47 research outputs found

    An Untethered Miniature Origami Robot that Self-folds, Walks, Swims, and Degrades

    Get PDF
    A miniature robotic device that can fold-up on the spot, accomplish tasks, and disappear by degradation into the environment promises a range of medical applications but has so far been a challenge in engineering. This work presents a sheet that can self-fold into a functional 3D robot, actuate immediately for untethered walking and swimming, and subsequently dissolve in liquid. The developed sheet weighs 0.31g, spans 1.7cm square in size, features a cubic neodymium magnet, and can be thermally activated to self-fold. Since the robot has asymmetric body balance along the sagittal axis, the robot can walk at a speed of 3.8 body-length/s being remotely controlled by an alternating external magnetic field. We further show that the robot is capable of conducting basic tasks and behaviors, including swimming, delivering/carrying blocks, climbing a slope, and digging. The developed models include an acetone-degradable version, which allows the entire robot’s body to vanish in a liquid. We thus experimentally demonstrate the complete life cycle of our robot: self-folding, actuation, and degrading.National Science Foundation (U.S.) (Grant 1240383)National Science Foundation (U.S.) (Grant 1138967)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Robotic metamorphosis by origami exoskeletons

    Get PDF
    Changing the inherent physical capabilities of robots by metamorphosis has been a long-standing goal of engineers. However, this task is challenging because of physical constraints in the robot body, each component of which has a defined functionality. To date, self-reconfiguring robots have limitations in their on-site extensibility because of the large scale of today’s unit modules and the complex administration of their coordination, which relies heavily on on-board electronic components. We present an approach to extending and changing the capabilities of a robot by enabling metamorphosis using self-folding origami “exoskeletons.” We show how a cubical magnet “robot” can be remotely moved using a controllable magnetic field and hierarchically develop different morphologies by interfacing with different origami exoskeletons. Activated by heat, each exoskeleton is self-folded from a rectangular sheet, extending the capabilities of the initial robot, such as enabling the manipulation of objects or locomotion on the ground, water, or air. Activated by water, the exoskeletons can be removed and are interchangeable. Thus, the system represents an end-to-end (re)cycle. We also present several robot and exoskeleton designs, devices, and experiments with robot metamorphosis using exoskeletons

    Evolving Folding Bodies and Brains in Origami Robots

    Get PDF
    Evolutionary robotics has produced a vast array of adaptive design paradigms applicable to body-brain (controller-morphology) adaptation. However, within the purview of adaptive body-brain evolutionary robotic architectures, folding (origami) robotics has received relatively little research attention. An open problem in evolutionary robotics, and more broadly embodied evolution, is how to automatically design robots that are general problem-solvers across various task environments. Proposals include AutoFacs: self-designing methods for producing novel robot (body-brain) designs for given environments, evaluated as problem-solvers in such environments and then re-configured (with adapted body-brain designs) for the next generation of robots

    Ingestible, controllable, and degradable origami robot for patching stomach wounds

    Get PDF
    © 2016 IEEE.Developing miniature robots that can carry out versatile clinical procedures inside the body under the remote instructions of medical professionals has been a long time challenge. In this paper, we present origami-based robots that can be ingested into the stomach, locomote to a desired location, patch a wound, remove a foreign body, deliver drugs, and biodegrade. We designed and fabricated composite material sheets for a biocompatible and biodegradable robot that can be encapsulated in ice for delivery through the esophagus, embed a drug layer that is passively released to a wounded area, and be remotely controlled to carry out underwater maneuvers specific to the tasks using magnetic fields. The performances of the robots are demonstrated in a simulated physical environment consisting of an esophagus and stomach with properties similar to the biological organs

    Self-folded soft robotic structures with controllable joints

    Get PDF
    This paper describes additive self-folding, an origami-inspired rapid fabrication approach for creating actuatable compliant structures. Recent work in 3-D printing and other rapid fabrication processes have mostly focused on rigid objects or objects that can achieve small deformations. In contrast, soft robots often require elastic materials and large amounts of movement. Additive self-folding is a process that involves cutting slices of a 3-D object in a long strip and then pleat folding them into a likeness of the original model. The zigzag pattern for folding enables large bending movements that can be actuated and controlled. Gaps between slices in the folded model can be designed to provide larger deformations or higher shape accuracy. We advance existing planar fabrication and self-folding techniques to automate the fabrication process, enabling highly compliant structures with complex 3-D geometries to be designed and fabricated within a few hours. We describe this process in this paper and provide algorithms for converting 3-D meshes into additive self-folding designs. The designs can be rapidly instrumented for global control using magnetic fields or tendon-driven for local bending. We also describe how the resulting structures can be modeled and their responses to tendon-driven control predicted. We test our design and fabrication methods on three models (a bunny, a tuna fish, and a starfish) and demonstrate the method's potential for actuation by actuating the tuna fish and starfish models using tendons and magnetic control.National Science Foundation (U.S.) (Grant 1240383)National Science Foundation (U.S.) (Grant 1138967

    Capafoldable: self-tracking foldable smart textiles with capacitive sensing

    Full text link
    Folding is an unique structural technique to enable planer materials with motion or 3D mechanical properties. Textile-based capacitive sensing has shown to be sensitive to the geometry deformation and relative motion of conductive textiles. In this work, we propose a novel self-tracking foldable smart textile by combining folded fabric structures and capacitive sensing to detect the structural motions using state-of-the-art sensing circuits and deep learning technologies. We created two folding patterns, Accordion and Chevron, each with two layouts of capacitive sensors in the form of thermobonded conductive textile patches. In an experiment of manually moving patches of the folding patterns, we developed deep neural network to learn and reconstruct the vision-tracked shape of the patches. Through our approach, the geometry primitives defining the patch shape can be reconstructed from the capacitive signals with R-squared value of up to 95\% and tracking error of 1cm for 22.5cm long patches. With mechanical, electrical and sensing properties, Capafoldable could enable a new range of smart textile applications

    Autonomous planning and control of soft untethered grippers in unstructured environments

    Get PDF
    The use of small, maneuverable, untethered and reconfigurable robots could provide numerous advantages in various micromanipulation tasks. Examples include microassembly, pick-and-place of fragile microobjects for lab-on-a-chip applications, assisted hatching for in-vitro fertilization and minimally invasive surgery. This study assesses the potential of soft untethered magnetic grippers as alternatives or complements to conventional tethered or rigid micromanipulators. We demonstrate closed-loop control of untethered grippers and automated pick-and-place of biological material on porcine tissue in an unstructured environment. We also demonstrate the ability of the soft grippers to recognize and sort non-biological micro-scale objects. The fully autonomous nature of the experiments is made possible by the integration of planning and decision-making algorithms, as well as by closed-loop temperature and electromagnetic motion control. The grippers are capable of completing pick-and-place tasks of biological material at an average velocity of 1.8±0.71 mm/s and a drop-off error of 0.62±0.22 mm. Color-sensitive sorting of three micro-scale objects is completed at a velocity of 1.21±0.68 mm/s and a drop-off error of 0.85±0.41 mm. Our findings suggest that improved autonomous un-tethered grippers could augment the capabilities of current soft-robotic instruments especially in advanced tasks involving manipulation

    Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6R Linkages

    Get PDF
    Rigid origami is a restrictive form of origami that permits continuous motion between folded and unfolded states along the predetermined creases without stretching or bending of the facets. It has great potential in engineering applications, such as foldable structures that consist of rigid materials. The rigid foldability is an important characteristic of an origami pattern, which is determined by both the geometrical parameters and the mountain-valley crease (M-V) assignments. In this paper, we present a systematic method to analyze the rigid foldability and motion of the generalized triangle twist origami pattern using the kinematic equivalence between the rigid origami and the spherical linkages. All schemes of M-V assignment are derived based on the flat-foldable conditions among which rigidly foldable ones are identified. Moreover, a new type of overconstrained 6R linkage and a variation of doubly collapsible octahedral Bricard are developed by applying kirigami technique to the rigidly foldable pattern without changing its degree-of-freedom. The proposed method opens up a new way to generate spatial overconstrained linkages from the network of spherical linkages. It can be readily extended to other types of origami patterns

    Programmable medicine: Autonomous, ingestible, deployable hydrogel patch and plug for stomach ulcer therapy

    Get PDF
    Gastric ulcer is a chronic and complex (and often complete) erosion of the stomach wall that happens as a complication of a previous chronic, inflammatory process. It represents a catastrophic situation in which the patient is critical and its conditions need to be treated fast. This study presents a remotely navigatable and deployable ingestible patch and plug for gastric ulcer treatment. The patch/plug structure is made of agarose hydrogel that can change rigidity through hydration and dehydration. When dehydrated, it is rigid and can maintain a folded configuration so it can be ingested as a “pill”. This can be guided to the targeted location by a magnetic field, and be deployed instantly by hydration, namely by supplying water from the mouth. Due to the deployable origami design, it exhibits an expansion of 10 times its initial surface area, making the device suitable for the use of dressing a surface as a patch, and filling a hole as a plug

    Generalized modeling of origami folding joints

    Get PDF
    Origami robots self-reconfigure from a quasi two-dimensional manufactured state to three-dimensional mobile robots. By folding, they excel in transforming their initial spatial configuration to expand their functionalities. However, unlike paper-based origamis, where the materials can remain homogeneous, origami robots require varying payloads and controllability of their reconfigurations. Therefore, the mechanisms to achieve automated folding adapt flat thin panels and folding hinges that are often of different materials to achieve the folding. While the fundamental working principle of an origami hinge remains simple, these multi-component, multi-material origami joints can no longer be modeled by beam theory without considering the semi-rigid connections at the material interfaces. Currently, there is no comprehensive model to analyze physical behavior of an actuated folding hinge accurately. In this work, we propose a model based on the plate theory to predict the origami folding joint: we adapt a torsional spring to capture this semi-rigid connection, predict the folding stiffness and bending of origami joints. Herein, the semi-rigid connection is calibrated by quasi-static folding tests on a series of physical origami folding joints, and the accuracy of our model is compared to finite element simulations. With this analytical model, we can accurately simulate the mechanics of physical origami folding joints
    corecore