2) are not precisely in X (class 2); and (3) are possibly in X (class 3),
where X is a subset of U. The objects in class 1 form the lower approximation of X, the
objects in both classes 1 and 3 form the upper approximation of X, and the objects in
class 3 form the boundary region of X. These three sets are defined in the following
manner. First, the lower approximation of X (class 1) is denoted by ΞA and defined by
the union of all the elementary sets as follows:

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

128

}][|{)(XxUxX ii , (7.2)

where xi, i = 1, 2,…, n, is the union of all the elementary sets and each of them is classi-
fied as precisely belonging to the subset X. Second, the upper approximation of X
(classes 1 and 3) is denoted by ΞA and defined by the union of all the elementary sets as
follows:

}][|{)(A XxUxX ii , (7.3)

where xi, i = 1, 2,…, n, is the union of all the elementary sets and each of them is classi-
fied as possibly belonging to the subset X. Finally, the boundary region of X (class 3) is
denoted by ΞB and defined by the union of all the elementary sets as follows:

)()()(A
AB XXX , (7.4)

where the elementary sets were not found to be classified for certain. If ΞA is equal to
ΞA, then (1) this set is not the rough set, and it becomes the standard set; and (2) the
boundary region of X is also non-existent [142, 149, 152, 153].

The primary focus of this chapter’s study is on subsets of the lower approximation,
which should be determined for each of all the subsets of the decision table. In the pre-
sent computational algorithm, a discernibility matrix is often used to determine subsets
of the lower approximation for each decision value of the decision attribute. The rough
DNA-based algorithm will first determine all of the subsets of the lower approximation
before all minimal length decision rules are computed.

7.3.2 Information system

A formal model of an attribute-value system is called an information system, which is
known as a synergetic representation of knowledge in a table that refers to the informa-
tion system through rough sets. Occasionally, an information system is also termed an
information table. The information system, which is represented in the information table,
shows what kinds of attributes belong to which proposed object.

An information system is denoted by IS, defined as IS = (U, Γt, ω), and consists
mainly of two sets, corresponding to both U and Γt, where U is a finite set of objects, Γt
is a finite set of attributes, and ω is a component that is used for making value assign-
ments distinct. An attribute element is denoted as ζt. Γt is composed of n attribute ele-
ments ζt1, ζt2,…, ζtn, corresponding to Γt = {ζt1, ζt2,…, ζtn}. Assuming that a pair (ζt, u)
occurs in the information system, then ζt represents an attribute, u is meant to be an ob-
ject, and a value ζt(u) is also assumed. If ω(u, ζt) is equal to ζt(u), then a mapping that is
of the form ω: U × Γt → Iv, where Iv is a set of attribute values in the information system,
is defined as follows:

}|{ ttt
vv II , (7.5)

where Iv

ζt is a domain with at least two existing attributes. In this case, an attribute ζt is

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

129

an element of the set Γt and x is an object, and a value ζt(x)∈Iv
ζt for each object x∈U is

assigned as a function for understanding each ζt∈Γt. Thus, assuming that there are m
attribute values for each attribute, they are denoted by ψζt11, ψ

ζt1
2,…, ψζt1m for Iv

ζt1, ψ
ζt2

1,
ψζt22,…, ψζt2m for Iv

ζt2, · · · , and ψζtn1, ψ
ζtn

2,…, ψζtnm for Iv
ζtn, respectively.

In addition, if there is another subset of attributes in an object y, representing Δ⊆Γt
in the information system, it is defined as follows:

)}()(and|),{()(yxyx ttt , (7.6)

and is also called an equivalence relation if and only if both x∈U and y∈U. This rela-
tion is also called an indiscernibility relation, because x and y are practically indiscerni-
ble in the information system.

7.3.3 Model of a decision table

The information system is different from a decision system; hence, the information table
is also different from a decision table. However, every so often a decision system is
called a decision table. The main difference between the two is that the information ta-
ble consists of both a finite set of objects and attributes, whereas the decision table con-
sists of three sets, in which two of the sets are the same as the information table and an
additional set is a set of decision attributes. Moreover, the decision table represents all
the objects, attributes, and decision attributes, which are completely determined and re-
solved by proposers. In the rough DNA-based algorithm, the computation of all mini-
mal length decision rules starts with the decision table.

A decision system is denoted by DS and defined as DS = (U, Γ, ε, ω), where Γ is a
finite set of condition attributes, ε is a decision attribute, and ω is a value assignment. U
is composed of objects x1, x2,…, xn, represented as U = {x1, x2,…, xn}. First, let us de-
note n condition attributes by ζ1, ζ2,…, ζn, and Γ is composed of n condition attributes,
represented as Γ = {ζ1, ζ2,…, ζn}. Second, when we deal with condition attribute values
for each of n condition attributes ζ1, ζ2,…, ζn, m condition attribute values are denoted
by ψζ11, ψ

ζ1
2,…, ψζ1m, ψζ21, ψ

ζ2
2,…, ψζ2m, · · · , and ψζn1, ψ

ζn
2,…, ψζnm. Finally, n pair sets

of the above both n condition attributes and m condition attribute values are denoted by
Ic
ζ1, I

c
ζ2,…, Ic

ζn.
The form ε: U → Dv is taken by the mapping case, where Dv is a set of decision val-

ues in the decision system. The value assignment ω encompasses the decision attribute ε,
expressed as ω: U × (Γ∪{ε}) → Iv∪Dv, where {ε} is a set of decision attributes de-
noted by Ε, and represented as E = {ε}, which is handled by a single decision attribute.
Thus, a pair (ε, u) belongs to Dv, which is meant to fulfil all of the value assignments.
Since a set of all the attributes actually represents Γt = Γ∪{ε} in the case where the de-
cision part has been added. We assume n decision values of the decision attribute that
are denoted by τ1, τ2,…, τn and a set of decision values that corresponds to Dv = {τ1,
τ2,…, τn}. Thus, in the given n-decision value, n decision classes can be denoted by Dv

τ1,
Dv

τ2,…, Dv
τn.

A model of a decision table is shown in Table 7.1, which was used in this research to
minimise decision rules in rough sets. For example, this decision table is composed of
(1) eight different proposed objects; (2) four different types of condition attributes with

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

130

attribute values; and (3) one decision attribute with decision values. Each set of ele-
ments in Table 7.1 is represented as follows:

(1) U = {Object-1, Object-2,…, Object-8};
(2) Γ = {Colour (C), Design (D), Function (F), Price (P)};
(3) Ic

Colour = {(C, (blue = 1)), (C, (purple = 2)), (C, (red = 3)),
(C, (yellow = 4))};

(4) Ic
Design = {(D, (ancient = 1)), (D, (environmental = 2)), (D, (industrial = 3)),

(D, (modern = 4))};
(5) Ic

Function = {(F, (simple = 1)), (F, (a bit simpler = 2)),
(F, (a bit more complex = 3)), (F, (complex = 4))};

(6) Ic
Price = {(P, (inexpensive = 1)), (P, (medium = 2)),

(P, (expensive = 3))}; and
(7) Dv = {Product-1, Product-2} (in this case, Product-1 corresponds to

Decision Class-1 and Product-2 corresponds to Decision Class-2).

7.4 Present Computational Algorithm

When classifying the decision data from a given decision system, the existing rules are
hard to treat properly under the established rules and hard to reduce for the simplifica-
tion of decision making. For that reason, resolving specific rules and reducing those
rules are two important processes required before concluding and estimating some
characteristics of the decision table in the decision-making process. In this section, the
discernibility matrix and decision matrix of the present computational algorithm
[146-149] for reductions are described by using the decision table model.

7.4.1 Discernibility matrix

In a decision table, a discernibility matrix is first used to decide the simplified decision
rules, which will permit an expression of each subset for the lower approximations. The

Table 7.1. Model decision table composed of 8 objects and 4 types of condition attributes with
attribute values.

Object Colour Design Function Price Decision Class

Object-1 (C, 4) (D, 3) (F, 2) (P, 1) Product-2

Object-2 (C, 3) (D, 4) (F, 4) (P, 2) Product-2

Object-3 (C, 1) (D, 1) (F, 1) (P, 3) Product-1

Object-4 (C, 4) (D, 3) (F, 3) (P, 2) Product-1

Object-5 (C, 2) (D, 2) (F, 1) (P, 1) Product-2

Object-6 (C, 3) (D, 4) (F, 4) (P, 2) Product-1

Object-7 (C, 4) (D, 1) (F, 2) (P, 3) Product-2

Object-8 (C, 2) (D, 2) (F, 1) (P, 1) Product-1

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

131

discernibility matrix consists mainly of sets of the condition attributes between two dif-
ferent objects. A decision system DS defines a discernibility matrix, denoted by S,
which is a symmetric n × n matrix composed of n rows and n columns. Each entry of
two objects has its own row and column. For the model decision table, a set of eight
objects represents U = {Object-1, Object-2,…, Object-8} and is composed of eight rows
and eight columns. The discernibility matrix S with entries si,,j, i and j = 1, 2,…, n is de-
fined as follows:

)}()(|{, jiji xxs , (7.7)

where between the objects xi and xj, i and j = 1, 2,…, n are discerned by sets of condi-
tion attributes underlying two such objects that are xi∈U and xj∈U.

The discernibility matrix S, with all of each entry between arbitrary objects xi and xj,
is denoted by S(xi, xj), where each consists of the set of condition attributes for xi∈U
and xj∈U. A single object or a set of objects dealing with a distinct subset of the objects
in a universe is discerned by a function, which is called a discernibility function, de-
noted by κΓ(xi). The object xi is an element of a finite set U from the above discernibility
matrix, and the discernibility function is defined as follows:

Ux

n

h

jijihi

j

xxSxxSx
1

*),(and),(|)(, (7.8)

where ζ*

1, ζ
*
2,…, ζ*

n represent the Boolean variables that correspond to condition attrib-
utes ζ1, ζ2,…, ζn, respectively. A specific condition attribute discriminates between two
different objects, and each binding of κΓ(xi) comes from the object xj that is also an ele-
ment of a finite set U. In addition, the entire discernibility function with all the objects
is also defined as follows:

Ux

i

i

xU)()(, (7.9)

where this entire function consists of all of the given objects xi in a finite set U, each of
which needs to be discerned distinctly from the other.

7.4.2 Decision matrix

Both the discernibility and decision matrix have the same purpose. They are structured
and employed to provide the reduced sets of decision rules while carrying on all princi-
pal information. Although the two matrices have the same purpose, each matrix has dif-
ferent properties. First, only one discernibility matrix exists if a single set of condition
attributes is given, whereas multiple decision matrices exist in a decision system. Sec-
ond, the discernibility matrix is created based on computed subsets of the lower ap-
proximation from the decision table, whereas the decision matrices are created in each
decision value of the decision attribute. Third, the discernibility matrix consists of sets

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

132

of the condition attributes between two different objects, whereas each decision matrix
comprises an object subset of the lower approximation in rows and its complementary
object subset of the present decision class in columns.

Recall that n multiple decision classes are Dv
τk, k = 1, 2,…, n, and a set of decision

attributes is Ε = {ε} based on the decision system DS = (U, Γ, ε, ω) used to describe the
multiple decision matrices. The decision matrix is denoted as C with each entry between
objects xi and xj, where all objects of each xi correspond to the objects from the subsets
of the lower approximations, and all objects of each xj correspond to the complementary
objects of the present decision class. Thus, the decision matrix C with entries ci, j, i and j
= 1, 2,…, n and a set of entries is defined as follows:

)}()(|))(,{(, jiiji xxxc , (7.10)

where ζ(xi) in this case is a condition attribute value of the condition attribute ζ for ob-
ject xi (viz. each entry corresponds to a pair of both a condition attribute and a condition
attribute value, and ζ(x) corresponds to ψζ) and also where xi and xj are defined for all
xi∈U and xj∈U, i and j = 1, 2,…, n, in which the subscripts i and j are defined for
i∈Pi

τk and j∈Pj
τk. The subset of subscript Pi

τk contains an object subset of the lower
approximation, and Pj

τk contains its complementary objects of the current decision class.
Thus, a set of all the pairs in the decision matrix ci, j is expressed as

))}(,(,)),(,()),(,{(2211, inniiji xxxc . (7.11)

If (7.11) is truly made up of a Boolean expression, denoted by Ψ(ci, j) for object xi, then
any condition attribute values of object xj are not consonant with any condition attribute
values of object xi, represented as

, ,() ()
j
k

j i j i j

j P

CB c c

 ∧ , (7.12)

which signifies all the pair sets of the Boolean expression for j∈Pj

τk. In this instance,
assuming a Boolean expression of both objects xi and xj in the decision table can also be
represented as

, ,() ()
i j
k k

i
j i j i j

i P j P

CB c c

 ∨∧ . (7.13)

If this expression is determined to become a simplified disjunctive normal form, then all
minimal lengths of each decision class, including condition attributes and value pairs,
can be found in order to decide on the minimal size of decision rules.

7.5 New Computational Algorithm

In designing the rough DNA-based algorithm, constructing a binary adjacency matrix

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

133

(the meaning of the binary adjacency matrix was described in Chapter 4) is the main
concept through encoding DNA sequences. The binary adjacency matrix can be con-
structed from the digraph network. Subsequently, several kinds of molecular engineer-
ing techniques are needed to use the encoded DNA sequences and employed to imple-
ment the rough DNA-based algorithm, which is used for (1) finding subsets of the lower
approximations in each decision class; and (2) determining all minimal length decision
rules based on results from (1). The rough DNA-based algorithm for minimising deci-
sion rules is described in this section, and we elaborate on how to execute its own mo-
lecular experimentation.

7.5.1 Digraph setting

A digraph includes n nodes, which are classified into two distinct categories of element
nodes, corresponding to (1) an object element node; and (2) a node of a pair element for
both a condition attribute and a condition attribute value (abbreviated as a pair element
node). In the same way as the decision table, again we assume (1) n given object ele-
ments that are x1, x2,…, xn, and a set of these elements that is U, represented as U = {x1,
x2,…, xn} for the object element node; and (2) n given pair elements that consist of both
n condition attributes ζ1, ζ2,…, ζn and m condition attribute values ψζ11, ψ

ζ1
2,…, ψζ1m,

ψζ21, ψ
ζ2

2,…, ψζ2m, · · · , and ψζn1, ψ
ζn

2,…, ψζnm, and a set of these pair elements that is
denoted as Ps, represented as a pair matrix and denoted by P as follows:

),(),(),(),(

),(),(),(),(

),(),(),(),(

),(),(),(),(

321

3332313

2322212

1312111

3333

2222

1111

mnnnn

m

m

m

nnnn PPPP

PPPP

PPPP

PPPP

P

. (7.14)

A structure of the digraph is composed of both n object elements and n pair elements,
and this structure is used for a generation of the minimal decision rules. If some condi-
tion attributes have less condition attribute values than other condition attributes, then
we use the symbol ‘ϕ’ for any of the empty entries. Figure 7.1 shows a DNA-digraph
(the meaning of the DNA-digraph was described in Chapter 4), created for the rough
DNA-based algorithm.

For the new computational calculation, an example (see Figure 7.11(a)) shows a
model digraph that has been constructed based on the model decision table. The model
digraph consists of eight objects, four condition attributes, and each condition attribute
has at least two or more different condition attribute values. The eight object elements
are represented as U = {x1, x2,…, x8}, and the four condition attributes are represented
as ζ1, ζ2,…, ζ4. Each of the condition attributes, corresponding to ζ1, ζ2, and ζ3, has four
condition attribute values, and the remaining condition attribute, corresponding to ζ4,
has three condition attribute values. A pair matrix of these pair element nodes can be
denoted by P, expressed as follows:

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

134

),(),(),(

),(),(),(),(

),(),(),(),(

),(),(),(),(

342414

43332313

42322212

41312111

444

3333

2222

1111

PPP

PPPP

PPPP

PPPP

P . (7.15)

The above pair matrix will be used mainly when encoding double-encoded substrings
(the meaning of double-encoded substrings was described in Chapter 4) for type 3 and
complementary substrings for type 6.

We have described above the two preceding distinctively different types of element
nodes, which correspond to the same type of nodes in the DNA-digraph, both of which
are simply expressed in this chapter’s study as elements. In the DNA-digraph, the cur-
rent relation between any of two elements is denoted by e, where e is indicated to the
relation of a direct line that connects those two nodes. We denote three different types
of relational directions between two elements: (1) if an object element node xi has a di-
rect relation with a pair element node (ζα, ψ

ζα
α), represented as xie(ζα, ψ

ζα
α), and xiē(ζα,

ψζαα) represents no direct relation; (2) if a pair element node (ζβ, ψ
ζβ
β) has a direct rela-

tion with an object element node xj, represented as (ζβ, ψ
ζβ
β)exj, and (ζβ, ψ

ζβ
β)ēxj repre-

sents no direct relation; and (3) if a pair element node (ζα, ψ
ζα
α) has a direct relation with

a pair element node (ζβ, ψ
ζβ
β), represented as (ζα, ψ

ζα
α)e(ζβ, ψ

ζβ
β), and (ζα, ψ

ζα
α)ē(ζβ, ψ

ζβ
β)

represents no direct relation.
Three types of relational arcs are sought to represent in the DNA-digraph the arcs

among element nodes: (1) when an object element node xi contains a directional arrow
that reaches a pair element node (ζα, ψ

ζα
α), expressing

nlixb il
a ,,2,1and,,,)),(,(

 ; (7.16)

(2) when a pair element node (ζβ, ψ

ζβ
β) contains a directional arrow that reaches an ob-

ject element node xj, expressing

nljxb jl
b ,,2,1and,,,)),,((

 ; (7.17)

and (3) when a pair element node (ζα, ψ

ζα
α) contains a directional arrow that reaches a

pair element node (ζβ, ψ
ζβ
β), expressing

 for ,,2,1and,,,)),(),,((nlb l

c . (7.18)

Additionally, (1) a subset of the arcs from the object element node xi to the pair element
node (ζα, ψ

ζα
α) is denoted by Ba, where Ba consists of all the possible arcs, represented as

Ba = {ba
1, b

a
2,…, ba

n}; (2) a subset of the arcs from the pair element node (ζβ, ψ
ζβ
β) to

the object element node xj is denoted as Bb, where Bb consists of all the possible arcs,
represented as Bb = {bb

1, b
b

2,…, bb
n}; and (3) a subset of the arcs from the pair element

node (ζα, ψ
ζα
α) to the pair element node (ζβ, ψ

ζβ
β) is denoted as Bc, where Bc consists of

all the possible arcs, represented as Bc = {bc
1, b

c
2,…, bc

n}. A set of the subsets Ba, Bb,

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

135

()

()

()

()()()

()

()

()

x1

x2

...

xnzn, y m
zn

zn, y 2
zn

zny 1zn,

z2, y m
z2

z2y 2z2,

z2, y 1
z2

z1, y m
z1z1, y 2

z1

......

.

...

... xnx2

xn

x2

x1

x1

. . .

... xnx2

z1y 1z1,

x1

(a)

xn

...

x2x1

x1 x2 xn

x1

x2

xn

...

...

xn

...

x2

x1

(b)

Figure 7.1. DNA-digraph for minimising decision rules: (a) relations among n object element
nodes and n pair element nodes; (b) the representation of connections in each n object element
node, one by one.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

136

and Bc is denoted by B, where B consists of the entire existing arcs in the DNA-digraph
and is represented as B = Ba∪Bb∪Bc.

A binary adjacency matrix can be represented by using (1) the two sets of object
element nodes U and the pair element nodes Ps; and (2) the three different types of the
arc subsets Ba, Bb, and Bc. Figure 7.2 illustrates the binary adjacency matrix of the
model DNA-digraph. The model binary adjacency matrix is composed of rows and col-
umns labelled as follows:

Ljijir ji),(allfor 23,,2,1 and,, , (7.19)

where L is the set of all possible row and column labels in the model binary adjacency
matrix. The matrix can be constructed by setting ri, j = 1 wherever there are any three
different types of arcs in the example DNA-digraph. For ri, j = 1, the first arc is directed
from an object element node xi to a pair element node (ζα, ψ

ζα
α), the second arc is di-

rected from a pair element node (ζβ, ψ
ζβ
β) to an object element node xj, and the third arc

Type 2

Type 3

Type 1

(P, 1)

(P, 2)

(P, 3)

(F, 4)

(F, 3)

(F, 2)

(F, 1)

(D, 1)

(D, 2)

(D, 3)

(D, 4)

(C, 4)

(C, 3)

(C, 2)

(C, 1)

x8

x7

x6

x5

x4

x3

x2

x1

(P, 1) (P, 2) (P, 3)(F, 4)(F, 3)(F, 2)(F, 1)(D, 1) (D, 2) (D, 3) (D, 4)(C, 4)(C, 3)(C, 2)(C, 1)x8x7x6x5x4x3x2x1

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

1

0

0

0

0

0

1

1

0

0

1

0

1

00

1

0

0

0

0

1

0

0 1

0

000

0

0

00

00 0

0

0

0

00

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

1

0

1

1

1

0

1

0

0

0

1

1

0

0

010

0

0

1

0

0

1

1

0

1

0

0

0

0

0

000

10

1

001

10

0 0

00

0

00

0

1000

0 0

0

0

0

0

1

0 0

0

0

0

0

1

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

00

0

0

10

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

0 0

0

0

0

1

0

1

0 0 0 0 0 0 000010000

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

1

0

0

0

0

0

1

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

00

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 7.2. Binary adjacency matrix of the model DNA-digraph.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

137

from a pair element node (ζα, ψ
ζα
α) to a pair element node (ζβ, ψ

ζβ
β), meaning xie(ζα, ψ

ζα
α),

(ζβ, ψ
ζβ
β)exj, and (ζα, ψ

ζα
α)e(ζβ, ψ

ζβ
β), respectively, while the matrix is also constructed by

setting ri, j = 0 elsewhere, meaning xiē(ζα, ψ
ζα
α), (ζβ, ψ

ζβ
β)ēxj, and (ζα, ψ

ζα
α)ē(ζβ, ψ

ζβ
β), re-

spectively.

7.5.2 DNA encoding process

A directional matrix (a binary adjacency matrix becomes the directional matrix in the
term of the rough DNA-based algorithm) is used for encoding DNA sequences. In a
systematic way, ordering rows and columns of the directional matrix, which includes the
object and pair elements, can be transformed to DNA sequences.

The model DNA-digraph of the directional matrix of size n × n becomes 23 rows
and 23 columns (8 object element nodes and 15 pair element nodes), as shown in Figure
7.2. Each directional order of two element nodes in the model digraph implies its own
row and column. The rows and columns in the model directional matrix are labelled as
ri, j, i and j = 1, 2,…, 23. We recall that if there is a single arc from either an object ele-
ment node or a pair element node to the other object element node or the other pair ele-
ment node, then entries become that ri, j = 1; in contrast, if there is no direction associ-
ated with each element node or ri, j, i = j, then entries become that ri, j = 0. As shown in
Figures 7.3 to 7.9, seven different types are generated to construct an initial library of
DNA fragments for the process of the rough DNA-based algorithm. Each of the seven
different types involves its own row and column labels, which are defined for encoding
both object and pair element nodes in forms of single-stranded DNA (ssDNA). Types 1,
2, and 3 are generated from the given DNA substrings, and types 4, 5, 6, and 7 are gen-
erated from their complementary substrings of two different given DNA substrings. All
the types of DNA sequences of both double-encoded substrings and complementary
substrings are basically structured in ssDNA.

First, type 1 expresses a double-encoded substring that is indicated to each of all the
possible two different single element nodes xi and (ζα, ψ

ζα
α) in the digraph. In other

words, for type 1, the two different types of element nodes, in which a direction of the
arrow indicates the direction from the object element node xi to the pair element node

()z ,y
zxi
a

a a

xi aa
azy z ,() 3'5'

xi ()z ,y
za

a a5' upper-3' upper-

Figure 7.3. Double-encoded substring of type 1.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

138

(ζα, ψ
ζα
α), are denoted as a double-encoded substring xi-3′

upper→5′upper-(ζα, ψ
ζα
α), as

shown in Figure 7.3. In the directional matrix of the model DNA-digraph (see Figure
7.2), for type 1, all of the row and column labels are denoted by i and j, and the entries
are defined as follows:

Ljijir ji),(alland,20,,10,9,8,,2,1for1, . (7.20)

The two different element nodes are encoded as a single oligonucleotide that is com-
posed of two unique sites, and each single encoded oligonucleotide has its own length
of DNA base pairs (bp: after hybridisations and end-filling DNA). Thus, we set each
object element node xi, i = 1, 2,…, 8 with all the same length of 18 bp, and each pair
element node (ζα, ψ

ζα
α) corresponds to 5′upper-(C∨D∨F, 1∨2∨3∨4) with the different

length bp in each of the different pair element nodes.
Second, similar to type 1, type 2 expresses a double-encoded substring that is indi-

cated to each of all two different single element nodes (ζβ, ψ
ζβ
β) and xj in the digraph.

For type 2, the two different types of element nodes, in which a direction of the arrow
also indicates the direction from the pair element node (ζβ, ψ

ζβ
β) to the object element

node xj, are denoted as a double-encoded substring (ζβ, ψ
ζβ
β)-3′

upper→5′upper-xj, as shown
in Figure 7.4. In the directional matrix of the model DNA-digraph, for type 2, all of the
row and column labels are denoted by i and j, and the entries are defined as follows:

Ljijir ji),(alland,8,,2,1,23,,14,13for1, . (7.21)

The two different element nodes are also encoded as a single oligonucleotide that is
composed of two unique sites and has its own length of DNA bp as type 1. Thus, each
pair element node (ζβ, ψ

ζβ
β) corresponds to (D∨F∨P, 1∨2∨3∨4)-3′upper with the dif-

ferent length bp in each of the different pair element nodes, and we set each object ele-
ment node xj, j = 1, 2,…, 8 with all the same length of 18 bp.

Third, type 3 also expresses a double-encoded substring that is indicated to each of
all two different single pair element nodes (ζα, ψ

ζα
α) and (ζβ, ψ

ζβ
β) in the digraph. The

5' 3'

bb
bzy z , xj

xj()z ,y
zb

b b

()

- upper3'bb
bzy z ,() xj-upper5'

Figure 7.4. Double-encoded substring of type 2.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

139

two different types of pair element nodes for type 3, in which there is a direction of the
arrow between only pair element nodes and this arrow indicates the direction from the
pair element node (ζα, ψ

ζα
α) to the other pair element node (ζβ, ψ

ζβ
β), are denoted as a

double-encoded substring (ζα, ψ
ζα
α)-3′

upper→5′upper-(ζβ, ψ
ζβ
β), as shown in Figure 7.5. In

the directional matrix of the model DNA-digraph, for type 3, all of the row and column
labels are denoted by i and j, and the entries are defined as follows:

Ljijir ji),(alland,23,,14,13,20,,10,9for1, . (7.22)

The two different pair element nodes are encoded as a single oligonucleotide that is
composed of two unique sites, and each single encoded oligonucleotide has its own
length of DNA bp as types 1 and 2. Thus, each pair element node (ζα, ψ

ζα
α) corresponds

to (C∨D∨F, 1∨2∨3∨4)-3′upper with the different length bp in each of the different
pair element nodes, and each element node (ζβ, ψ

ζβ
β) corresponds to 5′upper-(D∨F∨P,

1∨2∨3∨4) with the different length bp in each of the different pair element nodes.
Types 4, 5, 6, and 7 express complementary substrings between two of the dou-

ble-encoded substrings (types 1 and 3, types 3 and 2, types 3 and 3, and types 2 and 1),
since the left double-encoded substring in a 5′ to 3′ direction has the ending DNA se-
quence that indicates the element node, and the right double-encoded substring in a 5′ to
3′ direction has the starting DNA sequence that indicates the same element node that the
ending DNA sequences of the left one indicates. The forces of both hybridisations and
DNA ligations [154-157] make all three different DNA substrings (these three DNA
substrings are indicated to three different element nodes, which are linked by directions)
connect to each other so that they are sequentially aligned and become forms of a dou-
ble-stranded DNA (dsDNA). For attaching three different element nodes containing a
pair element node located in the middle of the three nodes, types 4, 5, and 6 have the
same purposes as their complementary substrings. Particularly, for attaching three dif-
ferent element nodes containing an object element node located in the middle of the
three nodes, type 7 has its own purpose as a complementary substring.

Fourth, in the digraph, type 4 was generated for the attachment of the three different

bb
bzy z ,()

()z ,y
zb

b b

3'5'

aa
azy z ,()

()z ,y
za

a a

()z ,y
za

a a 3' upper- -upper5' bb
bzy z ,()

Figure 7.5. Double-encoded substring of type 3.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

140

linked element nodes, which are (1) an object element node (starting element node) xi;
and (2) two different pair element nodes (middle and ending element nodes) (ζα, ψ

ζα
α)

and (ζβ, ψ
ζβ
β). For type 4, a complementary substring of the middle pair element node

was generated to link these three element nodes together. Type 4 is denoted as a com-
plementary encode 5′lower-(ψ

ζα
α, ζα)|(ψ

ζα
α, ζα)-3′lower, as shown in Figure 7.6. For type 4,

5′lower-(1∨2∨3∨4, C∨D∨F)|(1∨2∨3∨4, C∨D∨F)-3′lower corresponds to the
complementary substring of the middle pair element node.

Fifth, in the digraph, type 5 was generated for the attachment of the three different
linked element nodes, which are (1) two different pair element nodes (starting and mid-
dle element nodes) (ζα, ψ

ζα
α) and (ζβ, ψ

ζβ
β); and (2) an object element node (ending ele-

ment node) xj. A complementary substring of the middle pair element node for type 5
was generated to link these three element nodes together. Type 5 is denoted as a com-
plementary encode 5′lower-(ψ

ζβ
β, ζβ)|(ψ

ζβ
β, ζβ)-3′lower, as shown in Figure 7.7. For type 5,

5′lower-(1∨2∨3∨4, D∨F∨P)|(1∨2∨3∨4, D∨F∨P)-3′lower corresponds to the com-
plementary substring of the middle pair element node.

()z ,y
za

a a

aa
axi
zy z ,()

5'3' aa
azy z ,()

bb
bzy z ,()

()5'lower - -()| lower3'a
azy za, , azy

za
a

Figure 7.6. Complementary substring of type 4.

3' 5'

()z ,y
za

a a bb
bzy z ,() xj

bb
bzy z ,() ()z ,y

zb
b b

b
bzy zb,, bzy

zb
b 3'lower|()--lower5' ()

Figure 7.7. Complementary substring of type 5.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

141

Sixth, in the digraph, type 6 was generated for the attachment of the three different
linked pair element nodes (starting, middle, and ending nodes), which are denoted by (ζα,
ψζαα), (ζλ, ψ

ζλ
λ), and (ζβ, ψ

ζβ
β), respectively. For type 6, a complementary substring of the

middle pair element node was generated to link these three pair element nodes together.
Type 6 is denoted as a complementary encode 5′lower-(ψ

ζλ
λ, ζλ)|(ψ

ζλ
λ, ζλ)-3′lower, as shown

in Figure 7.8. For type 6, 5′lower-(1∨2∨3∨4, D∨F)|(1∨2∨3∨4, D∨F)-3′lower cor-
responds to the complementary substring of the middle pair element node.

Finally, in the digraph, type 7 is different from the three types 4, 5, and 6, described
above. Type 7 was generated for the attachment of the three different linked element
nodes, which are (1) two different pair element nodes (starting and ending element
nodes) (ζβ, ψ

ζβ
β) and (ζα, ψ

ζα
α); and (2) an object element node (middle element node)

denoted as xλ. A complementary substring of the middle object element node for type 7
was generated to link these three element nodes together. Type 7 is denoted as a com-
plementary encode 5′lower-xλ|xλ-3′lower, as shown in Figure 7.9. For type 7,
5′lower-1∨2∨… ∨8|1∨2∨… ∨8-3′lower corresponds to the complementary substring

ll
lzy z ,()()z ,y

zl
l l

aa
azy z ,()

5'3'

()z ,y
zb

b b()z ,y
zl

l l

()5'lower - -()| lower3'l
lzy zl, , lzy

zl
l

Figure 7.8. Complementary substring of type 6.

3' 5'

xl

xl lx

bb
bzy z ,() ()z ,y

za
a a

3'lower|-lower5' lx -lx

Figure 7.9. Complementary substring of type 7.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

142

of the middle object element node.

7.6 Experimental Studies and Results

In this chapter’s study, a splicing operation model [60] is also applied to the rough
DNA-based algorithm for the formation of minimising decision rules through the DNA
encoding process of the proposed seven types. The splicing operation method concate-
nates the DNA fragments to be crosswise and linked together by a DNA ligation when
there are two different encoded DNA sequences that need to be spliced.

7.6.1 Experimental studies

A program compiled using Vector NTI software was used to represent all minimal
length decision rules in rough sets for the representation of the length of DNA strands.
The rough DNA-based algorithm was used to minimise decision rules based on our own
designed molecular computational experimentation.

For the model DNA-digraph, subsets of each object element node and pair element
node are able to describe the pattern of each DNA substring, corresponding to DNA se-
quences. Each concatenation of DNA fragments corresponds to complementary sub-
strings of both object and pair element nodes, which are also able to describe the pattern
of each complementary substring. To encode double-encoded substrings (types 1, 2, and
3) and their complementary substrings (types 4, 5, 6, and 7), all the DNA substrings
should be generated. At the same time, the fitting restriction enzymes are also added in
each object element node of the DNA substrings and complementary substrings. Re-
striction enzymes have the main function of cleaving DNA strands in a loop. For the
length measurements, all of the detected circular DNA fragments should be cleaved,
denatured, and become linear DNA fragments (not circular DNA fragments). A tech-
nique of the polymerase chain reaction, which is used for the generation of DNA sub-
strings, is associated with large quantities. For the model DNA-digraph, at least twenty
eight DNA strands in each DNA substring and complementary substring.

In the model DNA-digraph, all the possible double-encoded substrings among ele-
ment nodes and each complementary substring are generated to detect (1) subsets of the
lower approximations in each decision class; and detect (2) all minimal length decision
rules. We execute the first detection process for measuring the length of DNA strands
among the given objects by using the encoded types 3 and 6. For the model decision
table, as shown in Figure 7.10, the DNA fragments are associated with the given pair
element nodes of each object. On the other hand, we execute the second detection proc-
ess for detecting all the circular DNA fragments by using the encoded types 1, 2, 4, 5,
and 7 and using types 3 and 6 (see Figure 7.13) again. The pair element nodes are con-
nected to the object element node xi, and they become a circular DNA fragment in the
hybridisation process. The procedure of the rough DNA-based algorithm is described
for the minimal decision rules in more detail as follows:

Step 1 (digraph-1): A DNA-digraph can be created by understanding the relations
among the given object and pair elements based on the main structure of the digraph
with n object elements and n pair elements, as described and shown in Figure 7.1. The
model DNA-digraph is shown in Figure 7.11(a). As shown in Figure 7.12, each DNA

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

143

substring of the DNA sequence for specific pair element nodes in the model
DNA-digraph is composed of the arcs from the different object element nodes to the
same condition attributes.

Step 2 (encoding-1): For the DNA-based digraph, the double-encoded substrings and
their complementary substrings are encoded based on the molecular encoding method of
the directed objects and pairs as previously described. In the model decision table, DNA
sequences of the existing arcs of the pair elements (see Figure 7.10) correspond to types
3 and 6, which should be first generated and encoded in ssDNA to resolve subsets of the
lower approximations in each decision class.

Step 3 (hybridisation-1): The entire DNA sequences of the encoded pair element node
substrings (type 3) and their complementary substrings (type 6) in Step 2 are synthe-
sised artificially and placed in a test tube. For this hybridisation process, the pair ele-
ment node substrings and their complementary substrings are first heated to approxi-
mately 94˚C, and then cooled to approximately 20˚C at 1˚C/min. They are hybridised on
the basis of the Watson-Crick complementary rules.

Step 4 (simulated gel electrophoresis-1 and removal-1): DNA strands may be separated
according to their sizes using a simulated gel electrophoresis apparatus. The specific
size of the separated DNA strands is measured by comparing them to the known lengths
of DNA strands. The entire lengths of the hybridised DNA strands in Step 3 should be
measured by the simulated gel electrophoresis and classified into each of two decision
classes for the model decision table. If there are two or more hybridised DNA strands,
indicating the same length by measurement, it means that those hybridised DNA strands
correspond to objects, which contain completely the same condition attribute values

Object-1: 5' 3'

Object-2: 5' 3'

Object-3: 5' 3'

Object-4: 5' 3'

Object-5: 5' 3'

Object-6: 5' 3'

Object-7: 5' 3'

Object-8: 5' 3'

 (C, 4) (D, 3) (F, 2)

 (C, 4) (D, 4) (F, 4) (C, 4)

 (C, 4) (D, 1) (F, 1) (C, 4)

 (C, 4) (D, 3) (F, 3) (C, 4)

 (C, 4) (D, 2) (F, 1) (C, 4)

 (C, 4) (D, 4) (F, 4) (C, 4)

 (C, 4) (D, 1) (F, 2) (C, 4)

 (C, 4) (D, 2) (F, 1) (C, 4)

 (C, 3)

 (C, 1)

 (C, 4)

 (C, 2)

 (C, 3)

 (C, 4)

 (C, 2)

 (D, 3) (F, 2) (P, 1)

 (D, 4) (F, 4)

 (D, 1) (F, 1)

 (D, 3) (F, 3)

 (D, 2) (F, 1)

 (D, 4) (F, 4)

 (D, 1) (F, 2)

 (D, 2) (F, 1)

 (P, 2)

 (P, 3)

 (P, 2)

 (P, 1)

 (P, 2)

 (P, 3)

 (P, 1)

Figure 7.10. Representation of the possible arcs among the given pair element nodes of each
object in the model decision table for finding out subsets of the lower approximations in each
decision class.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

144

(P, 3)

(P, 2)

(P, 1)

(F, 4)(F, 3)(F, 2)(F, 1)

(D, 4)

(D, 3)

(D, 2)

(D, 1)

(C, 4)(C, 3)(C, 2)(C, 1)
x1

x2

x3

x4

x5

x6

x7

x8x8

x7

x6

x5

x4

x3

x2

x1

x1 x2 x3 x4 x5 x6 x7 x8

x8x7x6x5x4x3x2x1

(a)

x1 x2 x4 x5 x6 x7 x8

x8x6x5x3x2

x1

x2

x3

x4

x5

x6

x7

x8 x8

x7

x6

x5

x4

x3

x2

x1

(C, 2) (C, 3) (C, 4)

(D, 1)

(D, 2)

(D, 3)

(D, 4)

(F, 1) (F, 4)

(P, 1)

(P, 2)

(P, 3)

(b)

Figure 7.11. Two different DNA-digraphs differing in the number of object and pair element
nodes: (a) a model DNA-digraph constructed from the model decision table. The dashed circle
lines are shown in more detail in Figure 7.12; (b) a new DNA-digraph constructed after removing
the first condition group of decision rules.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

145

x7x1

x1, x7

x3x3 x5, x8x5, x8

x1, x4

x7

x3

(P, 3)
(P, 1)

x7x1

(P, 1)
(P, 3)

x8

x5x3

(P, 1)
(P, 2)

(F, 3)
(F, 2)

x4

x1

(F, 2)
(F, 1)

x7

x3

(P, 3)(P, 2)
(P, 1)

(F, 3)(F, 2)
(D, 3)

(D, 1)

x7x4

x1

Detail (F, 2)

Detail (F, 1)Detail (D, 3)

Detail (C, 4) Detail (D, 1)

Figure 7.12. Detail representations of the pair element nodes (C, 4), (D, 1), (D, 3), (F, 1), and (F,
2), in each of which the arcs are directed from the different object element nodes to the groups
of the two or more pair element nodes at the same condition attribute.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

146

Double-Encoded Substrings

Restriction Enzyme

-5'lower - | lower3'

a
azy za,

, azy
za
a

3'lower|()-

-lower5' ()()5'lower -

-()| lower3'

b
bzy zb,

, bzy
zb
b

Complementary Sites

5'3'

5' 3'

xi xi

xi-upper5' xi 3' upper-

()z ,y
z a

a a5' upper-- upper3'bb
bzy z ,()

()z ,y
z a

a a 3' upper--upper5' bb
bzy z ,()

xi()z ,y
zxi
a

a a bb
bzy z ,()

Figure 7.13. Example representation of a circular DNA fragment for an object element node with
two pair element nodes: the restriction enzyme is used for cleaving.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

147

irrespective of decision values. This reason is that each condition attribute value has
been encoded by its own length of DNA strands. For instance, if two DNA strands of
the same length have been measured, but those two are not included in the same deci-
sion class but rather are included separately in each of the different decision classes de-
spite having the same length, then those two (the same length-measured DNA strands)
should be clearly removed from all the decision classes. After this process, the remain-
ing hybridised DNA strands of each decision class can be divided into each subset of the
lower approximation in each decision class. The length representation result of the first
detection process in each decision class is illustrated in Figure 7.14 (lanes 1 and 2). In
Figure 7.14 (lanes 1 and 2), the specific DNA strands (the same lengths) among the two
given decision classes are removable groups, which cannot be included in either the
lower approximation in Decision Class-1 or 2.

Step 5 (denaturing): After resolving each lower approximation of each decision class,
the hybridised DNA strands of types 3 and 6 in the status of dsDNA should be heated to
approximately 94˚C, and they become ssDNA. The denatured DNA strands in ssDNA
will be used again for the hybridisation-2 and DNA ligation process in Step 8.

Step 6 (marking-1 and digraph-2): For the reduction of encoding DNA sequences, it is
necessary to find some object element node or nodes, which belong only to one of the
lower approximation subsets and are associated with the same decision class while they
are only connecting together to a specific pair element node. In other words, any of
other object element nodes, except the object element nodes meeting the above re-
quirements, are not connected to this specific pair element node. The subsets of the arcs
between objects and pair element nodes, such as those described above, are defined as

)(|)),(,(A1

 v
i

a
i DxBxB , (7.23)

which represents a subset of the arcs, each arc of which makes a direction from an ob-
ject element node xi to a pair element node (ζα, ψ

ζα
α), denoted as B1, and

)(|)),,((A2

 v
j

b
j DxBxB , (7.24)

which represents a subset of the arcs, each arc of which makes a direction from a pair
element node (ζβ, ψ

ζβ
β) to an object element node xj, denoted as B2, where each subset of

the object element nodes either xi or xj (or both) is included in one of the lower ap-
proximation subsets. At this point, each subset of the pair element nodes either (ζα, ψ

ζα
α)

or (ζβ, ψ
ζβ
β) (or both) should be first marked to be a group of single pair elements (a first

condition group of decision rules) in one of the decision classes. After removing all the
subsets of these arcs (B1 and B2), a new DNA-digraph should be constructed. This proc-
ess is able to reduce encoding DNA sequences, which allows us to obtain the accurate
minimal decision rules. After the removal, Figure 7.11(b) shows a new DNA-digraph
that has been constructed.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

148

Step 7 (encoding-2): A new directional matrix, which is composed of the reduced object
and pair element entries, can be created by transforming the new model DNA-digraph
constructed in Step 6, as shown in Figure 7.11(b). All the double-encoded substrings
and their complementary substrings can be encoded by using the method of encoding
objects and pairs in DNA. In the model DNA-digraph, DNA substrings of the existing
arcs of the object and pair element nodes, corresponding to types 1, 2, 4, 5, and 7,
should be secondly generated and encoded in ssDNA while reusing the encoded DNA
sequences of types 3 and 6.

Step 8 (hybridisation-2 and DNA ligation): The entire encoded object and pair element
node substrings (types 1 and 2) and their complementary substrings (types 4, 5, and 7)
in Step 7 as well as the added pair element node substrings (type 3) and its complemen-
tary substrings (type 6) are artificially synthesised and placed in a test tube. For this hy-
bridisation, in the process of Step 3, the element node substrings and their complemen-
tary substrings are hybridised. However, in this step, for the bonding of the different
encoded DNA sequences, DNA ligases are added to ensure DNA ligation among
ssDNA.

Step 9 (cleavage and affinity separation-1): All of one or more circular DNA fragments
should be detected and distinguished from the entire hybridised and ligated DNA
strands in Step 8. Before classifying the circular DNA fragments into each object group,
the circular DNA fragments are cleaved at any one point by restriction enzymes to be
linear DNA fragments, and they are also heated to approximately 94˚C to become
ssDNA. An affinity separation technique can be used to classify each object group by
using all the object element nodes of the complementary substrings with magnetic
beads.

Step 10 (simulated gel electrophoresis-2 and removal-2): The entire lengths of each ob-
ject group of the cleaved and denatured DNA strands are able to be measured by the
simulated gel electrophoresis. As illustrated in Figure 7.14 (lanes 3 to 10), each object
group of the DNA strands is classified into each test tube, and each of them is loaded in
each lane. After they have been loaded, if there are two or more DNA strands, indicating
the same length bp, then they should be removed; however, if two or more specific
DNA strands, corresponding to two or more specific objects, are comprised in one of
lower approximation subsets, then those DNA strands should not be removed. In Figure
7.14 (lanes 3 to 10), the DNA strands (the same lengths) across all the lanes are the re-
movable groups, and they are not included in the same lower approximation subset.

Step 11 (affinity separation-2 and marking-2): After the process of removing the same
lengths of the DNA strands, each object of the remaining DNA fragments in each deci-
sion class contains two or more pair element nodes, which can be distinguished clearly
based on the method of affinity separation. For this process, the complementary sub-
strings of the entire pair element nodes with magnetic beads should be also prepared.
Each object in each lower approximation subset contains its own subset of pair element
nodes, which should be secondly marked to be a second condition group of multiple
pair elements of decision rules in each decision class.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

149

7.6.2 Results of the experimental studies

To determine the specific parts of DNA strands, representing subsets of the lower ap-
proximations and condition groups of each object in each decision class, we used the
two processes of both the simulated gel electrophoresis-1 and 2. As illustrated in Figure
7.14 (lanes 1 to 10), each of the lanes represents its own group of DNA strands in dif-
ferent lengths of DNA strands. More detailed results are presented as follows:

First, as illustrated in Figure 7.14 (lanes 1 and 2), for the first detection process, the
length representation result of the simulated gel electrophoresis-1 shows the remaining
DNA fragments. These DNA fragments were transformed to the two subsets of the
lower approximations in two different decision classes 1 and 2. From the result of the
first detection process, the two removable groups of the same lengths were (1) Object-2
in Decision Class-2 and Object-6 in Decision Class-1; and (2) Object-5 in Decision
Class-2 and Object-8 in Decision Class-1. Hence, in the model decision table, all the
given objects were divided into subsets of the lower approximations in each decision
class, corresponding to the decision value of the decision attributes represented in DNA
sequencing directions as

(1) Decision Class-1:)(1A
vD = {Object-3, Object-4} derived from

(Object-3) (C, 1)-3′upper→5′upper-(D, 1)|(D, 1)-3′upper→
5′upper-(F, 1)|(F, 1)-3′upper→5′upper-(P, 3) at 762 bp and

(Object-4) (C, 4)-3′upper→5′upper-(D, 3)|(D, 3)-3′upper→
5′upper-(F, 3)|(F, 3)-3′upper→5′upper-(P, 2) at 1168 bp; and

(2) Decision Class-2:)(2A

vD = {Object-1, Object-7} derived from
(Object-1) (C, 4)-3′upper→5′upper-(D, 3)|(D, 3)-3′upper→

5′upper-(F, 2)|(F, 2)-3′upper→5′upper-(P, 1) at 1128 bp and
(Object-7) (C, 4)-3′upper→5′upper-(D, 1)|(D, 1)-3′upper→

5′upper-(F, 2)|(F, 2)-3′upper→5′upper-(P, 3) at 1032 bp.

The above two subsets of lower approximations were retrieved to encode the minimal
numbers of DNA fragments and to resolve a first condition group (a group of single pair
elements) of decision rules in two different decision classes on the basis of the mark-
ing-1 process, represented in DNA sequencing directions as

(1) Decision Class-1:
(Object-3) x3-3′

upper→5′upper-(C, 1) and
(Object-4) Both x4-3′

upper→5′upper-(F, 3) and (F, 3)-3′upper→5′upper- x4; and

(2) Decision Class-2:
(Object-1) Both x1-3′

upper→5′upper-(F, 2) and (F, 2)-3′upper→5′upper- x1 and
(Object-7) Both x7-3′

upper→5′upper-(F, 2) and (F, 2)-3′upper→5′upper- x7.

The results of electropherograms are shown in Figure 7.15 for Decision Class-1 and
Figure 7.16 for Decision Class-2.

Second, for the second detection process, the length representation result of the

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

150

simulated gel electrophoresis-2 shows the remaining DNA fragments, as illustrated in
Figure 7.14 (lanes 3 to 10). These DNA fragments were transformed to the four subsets
of the pair element nodes in four different objects (Object-1, 3, 4, and 7). From the re-
sult of the second detection process, the Object-3 and 4 in Decision Class-1 were a sub-
set of the lower approximation and the Object-1 and 7 in Decision Class-2 were the
other subset of the lower approximation. In these four different objects, the four subsets
of the pair element nodes belong to two different decision classes, which were deter-
mined as a second condition group (a group of multiple pair elements) of decision rules
on the basis of the marking-2 process, represented in DNA sequencing directions as

(1) Decision Class-1:
(Object-3) x3-3′

upper→5′upper-(D, 1)|(D, 1)-3′upper→5′upper-(F, 1)
|(F, 1)-3′upper→5′upper-(P, 3)|(P, 3)-3′upper→5′upper-x3 at 568 bp,

(Object-3) x3-3′
upper→5′upper-(D, 1)|(D, 1)-3′upper→5′upper-(F, 1)

|(F, 1)-3′upper→5′upper-x3 at 472 bp,
(Object-3) x3-3′

upper→5′upper-(F, 1)|(F, 1)-3′upper→5′upper-(P, 3)
|(P, 3)-3′upper→5′upper-x3 at 280 bp,

(Object-4) x4-3′
upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(D, 3)

|(D, 3)-3′upper→5′upper-(P, 2)|(P, 2)-3′upper→5′upper-x4 at 1556 bp,
(Object-4) x4-3′

upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(P, 2)

M

500 ‐

1000 ‐

1500 ‐

2000 ‐

1 2 M 3 4 5 6 7 8 9 10 M

‐ 500

‐ 1000

‐ 1500
‐ 2000

500

1000

1500
2000

Figure 7.14. Length representation results of the simulated gel electrophoresis of (1) the first
detection process in each decision class; and (2) the second detection process in each object.
Lane M is for marker. For the first detection, lanes 1 and 2 indicate all the linear DNA fragments
included in Decision Class-1 and 2. For the second detection, lanes 3 to 10 indicate all the
cleaved and denatured circular DNA fragments included in each of Object-1 to 8.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

151

|(P, 2)-3′upper→5′upper-x4 at 1148 bp, and
(Object-4) x4-3′

upper→5′upper-(D, 3)|(D, 3)-3′upper→5′upper-(P, 2)
|(P, 2)-3′upper→5′upper-x4 at 516 bp; and

(2) Decision Class-2:

(Object-1) x1-3′
upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(D, 3)

|(D, 3)-3′upper→5′upper-(P, 1)|(P, 1)-3′upper→5′upper-x1 at 1532 bp,
(Object-1) x1-3′

upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(P, 1)
|(P, 1)-3′upper→5′upper-x1 at 1124 bp,

(Object-1) x1-3′
upper→5′upper-(D, 3)|(D, 3)-3′upper→5′upper-(P, 1)

|(P, 1)-3′upper→5′upper-x1 at 492 bp,
(Object-7) x7-3′

upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(D, 1)
|(D, 1)-3′upper→5′upper-(P, 3)|(P, 3)-3′upper→5′upper-x7 at 1460 bp,

(Object-7) x7-3′
upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(D, 1)

|(D, 1)-3′upper→5′upper-x7 at 1364 bp, and
(Object-7) x7-3′

upper→5′upper-(C, 4)|(C, 4)-3′upper→5′upper-(P, 3)
|(P, 3)-3′upper→5′upper-x7 at 1172 bp.

The results of electropherograms for each of Object-1 to 8 are shown in Figures 7.17 to
7.24, respectively. In addition, each of the whole electropherogram results for Decision
Class-1 to 2 and Object-1 to 8 is shown in one electropherogram, in which each of them
represents different colours, as shown in Figure 7.25.

Each of the above determined groups of decision rules involved the same rules as
each of the two condition groups of decision rules in each of two decision classes. Thus,
the rough DNA-based algorithm results of the two condition groups of decision rules in
two different decision classes were transformed to two subsets of if-then rules, which
are represented as

(1) Decision Class-1:
if colour is blue, then Product-1 is selected,
if function is a bit more complex, then Product-1 is selected,
if design is ancient and function is simple, then Product-1 is selected,
if function is simple and price is expensive, then Product-1 is selected,
if colour is yellow and price is medium, then Product-1 is selected, and
if design is industrial and price is medium, then Product-1 is selected; and

(2) Decision Class-2:

if function is a bit simpler, then Product-2 is selected,
if colour is yellow and price is inexpensive, then Product-2 is selected,
if design is industrial and price is inexpensive, then Product-2 is selected,
if colour is yellow and design is ancient, then Product-2 is selected, and
if colour is yellow and price is expensive, then Product-2 is selected.

In each decision class, the above if-then decision rules were the minimised decision
rules, corresponding to the minimal lengths of decision rules in rough sets, which were
finally resolved by the rough DNA-based algorithm.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

152

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.16. Electropherogram result obtained from lane 2.

7.0

5.0

3.0

1.0

 2.00 4.00 6.00
 Time (min)

3.0

1.0

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.15. Electropherogram result obtained from lane 1.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

153

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.18. Electropherogram result obtained from lane 4.

3.0

2.0

1.0

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.17. Electropherogram result obtained from lane 3.

5.0

3.0

1.0

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

154

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.20. Electropherogram result obtained from lane 6.

7.0

5.0

3.0

1.0

 2.00 4.00 6.00
 Time (min)

2.0

1.0

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.19. Electropherogram result obtained from lane 5.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

155

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.22. Electropherogram result obtained from lane 8.

7.0

5.0

3.0

1.0

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.21. Electropherogram result obtained from lane 7.

5.0

3.0

1.0

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

156

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.24. Electropherogram result obtained from lane 10.

7.0

5.0

3.0

1.0

 2.00 4.00 6.00
 Time (min)

R
e

l.
F

l.
U

n
its

 (
R

F
U

,
x1

E
+

0
0

0
)

Figure 7.23. Electropherogram result obtained from lane 9.

5.0

3.0

1.0

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

157

7.7 Computational Times and Solvable Sizes

A comparison of the number of elements (objects and pairs) and the number of direct
relations is shown in Figure 7.26. In addition, as shown in Table 7.2, comparisons of
approximated running times were created for measuring the efficiency of using the
rough DNA-based algorithm. For the exponential-time algorithms and the prepared
rough DNA-based algorithm (we are ready to detect solutions), the number of both ob-
jects and pairs was set to correspond to the inputs of size 10, 30, 50, and 100 separately.
Figures 7.27 to 7.30 show a graphic comparison of approximated running times for the
exponential-time algorithm and the prepared rough DNA-based algorithm.

We suppose that a processor executes a million high levels of instructions a second,
and the exponential-time algorithm uses an operation of 2n [106]. The approximated
running times of the prepared rough DNA-based algorithm were measured and calcu-
lated on the basis of previous experimental reports, our experimental experiences, and
genetic engineering notes [62-66].

In this chapter’s study, the major problem is how to minimise a huge number of both
objects and pairs in the rough set method to determine all minimal length decision rules;
this intractable problem obviously is an NP-hard problem. To achieve a reliably optimal
solution, a polynomial-time algorithm is the most reliable one, but this polynomial-time

 2.00 4.00 6.00
 Time (min)

R
e

l.
U

n
its

 (
R

U
,

x1
E

+
00

0
)

Figure 7.25. Electropherogram results obtained from lanes 1 to 10: (1) black colour indicates
lane 1; (2) blue colour indicates lane 2; (3) red colour indicates lane 3; (4) cyan colour indi-
cates lane 4; (5) yellow colour indicates lane 5; (6) orange colour indicates lane 6; (7) purple
colour indicates lane 7; (8) green colour indicates lane 8; (9) brown colour indicates lane 9;
and (10) pink colour indicates lane 10.

7.0

5.0

3.0

1.0

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

158

algorithm for this problem has not been discovered yet. The rough DNA-based algo-
rithm has been proposed in this chapter, and this algorithm can be extended to particu-
larly deal with a large number of both objects and pairs by taking advantage of the main
characteristics of huge numbers of DNA encoding patterns.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of Elements (Objects and Pairs)

N
um

be
r

of
 D

ire
ct

 R
el

at
io

ns

Figure 7.26. Comparison graph of the number of elements (objects and pairs) and the number
of direct relations.

Table 7.2. Comparisons of approximated running times for the exponential-time algorithm and
the prepared rough DNA-based algorithm.

Number of Elements
(Objects and Pairs)

The Exponential-
Time Algorithm

The Prepared DNA-
Based Algorithm

10 30 50 100

< 1.00 second 18.00 minutes 36.00 years 100,000,000,000,000,000.00 years

3.66 minutes 36.06 minutes 1.73 hours 7.04 hours

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

159

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Running Time (sec)

N
um

be
r

of
 E

le
m

en
ts

 (
O

b
je

c
ts

 a
nd

 P
ai

rs
)

Figure 7.27. Comparison graph of approximated running times in seconds: (1) green colour
indicates the exponential-time algorithm; and (2) blue colour indicates the prepared rough
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Running Time (hour)

N
u

m
b

er
 o

f
E

le
m

e
nt

s
(O

bj
ec

ts
 a

n
d

P
a

irs
)

Figure 7.28. Comparison graph of approximated running times in hours: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared rough
DNA-based algorithm.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

160

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Running Time (day)

N
u

m
be

r
of

 E
le

m
en

ts
 (

O
bj

ec
ts

 a
nd

 P
ai

rs
)

Figure 7.29. Comparison graph of approximated running times in days: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared rough
DNA-based algorithm.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

Running Time (y ear)

N
u

m
b

er
 o

f
E

le
m

e
nt

s
 (

O
bj

e
ct

s
 a

n
d

P
a

irs
)

Figure 7.30. Comparison graph of approximated running times in years: (1) green colour indi-
cates the exponential-time algorithm; and (2) blue colour indicates the prepared rough
DNA-based algorithm.

CHAPTER 7

MINIMISING DECISION RULES BASED ON A ROUGH DNA-BASED ALGORITHM

161

7.8 Concluding Remarks

In the context of all the exponential and numerical results of the minimised decision
rules by means of the rough DNA-based algorithm, we discuss the following two main
issues of this chapter’s study.

First, our novel processes of handling the significant information from the provided
decision table were developed for the first time through the rough DNA-based algo-
rithm, which was used for efficiently determining subsets of the lower approximations
divided into each decision class and efficiently minimising decision rules. The processes
of both classifying the complicated data and creating decision rules are important fac-
tors in providing information to decision makers. Additionally, the processes of updat-
ing those data and minimising decision rules also are important factors in providing
useful information, which can be readily produced and handled. However, in the real
world, a number of data are commonly handled, because the updating of rules and re-
ductions poses an intractable problem. The massively parallel function of the rough
DNA-based algorithm was adapted to the minimisation problem in handling a large
number of objects and attributes to determine minimal decision rules in the rough set
method.

Second, the rough DNA-based algorithm presented a novel molecular encoding
method that performed the encoding of two different characteristics of both object and
pair element nodes in DNA, and created a new type of the splicing operation method.
The proposed molecular encoding method also made the best use of efficiently resolv-
ing minimal decision rules, including subsets of the lower approximations. The rough
DNA-based algorithm has shown an outstanding potential to connect to other types of
computer-based technologies or other sciences from other field areas to develop better
cooperative data processing in interdisciplinary studies.

Chapter 8

Conclusions

The interdisciplinary forms of molecular computational algorithms for solving deci-
sion-making problems in management engineering have been presented for the first
time in this dissertation. The four novel and different molecular computational algo-
rithms with their own molecular computational experimentations were shown, and each
algorithm has been designed by combining totally different types of information and
mathematical scientific methods with molecular biochemistry and genetic techniques of
experimentations, instrumentation, and manipulations. Further, each of the four mo-
lecular computational algorithms was designed and put into practice to solve various
problems in order to measure the efficiency and practicality of these novel types of mo-
lecular computational algorithms. We conclude our discussion of the four molecular
computational algorithms, introduced and presented in Chapters 4, 5, 6, and 7, in the
following paragraphs.

We presented in Chapter 4 a molecular computational algorithm associated with a
general molecular algorithm from the biologically computational field and a job-shop
scheduling method from the management engineering field. The given machines and
jobs as well as their orders and production process times can be organised and sched-
uled to provide feasible schedules using the present methods. However, the optimisation
scheduling techniques still have problems. These problems occur when a number of the
given machines and their job orders should be scheduled to minimise the maximum
production completion time, because the possible solution space is small and the solu-
tion easily becomes a local optimal solution. On the other hand, a job-shop DNA-based
algorithm can be used to counteract these problems. Further, the algorithm can subse-
quently be expanded to combine with other scheduling engineering and scientific
methods and techniques.

In Chapter 5, another molecular computational algorithm was presented and associ-
ated with a general molecular algorithm from the biologically computational field and
fuzzy-based methods from the management engineering field. The fuzzified numerical
data can be handled by fuzzy-based methods, which are related to soft computing
methods and have the potential to be integrated with other methods. Thus, we created a
fuzzy DNA-based algorithm, based largely on both fuzzy-based and molecular engi-
neering methods, to specifically identify cohesive subsets. In the fuzzy operational net-
work, using the fuzzy DNA-based algorithm, the identification of more cohesive sub-
groups with more specific workforces organised into organisationally similarity sub-
groups was verified and its efficiency was measured.

In Chapter 6, we presented a third molecular computational algorithm associated
with a general molecular algorithm from the biologically computational filed and an in-
terpretive structural modelling method from the management engineering field. Being

CHAPTER 8

CONCLUSIONS

163

cognizant of this interdisciplinary challenge, molecular engineering methods provided
us with powerful techniques, and by exploiting the several structural modelling methods,
a hierarchical DNA-based algorithm was measured to deal with the larger number of
elements in the interpretive structural modelling process. The decision-making method
of interpretive structural modelling is often used for constructing a hierarchically re-
structured digraph among the given elements to minimise uncertainty and risk for the
problem-solving process or to provide efficient methods for decision makers. Here, the
hierarchical DNA-based algorithm can be exploited to deal with a number of elements
often provided and suggested by proposers, decision makers, and organisations. The hi-
erarchical DNA-based algorithm has demonstrated the possibility for creating new in-
terdisciplinary decision-making methods for molecular decision support computation in
an efficient way.

In Chapter 7, we presented a final molecular computational algorithm associated
with a general molecular algorithm from the biologically computational field and a
rough set method from the management engineering field. A novel approach to handling
useful information presented as a decision table was first developed by means of a
rough DNA-based algorithm, which was used for deriving subsets of the lower ap-
proximations and for classifying all the objects into decision classes. The purpose of
using the rough DNA-based algorithm was to minimise the number of decision rules.
The rough DNA-based algorithm resulted from our new ways of encoding DNA strands
based on the results of our own experimentation. This new method encoded two totally
different characteristics of element nodes. The possibility of combining the rough
mathematical scientific techniques and molecular engineering techniques is shown to be
an interdisciplinary study that could lead to the construction of a biochemically inte-

Table 8.1. Suggested time complexities of our proposed molecular computational algorithms
and the recent heuristic algorithms for Chapters 4, 5, 6, and 7. In the time complexities of
Chapter 4, m is the number of machines, n is the number of jobs, and vmax is the maximum
number of machines that are necessary in each job. In the time complexities of Chapter 5, n is
the number of workforces (or nodes). In the time complexities of Chapter 6, n is the number of
element nodes and a is the number of arcs. In the time complexities of Chapter 7, n is the
number of condition attributes and b is the number of objects.

Chapter Algorithm Time Complexity

Job-Shop DNA-Based Algorithm O(mn)

The Recent Heuristic Algorithm O((nv max)
2) [158]

Fuzzy DNA-Based Algorithm O(n)

The Recent Heuristic Algorithm O(n 3) [159]

Hierarchical DNA-Based Algorithm O(n)

The Recent Heuristic Algorithm O(|n||a| log|n|) [160]

Rough DNA-Based Algorithm O(nb)

The Recent Heuristic Algorithm O(|n| 3|b| 2) [161]

7

6

5

4

CHAPTER 8

CONCLUSIONS

164

grated knowledge support system in decision making.
In this chapter, the suggested time complexities of each proposed molecular compu-

tational algorithm are shown in Table 8.1. Each of these suggested time complexities is
also compared to the recent heuristic algorithms used for the same or similar purposes
of solving our target decision-making problems (minimising the maximum production
completion time in Chapter 4, identifying cohesive subsets in Chapter 5, modelling in-
terpretive structures in Chapter 6, and minimising decision rules in Chapter 7).

For the purpose of the presented algorithms in this dissertation, we still have a bio-
logically technical issue when encoding each of the specifically DNA-encoded nodes
and their edges (or arcs) for each. Here, the nodes and their edges correspond to (1) pair
nodes and their continuous arcs, respectively, in Chapter 4; (2) workforces and their op-
erational connections, respectively, in Chapter 5; (3) element nodes and their arcs, re-
spectively, in Chapter 6; and (4) elements and their direct relations, respectively, in
Chapter 7. However, we can surely expect that high-tech molecular biological instru-
mentation machines are still improving and being developed for better functions by
many companies around the world.

The major purpose of our proposed molecular computational algorithms is to con-
tribute to the development of nanometric molecular computational models as molecular
decision support computation for management of the engineering decision-making
problems. Molecular decision support computation in management engineering can be
regarded as one integrated field, mainly associated with molecular engineering mecha-
nisms and computer science, by using both molecular engineering techniques and in-
formation technologies. Moreover, pure molecular engineering techniques are imple-
mented not only for computer science with information technologies, but also for other
various areas of engineering and science that can be turned to practical uses in develop-
ing molecular decision support computation. More flexible and practical computations
using a variety of useful algorithms are needed to respond to additional management
engineering problems and issues. We hope that the four proposed molecular computa-
tional algorithms, along with the four new molecular computational experimentations
shown in this dissertation, could be used as either molecular or computational resources
in developing further computational devices or machines for use in molecular decision
support computation, exploited not only for management of the engineering deci-
sion-making problems, but also for decision-making problems in other fields.

BIBLIOGRAPHY

165

Bibliography

[1] L. M. Adleman, “Molecular computation of solutions to combinatorial prob-

lems,” Science, vol. 266, no. 11, 1994, pp. 1021-1024.
[2] J. D. Watson, R. M. Myers, A. A. Caudy, and J. A. Witkowski, “Recombinant

DNA: Genes and genomes - a short course, third edition,” W. H. Freeman and
Company, 2007, pp. 5-25.

[3] D. L. Hartl and E. W. Jones, “Essential genetics: A genomics perspective, third
edition,” Jones and Bartlett Publishers, Inc., 2002, pp. 90-412.

[4] R. Phillips, J. Kondev, J. Theriot, and N. Orme, “Physical biology of the cell,”
Garland Science, Taylor & Francis Group, LLC, 2002, pp. 281-325.

[5] K. Morimatsu, “It sticks to rice: Considering traditional-style Japanese food,”
Hachioji Sennin Juku, 2005, pp. 6-11 in Japanese.

[6] B. Basham, G. P. Schroth, and P. S. Ho, “An A-DNA triplet code: Thermody-
namic rules for predicting A- and B-DNA,” Proceedings of the National Acad-
emy of Sciences of the United States of America, vol. 92, no. 14, 1995, pp.
6464-6468.

[7] D. A. Micklos, G. A. Freyer, and D. A. Crotty, “DNA science: A first course,
second edition,” Cold Spring Harbor Laboratory Press, 2003, pp. 30-182.

[8] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids: A struc-
ture for deoxyribose nucleic acid,” Nature, vol. 171, no. 4356, 1953, pp.
737-738.

[9] W. L. Jorgensen and J. D. Madura, “Temperature and size dependence for Monte
Carlo simulation of TIP4P water,” Molecular Physics: An International Journal
at the Interface between Chemistry and Physics, vol. 56, issue 6, 1985, pp.
1381-1392.

[10] J. C. Lee and R. R. Gutell, “Diversity of base-pair conformations and their oc-
currence in rRNA structure and RNA structural motifs,” Journal of Molecular
Biology, vol. 344, issue 5, 2004, pp. 1225-1249.

[11] E. V. Makeyev and D. H. Bamford, “Cellular RNA-dependent RNA polymerase
involved in posttranscriptional gene silencing has two distinct activity modes,”
Molecular Cell, vol. 10, issue 6, 2002, pp. 1417-1427.

[12] P. G. de Novoa and K. P. Williams, “The tmRNA website: Reductive evolution
of tmRNA in plastids and other endosymbionts,” Nucleic Acids Research, Ox-
ford University Press, Inc., vol. 32, 2004, database issue D104-D108.

[13] G. M. Cooper and R. E. Hausman, “The cell: A molecular approach, third edi-
tion,” Sinauer Associates Inc., 2003, pp. 261-276.

[14] R. A. Garrett, S. R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, and H. F.
Noller, “The ribosome: Structure, function, antibiotics, and cellular interac-
tions,” American Society for Microbiology Press, 2000, pp. 397-404.

[15] T. Chakraborty, “Charge migration in DNA: Perspectives from physics, chemis-
try, and biology,” Nanoscience and Technology, Springer-Verlag Berlin Heidel-
berg, 2007, pp. 77-175.

[16] J. Braman, “In vitro mutagenesis protocols, second edition,” Methods in Mo-
lecular Biology, Humana Press Inc., vol. 182, 2002, pp. 7-17.

BIBLIOGRAPHY

166

[17] D. L. Hartl and E. W. Jones, “Genetics: Analysis of genes and genomes, seventh
edition,” Jones and Bartlett Publishers, Inc., 2009, pp. 431-445.

[18] N. G. Cooper and P. Berg, “The human genome project: Deciphering the blue-
print of heredity,” University Science Books, 1994, pp. 48-54.

[19] R. Tyagi, “Understanding molecular biology,” Discovery Publishing House Pvt.
Ltd., 2009, pp. 174-213.

[20] D. S. T. Nicholl, “An introduction to genetic engineering, second edition,” Stud-
ies in Biology, Cambridge University Press, 2002, pp. 43-51.

[21] J. J. Greene and V. B. Rao, “Recombinant DNA principles and methodologies,”
Marcel Dekker, Inc., 1998, pp. 126-134.

[22] R. S. Burlage, R. Atlas, D. Stahl, G. Geesey and G. Sayler, “Techniques in mi-
crobial ecology,” Oxford University Press, Inc., 1998, pp. 299-311.

[23] J. Sambrock and D. W. Russell, “Molecular cloning: A laboratory manual, third
edition,” Cold Spring Harbor Laboratory Press, 2001, pp. 157-161.

[24] G. Lipps, “Plasmids: Current research and future trends,” Caister Academic
Press, Norfolk, UK, 2008, pp. 1-25.

[25] P. Rabinow, “Making PCR: A story of biotechnology,” The University of Chi-
cago Press, 1996, pp. 1-17.

[26] M. J. McPherson, P. Quirke, and G. R. Taylor, “PCR 1: A practical approach,”
Oxford University Press, Inc, 1991, pp. 1-14.

[27] P. Matejtschuk, “Affinity separations: A practical approach,” Oxford University
Press, Inc, 1997, pp. 2-38.

[28] E. R. Goedken, M. Levitus, A. Johnson, C. Bustamante, M. O’Donnell, and J.
Kuriyan, “Fluorescence measurements on the E. coli DNA polymerase clamp
loader: Implications for conformational changes during ATP and clamp bind-
ing,” Journal of Molecular Biology, vol. 336, issue 5, 2004, pp. 1047-1059.

[29] M. Kinter and N. E. Sherman, “Protein sequencing and identification using tan-
dem mass spectrometry,” John Wiley & Sons, Inc., vol. 336, issue 5, 2000, pp.
117-146.

[30] B. Giffler and G. L. Thompson, “Algorithms for solving production-scheduling
problems,” Operations Research, vol. 8, no. 4, 1960, pp. 487-503.

[31] J. Carlier and E. Pinson, “An algorithm for solving the job-shop problem,” Man-
agement Science, vol. 35, no. 2, 1989, pp. 164-176.

[32] P. Brucker, B. Jurisch, and B. Sievers, “A branch and bound algorithm for the
job-shop scheduling problem,” Discrete Applied Mathematics, vol. 49, no. 1-3,
1994, pp. 107-127.

[33] M. J. Streeter and S. F. Smith, “Exploiting the power of local search in a branch
and bound algorithm for job shop scheduling,” International Conference on
Automated Planning and Scheduling, 2006, pp. 324-333.

[34] C. Artigues, M. Gendreau, L.-M. Rousseau, and A. Vergnaud, “Solving an inte-
grated employee timetabling and job-shop scheduling problem via hybrid
branch-and-bound,” Computers & Operations Research, vol. 36, no. 8, 2009, pp.
2330-2340.

[35] T. Yamada and R. Nakano, “A genetic algorithm applicable to large-scale
job-shop problems,” Parallel Problem Solving from Nature, 1992, pp. 283-292.

[36] T. Yamada and R. Nakano, “Genetic algorithms for job-shop scheduling prob-
lems,” Proceedings of Modern Heuristic for Decision Support, 1997, pp. 1-15.

BIBLIOGRAPHY

167

[37] S.-C. Lin, E. D. Goodman, and W. F. Punch, “Investigating parallel genetic al-
gorithms on job shop scheduling problems,” Evolutionary Programming, 1997,
pp. 383-393.

[38] W. Cheung and H. Zhou, “Using genetic algorithms and heuristics for job shop
scheduling with sequence-dependent setup times,” Annals of Operations Re-
search, vol. 107, no. 1-4, 2001, pp. 65-81.

[39] A. Hertz and M. Widmer, “An improved tabu search approach for solving the
job shop scheduling problem with tooling constraints,” Discrete Applied Mathe-
matics, vol. 65, no. 1-3, 1996, pp. 319-345.

[40] R. Thamilselvan and P. Balasubramanie, “Integrating genetic algorithm, tabu
search approach for job shop scheduling,” International Journal of Computer
Science and Information Security, vol. 2, no. 1, 2009, 6 pages.

[41] U. Buscher and L. Shen, “An integrated tabu search algorithm for the lot stream-
ing problem in job shops,” European Journal of Operational Research, vol. 199,
no. 2, 2009, pp. 385-399.

[42] M. Andersson, A. H. C. Ng, and H. Grimm, “Simulation optimization for indus-
trial scheduling using hybrid genetic representation,” Proceedings of the 2008
Winter Simulation Conference, 2008, pp. 2004-2011.

[43] I. Iimura, Y. Moriyama, and S. Nakayama, “Consideration on distributed im-
mune algorithm in job-shop scheduling problem,” International Journal of In-
novative Computing, Information and Control, vol. 5, no. 12(B), 2009, pp.
5003-5010.

[44] Ph. Mauguiere, J.-C. Billaut, and J.-L. Bouquard, “New single machine and
job-shop scheduling problems with availability constraints,” Journal of Sched-
uling, Springer Netherlands, vol. 8, no. 3, 2005, pp. 211-231.

[45] R. Masuchun, W. Masuchun, and T. Thepmanee, “Integrating production sched-
uling and material requirements planning,” ICIC Express Letters, vol. 3, no.
3(A), 2009, pp. 501-506.

[46] T. M. Willems and L. E. M. W. Brandts, “Implementing heuristics as an opti-
mization criterion in neural networks for job-shop scheduling,” Journal of Intel-
ligent Manufacturing, Springer Netherlands, vol. 6, no. 6, 1995, pp. 377-387.

[47] R. Zhang and C. Wu, “A decomposition-based optimization algorithm for sched-
uling large-scale job shops,” International Journal of Innovative Computing, In-
formation and Control, vol. 5, no. 9, 2009, pp. 2769-2780.

[48] R. Zhang and C. Wu, “Bottleneck machine identification based on optimization
for the job shop scheduling problem,” ICIC Express Letters, vol. 2, no. 2, 2008,
pp. 175-180.

[49] Yu. N. Sotskov and N. V. Shakhlevich, “NP-hardness of shop-scheduling prob-
lems with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3, 1995, pp.
237-266.

[50] W. J. Stevenson, “Operations management: Ninth edition,” McGraw-Hill, Irwin,
2007, pp. 720-759.

[51] F. Hashimoto, T. Hoashi, T. Kurozawa, and K. Kato, “Production Control Sys-
tems,” Kyoritsu Shuppan Co., Ltd., 2001, pp. 108-120 in Japanese.

[52] J. Heizer and B. Render, “Operations management: Ninth edition,” Pearson
Education, Inc., 2008, pp. 253-605.

[53] M. L. Pinedo, “Scheduling-theory, algorithms, and systems: Third edition,”

BIBLIOGRAPHY

168

Springer Science+Business Media, 2008, pp. 179-216.
[54] R. W. Conway, W. L. Maxwell, and L. W. Miller, “Theory of scheduling,” Do-

ver Publications, Inc., 2003, pp. 103-131.
[55] P. Patel, “Rapid analysis techniques in food microbiology,” Blackie Academic &

Professional, 1995, pp. 183-191.
[56] P. Singleton, “Dictionary of DNA and genome technology,” Wiley-Blackwell,

2010, pp. 175-178.
[57] D. P. Clark, “Molecular biology: Understanding the genetic revolution,” El-

sevier Inc., 2005, pp. 425-452.
[58] G. M. Malacinski, “Essentials of molecular biology: Fourth edition,” Jones and

Bartlett Publishers, Inc., 2003, pp. 314-345.
[59] T. A. Brown, “Gene cloning and DNA analysis: An introduction, sixth edition,”

Wiley-Blackwell, 2010, pp. 15-44.
[60] C. S. Calude and G. Paun, “Computing with cells and atoms: An introduction to

quantum, DNA and membrane computing,” Taylor & Francis, 2002, pp. 77-94.
[61] J. Kleinberg and E. Tardos, “Algorithm design,” Kyoritsu Shuppan Co., Ltd.,

2008, pp. 29-102 in Japanese.
[62] Z. F. Burton and J. M. Kaguni, “Experiments in molecular biology: Biochemical

applications,” Academic Press, 1997, pp. 11-20.
[63] J. P. Fitch, “An engineering introduction to biotechnology,” SPIE Press, 2002,

pp. 43-60.
[64] L. M. Adleman, “Computing with DNA: The manipulation of DNA to solve

mathematical problems is redefining what is meant by computation,” Scientific
American, 1998, pp. 34-41.

[65] T. Tamura, “New experimental notes in genetic engineering, note 1/2,” Yodosha
Co., Ltd., 2005, pp. 61-160 in Japanese.

[66] T. Tamura, “New experimental notes in genetic engineering, note 2/2,” Yodosha
Co., Ltd., 2005, pp. 11-86 in Japanese.

[67] R. R. Mattu and C. G. Plaxton, “Optimal time bounds for approximate cluster-
ing,” Machine Learning, vol. 56, no. 1-3, 2004, pp. 35-60.

[68] E. Todorov, W. Li, and X. Pan, “From task parameters to motor synergies: A
hierarchical framework for approximately optimal control of redundant manipu-
lators,” Journal of Field Robotics, vol. 22, no. 11, 2005, pp. 691-710.

[69] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate
nearest neighbour in high dimensions,” The 47th Annual IEEE Symposium on
Foundations of Computer Science, 2006, pp. 459-468.

[70] S. U. Khan, “Approximate optimal sensor placements in grid sensor fileds,” The
65th IEEE Vehicular Technology Conference, 2007, pp. 248-251.

[71] G. Agnarsson and R. Greenlaw, “Graph theory: Modeling, applications, and al-
gorithms,” Pearson Education, Inc., 2007, pp. 31-131.

[72] D. B. Bernstein and R. Farrow, “Automatic maintenance of routine program-
ming tasks based on a declarative description (experience report),” Proceedings
of the 12th International Conference on Software Engineering, 1990, pp.
310-315.

[73] Y. Toyoura, J. Watada, Y. Yabuuchi, H. Ikegame, S. Sato, K. Watanabe, and M.
Tohyama, “Fuzzy regression analysis of software bug structure,” Central Euro-
pean Journal of Operations Research, Springer-Verlag Berlin Heidelberg, vol.

BIBLIOGRAPHY

169

12, no. 1, 2004, pp. 13-23.
[74] A. R. Arredondo, Y. Yabuuchi, and J. Watada, “Analysis of safety factors by

fuzzy quantification analysis type 2,” Proceedings of Workshop on Evaluation of
Heart and Mind: A New Challenge, vol. 2, 1997, pp. 45-48.

[75] F. Luthans, “Organizational behavior, tenth edition,” McGraw-Hill International
Edition, 2005, pp. 478-508.

[76] W. Pedrycz and F. Gomide, “Fuzzy systems engineering: Toward human-centric
computing,” John Wiley & Sons, Inc., 2007, pp. 27-65.

[77] I. Kim, D. J.-F. Jeng, and J. Watada, “Redesigning subgroups in a personnel
network based on DNA computing,” International Journal of Innovative Com-
puting, Information and Control, ICIC International, vol. 2, no. 4, 2006, pp.
885-896.

[78] R. Cross and A. Parker, “The hidden power of social networks: Understanding
how work really gets done in organizations,” Harvard Business School Press,
2002, pp. 31-166.

[79] S. Wasserman and K. Faust, “Social network analysis: Methods and applica-
tions,” Structural Analysis in the social sciences 8, Cambridge University Press,
1994, pp. 109-290.

[80] J. Scott, “Social network analysis: A handbook, second edition,” SAGE Publica-
tions, Inc., 2004, pp. 100-122.

[81] D. Knoke and S. Yang, “Social network analysis, second edition,” Series: Quan-
titative Applications in the Social Sciences 154, SAGE Publications, Inc., 2008,
pp. 51-85.

[82] R. D. Bock and S. Z. Husain, “An adaptation of Holzinger’s B-coefficients for
the analysis of sociometric data,” Sociometry, vol. 13, 1950, pp. 146-153.

[83] R. D. Alba, “A graph-theoretic definition of a sociometric clique,” Journal of
Mathematical Sociology, vol. 3, 1973, pp. 113-126.

[84] P. Hage and F. Harary, “Island networks: Communication, kinship, and classifi-
cation structures in Oceania,” Structural Analysis in the social sciences 11,
Cambridge University Press, 1996, pp. 22-89.

[85] G. Valiente, “Algorithms on trees and graphs,” Springer-Verlag Berlin Heidel-
berg, 2002, pp. 228-350.

[86] D. S. Hochbaum, “Approximation algorithms for NP-hard problems,” PWS
Publishing Company, 1997, pp. 296-441.

[87] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and
Systems, vol. 100, supplement 1, 1999, pp. 9-34.

[88] L. A. Zadeh, “From imprecise to granular probabilities,” Fuzzy Sets and Systems,
vol. 154, issue 3, 2005, pp. 370-374.

[89] J. Watada, “Trend of fuzzy multivariant analysis in management engineering,”
Springer-Verlag Berlin Heidelberg, LNAI 3682, 2005, pp. 1283-1290.

[90] C. C. Ragin, “Fuzzy-set social science,” The University of Chicago Press, Ltd.,
2000, pp. 203-308.

[91] P. S. Nair and S-C Cheng, “Cliques and fuzzy cliques in fuzzy graphs,” IFSA
World Congress and 20th NAFIPS International Conference, Proceedings, 2001,
pp. 2277-2280.

[92] P. S. Nair and S-C Cheng, “An adequate statistic for the exponentially distrib-
uted censoring data,” Computer Science and Statistics, Proceedings, 2001, pp.

BIBLIOGRAPHY

170

1-4.
[93] J. N. Mordeson and P. S. Nair, “Fuzzy graphs and fuzzy hypergraphs,”

Physica-Verlag Berlin Heidelberg, 2000, pp. 1-81.
[94] X. Wang, T. Schiner, and X. Yao, “Automatic feature-queried bird identification

system based on entropy and fuzzy similarity,” Expert Systems with Applications,
Elsevier B.V., vol. 34, issue 4, 2008, pp. 2879-2884.

[95] A. Pedrycz and M. Reformat, “An optimization of α-cuts of fuzzy sets through
particle swarm optimization,” 2006 Annual Conference of the North American
Fuzzy Information Processing Society, Proceedings, 2006, pp. 57-62.

[96] A. Rosenfeld, “Fuzzy graphs, fuzzy sets and their applications,” In: L. A. Zadeh,
K. S. Fu, M. Shimura (eds), Academic Press, 1975, pp. 77-95.

[97] W. Pedrycz, “Shadowed sets: Representing and processing fuzzy sets,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 28, no. 1, 1998, pp.
103-109.

[98] D. Dubois and H. Prade, “Fuzzy sets and systems: Theory and applications,”
Mathematics in Science and Engineering, Academic Press, Inc., vol. 144, 1980,
pp. 19-80.

[99] V. Stix, “Finding all maximal cliques in dynamic graphs,” Computation Optimi-
zation and Applications, Springer-Verlag Berlin Heidelberg, vol. 27, issue 2,
2004, pp. 173-186.

[100] I. M. Bomze, M. Pelillo, and V. Stix, “Approximating the maximum weight
clique using replicator dynamics,” IEEE Transactions on Neural Networks, vol.
11, issue 6, 2000, pp. 1228-1241.

[101] I. M. Bomze, “Evolution towards the maximum clique,” Journal of Global Op-
timization, vol. 10, issue 2, 1997, pp. 143-164.

[102] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “Handbook of com-
binatorial optimization: The maximum clique problem,” Kluwer Academic Pub-
lishers, supplement vol. A, 1999, pp. 1-74.

[103] W. L. Toffler, A. E. Sinclair, M. S. Darr, D. L. McGinty, K. Commenford, and R.
Goetz, “Using a sociomatrix to evaluate the effectiveness of small-group teach-
ing to residents,” Academic Medicine, vol. 65, no. 10, 1990, pp. 654-655.

[104] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libacher, “DNA solution of the maxi-
mal clique problem,” Science, vol. 278, 1997, pp. 446-449.

[105] L. Kari, Gh. Paun, G. Rozenberg, A. Salomaa, and S. Yu, “DNA computing,
sticker systems, and universality,” Acta Informatica, Springer-Verlag Berlin
Heidelberg, vol. 35, 1998, pp. 401-420.

[106] J. Kleinberg and E. Tardos, “Algorithm design,” Pearson Education, Inc., 2006,
pp. 29-207.

[107] S. Nakano, “NP-completeness: Advanced lecture II, discrete systems engineer-
ing,” Department of Computer Science, Gunma University, 2006, pp. 1-5 in
Japanese.

[108] J. N. Warfield, “Structuring complex systems,” Battelle Monograph, Columbus,
Ohio, no. 4, 1974.

[109] J. N. Warfield, “On arranging elements of a hierarchy in graphic form,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 2, 1973, pp.
121-132.

[110] J. N. Warfield, “Twenty laws of complexity: Science applicable in organiza-

BIBLIOGRAPHY

171

tions,” Systems Research and Behavioral Science, vol. 16, no. 1, 1999, pp. 3-40.
[111] J. N. Warfield, “An introduction to systems science,” World Scientific Publishing

Co. Pte. Ltd., 2006, pp. 38-45.
[112] J. T. Ziegenfuss and C. K. McKenna, “Ten tools of continuous quality improve-

ment: A review and case example of hospital discharge,” American Journal of
Medical Quality, vol. 10, no. 4, 1995, pp. 213-220.

[113] R. Genma, T. Sato, and S. Mizuki, “Apprehension in students decision of seek-
ing counseling services: The analysis of university students’ narratives using KJ
method,” Institute of Human Sciences, Ritsumeikan University, vol. 17, 2008, pp.
47-60.

[114] R. Scupin, “The KJ method: A technique for analyzing data derived from Japa-
nese ethnology,” Human Organization, The Society of Applied Anthropology, vol.
56, no. 2, 1997, pp. 233-237.

[115] N. Souter, “Creative business solutions, breakthrough thinking: Brainstorming
for inspiration and ideas,” Sterling Publishing Co., Inc., 2007, pp. 69-88.

[116] N. Souter, “Creative business solutions, persuasive writing: How to make words
work for you,” Sterling Publishing Co., Inc., 2007, pp. 79-109.

[117] T. Ui, “Decision support and groupware,” Kyoritsu Shuppan Co., Ltd., 2002, pp.
33-58 in Japanese.

[118] E. Kinoshita, “An introduction to management science,” Kindai Kagaku sha Co.,
Ltd., 2001, pp. 215-235 in Japanese.

[119] G. F. Farris, “Executive decision making in organizations: Identifying the key
men and managing the process,” MIT Sloan School Working Paper, no. 551,
1971, pp. 11-16.

[120] R. K. F. Ip and C. Wagner, “Weblogging: A study of social computing and its
impact on organizations,” Decision Support Systems, vol. 45, issue 2, 2008, pp.
242-250.

[121] S. McLaughlin, R. A. Paton, and D. K. Macbeth, “Barrier impact on organiza-
tional learning within complex organizations,” Journal of Knowledge Manage-
ment, vol. 12, issue 2, 2008, pp. 107-123.

[122] X. Munoz, W. Unger, and I. Vrto, “One sided crossing minimization is NP-hard
for sparse graphs,” Graph Drawing, LNCS 2265, Springer-Verlag Berlin Hei-
delberg, 2001, pp. 115-123.

[123] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa, “Crossing minimiza-
tion in linear embeddings of graphs,” IEEE Transactions on Computers, vol. 39,
no. 1, 1990, pp. 124-127.

[124] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Graph drawing: Algo-
rithms for the visualization graphs,” Prentice-Hall, Inc., 1999, pp. 41-325.

[125] D. M. Lee, “Structured decision making with interpretive structural modeling:
Implementing the core of interactive management,” Sorach Inc., 2007, pp. 2-11.

[126] D. W. Malone, “An introduction to the application of interpretive structural
modeling,” Proceedings of the IEEE, vol. 63, issue 3, 1975, pp. 397-404.

[127] O. Bastert and C. Matuszewski, “Layered drawings of digraphs,” Drawing
Graphs, LNCS 2025, Springer-Verlag Berlin Heidelberg, 2001, pp. 87-120.

[128] C. Matuszewski, R. Schonfeld, and Paul Molitor, “Using sifting for k-layer
straightline crossing minimization,” Graph Drawing, LNCS 1731,
Springer-Verlag Berlin Heidelberg, 1999, pp. 217-224.

BIBLIOGRAPHY

172

[129] M. Junger, E. K. Lee, P. Mutzel, and T. Odenthal, “A polyhedral approach to the
multi-layer crossing minimization problem,” Graph Drawing, LNCS 1353,
Springer-Verlag Berlin Heidelberg, 1997, pp. 13-24.

[130] F. Shahrokhi, O. Sykora, L. A. Szekely, and I. Vrto, “Bipartite crossing numbers
of meshes and hypercubes,” Graph Drawing, LNCS 1353, Springer-Verlag Ber-
lin Heidelberg, 1997, pp. 37-45.

[131] T. Biedl, F. J. Brandenburg, and X. Deng, “Crossings and permutations,” Graph
Drawing, LNCS 3843, Springer-Verlag Berlin Heidelberg, 2005, pp. 1-12.

[132] M. R. Garey and D. S. Johnson, “Crossing number is NP-complete,” SIAM
Journal on Algebraic and discrete methods, vol. 4, issue 3, 1983, pp. 312-316.

[133] Japan Industrial Management Association, “Handbook of industrial manage-
ment,” Maruzen Co., Ltd., 1994, pp. 639-650 in Japanese.

[134] J. Thakkar, A. Kanda, and S. G. Deshmukh, “Interpretive structural modeling of
IT-enablers for Indian manufacturing SMEs,” Information Management &
Computer Security, vol. 16, issue 2, 2008, pp. 113-136.

[135] T. Watanabe, J. Watada, and K. Oda, “Hierarchical decision making in strategic
investment by a Boltzmann machine,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 7, issue 4, 1999, pp. 429-437.

[136] K. Levitz and H. Levitz, “Logic and Boolean algebra,” Barron’s Educational
Series, Inc., 1979, pp. 1-20.

[137] G. Paun, “On the splicing operation,” Discrete Applied Mathematics, vol. 70,
issue 1, 1996, pp. 57-79.

[138] T. A. Brown, “Gene cloning and DNA analysis: An introduction, fifth edition,”
Wiley-Blackwell, 2008, pp. 54-86.

[139] W. Pedrycz, “A dynamic data granulation through adjustable fuzzy clustering,”
Pattern Recognition Letters, Elsevier B. V., vol. 29, issue 16, 2008, pp.
2059-2066.

[140] W. Pedrycz, “Fuzzy set technology in knowledge discovery,” Fuzzy Sets and
Systems, Elsevier B. V., vol. 98, issue 3, 1998, pp. 279-290.

[141] X. Zhu and X. Wu, “Cost-constrained data acquisition for intelligent data prepa-
ration,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11,
2005, pp. 1542-1556.

[142] Z. Pawlak, “Rough sets,” International Journal of Computer and Information
Sciences, vol. 11, no. 5, 1982, pp. 341-356.

[143] R. Slowinski, “Intelligent decision support: Handbook of application and ad-
vances of the rough sets theory” Kluwer Academic Publishers, 1992, pp.
363-372.

[144] J. W. Grzymala-Busse, “A comparison of tree strategies to rule induction from
data with numerical attributes,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 82, issue 4, 2003, pp. 132-140.

[145] J. W. Grzymala-Busse and T. Soe, “Partition triples: A tool for reduction of data
sets,” Journal of Computer and System Sciences, vol. 53, no. 3, 1996, pp.
575-582.

[146] W. Ziarko, “Variable precision rough set model,” Journal of Computer and Sys-
tem Sciences, vol. 46, issue 1, 1993, pp. 39-59.

[147] A. Skowron and C. Rauszer, “The discernibility matrices and functions in in-
formation systems,” Intelligent Decision Support: Handbook of Application and

BIBLIOGRAPHY

173

Advances of the Rough Sets Theory, Kluwer Academic Publishers, 1992, pp.
331-362.

[148] N. Shan and W. Ziarko, “Data-based acquisition and incremental modification of
classification rules,” Computational Intelligence, vol. 11, issue 2, 1995, pp.
357-370.

[149] L. Polkowski, “Advances in soft computing: Rough sets,” Physica-Verlag Hei-
delberg, 2002, pp. 18-45.

[150] J. F. Peters and A. Skowron, “Zdzisław Pawlak life and work (1926-2006),” In-
formation Sciences, vol. 177, 2007, pp. 1-2.

[151] Z. Pawlak, “Rough classification,” International Journal of Man-Machine Stud-
ies, vol. 20, issue 5, 1984, pp. 469-483.

[152] Z. Pawlak, S. K. M. Wong, and W. Ziarko, “Rough sets: Probabilistic versus de-
terministic approach,” International Journal of Man-Machine Studies, vol. 29,
issue 1, 1988, pp. 81-95.

[153] J. F. Peters and A. Skowron, “Transactions on rough sets VI,” Springer-Verlag
Berlin Heidelberg, 2007, pp. 351-396.

[154] R. J. Slater, “Experiments in molecular biology” The Humana Press Inc., 1986,
pp. 63-67.

[155] J. A. Rose, R. J. Deaton, M. Hagiya, and A. Suyama, “Coupled equilibrium
model of hybridization error for the DNA microarray and tag-antitag systems,”
IEEE Transactions on NanoBioscience, vol. 6, no. 1, 2007, pp. 18-27.

[156] P. J. Smith and C. J. Jones, “DNA recombination and repair” Oxford University
Press, 1999, pp. 112-129.

[157] T. A. Brown, “Essential molecular biology, second edition” Oxford University
Press, 2000, vol. 1, pp. 143-150.

[158] A. Agnetis, M. Flamini, G. Nicosia, and A. Pacifici, “A job shop problem with
one additional resource type” Roma Tre University Report, no. 163, 2010, pp.
1-24.

[159] H. Nakanishi and E. Tomita, “A computational complexity for finding a maxi-
mum clique in a graph with maximum degree 4” National Institute of Informat-
ics, no. 107(127), 2007, pp. 1-7 in Japanese.

[160] M. Siebenhaller and M. Kaufmann, “Drawing activity diagrams” The 2006 ACM
Symposium on Software Visualization, 2006, pp. 1-17.

[161] Z.-Y. Xu, B. Yang, W.-H. Shu, and B.-R. Yang “Efficient algorithm for attribute
reduction of incomplete information systems based on assignment matrix” Fuzzy
Information and Engineering, Springer-Verlag Berlin Heidelberg, 2009, vol. 2,
AISC 62, pp. 787-796.

LIST OF PUBLICATIONS

174

List of Publications

Refereed International Journals

1. Ikno Kim and Junzo Watada, “A Molecular Computational Approach to Solving a
Work Centre Sequence-Oriented Manufacturing Problem of Classical Job Shop
Scheduling,” International Journal of Unconventional Computing, Old City Pub-
lishing, Inc., to appear, 2011.

2. Ikno Kim and Junzo Watada, “Combining Biological Computation and
Fuzzy-Based Methods for Organisationally Cohesive Subgroups,” International
Journal of Unconventional Computing, Old City Publishing, Inc., Vol. 6, No. 3-4,
pp. 285-300, 2010.

3. Ikno Kim and Junzo Watada, “Decision Making with an Interpretive Structural
Modeling Method Using a DNA-Based Algorithm,” IEEE Transactions on Nano-
Bioscience, IEEE Publishing, Vol. 8, No. 2, pp. 181-191, 2009.

4. Ikno Kim, Junzo Watada and Witold Pedrycz, “A DNA-Based Algorithm for Ar-
ranging Weighted Cliques,” Simulation Modelling Practice and Theory, Elsevier
B.V., Vol. 16, Issue 10, pp. 1561-1570, 2008.

5. Ikno Kim, Junzo Watada and Ichiro Shigaki, “A Comparison of Dispatching Rules
and Genetic Algorithms for Job Shop Schedules of Standard Hydraulic Cylinders,”
Soft Computing, Springer-Verlag Berlin Heidelberg, Vol. 12, No. 2, pp. 121-128,
2008.

6. Don Jyh-Fu Jeng, Ikno Kim and Junzo Watada, “Bio-Soft Computing with
Fixed-Length DNA to a Group Control Optimization Problem,” Soft Computing,
Springer-Verlag Berlin Heidelberg, Vol. 12, No. 3, pp. 223-228, 2008.

7. Don Jyh-Fu Jeng, Ikno Kim and Junzo Watada, “Bio-Inspired Evolutionary Method
for Cable Trench Problem,” International Journal of Innovative Computing, Infor-
mation and Control, ICIC International, Vol. 3, No. 1, pp. 111-118, 2007.

8. Ikno Kim, Don Jyh-Fu Jeng and Junzo Watada, “Redesigning Subgroups in a Per-
sonnel Network Based on DNA Computing,” International Journal of Innovative
Computing, Information and Control, ICIC International, Vol. 2, No. 4, pp. 885-896,
2006.

Refereed International Conferences, Proceedings

1. Ikno Kim and Junzo Watada, “A Novel Concept of Applying DNA Features to an
Intractable Scheduling Problem in Controlling Process-Focused Manufacturing,”
2011 International Conference on Computer Applications and Network Security,
IEEE Publishing, to appear, May 27-29, 2011.

2. Ikno Kim, Yu-Yi Chu and Junzo Watada, “Structuralizing Complex Communica-
tions of Contextual Relations Using a Biological Encoding Method,” World Auto-
mation Congress 2010, TSI Press, pp. IFMIP 99-1-6, September 19-22, 2010.

3. Ikno Kim, Junzo Watada and Jui-Yu Wu, “A DNA Encoding Method to Determine
and Sequence All Cliques in a Weighted Graph,” The 4th International Conference
on Innovative Computing, Information and Control, IEEE Publishing, pp.

LIST OF PUBLICATIONS

175

1532-1537, December 7-9, 2009.
4. Ikno Kim and Junzo Watada, “Determining Workstation Groups in a Fixed Factory

Facility Based on Biological Computation,” Lecture Notes in Computer Science,
Knowledge-Based Intelligent Information and Engineering Systems, Part II, LNAI
5712, Springer-Verlag Berlin Heidelberg, pp. 188-194, September 28-30, 2009.

5. Ikno Kim and Junzo Watada, “A Bio-Inspired Evolutionary Approach to Identifying
Minimal Length Decision Rules in Emotional Usability Engineering,” Lecture
Notes in Computer Science, Knowledge-Based Intelligent Information and Engi-
neering Systems, Part II, LNAI 5712, Springer-Verlag Berlin Heidelberg, pp.
181-187, September 28-30, 2009.

6. Ikno Kim and Junzo Watada, “A Biologically Intelligent Encoding Approach to a
Hierarchical Classification of Relational Elements in a Digraph,” Lecture Notes in
Computer Science, Knowledge-Based Intelligent Information and Engineering
Systems, Part II, LNAI 5712, Springer-Verlag Berlin Heidelberg, pp. 174-180,
September 28-30, 2009.

7. Ikno Kim and Junzo Watada, “Searching Cliques in a Fuzzy Graph Based on an
Evolutionary and Biological Method,” Lecture Notes in Computer Science,
Knowledge-Based Intelligent Information and Engineering Systems, Part II, LNAI
5712, Springer-Verlag Berlin Heidelberg, pp. 166-173, September 28-30, 2009.

8. Ikno Kim and Junzo Watada, “A Hybrid Method of Biological Computation and
Genetic Algorithms for Resolving Process-Focused Scheduling Problems,” Lecture
Notes in Computer Science, Knowledge-Based Intelligent Information and Engi-
neering Systems, Part II, LNAI 5712, Springer-Verlag Berlin Heidelberg, pp.
159-165, September 28-30, 2009.

9. Ikno Kim, Junzo Watada and Don Jyh-Fu Jeng, “Determining Feasible Operating
Schedules for a Job Shop Scheduling Problem Based on Bio-Soft Computing,” The
18th IEEE International Conference on Fuzzy Systems, IEEE Publishing, pp.
1426-1431, August 20-24, 2009.

10. Ikno Kim, Junzo Watada, Jui-Yu Wu and Yu-Yi Chu, “A Novel Biological Compu-
tation Method for Deriving and Resolving Discernibility Relations,” The 9th IEEE
International Conference on Bioinformatics and Bioengineering, IEEE Publishing,
pp. 9-14, June 22-24, 2009.

11. Ikno Kim and Junzo Watada, “Towards a New Medical Decision Support System
with Bio-Inspired Interpretive Structural Modelling,” The 1st International Sympo-
sium on Intelligent Decision Technologies, New Advances in Intelligent Decision
Technologies, Studies in Computational Intelligence 199, Springer-Verlag Berlin
Heidelberg, pp. 459-466, April 23-24, 2009.

12. Ikno Kim and Junzo Watada, “A DNA-Based Clustering Method Based on Statis-
tics Adapted to Heterogeneous Coordinate Data,” The 3rd International Conference
on Complex, Intelligent and Software Intensive Systems, IEEE Publishing, pp.
892-897, March 16-19, 2009.

13. Ikno Kim, Don Jyh-Fu Jeng and Junzo Watada, “Analysis of Cohesive Employees
in Work-Related Values by DNA Molecules,” The 7th International Conference on
Intelligent Technologies, Taipei, Taiwan, pp. 75-78, December 12-15, 2006.

14. Ikno Kim, Don Jyh-Fu Jeng and Junzo Watada, “Analysing the Density of Sub-
groups in Valued Relationships Based on DNA Computing,” Lecture Notes in
Computer Science, Knowledge-Based Intelligent Information and Engineering

LIST OF PUBLICATIONS

176

Systems, Part III, LNAI 4253, Springer-Verlag Berlin Heidelberg, pp. 964-971,
October 9-11, 2006.

15. Don Jyh-Fu Jeng, Ikno Kim and Junzo Watada, “DNA-Based Evolutionary Algo-
rithm for Cable Trench Problem,” Lecture Notes in Computer Science, Knowl-
edge-Based Intelligent Information and Engineering Systems, Part III, LNAI 4253,
Springer-Verlag Berlin Heidelberg, pp. 922-929, October 9-11, 2006.

16. Don Jyh-Fu Jeng, Ikno Kim and Junzo Watada, “Bio-Soft Computing Approach to
Elevator Dispatching Problem,” The 1st International Conference on Innovative
Computing, Information and Control, IEEE Publishing, pp. 244-248, August
30-September 1, 2006.

17. Don Jyh-Fu Jeng, Junzo Watada and Ikno Kim, “Solving a Real Time Scheduling
Problem Based on DNA Computing,” 2005 International Conference on Intelligent
Technologies and Applied Statistics, Taipei, Taiwan, pp. 317-322, June 24-26, 2005.

Book Chapters

1. Ikno Kim and Junzo Watada, “A Fuzzy Density Analysis of Subgroups by Means of
DNA Oligonucleotides,” Intelligent Systems and Technologies, Methods and Ap-
plications, Studies in Computational Intelligence 217, Springer-Verlag Berlin Hei-
delberg, pp. 31-45, 2009.

2. Junzo Watada, Don Jyh-Fu Jeng and Ikno Kim, “Application of DNA Computing to
Group Control of Elevators,” Intelligent Systems, Selected Papers, The Anniversary
Symposium Celebrating 25 Years of the Seminar “Grigore Moisil” and 15 Years of
the Romanian Society for Fuzzy Systems & A. I., Performantica Press, pp. 9-18,
2005.

Invited Lectures and Research Studies

1. Ikno Kim, “Molecular Engineering Experiments, Instrumentation, and Manipula-
tions,” Department of Biochemistry, School of Medicine, Taipei Medical University,
Taipei, Taiwan, February 11, 2009.

2. Ikno Kim, “Biologically Inspired Computing and DNA Computing,” Department of
Electrical and Computer Engineering, University of Alberta, Edmonton, Canada,
May 25, 2006.

