7,083 research outputs found

    Derivation of the out-of-plane behaviour of masonry through homogenization strategies: Micro-scale level

    Get PDF
    Two simple and reliable homogenized models are presented for the characterization of the masonry behaviour via a representative volume element (RVE) defined at a structural level. An FE micro modelling approach within a plate formulation assumption (Kirchhoff-Love and Mindlin-Reissner theory) using Cauchy continuum hypotheses and first-order homogenization theory is adopted. Brick units are considered elastic and modelled through quadrilateral finite elements (FEs) with linear interpolation. Mortar joints are assumed to be inelastic and reduced to zero-thickness interface FEs. A multi-surface plasticity model governs the strength envelope of mortar joints. It can reproduce fracture, frictional slip and crushing along the interface elements, hence making possible the prediction of a stepped, toothed or de-bonding failure pattern of masonry.Validation tests on the homogenized procedures are undertaken to conclude on the correct identification of the elastic stiffness properties, in the ability to reproduce the masonry orthotropic behaviour and the effect of potential pre-compressive states. Furthermore, the approaches are extended to characterize a case study of an English-bond masonry wall. Both the validation and application steps provide excellent results when compared with available experimental and numerical data from the literature. Conclusions on the influence of three-dimensional shear stresses and the effect of potential discontinuities along the thickness direction are also outlined.The two homogenized approaches are, for the running- and English-bond masonry cases, integrated within a FE code. By providing reliable and low computational cost solutions', these are particularly suitable to be combined within multi-scale approaches.This work was supported by FCT (Portuguese Foundation for Science and Technology), within ISISE, scholarship SFRH/BD/95086/2013. This work was also partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT - Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007633

    Affordances and the new political ecology

    Get PDF

    Unravelling textural heterogeneity in obsidian:shear-induced outgassing in the Rocche Rosse flow

    Get PDF
    Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2 km long, 100 m thick, ~ 800 year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: ‘glassy’ obsidian ( 40% vesicles), high aspect ratio, ‘shear banded’ lava (20-40% vesicles) and low aspect ratio, ‘frothy’ obsidian with 30-60% vesicles. Textural heterogeneity is observed on all scales (m to μm) and occurs as the result of strongly localised strain. Magnetic fabric, described by oblate and prolate susceptibility ellipsoids, records high and variable degrees of shearing throughout the flow. Total water contents are derived using both thermogravimetry and infrared spectroscopy to quantify primary (magmatic) and secondary (meteoric) water. Glass water contents are between 0.08 - 0.25 wt.%. Water analysis also reveals an increase in water content from glassy obsidian bands towards ‘frothy’ bands of 0.06 - 0.08 wt.%, reflecting preferential vesiculation of higher water bands and an extreme sensitivity of obsidian degassing to water content. We present an outgassing model that reconciles textural, volatile and magnetic data to indicate that obsidian is generated from multiple shear-induced outgassing cycles, whereby vesicular magma outgasses and densifies through bubble collapse and fracture healing to form obsidian, which then re-vesiculates to produce ‘dry’ vesicular magma. Repetition of this cycle throughout magma ascent results in the low water contents of the Rocche Rosse lavas and the final stage in the degassing cycle determines final lava porosity. Heterogeneities in lava rheology (vesicularity, water content, microlite content, viscosity) play a vital role in the structural evolution of an obsidian flow and overprint flow-scale morphology. Post-emplacement hydration also depends heavily on local strain, whereby connectivity of vesicles as a result of shear deformation governs sample rehydration by meteoric water, a process previously correlated to lava vesicularity alone

    CINEMATIC POLYPHONY IN LUCRECIA MARTEL’S CINEMA: THE MUSICALITY OF NARRATIVE FILM IN ‘THE HEADLESS WOMAN’

    Get PDF
    This paper provides an overview on the concept of musicality in fiction cinema language, under- standing the comparative analysis of both art forms and considering cinema as a potentially musical construction. Furthermore, the exam- ination of polyphonic musical textures and its methodical application in the formal analysis of Lucrecia Martel’s cinema (namely in her 2007 film The Headless Woman) provides a new per- spective on the aesthetical values of the Argen- tinean filmmaker’s work with sound and image, which unveils other forms of assuming fiction film narration

    Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells

    Get PDF
    Laser texturing is a technique that has been increasingly explored for the surface modification of several materials on different applications. Laser texturing can be combined with conventional coating techniques to functionalize surfaces with bioactive properties, stimulating cell differentiation and adhesion. This study focuses on the cell adhesion of laser-sintered coatings of hydroxyapatite (HAp) and 45S5 bioactive glass (45S5 BG) on zirconia textured surfaces using MC3T3-E1 cells. For this purpose, zirconia surfaces were micro-textured via laser and then coated with HAp and 45S5 BG glass via dip coating. Afterwards, the bioactive coatings were laser sintered, and a reference group of samples was conventionally sintering. The cell adhesion characterisation was achieved by cell viability performing live/dead analysis using fluorescence stains and by SEM observations for a qualitative analysis of cell adhesion. The in vitro results showed that a squared textured pattern with 100μm width grooves functionalized with a bioactive coating presented an increase of 90% of cell viability compared to flat surfaces after 48h of incubation. The functionalized laser sintered coatings do not present significant differences in cell viability when compared to conventionally sintered coatings. Therefore, the results reveal that laser sintering of HAp and 45S5 BG coatings is a fast and attractive coating technique.publishe
    • …
    corecore