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Abstract 14 

Two simple and reliable homogenized models are presented for the characterization of the 15 

masonry behaviour via a representative volume element (RVE) defined at a structural level. 16 

An FE micro-modelling approach within a plate formulation assumption (Kirchhoff-Love and 17 

Mindlin-Reissner theory) using Cauchy continuum hypotheses and first-order homogenization 18 

theory is adopted. Brick units are considered elastic and modelled through quadrilateral finite 19 

elements (FEs) with linear interpolation. Mortar joints are assumed to be inelastic and reduced 20 

to zero-thickness interface FEs. A multi-surface plasticity model governs the strength envelope 21 

of mortar joints. It can reproduce fracture, frictional slip and crushing along the interface 22 

elements, hence making possible the prediction of a stepped, toothed or de-bonding failure 23 

pattern of masonry. 24 

Validation tests on the homogenized procedures are undertaken to conclude on the correct 25 

identification of the elastic stiffness properties, in the ability to reproduce the masonry 26 

orthotropic behaviour and the effect of potential pre-compressive states. Furthermore, the 27 

approaches are extended to characterize a case study of an English-bond masonry wall. Both 28 

the validation and application steps provide excellent results when compared with available 29 

experimental and numerical data from the literature. Conclusions on the influence of three-30 

dimensional shear stresses and the effect of potential discontinuities along the thickness 31 

direction are also outlined. 32 

The two homogenized approaches are, for the running- and English-bond masonry cases, 33 

integrated within a FE code. By providing reliable and low computational cost solutions’, these 34 

are particularly suitable to be combined within multi-scale approaches. 35 
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1 Introduction 36 

The analysis of the masonry behaviour in terms of strength and deformation modes is still a 37 

challenge. Such complexity arises from: (i) the material heterogeneity, because of the 38 

staggering between units and mortar joints; (ii) the non-linearity of the material components; 39 

and (iii) the existence of planes of weakness which tend to govern the behaviour and damage, 40 

because mortar joints are typically less stiff and less resistant than block units [1]. 41 

Advanced computational methodologies are being developed and constitute important tools for 42 

the analysis of masonry structures [2]. Approaches such as the discrete element method are 43 

quite accurate for the study of dry or weak mortar masonry structures and examples of its 44 

application can be seen in [3,4]. These follow a large deformations formulation and with a 45 

contact updating between block units, which can be rather rigid or deformable. Yet, conducting 46 

a dynamic analysis within a 3D problem demands high processing times. Other advanced 47 

numerical strategies, such the ones based on the finite element (FE) method are still receiving 48 

more attention from the scientific community, being commonly designated as: (i) the direct 49 

simulation or the micro-modelling approach, where units and joints are represented 50 

individually; (ii) the macro-modelling approach, where masonry is represented as a 51 

homogeneous material; and (iii) the multi-scale computational approach. The reader is referred 52 

to [2] for a comprehensive overview of such strategies. 53 

The approach proposed in this paper belongs to the so-called multi-scale methods based on the 54 

homogenization theory. Homogenization is basically an averaging procedure performed at a 55 

micro-scale upon a Representative Volume Element (RVE). On the RVE, a Boundary Value 56 

Problem (BVP) is formulated allowing an estimation of the expected average response to be 57 

used as constitutive relations at a macro-level. This framework has been used to investigate the 58 

behaviour of composites with different natures [5–11] but is also useful for the study of 59 

masonry structures [12–18]. Homogenization theory seems the most efficient compromise 60 
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between micro- and macro-modelling. The use of such an approach is appealing because it 61 

allows deriving the macro-behaviour of masonry through the micro-scale characterization and 62 

thus considering its texture, components properties and expected micro-failure modes. In this 63 

way, the computational burden (in terms of CPU) is significantly reduced if compared with a 64 

fully micro-mechanical description of the material, as demonstrated in [19]. 65 

The multi-scale finite element computational homogenization methods, see [5,7,10,20–23], 66 

typically rely on a micro and macro transition of information and are thus designated as two-67 

scale or FE2 approaches. The classical models are based on a first-order homogenization 68 

scheme and, as its formulation relies on the first gradient of the kinematics field, two main 69 

limitations may arise. The first is related to the principle of separation of scales, which enforces 70 

the assumption of uniformity upon the macroscopic fields attributed to each RVE. It is known 71 

that in macro-regions where high deformation gradients are present, the latter assumption is 72 

not totally effective. The second limitation arises from the fact that the lengths of the two scales 73 

are not intrinsically considered on this classical formulation and, therefore, mesh-sensitivity 74 

issues and loss of ellipticity of the equilibrium [24] tend to appear when softening behaviour 75 

of the material is present [25]. The latter demands a regularization process, for instance upon 76 

the fracture energy terms [26,27], to guarantee the problem objectivity. In this scope, several 77 

extensions of this method were developed trying to overcome these issues. Some authors 78 

extended the classical method to a second-order homogenization [28,29], in which the 79 

constitutive behaviour is derived from both the classic part and a higher gradient part and thus, 80 

linking the length scales. Other researchers developed techniques that possibly permit the 81 

enrichment of the kinematical constraints but still allowing for the use of classical constitutive 82 

forms. This is achieved preferably through the use of Cosserat continuum models [30–32]. The 83 

well-posedness of the macroscale solution is thus achieved independently of the used mesh, 84 

even if the assumption of the separation of scales is lost.  85 
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The main advantages of the classical FE2 approaches are twofold: (i) flexibility on the method 86 

to be used at a micro-scale, which can be based on the FE-method [10], Fourier series [33,34], 87 

on Voronoi method [20] among others; (ii) it does not require any macro-constitutive relation, 88 

because the macro-behaviour is totally dependent on the homogenized response derived on the 89 

foregoing scale. Nevertheless, the classical FE2 approaches (in particular the full continuum-90 

FE methods) are still a challenge in the non-linear range [19,25]. The advantages are especially 91 

obvious when linear elastic behaviour is assumed but obtaining a micro-scale solution at each 92 

load step for each Gauss point may turn the problem prohibitive from a computational point of 93 

view. These strategies still have a higher computational cost if compared with a macro-94 

modelling one. So, the authors believe that if one intends to use homogenization strategies for 95 

the study of large or more complex structures, the development of techniques to speed up the 96 

processing running times is critical. 97 

Some assumptions may be undertaken which can significantly reduce the computational cost 98 

of an FE2 approach. The use of homogenization methods based on the unit-cell theory, first 99 

proposed in the elastic range by Hashin & Rosen [35] and in the nonlinear range by Teply & 100 

Dvorak [36] through the use of the so-called hexagonal array model, is a possibility. In these 101 

methods (see [37]), closed-form expressions are derived at a micro-scale from both equilibrium 102 

and compatibility conditions at the RVE. After being solved or formulated these can provide 103 

the homogenized quantities or describe phenomenologically the constitutive equations at a 104 

macro-scale, see [17,38,39]. The use of closed-formed solutions is, however, not so feasible in 105 

the non-linear range, in complex loading cases or in cases where geometrical and physical 106 

changes can occur. Another strategy is the use of the so-called adaptive multi-scale methods 107 

[40–42], which take advantage of the best of the first-order theory and micro-modelling 108 

approach. A first-order homogenized model represents initially the masonry behaviour until a 109 

threshold criterion is reached. Such criterion may be able to account for the onset of damage 110 
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propagation or another high-gradient source. After reaching the threshold, the area of interest 111 

is replaced and kept by an explicit microstructural description able to represent the high 112 

localized deformation without the ill-posedness of the first-order theory, see [42] for the 113 

masonry field application. These numerical models could be a valuable tool due to its 114 

computational attractiveness. Many current studies on unreinforced masonry focus on in-plane 115 

cases and for quasi-static loading of running-bond masonry and, therefore, more research is 116 

required on structural models with other masonry texture and loading conditions, as out-of-117 

plane loads or seismic excitations. 118 

Besides the assumptions undertaken at a micro-scale, there is also the possibility of using 119 

simplified but still accurate methods that can be implemented at a macro-scale. The integration 120 

of these models within a micro- to macro- homogenized formulation, i.e. where the material 121 

constitutive information is transferred in one step from the micro- to the macro-scale, can be 122 

very promising especially for the dynamic study of masonry structures. In fact, some proposals 123 

can be found in the literature, for instance, the use of limit analysis [43], or the use of 124 

discontinuous or discrete FE-models instead of the classical macroscale continuum-FE 125 

strategies. Several works demonstrate its accuracy and computational efficiency when applied 126 

to in-plane [43] and out-of-plane loaded masonry [31,44–46] but, as well, for masonry 127 

structures subjected to dynamic loads [27,47]. The application of these methods is questionable 128 

in cases where multiphase couplings may occur, as when thermal or hydro-mechanical effects 129 

may exist. Still, the latter can be disregarded to occur in structural oriented problems. 130 

From the above considerations, the general aim of the present study is to formulate two unit-131 

cell homogenized models. For the sake of avoiding a full three-dimensional discretization of 132 

the masonry, both homogenized strategies follow plate (but different) element formulations. 133 

Its validation is conducted considering experimental and numerical data available in the 134 

literature.  135 
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oriented for both in- and out-of-plane analysis of unreinforced periodic masonry structures 136 

which may be linked with a proper macro-scale model. 137 

The majority of the existing research on masonry deals with running-bond texture within a 138 

single-wythe walls case [12,17,18,39,48–50], being the study of English-bond textures 139 

somehow under-investigated [47,51]. The novelty of this work is to present two homogenized-140 

based models oriented for both in- and out-of-plane analysis of English-bond masonry 141 

structures. Due to its formulation differences, conclusions on the influence of three-142 

dimensional shear stresses and the effect of discontinuities/transversal joints along the masonry 143 

thickness can be drawn. In the analysis, both linear and non-linear ranges are accounted, in 144 

which masonry orthotropy and full softening behaviour are reproduced (material nonlinearity 145 

lumped on mortar joints).  146 

At last, it may be addressed that the procedures are fully integrated within the commercial 147 

software DIANA [52] by exploiting its programming features. These are ready to be combined 148 

with a FE2 approach but, noticing the raised issues of full FE-continuum homogenized 149 

strategies, especially suitable to be linked with a discrete-FE macro model aiming to obtain 150 

reliable results with a quite attractive computational cost. 151 

2 Outline of the approach proposed 152 

Retrieving models at a micro-scale which are both accurate and implementable on simplified 153 

two-step procedures is of most importance. On this behalf, two micro-scale homogenized 154 

models based on the theory of plates are presented aiming at the characterization of the 155 

behaviour of masonry at a cell level. The accuracy of the results is evaluated through the out-156 

of-plane quantities only. Since the in-plane behaviour of the elementary cell is intrinsically 157 

considered to derive such quantities, these are not detailed to avoid redundancy. 158 

Three main steps compose the classical procedure of a first-order homogenization scheme 159 

[16,53]: (i) the definition and solution of the micro-scale problem; (ii) the micro-to-macro 160 
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transition; and (iii) the macro-scale problem solution. The present study focuses on the micro-161 

level, being the formulation and solution of the microscopic problem herein presented. Thus, 162 

the macro-quantities which serve as input to solve the microscopic problem are considered as 163 

known in the theoretical formulation, as depicted in Figure 1. The general homogenization 164 

principles followed are exposed next. After the micro-mechanical model's presentation, their 165 

validation on linear and nonlinear ranges are discussed for running bond-masonry and extended 166 

to a case study of an English-bond masonry wall. 167 

 168 

Figure 1 – Work-flow of the proposed unit-cell homogenized models. 169 

3 Microscopic boundary value problem 170 

The theoretical background for the development of the homogenized models is presented in 171 

what follows and directly applicable. The numerical models rely on a direct homogenization 172 

approach, which involves solving a micro-mechanical problem at a micro-scale and deriving 173 

average field variables. This information is then carried out to the macro-scale to constitutively 174 

describe the behaviour of the structure.  175 

The definition of a proper RVE is essential, as it may be statistically representative of the body 176 

under study. It may accurately embody the heterogeneities of the material and be with a scale 177 

length sufficiently small to guarantee the validity of a first-order multi-step procedure. In the 178 

case of regular masonry, as running or English bond textures, periodicity is observed both at 179 

the micro- and macro-scales. When masonry components do not follow a random distribution 180 
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but instead a periodic one, it is possible to define only one RVE. The RVE will be discussed 181 

next for each considered texture and is herein denoted as Ω𝑚. 182 

The kinematical description of the homogenized based-models for the in-plane case relies on 183 

the assumption that the macroscopic strain tensor 𝚬 is obtained as the volume average of the 184 

microscopic strain field 휀𝑚 = 휀𝑚(𝑦) at each point over the associated RVE: 185 

𝚬 =
1

𝑉𝑚
∫ 𝛆𝒎Ω𝑚

𝑑V       (1) 186 

where 𝑉𝑚 is the volume of the RVE. The microscopic strain field can be decomposed into a 187 

macro-scale and micro-scale contribution. The latter is referred as an additive decomposition 188 

of the microscopic strain tensor 𝛿𝜺𝒎 = 𝛿𝜺𝒎(𝑦), given as reads: 189 

𝛿𝜺𝒎 = 𝛿𝚬 + ∇𝑠𝑢𝑚       (2) 190 

where 𝛿𝚬 is the applied constant strain tensor over the RVE and ∇𝑠𝑢𝑚 is the gradient of the 191 

fluctuation displacement field. Bearing that 𝝈𝑚 is the microscopic stress field, upon RVE 192 

equilibrium, the homogenized generalized stress can be derived. The Hill-Mandell principle is 193 

based on an energetic equivalence between the macroscopic and microscopic work and allows 194 

to address the following relation: 195 

𝚺: δ𝚬 =
1

𝑉𝑚
∫ 𝛔𝑚: δ𝜺𝒎Ω𝑚

𝑑Ω     (3) 196 

which, according to the assumed additive decomposition of the microscopic strain tensor of 197 

Eq. (2), the macro-homogeneity principle reads as: 198 

𝚺: δ𝚬 =
1

𝑉𝑚
∫ 𝛔𝑚: δ𝚬

Ω𝑚
𝑑Ω +

1

𝑉𝑚
∫ 𝛔𝑚: ∇𝑠𝛿𝑢𝑚Ω𝑚

𝑑Ω    (4) 199 

for any kinematical admissible 𝛿𝑢𝑚. Periodic boundary conditions are assumed to solve the 200 

BVP. Such consideration is extensively found in homogenization procedures [54], also for the 201 

particular case of masonry structures [19,55,56]. The periodic boundary conditions lead to a 202 

kinematical field that enforces anti-periodicity of the tractions to occur. The latter is depicted 203 
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in Figure 2a for the mode-I and horizontal bending mode, which can be mathematically 204 

described for any pair of {𝜕Yx
−, 𝜕Yx

+}  ∈  𝑑Ω𝑚 as: 205 

ũ0,m(𝜕Yx
+, t) = ũ0,m(𝜕Yx

−, t) , for the in-plane mode-I 206 

w̃0,m(𝜕Yx
+, t) = w̃0,m(𝜕Yx

−, t) , for the horizontal bending of a Kirchhoff-plate theory   (5) 207 

θ̃m(𝜕Yx
+, t) = θ̃m(𝜕Yx

−, t) , for the horizontal bending of a Mindlin-plate theory   208 

Due to the periodicity of the displacement fluctuations on the boundaries, the minimal 209 

kinematic constraint required to obtain an admissible microscopic generalized displacement 210 

fluctuation is given by Eq. 6: 211 

∫ ∇𝑠𝛿𝑢𝑚Ω𝑚
𝑑Ω = 0       (6) 212 

In this way, Eq. 4 can be simplified and expressed as: 213 

𝚺: δ𝚬 =
1

𝑉𝑚
∫ 𝛔𝑚: δ𝚬

Ω𝑚
𝑑Ω,    ∀δε      (7) 214 

Thus, the corollary of the Hill-Mandell principle is that the homogeneous macroscopic stress 215 

tensor 𝛔 can be written as the volume average of the microscopic stress field 𝛔𝑚 = 𝛔𝑚(𝑦) over 216 

the RVE: 217 

𝚺 =
1

𝑉𝑚
∫ 𝛔𝑚Ω𝑚

𝑑Ω       (8) 218 

The variational principle and the use of periodic boundary conditions allow concluding that the 219 

external surface traction and body force field in the RVE are reactive terms over the imposed 220 

kinematical conditions. These kinematical boundary conditions are dependent on the 221 

deformational modes considered on the micro-mechanical level. Thus, the in-plane static 222 

equilibrium of the RVE is reached, for each kinematic constraint considered, without any 223 

external surface traction and body force terms. The variational principle holds when accounting 224 

for the out-of-plane quantities to assure the energy consistency between scales. The difference 225 

lies in the replacement of generalized stresses through moment and force terms, as seen in 226 

Eq.(9): 227 
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𝐍: δ𝚬 + 𝐌: δ𝛘 =
1

𝑉𝑚
∫ 𝛔𝑚δ𝜺𝒎V𝑚

𝑑𝑉𝑚     (9) 228 

Where N, M and 𝛘 are the macroscopic membrane force, bending moment and curvature 229 

tensors, respectively and 𝛘 is given by Eq. 10: 230 

𝛘 = −
1

𝑉𝑚
∫ 𝑢𝑧Ω𝑚

𝑑V      (10) 231 

Note that 𝑢𝑧 is the projection of the out-of-plane displacement vector defined by the periodic 232 

constraints applied to the RVE. Likewise, if one wants to consider the out-of-plane shear 233 

contribution, the term 𝐓δ𝛄 may be added to the left-hand side of the variational principle of 234 

Eq. 8, where 𝐓 is the macroscopic transverse shear force tensor and 𝛄 the transverse shear strain 235 

vector. 236 

 237 

Figure 2 – Representation of the boundary conditions imposed at a micro-scale on a fictitious 238 

RVE with double-symmetry: (a) for the in-plane mode-I and (b) for the horizontal bending 239 

deformational mode. 240 

4 Nonlinear unit-cell homogenized models 241 

The classical first-order homogenization theory is extended to develop two micro-242 

mechanical models within a strain-driven formulation. Both models have been developed in 243 

DIANA by exploiting the software programming capabilities [52] and making use of the 244 

available FE library and constitutive material models. A python script has been developed to 245 



 

11 

provide a fully automatic procedure for the modelling, processing and post-processing stages. 246 

The proposed homogenized procedures try to cover three features: (i) be capable of studying a 247 

representative volume element (RVE) of a given periodic masonry texture; (ii) be accurate on 248 

estimating its microscopic linear and nonlinear behaviour, in terms of deformation, stresses 249 

and damage propagation; (iii) be adaptable to a FE2 approach with the aim of estimating the 250 

macro-behaviour of a given structure. 251 

The numerical strategies that adopt FE-homogenization schemes typically consider the use of 252 

direct numerical simulations. The use of plate models based on a Plane-Stress theory for 253 

membrane loading and within a Kirchhoff-Love or Mindlin-Reissner plate theory for out-of-254 

plane load cases may be very attractive [18,19,26,51,57]. These strategies allow reducing the 255 

RVE three-dimensional problem to a two-dimensional one, in which the middle plane of the 256 

plate 𝜔 is considered, and thus obtaining solutions with significant lower computational 257 

processing times. However, assuming the media as an infinitely thin membrane may not be the 258 

best procedure for problems where three-dimensional shear effects may play an important role. 259 

Likewise, if discontinuities are present along the thickness direction (as it is the case of an 260 

English masonry bond), considering the material to be homogeneous over the thickness is not 261 

so representative. In this context, this study tries to give a contribution about the range of 262 

validity of the latter framework and if these can replace a full component description of the 263 

material. 264 

To accomplish it, two homogenized–based approaches are presented in what follows for the 265 

in- and out-of-plane behaviour characterization. One derives from the Kirchhoff-Love and the 266 

other from the Mindlin-Reissner plate theory, see Figure 3. For the sake of conciseness, these 267 

models will be designated hereafter as KP and MP model, respectively, and a brief exposition 268 

of the key features will be presented only. For extended details on the theoretical background 269 

regarding the plates kinematics and constitutive response, the reader is referred to [58–60]. 270 
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Both KP and MP models are geometrical linear, meaning that the reference plane remains with 271 

the initial relative configuration. Instead, material nonlinearity (and cracking) is considered.  272 

4.1 The Kirchhoff-Love plate KP homogenized model 273 

The KP model assumes that at the micro-scale level masonry behaves as a planar 2D 274 

continuum, according to a Kirchhoff-Love plate. This is driven by the assumption that the plane 275 

section remains normal and straight in relation to the deformed reference plane. The out-of-276 

plane displacement does not vary in the thickness direction and it is assumed that the out-of-277 

plane direct stress component 𝜎𝑧𝑧 is negligible. Such hypothesis follows the plane-stress 278 

condition. The KP model is thus based on a decoupled characterization between the membrane 279 

and bending behaviour, achieved respectively through a plane-stress coupled with a Kirchhoff 280 

plate bending model. 281 

The generalized displacement vector for a point of the plate is given as 𝑢 = [𝑢𝑥 𝑢𝑦 𝑢𝑧] 𝑇, 282 

where 𝑢𝑥 , 𝑢𝑦 are the in-plane and 𝑢𝑧 the out-of-plane displacement quantity. The normal strains 283 

휀𝑧 are negligible and disregarded. The terms 𝜃𝑥 and 𝜃𝑦 are rotations about the global coordinate 284 

system. Basically, according to the elasticity theory, the vector with the unknown quantities of 285 

the associated strains is given by 휀 = [휀𝑥𝑥 휀𝑦𝑦 𝛾𝑥𝑦 𝜅𝑥𝑥 𝜅𝑦𝑦 𝜅𝑥𝑦]𝑇. Here, the in-plane 286 

strains are defined by 휀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
, 휀𝑦𝑦 =

𝜕𝑢𝑦

𝜕𝑦
, 𝛾𝑥𝑦 =

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
 and the curvature terms of the 287 

deflected reference mid-plane as 𝜅𝑥𝑥 =
𝜕𝜃𝑦

𝜕𝑥
, 𝜅𝑦𝑦 =

𝜕𝜃𝑥

𝜕𝑦
, 𝜅𝑥𝑦 =

𝜕𝜃𝑦

𝜕𝑦
−

𝜕𝜃𝑥

𝜕𝑥
, see Figure 3a. The 288 

transverse shear strains are neglected being 휀𝑧𝑧, 𝛾𝑥𝑧 , 𝛾𝑦𝑧 = 0. The constitutive relation of the 289 

homogeneous equivalent material of the RVE is obtained for each deformational in-plane mode 290 

considered (Figure 3b), i.e. for the tension (mode-I), in-plane shear (mode-II) and compression 291 

(mode IV). 292 

The condition of null out-of-plane shear strains 𝛾𝑥𝑧 and 𝛾𝑦𝑧 imposed by the Kirchhoff plate 293 

theory leads to disregarding their effect on the resultant moments. However, the out-of-plane 294 
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shear forces Qx and Qy are not totally omitted once their contribution is implicitly necessary to 295 

fulfil the equilibrium equation of the plate. This highlights why the comparison is performed 296 

in terms of coupled stresses-curvature relations. 297 

 298 
Figure 3 – (a) General assumptions and deformational modes considered for the comparative 299 

study between the unit cell homogenization procedures. (b) A brief description of the 300 

Kirchhoff-Love and Mindlin-Reissner plate elements and the deformational modes assumed. 301 

4.2 The Mindlin-Reissner plate MP homogenized model 302 

It is well known that in cases where the structure follows a planar behaviour or when the 303 

thickness is not relevant (usually referred as 1/10 of the structural dimension), analysing the 304 

problem within a two-dimensional approach as the thin plate theory is feasible. Nevertheless, 305 

for an out-of-plane loading and in presence of a thick or moderately thick structural element, 306 

an enrichment of the latter theory is necessary [58–61]. Such observations are drawn upon a 307 

macro-scale level, as for instance [51,61] for the behaviour of masonry structures. 308 

(a)

(b)
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Nevertheless, the investigation of the difference between a three-dimensional model and two-309 

dimensional one (as are the KP and MP models) is still lacking at a micro-scale. Even if the 310 

analyses are performed at different scales, the physical behaviour is the same and thus identical 311 

conclusions are expected. Still, the authors intend to carry such study to investigate the 312 

difference between strategies due to the presence of three-dimensional effects. 313 

In this scope, a strategy based on the first-order shear deformation theory is presented (MP 314 

model) which allows including three-dimensional effects, even if in a simplified manner 315 

through the out-of-plane shear components and, consequently, increasing both the results 316 

accuracy for thick and moderately thick plates with less computational cost than a three-317 

dimensional approach. 318 

Similarly, the membrane behaviour follows a plane-stress element formulation, yet the primary 319 

stresses are derived through moments and forces rather than Cauchy stresses. The bending 320 

behaviour is decoupled from the latter and follows here the Mindlin-Reissner theory. The in-321 

plane strain quantities (휀𝑥𝑥, 휀𝑦𝑦, 𝛾𝑥𝑦) vary in a linear way through the masonry thickness and 322 

the transverse shear strains are not disregarded and are derived as 𝛾𝑥𝑧 =
𝜕𝑢𝑧

𝜕𝑥
+ 𝜃𝑦 ;  γ𝑦𝑧 =

𝜕𝑢𝑧

𝜕𝑦
−323 

𝜃𝑥. Such quantities vary in a parabolic way over the thickness but, for numerical convenience, 324 

are assumed as constant within the classical adjustment approach [59]. A shear correction 325 

factor equal to 𝑆𝑟 = 1.2 affects these quantities, in which the equivalent constant shear stress 326 

diagrams have an approximate shear strain energy with the actual parabolic behaviour on the 327 

area under reference. So, the generalized strain vector is composed by eight unknown 328 

parameters in which the microscopic generalized displacement fluctuation field is decomposed 329 

in the membrane, bending and out-of-plane shear components. 330 

For both KP and MP models, the aforementioned homogenization technique is followed and, 331 

by solving the internal static RVE equilibrium using a classical FE-procedure, the homogenized 332 

 and  quantities derived. Furthermore, the macro-stress couples are obtained by through-the-333 
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thickness integration of the homogeneous macro-stresses according to Eq. (11). The numerical 334 

integration is performed accounting only the mid-plane reference surface . 335 

The obtained homogenized moment-curvature relations are defined per unit of length and so, 336 

if one intends to proceed with the micro-macro transition, a regularization step is required 337 

considering the macroscale mesh adopted. 338 

𝑀𝑥𝑥 = ∫ 𝝈𝑚,𝑥𝑥𝑧 𝑑𝑧
𝑧

2⁄

−𝑧
2⁄

 ;  𝑀𝑦𝑦 = ∫ 𝝈𝑚,𝑦𝑦𝑧 𝑑𝑧
𝑧

2⁄

−𝑧
2⁄

 ;  𝑀𝑥𝑦 = ∫ 𝝈𝑚,𝑥𝑦𝑧 𝑑𝑧
𝑧

2⁄

−𝑧
2⁄

   (11) 339 

4.3 RVE definition and FE-modelling assumptions 340 

The definition of the RVE being analysed at a micro-scale (within a two-step procedure) is 341 

required. It is generally accepted that the RVE may be statistically representative of the macro-342 

scale level. It may contain a sufficient number of heterogeneities which possibly reproduce 343 

well the macro-behaviour [62] and are sufficiently small to respect the principle of scales 344 

separation of a first-order-homogenization theory. In the particular case of running- and 345 

English-bond masonry walls study, the choice of a proper RVE is somehow simplified due to 346 

the regular and periodic disposal of the constituent’s arrangement. Even so, there are several 347 

RVE possibilities but, for both the analysed textures, the recommendation by Anthoine [14] is 348 

followed and presented in Figure 4.  349 

In the modelling process, bricks are considered elastic and discretized as quadrilateral FE-plate 350 

elements with linear interpolation. A 2x2 Gauss-quadrature is adopted and three integration 351 

points are used in the thickness direction. Regarding the mortar joints, these are modelled as 352 

zero-thickness line interface elements which concentrate the material nonlinearity. Such a 353 

hypothesis seems to increase the efficiency of the framework by avoiding convergence issues 354 

related to distorted quadrilateral elements. However, the numerical consequences of using a 355 

strain-softening constitutive model may not be avoided, as stated next in the application section 356 

of the MP model. 357 
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A three-dimensional micro-model (direct numerical simulation, DNS model) is also developed. 358 

In order to allow a numerical comparison and draw consistent conclusions, the DNS model 359 

follows the same modelling assumptions, i.e. in terms of material properties, plasticity model 360 

for joints and mesh-size (in the plane). 361 

5 Plasticity model for joint interfaces 362 

Aiming at the decrease of the computational demand, material nonlinearity is assumed to be 363 

lumped on joints, as stated before. This assumption seems to be adequate for strong block 364 

masonry structures, once: (i) in absence or even in presence of small levels of any pre-365 

compression state, cracking or crushing of bricks is unlikely to happen; (ii) the latter seems in 366 

agreement with experimental data, in which crack onset and propagation tend to follow a zigzag 367 

pattern along joints and between bricks [63,64]. 368 

 369 
Figure 4 – (a) The running- and English-bond masonry RVE considered for the KP, MP and 370 

DNS models; (b) Multi-surface plasticity model adopted for line [65] and surface interfaces 371 

[66]. 372 

A multi-surface plasticity model from Lourenço et. al. [65] (the so-called composite interface 373 

model) is considered for the interface elements used for the KP strategy. For the MP and DNS 374 

strategies, the model from by Van Zijl [66] is adopted, which is an extension of the latter to 375 

allow its use in a three-dimensional media, see Figure 4b. The plasticity models can well 376 
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reproduce fracture, frictional slip and crushing along the interface elements. The constitutive 377 

interface model is defined by a convex composite yield criterion with three individual 378 

functions, i.e. a tension cut-off (Eq. 12) associated with a Mohr-Coulomb criterion (Eq. 13) is 379 

associated with and a cap in compression (Eq. 14). Softening behaviour is represented in all 380 

the modes. The tensile criterion (Figure 5a) reads: 381 

𝑓𝑡(𝝈, 𝜅𝑡) = 𝝈 − 𝜎�̅�(𝜅𝑡) , and 𝜎�̅� = 𝑓𝑡exp (−
𝑓𝑡

𝐺𝑓
𝐼 𝜅𝑡)   (12) 382 

The shear criterion (Figure 5b) is given as: 383 

𝑓𝑠(𝝈, 𝜅𝑠) = |𝜏| + 𝜎𝑡𝑎𝑛𝜙 − 𝜎�̅�(𝜅𝑠) , and 𝜎�̅� = 𝑐 exp (−
𝑐

𝐺𝑓
𝐼𝐼 𝜅𝑠)  (13) 384 

For the compressive yield function (Figure 5a):  385 

𝑓𝑐(𝝈, 𝜅𝑐) = 1
2⁄ (𝝈𝑇𝑷𝝈) + 𝒑𝑇𝝈 − 𝜎�̅�

2(𝜅𝑐)    (14) 386 

Here, 𝝈 is the generalized stress, 𝜙 is the friction angle; P is a projection diagonal matrix and 387 

p a projection vector based on material parameters; 𝐺𝑓
𝐼, 𝐺𝑓

𝐼𝐼 and  𝐺𝑓
𝐼𝑉 are the mode-I, mode-II 388 

and the compressive fracture energy terms, respectively; 𝜎�̅�, 𝜎�̅� and 𝜎�̅� are the effective stresses 389 

of each of the adopted yield functions, governed by the internal scalar variables 𝜅𝑡 , 𝜅𝑠 and 𝜅𝑐, 390 

respectively. Note that the typical compressive hardening/softening law 𝜎�̅�(𝜅𝑐) is composed 391 

by three branches as observed in  Figure 5c. The model follows the laws 𝜎1̅̅̅(𝜅𝑐), 𝜎2̅̅ ̅(𝜅𝑐) and 392 

𝜎3̅̅ ̅(𝜅𝑐) defined by Lourenço et. al. [65,66] which, for the sake of conciseness, are not exposed 393 

here and being the reader referred to [52,65,66] for further details. 394 
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 395 

Figure 5 – Behaviour of quasi-brittle materials under: (a) tensile loading (mode-I, 𝑓𝑡 is the 396 

tensile strength); (b) shear loading (mode-II, c is the cohesion) accounting with a potential pre-397 

compression level; and (c) compressive load (𝑓𝑐 is the compressive strength; p and m are the 398 

peak and medium values, respectively). 399 

6 Micro-mechanical validation: out-of-plane behaviour of 400 

masonry 401 

The ability of the homogenization models to represent the out-of-plane behaviour of 402 

masonry is addressed next. Three main constitutive key features for numerical models aiming 403 

at the analysis of masonry are herein approached: (1) the correct representation of the elastic 404 

stiffness properties; (2) the masonry orthotropic behaviour due to the arrangement of the units; 405 

and (3) the role of vertical membrane pre-compression states, typically due to masonry self-406 

weight and gravity loads in general. 407 

6.1 Masonry homogenized elastic stiffness 408 

The homogenized quantities of a running-bond masonry RVE, in terms of elastic stiffness 409 

components, are derived. The evaluation of the proposed KP and MP approaches is set through 410 

the results of a detailed FE micro-model and data from a simple closed-form solution by 411 

Zucchini and Lourenço [17]. A running bond RVE with dimensions equal to 210 × 100 × 52 412 

mm3 and mortar joints of 10 mm of thickness is studied. The considered material elastic 413 
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properties are the following ones: Ebrick=20,000 MPa; vbrick= 0.15; Ejoints=Ebrick/r and vjoints= 414 

0.15. The elastic homogenized stiffness parameters (Young and shear modulus) are assessed 415 

for several 𝑟 = 𝐸𝑏𝑟𝑖𝑐𝑘 𝐸𝑚𝑜𝑟𝑡𝑎𝑟⁄  ratios, ranging from 1 to 1000. Such broad range allows to 416 

represent the potential different stiffness ratios both in the elastic and in the inelastic range, in 417 

which the tangent and secant stiffness degradation of mortar joints occur. 418 

An accurate detailed (interfaces explicitly modelled) FE micro-model (DNS model) is set as a 419 

reference. The use of this numerical model as a validation tool is clear, in fact, the elastic 420 

homogenized masonry stiffness calculation does not offer a complex problem nor novelty from 421 

a numerical standpoint. Such procedure is also convenient because a numerical study 422 

encompassing a wide range of components stiffness ratios is easily carried out. Reproducing 423 

the same data experimentally would require a thorough and expensive campaign. The obtained 424 

results are reported in Figure 6 and it can be observed how both the Kirchhoff-Love and 425 

Mindlin-Reissner plate models estimate well the elastic homogenized stiffness parameters. The 426 

agreement is, in general, very good according to the DNS model being the error less than 5%. 427 

Some differences may be found with the model proposed by Zucchini and Lourenço [17] 428 

especially for the shear modulus (see Figure 6b), but still, a good agreement is achieved with a 429 

micro-mechanical procedure based on a closed-form solution. 430 
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 431 

Figure 6 – Comparison between the homogenized in-plane elastic properties obtained with a 432 

detailed FE micro-model (DNS 3D model), the KP and MP models and from the closed-form 433 

solution by Zucchini and Lourenço [17]: (a) Elastic Young modulus; (b) Shear modulus. 434 

6.2 The masonry orthotropic behaviour: uni- and bi-axial bending 435 

Masonry is known to present a well-marked anisotropic behaviour. The complexity 436 

increases because joints constitute planes of weakness which, depending on the stiffness ratio 437 

between mortar and brick constituents, may have a strong effect. Accounting for the non-linear 438 

behaviour of masonry is of prime importance as it can have an impact on the structural overall 439 

behaviour, energetic dissipation and mechanisms creation. 440 

Two experimental campaign datasets are considered to validate the proposed homogenized 441 

models, i.e. the studies from van der Pluijm et al. [67] and Gazzola and Drysdale [68]. The 442 

former is herein firstly addressed and focus on the experimental test of several small panels in 443 

four-point bending, in which the bed joint angle with the normal assumes the values of 0, 30 444 

and 90 degrees (defined as vertical, inclined and horizontal bending respectively). No pre-445 

compression states are considered neither the post-peak information is available. Yet, both 446 

elastic limit and peak strength values are accessible within a curvature-bending moment 447 

diagram, which still constitutes a good source of information. 448 

(a) (b)
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The panels were built with standard Dutch bricks, with dimensions 200×52×100 mm3, and 449 

mortar joints with 10 mm of thickness. The elastic material properties assumed are the 450 

following ones: Ebrick=11,000 MPa; vbrick= 0.20; Ejoints=4,000 MPa and vjoints= 0.25. The 451 

inelastic mechanical parameters for mortar joint interfaces are given by ft=0.25 MPa, 𝐺𝑓
𝐼=0.006 452 

N/mm, c=0.60 MPa, 𝐺𝑓
𝐼𝐼=0.035 N/mm, 𝜙=30 degrees, fc=20.0 MPa and 𝐺𝑓

𝐼𝑉=4.00 N/mm. The 453 

latter values follow the average experimental values [67], and include missing parameters by 454 

inverse fitting. 455 

The comparison between numerical and experimental results are summarized in Figure 7 in 456 

terms of curvature-bending moment curves. Data available from an elastic-plastic model for 457 

mortar joints by Milani and Tralli [44] is also used for comparison purposes. The different 458 

proposed homogenized procedures derive similar results. Thus, the three-dimensional shear 459 

effects seem to be negligible in this case, because the maximum relative difference found is 460 

about 3% (for the vertical bending moment peaks) between the DNS model and MP or KP 461 

models. One may also conclude that, despite the existent experimental data dispersion, the 462 

models reproduce well the orthotropy of masonry and its elastic bending stiffness. Still and 463 

regarding the latter, small differences are identified with the model proposed by Milani and 464 

Tralli [44] for the horizontal bending case. In fact, an elastic-plastic behaviour with softening 465 

for mortar joints is not so accurate in cases where a loss of the initial linear elastic stiffness 466 

occurs, as the one observed in the xx direction. In this way and in some cases, the initial 467 

calculated elastic bending stiffness may be not much representative. No further comparisons 468 

are addressed concerning the peak-bending moments because the authors adopted different 469 

fracture energies in tension, compression and shear regimes. 470 
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 471 

Figure 7 – Comparison between the experimental data from Van der Pluijm [67], the model 472 

from Milani and Tralli [44] and the numerical results obtained from the homogenized 473 

procedures proposed: (a) moment with a 𝜗=90 degrees; (b) moment with a 𝜗=0 degrees; and 474 

(c) moment with a 𝜗=30 degrees. 475 

(a)

(b)

(c)
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The second set of experimental data used to study the material orthotropy behaviour derives 476 

from the Gazzola and Drysdale research [68,69]. This will be achieved by comparing the 477 

experimental set of peak flexural strength values, which represents a good indicator to analyse 478 

the orthotropic behaviour of masonry when subjected to out-of-plane loading and within a 479 

stepped or toothed failure pattern of masonry. The authors tested 25 wallets of hollow concrete 480 

block masonry, with different dimensions, within a running-bond texture in four-point bending. 481 

The bed joints angle with the loading direction 𝜗 were considered to vary between 0,15,45,75 482 

and 90 degrees. The units’ dimensions are 390×190×150 mm3 and the mortar joints have a 483 

thickness equal to 10 mm. The elastic material properties assumed are the following:  484 

Ebrick=10,000 MPa, vbrick= 0.20, Ejoints=4,000 MPa, vjoints= 0.25; and the inelastic mechanical 485 

parameters for mortar joint interfaces are given by: ft=0.20 MPa, 𝐺𝑓
𝐼=0.018 N/mm, c=0.60 MPa, 486 

𝐺𝑓
𝐼𝐼=0.022 N/mm, 𝜙=30 degrees, fc=20.0 MPa and 𝐺𝑓

𝐼𝑉=4.00 N/mm. Only flexural strength 487 

peaks are at disposal and so the latter nonlinear material properties of mortar joints were tuned 488 

to fit the values of the horizontal (𝜗 = 90 degrees) and vertical (𝜗 = 0 degrees) flexural 489 

strengths, given by 0.92 MPa and 0.37 MPa respectively. The elastic material properties, even 490 

if assumed, are not relevant once these have a minor influence upon the moment capacity. The 491 

peak flexural strength is computed for each bed joint angle 𝜗 and the comparison between 492 

numerical and experimental data is showed in Figure 8. 493 

No significant differences can be reported among the proposed homogenization approaches 494 

and, therefore, these are merged in Figure 8 as one dataset and labelled as proposed 495 

homogenized models. Additionally, information regarding the anisotropic macro-model by 496 

Lourenço [70], a simple elastic-plastic homogenized model by Casolo and Milani [44] and a 497 

kinematic-based homogenized model by Casolo and Milani [71] are also presented. It is 498 

possible to see that all the homogenized models seem capable to reproduce well the masonry 499 

orthotropy and provide accurate results. 500 
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 501 
Figure 8 – Comparison between the experimental data from Gazzola and Drysdale [68] and the 502 

numerical results obtained from the proposed homogenized procedures. 503 

6.3 The pre-compression state condition 504 

The experimental program performed by Willis et al. [72] is herein used for a third and last 505 

validation key point, i.e. the ability to represent the effect of a vertical pre-compression state 506 

which is expected to increase both masonry moment capacity and ductility. A sample of 507 

twenty-five brickwork panels was subjected to horizontal bending, in which the load-deflection 508 

behaviour was collected for four levels of compressive stress 𝜎𝑠 (0.0075, 0.15 and 0.25 509 

N/mm2). The clay brick units have nominal dimensions of 230×65×114 mm3 (length × height 510 

× thickness) and the mortar joints has 10 mm of thickness. The reader is referred to [72] for 511 

details about the experimental setup. 512 

The experimental flexural tensile strengths are equal to 0.61-0.71 N/mm2 (considered 0.70 513 

N/mm2) and 0.65 N/mm2 for horizontal 𝑓𝑡ℎ and vertical 𝑓𝑡𝑣 bending, respectively. The adopted 514 

material properties were tuned to respect the latter values. The elastic properties are given as 515 

Ebrick=10,000 MPa, vbrick= 0.20, Ejoints=2,000 MPa, vjoints= 0.25; and the inelastic mechanical 516 

parameters for mortar joint interfaces given by: ft=0.10 MPa, 𝐺𝑓
𝐼=0.005 N/mm, c=0.18 MPa, 517 

𝐺𝑓
𝐼𝐼=0.02 N/mm, 𝜙=30 degrees, fc=20.0 MPa and 𝐺𝑓

𝐼𝑉=4.00 N/mm. 518 
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From the experimental data, it was possible to derive the full bending moment-curvature curve 519 

for a 𝜎𝑠=0.15 N/mm2. Figure 9 gathers the latter curve which allows the comparison with the 520 

derived numerical output. In any case, it is worth mentioning that the model is again able to 521 

reproduce quite well the orthotropic behaviour of masonry at failure in presence of weak mortar 522 

joints and toothed failure mechanisms. 523 

 524 

Figure 9 – Comparison between the experimental results from Willis et al. [72] and the 525 

numerical obtained with the proposed homogenized models and by the simplified model of 526 

Casolo and Milani [71]. 527 

6.4 Application: English-bond pattern 528 

After the validation tests, the proposed homogenized models are extended to characterize 529 

the out-of-plane behaviour of an English bond masonry structure. The English-bond masonry 530 

benchmark was experimentally tested by Candeias et al. [73]. Here, only the geometry and the 531 

material properties of the masonry components are required and described. 532 

The majority of the existing research on masonry deal with running-bond texture within a 533 

single-wythe walls case [12,17,18,39,48]. The analysis of the effect of potential discontinuities 534 

on the masonry thickness, when two- or three-wythes of masonry are present, the effect of 535 

three-dimensional shear stresses and the study of other periodic textures, as the English-bond, 536 

are somehow under-investigated. 537 

ss
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Still, some studies can be reported. In the particular level of simplified multi-scale methods, 538 

Casolo and Milani [47] studied the behaviour of three-leaf masonry walls and proposed, at a 539 

micro-scale, two simple unit cell homogenization models to compute the out-of-plane 540 

homogenized quantities. One is an FE-based procedure, where bricks are assumed to be elastic 541 

and joints are reduced to interface elements, and the other is based on an analytical approach. 542 

Even if both are accurate and relatively fast, it is found that the former does not consider the 543 

softening behaviour of interfaces and the latter to be an ad-hoc procedure thus demanding its 544 

extension to other components arrangements. Moreover, Cecchi and Milani [51] characterized 545 

the micro-scale behaviour of an English-bond masonry wall through a simple homogenization 546 

model. Masonry units are considered as rigid blocks and joints modelled as 2D Reissner-547 

Mindlin plate elements to conceive the model the ability to explicitly reproduce the out-of-548 

plane shear effects. Still, conclusions upon its influence are drawn at a structural level only 549 

through the comparison with a full-FE micro-model. It may also be noteworthy to mention the 550 

research from Massart et al. [74] in the field of full-FE homogenization approaches. Even if 551 

applied to a running-bond masonry and within in-plane loading case, three-dimensional effects 552 

are reproduced through the implementation of a two-dimensional generalised plane state 553 

formulation. 554 

In this context, the experimental study upon an English-bond masonry structure benchmark 555 

[73] constitutes an important step. The data may encourage and drive the studies of different 556 

numerical strategies towards the better understanding of the latter effects. Accordingly, the 557 

current analysis tries to conclude about the effect of three-dimensional shear stresses and the 558 

role played by joints discontinuities along the thickness direction.  559 

An English-bond masonry RVE is analysed, see Figure 4a. The brick units have in-plane 560 

dimensions of 235x70x115 mm3 (length x height x thickness) and the bed and head mortar 561 

joints have a thickness 𝑡𝑗𝑜𝑖𝑛𝑡 = 15𝑚𝑚. When laid and bound together in an English-bond 562 
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texture the wall yields a thickness of 235 mm. The mechanical properties adopted are collected 563 

in Table 1 and follow the values available both from experimental data and literature studies 564 

which adopted the same benchmark [73]. Note that the linear elastic relation between the 565 

generalized stresses and strains of the interface FEs is given by the classical constitutive 566 

equation 𝝈 = 𝑫𝜺. Considering a line FE interface (for the adopted plate theories KP and MP 567 

models), the elastic stiffness matrix D is given as 𝐷 = 𝑑𝑖𝑎𝑔{𝑘𝑛, 𝑘𝑠}. The values of the normal 568 

(kn) and shear (ks) mortar joints stiffness terms can be easily computed. One possibility is to 569 

neglect the contribution of the brick-mortar interface and to compute these parameters as 𝑘𝑛 =570 

𝐸𝑚𝑜𝑟𝑡𝑎𝑟 𝑡𝑗𝑜𝑖𝑛𝑡⁄  and 𝑘𝑠 = 𝐺𝑚𝑜𝑟𝑡𝑎𝑟 𝑡𝑗𝑜𝑖𝑛𝑡⁄ , where 𝐺𝑚𝑜𝑟𝑡𝑎𝑟 is the mortar shear modulus. Another 571 

possibility is to follow the suggestions given in [75] in which, under the assumption of a stack 572 

bond where a serial chain connection represents the masonry components (with uniform stress 573 

distributions in both unit and mortar joints), the latter stiffnesses’ values read: 574 

𝑘𝑛 =
𝐸𝑏𝑟𝑖𝑐𝑘𝐸𝑚𝑜𝑟𝑡𝑎𝑟

𝑡𝑗𝑜𝑖𝑛𝑡(𝐸𝑏𝑟𝑖𝑐𝑘−𝐸𝑚𝑜𝑟𝑡𝑎𝑟)
     (15) 575 

𝑘𝑠 =
𝐺𝑏𝑟𝑖𝑐𝑘𝐺𝑚𝑜𝑟𝑡𝑎𝑟

𝑡𝑗𝑜𝑖𝑛𝑡(𝐺𝑏𝑟𝑖𝑐𝑘−𝐺𝑚𝑜𝑟𝑡𝑎𝑟)
     (16) 576 

Equations (15) and (16) are typically considered [76] and are employed in this study (see Table 577 

1). It may be highlighted that a penalty approach is not followed by the adopted interface FEs 578 

[76] to phenomenologically represent the behaviour of masonry crushing. Such strategy is 579 

usually adopted in discrete element models [3,4], or advanced FE software’s able to model 580 

discrete rigid bodies (e.g. [77]), to guarantee an appropriate physical contact between units. 581 

Here, penetration and overlapping between neighbouring brick units can occur which does not 582 

blur the accuracy of the in- and out-of-plane quantities derived; particularly if addressed that a 583 

weak mortar masonry is being studied and so low compressive levels of stress are expected. 584 

Four values are considered for the RVE thickness, namely t=470 mm, t=235 mm, t=141 mm 585 

and t=70.5 mm. The results obtained with the simulations from the KP and MP models are 586 
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compared with the ones derived with a three-dimensional micro-model (DNS model), as done 587 

for the previous validation steps, and depicted in Figure 10. Several conclusions can be put 588 

together. Firstly, and as expected, no considerable differences regarding the peak moments 589 

(Mxx, Myy, Mxy) are found, between the MP and the DNS models, for all the studied thicknesses. 590 

The MP model is able to capture well the out-of-plane shear effects. Yet, it is important to 591 

recall that for the MP model, with the increase of the thickness value, the post-peak curves are 592 

not so well developed due to convergence issues as demonstrated in Figure 10. 593 

Table 1 – Material properties adopted for the English bond masonry [73]. 594 

Elastic 

Properties 

Elastic and Inelastic Properties 

Brick units Mortar joints 

Eunits  Emortar kn  ks ft  fc  c  𝑮𝒇
𝑰   𝑮𝒇

𝑰𝑰  𝑮𝒇
𝑰𝑽  

11,000 

N/mm2 

0.25 

(-) 

2,200 

N/mm2 

183 

N/mm 

72.6 

N/mm 

0.105 

N/mm2 

2.84 

N/mm2 

0.20 

N/mm2 

0.012 

N/mm 

0.05 

N/mm 

3.97 

N/mm 

30º 



 

29 

 595 

Figure 10 – Numerical results obtained with the proposed numerical strategies for the English-596 

bond masonry texture for the four RVE thickness values defined. 597 

The authors experienced some convergence problems in developing the post-peak branch due 598 

to snap-back issues. It is known that when interface elements employ a softening type of 599 

damage model convergence problems can be experienced after the cracking onset and 600 

propagation [78,79]. Even if a cylindrical arc-length procedure including a line search 601 

Curvature (1/mm)Curvature (1/mm) Curvature (1/mm)

Curvature (1/mm)Curvature (1/mm) Curvature (1/mm)

Curvature (1/mm)Curvature (1/mm) Curvature (1/mm)

Curvature (1/mm)Curvature (1/mm) Curvature (1/mm)
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algorithm is active the solution fails which, in theory, leads to the requirement of improved 602 

arc-length techniques, see [80], or the imposition of constraints equations upon the interface 603 

nodes [79].  604 

Conversely, no convergence issues are reported for the KP model. This is based on an in-plane 605 

identification within a plane-stress formulation, from which the out-of-plane quantities are 606 

simply obtained through on-thickness integration. The computational time required by the KP 607 

model to derive all the in- and out-of-plane homogenized quantities (xx, xy, yy, Mxx, Mxy, 608 

Myy) is around 81 seconds, which is significantly less than the three-dimensional DNS (246 609 

seconds) and MP (154 seconds) models. So, the KP model seems the most suitable procedure 610 

to be integrated within a full automatic FE2 procedure, albeit its inability to reproduce the out-611 

of-plane shear stresses can lead to considerable errors depending on the thickness of the RVE 612 

being analysed. Figure 10 clearly shows the latter where, for a thickness of 235 mm (real 613 

dimensions) and 470 mm, an error of 14% and 23% is found, respectively. Another important 614 

feature is that the observed differences in the peak moment values are especially critical for 615 

both Mxx and Mxy and not relevant for the vertical bending Myy. This exception is easily 616 

understandable from a physical standpoint. Bearing that for Myy a typical de-bonding failure is 617 

achieved, see Figure 3a, this is mainly dependent on the tensile strength value of the horizontal 618 

joints being the shear effect of the vertical interfaces irrelevant. 619 

To what concerns the effect of the mid-thickness vertical joint existing on the English-bond 620 

masonry walls, two DNS models are considered. One does not take into account the 621 

discontinuity along the thickness; the other considers it, explicitly modelled and with a 622 

thickness of 17 mm. Figure 11 shows the obtained results. Due to the aforementioned stated 623 

reasons, the presence of the discontinuity has a marginal effect on the vertical bending 624 

behaviour Myy of the RVE. In opposition, the model with the discontinuity manifests a lower 625 

capacity for both horizontal Mxx and torsional Mxy moments, with differences ranging 33% and 626 
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17%, respectively. Additionally, if the KP model results are considered, an error of 52% is 627 

expected for the horizontal bending moment case. Such results prove how important is to 628 

address the existence of masonry discontinuities along the thickness and the need that may be 629 

required when choosing the modelling strategy for a given study case.  630 

 631 

Figure 11 – Comparison between the results obtained for the three bending components via a 632 

3D DNS model considering and non-considering the existent vertical joint on the mid-thickness 633 

of the English-bond masonry. 634 

7 Conclusions 635 

Two microscopic FE-models based on a first-order homogenization theory and within a 636 

strain-driven formulation were formulated to characterize the behaviour of masonry. A 637 

Kirchhoff-Love and Mindlin-Reissner plate theory were adopted. These have been designated 638 

in the paper as KP and MP models, respectively. In both strategies, a representative volume 639 

element (RVE), aimed at representing masonry by repetition, was modelled through the 640 

assemblage of quadrilateral elements with linear interpolation for bricks and line interface 641 

elements with zero-thickness for mortar joints. By solving a BVP upon the defined RVE, both 642 

the in-plane stresses and out-of-plane stress-couples were derived from the microscopic level. 643 
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With bricks assumed to be elastic and with interface elements carrying the inelastic material 644 

information within a multi-surface plasticity model [65] (an assumption plausible for strong 645 

blocks), a stepped, toothed and a de-bonding masonry failure patterns were suitably 646 

reproduced. 647 

The validation of the KP and MP models was performed first at a micro-level. Available 648 

experimental data together with the results obtained via a three-dimensional micro-mechanical 649 

model (DNS model) were used as reference. Three main constitutive key features were 650 

addressed: (1) the correct representation of the elastic stiffness properties [17]; (2) the masonry 651 

orthotropic behaviour due to the arrangement of the units [67,68]; and (3) the role of vertical 652 

membrane pre-compression states [72]. The validation proved to work well for all the three 653 

steps, with homogenized results fitting with excellent accuracy the reference data. 654 

The application of the microscopic FE-homogenized based models was carried out for a real 655 

case study of an English-bond masonry mock-up tested by Candeias et al. [81]. The analyses 656 

were performed using data derived numerically, namely the homogenized out-of-plane 657 

quantities Mxx, Mxy and Myy, which clearly depend on the in-plane behaviour of the masonry. 658 

Four values for the RVE thickness were adopted aiming at studying the out-of-plane shear 659 

stresses effect. The MP model follows an out-of-plane shear deformation theory and thus was 660 

able to provide similar results to the ones from the DNS model. The simplified KP model 661 

proved good accuracy for the cases where the thickness has a value which is similar or lower 662 

than the RVE dimensions (i.e. its height or length). It is worth noting that the KP strategy 663 

allows faster computations with no-convergence issues reported. Insomuch, in order to test the 664 

effect of the presence of a mortar layer on the RVE thickness (present in an English-bond 665 

texture) two micro-models were further analysed. The conclusions demonstrate that the 666 

discontinuity plays an important role in the decrease of the horizontal bending (around 33%) 667 
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and torsional moment capacities (around 17%), whereas the influence on vertical bending is 668 

minimal. 669 

The above micro-mechanical homogenized-based models are characterized by several 670 

advantages, mainly related with their versatility. By exploiting the use of plate theory 671 

assumptions, the strategies allow replacing the three-dimensional microscopic continuum into 672 

a two-dimensional one. Such procedures are thus quite convenient, due to the simplicity of 673 

application, accuracy and low computational effort required. Moreover, these are suitable to be 674 

integrated within a FE2 approach, especially with simplified discrete methods at a macro-scale 675 

as [44,46,82]. Still, two issues can be raised. At a micro-scale the damage evolution is restricted 676 

to the mortar joints and so a regularization is not needed. However, the use of the previous 677 

macro-models based on rigid plates lead to an intrinsic mesh dependence, specifically to what 678 

concerns with the localization of the inelastic strains. This is a consequence of the simplicity 679 

and robustness of these approaches (see [44] for a more detailed insight). It is certainly possible 680 

to embed more discontinuities or regularization strategies in the macroscopic model, for 681 

instance using a non-local model implementable, in practice, by connecting non-adjoining 682 

elements with additional springs. Nevertheless, this is not the primary objective when selecting 683 

such type of simplified procedures, instead these are meant to largely decrease the processing 684 

running times at a structural level. It is the authors’ opinion that if the homogenised models are 685 

implemented within the latter macro-discrete FE models (see [43,44,46,82]) or a related 686 

strategy, the feasibility of its application for the study of large-scale structures and in the scope 687 

of dynamic problems is well assured. 688 

As further developments to this study, the authors outline four possibilities: (1) to draw more 689 

general conclusions, additional analyses can be carried out with different geometric dimensions 690 

for both the RVE components (bricks and mortar joints) and the wall thickness; (2) unit-unit 691 

interface FEs can be modelled to allow reproducing the splitting failure of bricks; (3) the 692 
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homogenized models can also extended to other periodic masonry arrangements or even 693 

adapted to study irregular textures; and (4) if a proper kinematical map is developed to deal 694 

with the transition between the two-scales, these may also be used within a nested full-FE-695 

continuous approach. 696 
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