6,773 research outputs found

    Object Manipulation in Virtual Reality Under Increasing Levels of Translational Gain

    Get PDF
    Room-scale Virtual Reality (VR) has become an affordable consumer reality, with applications ranging from entertainment to productivity. However, the limited physical space available for room-scale VR in the typical home or office environment poses a significant problem. To solve this, physical spaces can be extended by amplifying the mapping of physical to virtual movement (translational gain). Although amplified movement has been used since the earliest days of VR, little is known about how it influences reach-based interactions with virtual objects, now a standard feature of consumer VR. Consequently, this paper explores the picking and placing of virtual objects in VR for the first time, with translational gains of between 1x (a one-to-one mapping of a 3.5m*3.5m virtual space to the same sized physical space) and 3x (10.5m*10.5m virtual mapped to 3.5m*3.5m physical). Results show that reaching accuracy is maintained for up to 2x gain, however going beyond this diminishes accuracy and increases simulator sickness and perceived workload. We suggest gain levels of 1.5x to 1.75x can be utilized without compromising the usability of a VR task, significantly expanding the bounds of interactive room-scale VR

    Natural Walking in Virtual Reality:A Review

    Get PDF
    Recent technological developments have finally brought virtual reality (VR) out of the laboratory and into the hands of developers and consumers. However, a number of challenges remain. Virtual travel is one of the most common and universal tasks performed inside virtual environments, yet enabling users to navigate virtual environments is not a trivial challenge—especially if the user is walking. In this article, we initially provide an overview of the numerous virtual travel techniques that have been proposed prior to the commercialization of VR. Then we turn to the mode of travel that is the most difficult to facilitate, that is, walking. The challenge of providing users with natural walking experiences in VR can be divided into two separate, albeit related, challenges: (1) enabling unconstrained walking in virtual worlds that are larger than the tracked physical space and (2) providing users with appropriate multisensory stimuli in response to their interaction with the virtual environment. In regard to the first challenge, we present walking techniques falling into three general categories: repositioning systems, locomotion based on proxy gestures, and redirected walking. With respect to multimodal stimuli, we focus on how to provide three types of information: external sensory information (visual, auditory, and cutaneous), internal sensory information (vestibular and kinesthetic/proprioceptive), and efferent information. Finally, we discuss how the different categories of walking techniques compare and discuss the challenges still facing the research community.</jats:p

    ARC: Alignment-based Redirection Controller for Redirected Walking in Complex Environments

    Full text link
    We present a novel redirected walking controller based on alignment that allows the user to explore large and complex virtual environments, while minimizing the number of collisions with obstacles in the physical environment. Our alignment-based redirection controller, ARC, steers the user such that their proximity to obstacles in the physical environment matches the proximity to obstacles in the virtual environment as closely as possible. To quantify a controller's performance in complex environments, we introduce a new metric, Complexity Ratio (CR), to measure the relative environment complexity and characterize the difference in navigational complexity between the physical and virtual environments. Through extensive simulation-based experiments, we show that ARC significantly outperforms current state-of-the-art controllers in its ability to steer the user on a collision-free path. We also show through quantitative and qualitative measures of performance that our controller is robust in complex environments with many obstacles. Our method is applicable to arbitrary environments and operates without any user input or parameter tweaking, aside from the layout of the environments. We have implemented our algorithm on the Oculus Quest head-mounted display and evaluated its performance in environments with varying complexity. Our project website is available at https://gamma.umd.edu/arc/

    Natural locomotion based on a reduced set of inertial sensors: decoupling body and head directions indoors

    Get PDF
    Inertial sensors offer the potential for integration into wireless virtual reality systems that allow the users to walk freely through virtual environments. However, owing to drift errors, inertial sensors cannot accurately estimate head and body orientations in the long run, and when walking indoors, this error cannot be corrected by magnetometers, due to the magnetic field distortion created by ferromagnetic materials present in buildings. This paper proposes a technique, called EHBD (Equalization of Head and Body Directions), to address this problem using two head- and shoulder-located magnetometers. Due to their proximity, their distortions are assumed to be similar and the magnetometer measurements are used to detect when the user is looking straight forward. Then, the system corrects the discrepancies between the estimated directions of the head and the shoulder, which are provided by gyroscopes and consequently are affected by drift errors. An experiment is conducted to evaluate the performance of this technique in two tasks (navigation and navigation plus exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in which the walking direction is forced to be the same as the head direction, and (2) decoupled direction mode (DD) in which the walking direction can be different from the viewing direction. The obtained results show that both locomotion modes show similar matching of the target path during the navigation task, while DD’s path matches the target path more closely than GD in the navigation plus exploration task. These results validate the EHBD technique especially when allowing different walking and viewing directions in the navigation plus exploration tasks, as expected. While the proposed method does not reach the accuracy of optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is much more compact, portable and economical

    Altering User Movement Behaviour in Virtual Environments.

    Get PDF
    In immersive Virtual Reality systems, users tend to move in a Virtual Environment as they would in an analogous physical environment. In this work, we investigated how user behaviour is affected when the Virtual Environment differs from the physical space. We created two sets of four environments each, plus a virtual replica of the physical environment as a baseline. The first focused on aesthetic discrepancies, such as a water surface in place of solid ground. The second focused on mixing immaterial objects together with those paired to tangible objects. For example, barring an area with walls or obstacles. We designed a study where participants had to reach three waypoints laid out in such a way to prompt a decision on which path to follow based on the conflict between the mismatching visual stimuli and their awareness of the real layout of the room. We analysed their performances to determine whether their trajectories were altered significantly from the shortest route. Our results indicate that participants altered their trajectories in presence of surfaces representing higher walking difficulty (for example, water instead of grass). However, when the graphical appearance was found to be ambiguous, there was no significant trajectory alteration. The environments mixing immaterial with physical objects had the most impact on trajectories with a mean deviation from the shortest route of 60 cm against the 37 cm of environments with aesthetic alterations. The co-existance of paired and unpaired virtual objects was reported to support the idea that all objects participants saw were backed by physical props. From these results and our observations, we derive guidelines on how to alter user movement behaviour in Virtual Environments

    Detection Thresholds in Audio-visual Redirected Walking

    Get PDF
    (Abstract to follow

    Beyond simulation: designing for uncertainty and robust solutions

    Get PDF
    Simulation is an increasingly essential tool in the design of our environment, but any model is only as good as the initial assumptions on which it is built. This paper aims to outline some of the limits and potential dangers of reliance on simulation, and suggests how to make our models, and our buildings, more robust with respect to the uncertainty we face in design. It argues that the single analyses provided by most simulations display too precise and too narrow a result to be maximally useful in design, and instead a broader description is required, as might be provided by many differing simulations. Increased computing power now allows this in many areas. Suggestions are made for the further development of simulation tools for design, in that these increased resources should be dedicated not simply to the accuracy of single solutions, but to a bigger picture that takes account of a design’s robustness to change, multiple phenomena that cannot be predicted, and the wider range of possible solutions. Methods for doing so, including statistical methods, adaptive modelling, machine learning and pattern recognition algorithms for identifying persistent structures in models, will be identified. We propose a number of avenues for future research and how these fit into design process, particularly in the case of the design of very large buildings
    • …
    corecore