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Abstract: Changing the inherent physical capabilities of robots by metamorphosis has been a 

long-standing goal of engineers. However, this task is challenging because of physical 

constraints in the robot body, each component of which has a defined functionality. Inspired by 

nature, roboticists have designed self-reconfiguring robots, which are cellular machines 

consisting of a set of identical unit-modules that can change their body geometry independently 

to match the structure to the task (1– 11), or adapt their hardware and software in real time (12–
14). Self-reconfiguring systems, however, have limitations in their on-site extensibility, because 

of the large scale of today’s unit modules and the complex administration of their coordination, 
which relies heavily on on-board electronic components. In this study, we present a novel 

approach to extending and changing the capabilities of a robot by enabling metamorphosis using 

self-folding origami “exoskeletons”. We show how a cubical magnet “robot” can be remotely 

moved using a controllable magnetic field to hierarchically develop different morphologies by 

interfacing with different origami exoskeletons. Activated by heat, each exoskeleton is self-

folded from a rectangular sheet, extending the capabilities of the initial robot, such as enabling 

the manipulation of objects or locomotion on the ground, water, or air. Activated by water, the 

exoskeletons can be removed and are interchangeable. Thus, the system represents an end-to-end 

(re)cycle. Here, we present several robot and exoskeleton designs, devices, and experiments with 

robot metamorphosis using exoskeletons. 

 

One Sentence Summary: This study shows a novel process of robotic morpho-functional 

extension using interchangeable self-folding origami sheets. 

 

Introduction 

Some life forms have inherent metamorphic capabilities and acquire different functionalities in 

their developmental stages. Butterflies and beetles morph from larva and acquire the ability to fly 

(15). Hermit crabs switch their housings on demand, obtain materials from the environment, and 

change parts of their body. In comparison, most current hard-bodied machines, such as today’s 
industrial robots, have a fixed architecture and cannot develop on-the-fly new functionalities. 

Robots that aim for a flexible architecture have thus been designed to deliver multiple 

locomotion modalities through several means: (I) by equipping them with redundant components 

(16–19), (II) by constructing structures or tools on-site (20, 21), (III) by designing modular 

systems capable of self-reconfiguration (22–24), or (IV) by creating origami-inspired bodies with 

programmable configurations (5–7, 9, 25–30). Each of these approaches can achieve a wide 



range of malleable capabilities (31,32), but in practice, extending the inherent physical 

capabilities of robots is challenging because of the electro-mechanical limitations of the robot 

body and the lack of (re)productivity of physical elements. Using metamorphosis in nature as an 

inspiration, we introduce an alternative approach to extending the capabilities of a robot by 

enabling it to cyclically acquire multiple self-folding origami sheets called “exoskeletons.” Like 
an egg, the system commences with a cubic magnet “robot,” called Primer. This robot 

hierarchically develops its morphology by combining with different exoskeletons; for example, it 

moves faster, becomes bigger, or uses different locomotion processes on the ground, in the 

water, and in the air. An example of metamorphosis is shown in Fig. 1, where Primer develops 

morphology through the processes of equipping exoskeletons; as a result, it obtains the ability to 

walk and roll. Removing an exoskeleton, analogous to insect molting, can be done by directing 

the robot into water, which dissolves the holding arms of the exoskeleton.  

Our prior work contributes knowledge on static origami structures achievable from a single 

sheet (5) and mobile origami systems where the body has a fixed origami structure and a fixed 

function (7, 29). In the present study, we contribute to the concepts of robot metamorphosis 

using exoskeletons, specific designs and devices capable of metamorphosis, and end-to-end 

experiments, and demonstrate how one shared origami structure acts as an “engine” capable of 
adding and removing different exoskeletons to achieve different body shapes and functions. The 

convergence of materials and machines enables this approach to be robotic metamorphosis by 

combining a compact design for function, efficient reconfiguration, and a large space for 

achievable, fine resolution body shapes. The proposed approach demonstrates the advantages of 

origami-inspired manufacturing, namely, versatility, (re-)usability, and accessibility of 

components (33), which provide simplicity and structural redundancy to the mechanism.  

 

Results 

We demonstrate robotic metamorphosis with a suite of acquisitions and removals of robot 

exoskeletons. Each exoskeleton is designed to generate a different robot morphology that 

supports different capabilities. The system consists of Primer, an environment with a 

controllable magnetic field that enables the movement of the robot, two heating pads (Peltier 

element) for assembling the exoskeletons, a water reservoir for removing the exoskeleton, and a 

ramp for assisting gliding. The representative sequences for this system are shown in Fig. 2 (a–f) 

and (g-h), with a scaling up of the body size and gliding performance, respectively. The ability to 

walk is useful when the maintenance of posture is necessary, for example, when carrying a load, 

pushing an object, or acting as a patch in vivo (32), where a small step size is needed. Acquiring 

large body sizes provides various advantages, such as the ability to walk faster, transport a large 

object, or maintain stability against turbulence. A typical exoskeleton acquisition takes 

approximately 3 min to complete, and a typical molting process completes in less than a minute 

with the assistance of body vibration. 

The transformations of the robot are shown as a state diagram in Fig. 3; origami self-folding 

robots can cyclically acquire modalities for walking (Walk-bot), scaling by a large homothetic 

exoskeleton (Scaled walk-bot), rolling by cylindrical morphology (Wheel-bot), sailing on water 

by boat morphology (Boat-bot), and gliding in the air by wing morphology (Glider-bot). The 

scaling exoskeleton Scaled walk-bot allows Walk-bot to move faster and shovel objects. The 

wheel exoskeleton gives Walk-bot two flat circular structures on both sides of the body, which 



act as wheels. It can roll on a plane 2.3 times faster than Walk-bot. The boat exoskeleton 

provides Walk-bot floating capability on water with enhanced buoyancy for a load carriage 1.86 

times its own weight. Boat-bot features high side walls and a swept shape to maximize 

volumetric capacity underwater while minimizing drag. The glider exoskeleton endows Walk-bot 

with the capability to reach a distant place by gliding. As a dandelion distributes seeds blown by 

the wind, or maple trees release propeller-shaped seeds that flutter down to reach a distance, the 

ability to glide would be useful when deploying robots or switching environments. Our 

experiments successfully demonstrate each end-to-end cycle that starts with Primer, extends 

Primer with one of the four exoskeletons, performs the capabilities enabled by the exoskeleton, 

and removes the exoskeleton. 

The comparison of the locomotion speeds of Walk-bot and Scaled walk-bot at different 

magnetic field frequencies is shown in Fig. 4. With the periodic application of a magnetic field at 

angles of 27◦, 63◦, 90◦, and -63◦ in the dorsal plane, both robots move on the stage in the direction 

of the magnetic field. Their walking speed reaches a maximum of 3.07 cm/s when a magnetic 

flux density 0.35 mT is applied at 9 Hz (0.34 cm/step). We applied a magnetic field five times 

stronger on Scaled walk-bot than that on Walk-bot for pivoting, with the difference in the 

moment of inertia considered by reflecting the squares of distance between the pivot point and 

the center of the magnet. When a constant frequency oscillatory magnetic flux density 1.75 mT 

is applied at 6 Hz, Scaled walk-bot walks at a maximum speed of 4.66 cm/s (0.78 cm/step), 

which is 51.9% faster than the fastest speed of Walk-bot, supported by the 128% increase in step 

size. Walk-bot can walk faster with the Scaled walk-bot exoskeleton. Scaled walk-bot enables a 

larger step size. The larger step size allows us to use lower frequencies to achieve the same 

speed. The bigger step size is also useful for shoveling and moving a mass, and for travelling 

over terrain with gaps. The other enhanced capabilities of the robot were quantitatively analyzed 

with respect to locomotion speed, floating capability, and gliding capability. For the details of 

each exoskeleton, see Supplementary Materials. 

 

Discussion 

Robots with fixed architectures will perform the task for which they are designed well, but will 

perform poorly on different tasks in different environments. This study introduces the possibility 

of developing a robot that can extend and switch its capabilities by putting on exoskeletons and 

changing its body shape. We explored how the use of materials and a task-centered design can 

empower robots with a wide range of capabilities, with the complexity of the fixed robot body 

traded off with the design and control challenges of changing shape. The robot could acquire 

these capabilities to perform additional tasks, such as driving through water and burrowing or 

anchoring in sand. Exoskeletons could also form fixtures or simple tools, such as a drill, water 

scoop, shovel, cutter, or a grabber. They can likewise be potentially used for bio-mimicry 

functions, such as tail cutting or camouflaging. The principle of on-site morphing with custom 

exoskeletons to rapidly create new types of robots has the potential to provide more flexibility to 

robotic operations at difficult-to-access sites in multiple fields, such as in-space manufacturing, 

incision-free medical procedures (32), deep sea construction, and disaster site rescue operations. 

Although the devices demonstrated in this study are small in scale, robots with similar 

metamorphosis capabilities can be created using the same principles at a wide variety of scales.  

Suppose a robot needs to execute task A, which requires, for example, traversing water, 



followed by task B, which requires, for example, shoveling an area. Instead of creating a robot 

whose body can execute tasks A and B simultaneously, we propose designing a simpler robot, 

Primer, that can act as the engine for a multitude of tasks. Each task has a corresponding 

exoskeleton designed to wrap around and connect to Primer. Primer can pick up the exoskeleton 

by using a self-folding process activated by heat, and remove it by using a self-disassembly 

process activated by water. For our example tasks A and B, Primer acts as the engine that can 

travel to pick up the exoskeleton for task A (sailing), execute the sailing task, drive to discard the 

exoskeleton for sailing upon completion of this task, drive to pick up the exoskeleton for task B 

(shoveling), and continue. The key insight in this work is that through the use of novel materials 

that can be self-folded and self-disassembled, we simplify the design of robot systems, while 

increasing the range of tasks that they can perform. The key technical contributions of our study 

include (1) developing the design of Primer and exoskeletons for scaling the robot to move with 

larger steps, shoveling, rolling, sailing, and gliding; (2) creating the methods for acquiring and 

removing exoskeletons; and (3) conducting end-to-end experiments for robot metamorphosis and 

task execution for each capability.  

The capabilities of robots are defined by what their bodies can do and how their “brains” can 
control these bodies to execute tasks. The body, the brain, and the tasks that can be executed 

have a tight coupling. We believe that this work will open the door to the development of a new 

class of robots that are compact and can be specialized and customized to execute a wide range 

of tasks. This study is the first demonstration of on-site, on-demand robotic morpho-functional 

acquisition and disposal achieved purely on a material basis, in which the same material unit can 

be used to flexibly add and remove a part of the structure and reshape its operative boundary. 

 

Materials and Methods 

The Platform and Experimental Condition 

Fig. 5 shows the newly designed platform, which provides an environment for testing the robot. 

It consists of: a stage; two Peltier elements for robot self-assembly; a water reservoir for robot 

disassembly and sailing experiments; a ramp on which Glider-bot slides for gliding; with a 

motor-assisted leaning pad (Servo motor HS-55, HiTec) positioned adjacent to the ramp to 

initiate the slide; four solenoid coils (diameter: 21 cm) inclined 45◦ from the horizontal plane, 

directed toward the center of the stage from beneath, and the supporting electronics for current 

control. The stage is 30 cm in diameter with an actuatable workspace of 25 cm. The water 

reservoir is an arc-shaped lane sloping down toward the middle part. A robot can enter and exit 

the reservoir from either side, or it can directly jump in from the middle part where no protection 

wall exists. The deepest part is 1.52 cm in depth, and the average slope angle is 10◦. The ramp 

has a traveling length of 47 cm for Glider-bot, and it is set at an inclination angle of 33◦ from the 

horizontal plane. Glider-bot is released at a height of 112 cm from the ground. The currents for 

producing magnetic fields are controlled with a microcontroller (Arduino Esplora) and four 

motor drivers (SyRen25, Dimension Engineering) through serial communication. 

The remote actuation of the robot is possible by transferring magnetic force and torque to 

Primer with the electromagnetic coils (34–43). The platform used in the experiments for this 

work provides a significantly wider range of controllable space; most of the other coil systems 

were developed to cover merely several centimeters of workspace. The attachment mechanisms 

of the exoskeletons require precise localization, which can be provided via magnetic sensing, 



vision, or an external tracking and localization system. While autonomous localization using 

magnetic sensing was demonstrated in our platform in (44), in this work we focus on the 

metamorphosis of robots and reduce experimental complexity by relying on a human operator to 

remotely control the alignment between the robot and its exoskeletons, and the direction of the 

robot’s movement.  The patterns of the applied magnetic fields are adjusted to each locomotion 

modality to reflect the dynamics and body mass. See Supporting Materials for details. 

Using the control mechanism, we conducted five end-to-end experiments for each design. 

We started with Primer, created Walk-bot (1st-shape), created 2nd-shape extended from Walk-

bot, demonstrated the new capabilities, and transformed the robot from the 2nd-shape to the 1st-

shape. We also conducted multiple experiments for the respective transitions and consistently 

achieved success. During these experiments, the biggest challenge was the accurate alignment 

control of Walk-bot to the exoskeleton sheet, which is required to transition from one shape to 

another. 

 

Self-folding 

The self-folding of exoskeletons is achieved using the tensile stress of a pre-stretched thermo-

shrinking polymer film (Polyvinyl Chloride, deformation occurs at 65◦C, 0.03 mm thickness, 

Shrink Bag), laminated on both sides with two rigid sheets (Mylar sheets, 0.05 mm thickness, 

Mylar) by using silicone adhesive (High-Temperature Glue-on-a-Roll, McMaster-Carr). By 

differentiating the crease widths on the front and back sides of the self-folding sheet pattern, the 

folding direction can be controlled (45). When the sheet is exposed to heat at the glass transition 

temperature or marginally higher, a difference in shear stress is induced in the contractive layer 

between the two opposite faces, where the side with a wider gap contracts more and in turn 

creates a fold (45). All the creases are designed to fold simultaneously, but they experience speed 

differences, depending on the loads placed on the creases and the distance from the Peltier 

element. The fabrication of self-folding sheets is completed using a computer-aided cutting 

process with either a laser cutter or vinyl cutter, and manual lamination processes. The Peltier 

elements (Therma TEC 926-1279-ND, LairdTech) used are 43.9 × 39.9 cm2 in size and can 

differentiate up to 63◦C between both faces. The temperature rise is triggered manually with a 

constant current (2.2 A) to the respective elements in an open-loop manner. 

 

Docking and “Molting” mechanism 

A holding arm/latch assembly equipped in the exoskeleton sheet enables Walk-bot to interface 

with the exoskeleton. The assembly consists of four latches: two front latches are longer to wrap 

around Primer of Walk-bot, whereas two back latches hold the tail of Walk-bot tightly to allow 

the torque to be transmitted through the structure (Fig. 6). The two front arms have wide, 

connected segments so that during the self-folding process, they can stay rigid enough to 

completely encase the magnet. The two back arms have thin, disconnected segments so that they 

can fold over the low tail. The roots of the arms were made of water-soluble paper, ASWT-1 

(Aquasol). When exposed to water, the water-soluble tape dissolves; it separates the arms from 

the exoskeleton and enables Walk-bot to be released. In our investigation, dissolving a latch from 

the body by physically vibrating the exoskeleton at 2 Hz took 18 s (five samples), on average. In 

the experiments, 5 min was allotted to allow all latch connections to completely dissolve. 



References 

1. K. Kotay, D. Rus, M. Vona, C. McGray, The self-reconfiguring robotic molecule, in 

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS) (IEEE, 1998), pp. 424–431. 

2. S. Murata, H. Kurokawa, Self-reconfigurable robots. IEEE Robotics & Automation 

Magazine. 14, 71–78 (2007). 

3. K. Gilpin, A. Knaian, D. Rus, Robot pebbles: One centimeter module for programmable 

matter through self-disassembly, in Proceedings of the IEEE International Conference on 

Robotics and Automation (ICRA) (IEEE, 2010), pp. 2485–2492. 

4. M. Yim, W-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G. S. Chrikjian, 

Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine. 14, 43–
50 (2007). 

5. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. 

Wood, Programmable matter by folding. Proc. Natl. Acad. of Sci. U.S.A. 107, 12441–12445 

(2010). 

6. C. D. Onal, M. T. Tolley, R. J. Wood, D. Rus, Origami-inspired printed robots. IEEE/ASME 

Transactions on Mechatronics. 20, 2214–2221 (2014). 

7. S. Felton, M. T. Tolley, E. Demaine, D. Rus, R. J. Wood, A method for building self-folding 

machines. Science. 345, 644–646 (2014). 

8. A. Firouzeh, J. Paik, Robogami: A fully integrated low-profile robotic origami. Journal of 

Mechanisms and Robotics. 7, 021009 (2015). 

9. K. C. Cheung, E. D. Demaine, J. R. Bachrach, S. Griffith, Programmable assembly with 

universally foldable strings (moteins). IEEE Transactions on Robotics. 27, 718 (2011). 

10. A. Cully, J. Clune, D. Tarapore, J.-B. Mouret, Robots that can adapt like animals. Nature. 

521, 503–507 (2015). 

11. M. Boyvat, J.-S. Koh, R. J. Wood, Addressable wireless actuation for multijoint folding 

robots and devices. Science Robotics. 2, eaan1544 (2017). 

12. H. Lipson, J. B. Pollack, Automatic design and manufacture of artificial lifeforms. Nature. 

406, 974–978 (2000). 

13. V. Zykov, E. Mutilinaios, B. Adams, H. Lipson, Self-reproducing machines. Nature. 435, 

163–164 (2005). 

14. J. Bongard, Morphological change in machines accelerates the evolution of robust behavior. 

Proc. National Academy of Sciences 108, 1234–1239 (2011). 

15. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. 

Jackson, Biology: A Global Approach (Pearson, 2014). 

16. J. D. Dickson, J. E. Clark, Design of a multimodal climbing and gliding robotic platform. 

IEEE/ASME Transactions on Mechatronics. 18, 494–505 (2013). 

17. M. A. Woodward, M. Sitti, MultiMo-Bat: A biologically inspired integrated jumping-gliding 

robot. International Journal of Robotics Research. 33, 1511–1529 (2014). 



18. A. Vidyasagar, J.-C. Zufferey, D. Floreano, M. Kovac, Performance analysis of jump-

gliding locomotion for miniature robotics. Bioinspiration & Biomimetics. 10, 025006 (2015). 

19. K. Jayaram, R. J. Full, Cockroaches traverse crevices, crawl rapidly in confined space, and 

inspire a soft, legged robot. Proc. National Academy of Sciences 113, E950–E957 (2016). 

20. S. Revzen, M. Bhoite, A. Macasieb, M. Yim, Structure synthesis on-the-fly in a modular 

robot, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS) (2011), pp. 4797–4802. 

21. L. Wang, L. Brodbeck, F. Iida, Mechanics and energetics in tool manufacture and use: A 

synthetic approach. Journal of the Royal Society Interface. 11, DOI: 10.1098/rsif.2014.0827 

(2014). 

22. J. Hiller, H. Lipson, Automatic design and manufacture of soft robots. IEEE Transactions on 

Robotics. 28, 457–466 (2012). 

23. E. Klavins, Programmable self-assembly. IEEE Control System Magazine. 27, 43–56 (2007). 

24. J. W. Romanishin, K. Gilpin, D. Rus, M-blocks: Momentum-driven, magnetic modular 

robots, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS) (2013), pp. 4288–4295. 

25. I. Shimoyama, H. Miura, K. Suzuki, Y. Ezura, Insect-like microrobots with external 

skeletons. IEEE Control Systems. 13, 37–41 (1993). 

26. A. M. Hoover, E. Steltz, R. S. Fearing, RoACH: An autonomous 2.4g crawling hexapod 

robot, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS) (2008), pp. 26–33. 

27. J. P. Whitney, P. S. Sreetharan, K. Ma, R. J. Wood, Pop-up book MEMS. Journal of 

Micromechanics and Microengineering. 21, 115021 (2011). 

28. M. Noh, S.-W. Kim, S. An, J.-S. Koh, K.-J. Cho, Flea-inspired catapult mechanism for 

miniature jumping robots, IEEE Transactions on Robotics. 28, 1007 (2012). 

29. S. Miyashita, S. Guitron, M. Ludersdorfer, C. Sung, D. Rus, An untethered miniature 

origami robot that self-folds, walks, swims, and degrades, in Proceedings of the IEEE 

International Conference on Robotics and Automation (ICRA) (2015), pp. 1490–1496. 

30. J. Morgan, S. P. Magleby, L. L. Howell, An approach to designing origami-adapted 

aerospace mechanisms, Journal of Mechanical Design. 138, 052301 (2016). 

31. K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-

deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory 

alloy foil. Materials Science and Engineering A. 419, 131–137 (2006). 

32. S. Miyashita, S. Guitron, K. Yoshida, S. Li, D. D. Damian, D. Rus, Ingestible, controllable, 

and degradable origami robot for patching stomach wounds, in Proceedings of the IEEE 

International Conference on Robotics and Automation (ICRA) (2016), pp. 909–916. 

33. R. J. Lang, Origami Design Secrets (CRC Press, Taylor & Francis Group, 2012). 

34. T. Honda, K. I. Arai, K. Ishiyama, Micro swimming mechanisms propelled by external 

magnetic fields. IEEE Transactions on Magnetics. 32, 5085 (1996). 



35. K. Ishiyama, M. Sendoh, K. Arai, Magnetic micromachines for medical applications. 

Journal of Magnetism and Magnetic Materials. 242, 41–46 (2002). 

36. S. Martel, J-B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, 

Automatic navigation of an untethered device in the artery of a living animal using a 

conventional clinical magnetic resonance imaging system. Applied Physics Letters. 90, 

114105 (2007). 

37. K. Vollmers, D. R. Frutiger, B. E. Kratochvil, B. J. Nelson, Wireless resonant magnetic 

microactuator for untethered mobile microrobots. Applied Physics Letters. 92, 144103 

(2008). 

38. S. Floyd, C. Pawashe, M. Sitti, Modeling and experimental characterization of an untethered 

magnetic micro-robot. International Journal of Robotics Research. 28, 1077– 1094 (2009). 

39. M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, B. J. Nelson, OctoMag: 

An electromagnetic system for 5-DOF wireless micromanipulation, in Proceedings of the 

IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 1006–1017. 

40. S. Miyashita, E. Diller, M. Sitti, Two-dimensional magnetic micro-module reconfigurations 

based on inter-modular interactions. International Journal of Robotics Research. 32, 591–
615 (2013). 

41. E. Diller, J. Giltinan, G. Z. Lum, Z. Ye, M. Sitti, Six-degree-of-freedom magnetic actuation 

for wireless microrobotics. International Journal of Robotics Research. 35, 114–128 (2015). 

42. B. E. Kratochvil, D. R. Frutiger, K. Vollmers, B. J. Nelson, Visual servoing and characteri-

zation of resonant magnetic actuators for decoupled locomotion of multiple untethered 

mobile microrobots, in Proceedings of the IEEE International Conference on Robotics and 

Automation (ICRA) (2009), pp. 1010–1015. 

43. E. Diller, J. Giltinan, M. Sitti, Independent control of multiple magnetic microrobots in three 

dimensions. International Journal of Robotics Research. 32, 614–631 (2013). 

44. S. Guitron, A. Guha, S. Li, D. Rus, Autonomous locomotion of a miniature, untethered 

origami robot using hall effect sensor-based magnetic localization, in Proceedings of the 

IEEE International Conference on Robotics and Automation (ICRA) (2017), pp. 4807–4813. 

45. S. Miyashita, C. D. Onal, D. Rus, Self-pop-up cylindrical structure by global heating, in 

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS) (2013), pp. 4065–4071. 

46. C. Sung, R. Lin, S. Miyashita, S. Yim, S. Kim, D. Rus, Self-folded soft robotic structures 

with controllable joints, in Proceedings of the IEEE International Conference on Robotics 

and Automation (ICRA) (2017), pp. 580–587. 

 

Acknowledgments: Funding: Supported by NSF grants 1240383 and 1138967. Author 

contributions: S.M. and S.L. conceived the concept; S.M., S.L., and D.R. designed the research; 

S.M., S.G., and S.L. developed the system; S.G and S.L. performed the experiments; S.G. 

analyzed the data; and S.M., S.G., and D.R. wrote the paper. D.R. provided funding. 

 



 

 

 

Fig. 1. Example of robotic metamorphosis by origami exoskeletons. Primer metamorphoses into 

Walk-bot and then to Wheel-bot, hierarchically equipping and obtaining different locomotion 

capabilities. 



 

Fig. 2. Entire demonstrations of Scaled walk-bot (a-f) and Glider-bot (g,h). (a) Primer rolls 

remotely guided by a rotating magnetic field and can coalesce with Walk-bot self-folding sheet, 

the exoskeleton that encases and holds it. (b) Primer, which now features a minimal form for 

walking, supported by a tail for pitch stabilization, is forthwith capable of locomotion because of 

the eccentric body mass distribution (termed Walk-bot, the self-folding process in the small 

windows). (c-d) Walk-bot can further walk to another exoskeleton. The second exoskeleton can 

be equipped in the same way; it is held by self-folding arms that contain dissolving parts. After 

Walk-bot aligns on top of the latch module, the pit, four arms self-fold and hold Walk-bot such 

that Primer can transmit magnetic torque through the contact surface of the exoskeletons. At this 

point, the system morphs into a second shape, which has a larger but analogical morphology to 

Walk-bot (termed Scaled walk-bot). (f) For “taking off” the second exoskeleton, Scaled walk-bot 

enters a water reservoir where the four holding arms dissolve, and the released Walk-bot from the 

second exoskeleton can climb out of the reservoir and leave the exoskeleton discarded in the 

water. (g,h) Transformation of Walk-bot to Glider-bot, and the gliding performance. Walk-bot 

acquires a wing and, assisted by a ramp, can reach 26 times its body length (129 cm) from the 

stage by gliding through the air from a height of 112 cm. See Movies 1 and 4 in Supplementary 

Materials for the entire experiments. 

 



 

Fig. 3. Robotic metamorphic cycle. Starting as Primer at the top, the system morphs into the first 

shape, Walk-bot, as shown on the right. Walk-bot can subsequently transform into the second 

shape by integrating a self-folding exoskeleton. We demonstrate four new capabilities, namely, 

scaling up (Scaled walk-bot), sailing (Boat-bot), rolling (Wheel-bot), and gliding (Glider-bot), 

which can only be achieved by equipping exoskeletons, but other capabilities are also possible. 

The second shape can recover the morphologies of earlier stages by removing (“molting”) the 
exoskeleton. The disassembly process of the second exoskeleton transforming to Walk-bot can 

be performed by dissolving the holding arms in water. The disassembly process of Walk-bot, 

which is beyond the scope of this study, can be performed by making the body of Walk-bot 

dissolvable to a specific solvent. We demonstrated this process with polyester-made origami 

robots that could dissolve relevant body parts after submersion in the solvent (29). 



 

Fig. 4. Comparison of locomotion speeds between Walk-bot and Scaled walk-bot. With the 

scaled morphology, an increase in walking speed of more than 50% was observed. 

  



 

 

Fig. 5. The platform, which consists of four solenoid coils, two Peltier elements, a water 

reservoir, and a ramp. 

 

 

Fig. 6. Docking and molting mechanism. (a) Four arms, whose roots are made of water-

dissolvable material, tightly hold Walk-bot. (b) Upon immersion in water, the roots dissolve and 

release Walk-bot. 
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In Supplementary Materials, we describe Magnetic control, design, control, and perfor-

mance of Primer, Walk-bot, Scaled walk-bot, Wheel-bot, Boat-bot, and Glider-bot at length.

Remote Magnetic Control

The following sections derive the control of the coils by currents to obtain targeted magnetic

torque and force for controlling the robot. The four coils (numbered i ∈ 1, ..., 4) are placed in

counter-clockwise order seen from above at regular intervals around the central vertical axis in

the lower hemisphere of diameter d (= 65.2 cm) of the stage. This configuration provides the

upper half hemisphere with an open space for robot operation. Each coil is inclined 45◦ from

the horizontal plane such that the axes of symmetry intersect at the center of the sphere (set

as the origin, GO, of global coordinate GX̂Ŷ Ẑ, where the GX̂-Ŷ plane is set horizontal, see

Fig. S1).

The local coordinate frame of coil i, ix̂ŷẑ is defined for each coil, where the origins of the

local coordinate frames are located at the centroids of the coils io. The ix̂-ŷ plane is parallel

to the diametrical plane of the coil, and iẑ is normal to the plane, coinciding with other j ẑ

(j ∈ 1, ..., 4; j ̸= i) axes of the coils at GO.

The magnetic flux density produced by coil i along the central axis at position z relative to
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a coordinate frame ix̂ŷẑ is

i⃗bi =





ibi(x)
ibi(y)
ibi(z)



 =
µ0Na2

2(a2 + iz2)
3

2





0
0
Ii



 , (1)

where I⃗ = (I1, I2, I3, I4)
T is the current vector consisting of traversing current of coil i, Ii,

µ0 (= 4π · 10−7 H/m) is the vacuum permeability, a (= 21 cm) is the diameter of coil, and N

(= 125 turns) is the number of turns of wire of each coil. Due to the symmetry, b⃗x = b⃗y = 0.

The rotation matrix Ri for coil i to coincide the directions of axes of local frames ix̂ŷẑ with

those of global frame GX̂Ŷ Ẑ can be expressed with Euler angles as

Ri = R(ix̂,−π

4
)R(iẑ′, ϕi), (2)



where

R(ix̂, θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (3)

and

R(iẑ′, ϕ) =





cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1



 . (4)

Here ϕi = −π
4
, −3π

4
, 3π

4
, and π

4
for coils i = 1, ..., 4, respectively, and iẑ′ is newly created axis

by the first rotation about x̂.

i⃗bi in the global coordinate G⃗bi can be therefore obtained as

G⃗bi = R−1(iẑ′, ϕ)R−1(ix̂,−π

4
) i⃗bi. (5)

The globally created magnetic flux density by four coils GB⃗ is given by the superposition

of the individual magnetic flux densities Gb⃗i produced by respective coils, represented in the

global coordinate, Gb⃗i, as

GB⃗ =
4

∑

i=1

Gb⃗i (6)

=
4

∑

i=1

R−1(iẑ′, ϕ)R−1(ix̂,−π

4
) i⃗bi (7)

:= J(X̂, Ŷ , Ẑ) I⃗ , (8)

where

J(X̂, Ŷ , Ẑ) =
µ0Na2

2(a2 + d2

4
)
3

2
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 , (9)

relating current I⃗ to magnetic flux density GB⃗. (9) shows that (6) is linear in the current I⃗ .

As J is full-rank, GB⃗ produced at the center of the stage can be along any spherical direction

and be of arbitrary strength up to the system’s capacity. Our model can produce maximum mag-

netic flux density of 1.75mT with current 48A, though this value can be varied by regulating

the current flow or the number of wire turns in each coil.



One solution for the current I⃗ required to generate a desired magnetic flux density GB⃗ at the

stage can be determined by solving the unconstrained least squares problem

minimize
I⃗

∥J(X̂, Ŷ , Ẑ) I⃗ − GB⃗(X̂, Ŷ , Ẑ)∥2 (10)

corresponding to the undetermined system of (8). The least squares problem (10) can be solved

using the Moore-Penrose pseudo inverse of the matrix J

I⃗ = J# GB⃗, (11)

where J# = JT (JJT )−1. This minimizes the Euclidean norm of I⃗ , thereby minimizing both

energy consumption and heat generation (39).

We obtain

J# =
2(a2 + d2

4
)
3

2

µ0Na2
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. (12)

The attachment mechanisms require precise localization, which can be provided via mag-

netic sensing, vision, or an external tracking and localization system. While localization using

magnetic sensing was demonstrated on our platform in (44), due to the complexity of the en-

vironment and necessity for multimodal performance, a human operator manually controlled

alignment and direction.

In practice, as Gb⃗i diverges, the system experiences deviations in the direction and strength

of GB⃗ at around the edge of the workspace. To warrant the controllability of robots, the system

was designed with four coils instead of the minimum number, three, to reasonably cancel out

the deviations of the field strengths by oppositely positioning coils (close one and distant one).

Additionally, the diameter of the coils was set such that their normal projections onto the stage

cover the entire area and minimizes the deviation in the direction of produced magnetic field.



Primer Control

Primer has an edge length of 3.18mm, weighs 0.24 g, with a surface field of 0.65T (K&J

magnetics). By regarding the magnet as a magnetic dipole m⃗ := (m(X), m(Y ), m(Z))T , the

magnetic torque τ⃗ acting on the magnet due to G⃗B is given by

τ⃗ = m⃗× GB⃗ (13)

=





0 −m(Z) m(Y )
m(Z) 0 −m(X)
−m(Y ) m(X) 0





GB⃗. (14)

We experimentally estimated m = 0.030Am2 by measuring required torque to rotate Primer.

With (8) and (14) follows that τ⃗ is linear in the currents I⃗ . Therefore,

τ⃗ := Jτ I⃗ , (15)

where

Jτ =
µ0Na2

2(a2 + d2

4
)
3

2

·







−1
2
m(Z)− 1√

2
m(Y ) 1

2
m(Z)− 1√

2
m(Y )

1
2
m(Z)− 1√

2
m(Y ) −1

2
m(Z)− 1√

2
m(Y )

−1
2
m(Z) + 1√

2
m(X) −1

2
m(Z) + 1√

2
m(X)

1
2
m(Z) + 1√

2
m(X) 1

2
m(Z) + 1√

2
m(X)

1
2
m(Y ) + 1

2
m(X) 1

2
m(Y )− 1

2
m(X)

−1
2
m(Y )− 1

2
m(X) −1

2
m(Y ) + 1

2
m(X)



 (16)

which relates current I⃗ to torque τ⃗ . We estimate τmax = 5.25 · 10−5 Nm (0.535 g-f cm) under

the application of GB = 1.75mT, which assures the possible-to-lift surface area of 1.21 cm2

assuming that the sheet is flat square, the density of second exoskeleton sheet 0.0344 g/cm2,

and the magnet positions at the center of the sheet. Based on the calculation, the developed ex-

oskeletons have off-centered Primer positions close to the pivoting point to reduce the required

torque, with comprehensive body structures to enable larger exoskeleton sizes.



Walk-bot

The Walk-bot design is shown in Fig. S2. The unfolded exoskeleton has size 23.72 × 8.09mm2.

When folding, the creases consisting of 13 mountain folds and 17 valley folds self-fold, encasing
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Figure S2: Walk-bot design. (a,b) unfolded configurations, and (c,d) folded configurations.

Primer completely. The average time taken for self-folding of Walk-bot is 173 s (5 samples).

The speed typically depends on the capacity of the Peltier element and can be increased by

using another type or soaking in hot water (46). Once self-folded, Walk-bot stands at 4.25mm

tall and is 10.43 × 7.81mm2. It weighs 0.289 g while merely 17% of the weight is from

the exoskeleton (the rest is from Primer). The walking motion is based on stick-slip motion

presented also in (29).

Scaled walk-bot

The design of Scaled walk-bot is shown in Fig. S3. It weighs 0.539 g; Walk-bot including Primer

weighs 0.289 g, which is 53.6% of the total weight. The basic crease pattern was inherited from

Walk-bot but without the front segment that reconfigures to a ceiling. Instead, four arms are

provided at the location of Walk-bot, facing the short edge. A self-folding process turns the

unfolded sheet of 32.82 × 22.14mm2 into Scaled walk-bot (26.9 × 21.94 × 6.11mm3). The
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Figure S3: Scaled walk-bot design. (a,b) unfolded configurations, and (c,d) folded configura-

tions.

process involves 5 mountain folds and 9 valley folds. The average self-folding speed of a second

exoskeleton is 158 s (5 samples). The body size was chosen according to the maximum amount

of magnetic torque we can impose. The tail was shortened to reduce the amount of torque

required to pivot.

The Scaled walk-bot is particularly useful as a miniature shovel. To demonstrate its effec-

tiveness, we measured the carriable number of ∼ 5mm polyethylene foam blocks of 2mg for

Scaled walk-bot and Walk-bot. While Walk-bot was able to carry at most one block at a time,

Scaled walk-bot could carry between 3 and 5 blocks at one time.

The experiment of 2-step metamorphoses and molting processes shown in Fig. 2 (a)-(f) was

iterated for 5 times and we obtained 2 end-to-end successes. The time taken for the whole pro-

cess was around 20min in average (3 samples). The variable time was spent aligning Walk-bot

to the exoskeleton and waiting for the latches to dissolve. The main reason for the failure is mis-

alignment of Walk-bot in the exoskeleton of Scaled walk-bot. While Walk-bot can walk under

water, the capillary force prevents it from coming ashore. In experiments, we employed rolling

motion for Walk-bot when it climbed the slope. The success and failure of events occurring in

each trial are detailed in Table 1.



Table 1: Success and failure events with Scaled walk-bot.
Primer

alignment

Walk-bot

self-folding

Walk-bot

walking

Walk-bot

alignment

Scaled

walk-bot

self-folding

Scaled

walk-bot

walking

Scaled

walk-bot

dissolving

Walk-bot

molting

Trial 1 Yes Yes Yes No No No No No

Trial 2 Yes Yes Yes Yes Yes No Yes Yes

Trial 3 Yes Yes No No No No No No

Trial 4 Yes Yes Yes Yes Yes Yes Yes Yes

Trial 5 Yes Yes Yes Yess Yes Yes Yes Yes

Wheel-bot

The design of Wheel-bot is shown in Fig. S4. The unfolded exoskeleton of Wheel-bot has a
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Figure S4: Wheel-bot design. (a,b) unfolded configurations, and (c,d) folded configurations.

dimension of 40.25 × 13.12mm2 and consists of three blocks. It weighs 0.43 g, while Walk-bot

including Primer weighs 0.298 g. Walk-bot sits at the pit facing the longitudinal edge. When

heated, 12 mountain and 20 valley folds self-fold, and two parts on both ends transform into

decagonal wheels perpendicularly folding up. The angle of the wheel is regulated with a pair of

mountain and valley folds, and the angle converges near perpendicularly to the pit. It achieves a

dimension of 12.93 × 16.51 × 11.83mm3. Ideally, the Primer should be positioned around the

wheel axis. However, such design would require elevation of Walk-bot while self-folding, and

Walk-bot could fall out of the latch. Once reconfiguration is completed, a rotational magnetic

field of 1.75mT is applied for rolling motion. In experiments, the frequency is set at 0.73Hz.



Fig. S5 shows the rolling speed of Wheel-bot over the frequency of rotational magnetic

field. As expected, the speed linearly increases proportional to the frequency until step-out
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Figure S5: The rolling speed of Wheel-bot over frequency of magnetic field applied (5 sam-

ples).

occurs after 5Hz. Wheel-bot rolls at a maximum speed of 14.8 cm/s, while Walk-bot walks at a

maximum speed of 5.84 cm/s, showing the efficiency of rolling on ground (270% faster).

The robot capability enabled by the wheel exoskeleton added to Walk-bot is shown in

Fig. S6. Due to the simple crease pattern, the entire process shows reliable performance. The

trial was repeated 5 times with 4 successes. The success and failure of events occurring in each

trial are detailed in Table 2.

Boat-bot

Boat-bot shows stability when controlled on water and can move on ground using stick-slip

motion due to the forward placement of the magnet. Fig. S7 shows the crease pattern (a,b) and

the self-folded Boat-bot (c,d). The unfolded exoskeleton sheet (31.44 × 19.64mm2, 0.496 g)
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Figure S6: Demonstration of Wheel-bot. (a-c) Walk-bot approaches and steps on the wheel

exoskeleton. (d-i) The exoskeleton starts heat-triggered self-folding, (j-l) forms two wheels on

both sides, and starts rolling, guided by a magnetic field. The entire experiment is presented in

Movie 2.
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Figure S7: Boat-bot design. (a,b) unfolded configurations, and (c,d) folded configurations.

self-folds into a boat shape of 30.08 × 16.23 × 8.86mm3 by lifting the sides up, forming

a concave shape around the pit. The process involves 4 mountain and 14 valley folds, which

self-fold into a concave body shape for floating.

For actuation on water, we employ magnetic force induction with field gradient. Given no



Table 2: Success and failure events with Wheel-bot.
Walk-bot

alignment

Wheel-bot

self-folding

Wheel-bot

rolling

Wheel-bot

dissolving

Walk-bot

molting

Trial 1 Yes Yes Yes Yes Yes

Trial 2 Yes Yes Yes Yes Yes

Trial 3 Yes Yes Yes Yes Yes

Trial 4 Yes Yes Yes Yes Yes

Trial 5 Yes Yes No Yes Yes

current is running in the space occupied by Primer, the magnetic force F acting on Primer with

magnetic moment m⃗ due to GB⃗ is given by

F⃗ = (m⃗ · ∇) GB⃗ (17)

=
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=







∂ GB⃗
∂X

m(X)
∂ GB⃗
∂Y

m(Y )
∂ GB⃗
∂Z

m(Z)






. (19)

From (7), we obtain
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By substituting zi =
d
2

for all i, we obtain

∂ GB

∂X
=
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4
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4
)
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(−I1 − I2 + I3 + I4). (23)

Similarly, we obtain
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and
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∂Z
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(17)-(25) suggest that F⃗ is linear in the current I⃗ and can be rewritten as

F⃗ = JF I⃗ , (26)

where

JF =
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4
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·
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 , (27)

which relates current I⃗ to force F⃗ .

We use negative currents Ii ≤ 0 and always use attractive force for swimming control

regardless of the position of the Primer on the stage. With (23), we estimate magnetic force

F (X) = 0.0378mN under application of I1 = I2 = −10A assuming that a magnet is pointing

toward the positive direction of X̂-axis.

With (15) and (26) follows

(

τ⃗

F⃗

)

=

[

Jτ
JF

]

I⃗ := A I⃗, (28)

where A is a 6 × 4 actuation matrix describing the torque and force acting on a magnet inside

the area of operation due to the currents applied by the four electromagnetic coils. By solving

the inverse of A, we obtain required I⃗ for desired F⃗ and τ⃗ . This linear transformation enables

real-time production of magnetic field in response to the operator’s control input.

The payload of Boat-bot was measured by placing increasing weight (�2.38mm, 0.0204 g

aluminum balls) onto the exoskeleton. The result was 0.924 ± 0.066g (5 samples) before it



sank. Given the weight of Walk-bot is 0.496 g, it carries 1.86 times its weight by equipping the

boat exoskeleton.

The entire experiment with Boat-bot, starting with Walk-bot is shown in Fig. S8. The process
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Figure S8: Demonstration with boat exoskeleton. The Walk-bot walks in and rides on the pit

of the boat exoskeleton (a-c). The exoskeleton starts self-folding (d), and completes reconfig-

uration (e). The folded exoskeleton walks and enters the reservoir (f-i). It shows swimming

capability on water (j-l). The entire experiment is presented in Movie 3.

was iterated 5 times and 3 successful results were obtained. We detailed the success and failure

of events occurring in each trial in Table 3. In the two failure trials, Boat-bot failed to walk due

to misalignment of Walk-bot.

Glider-bot

The exoskeleton of Glider-bot and the folded configurations are shown in Fig. S9. The design

requires extensive considerations of weight and strength for the structure, and aerodynamics for

the gliding motion. Additionally, there are design constraints from the size of Peltier element,



Table 3: Success and failure events with Boat-bot.
Walk-bot

alignment

Boat-bot

self-folding

Boat-bot

walking

Boat-bot

floating

Trial 1 Yes Yes No Yes

Trial 2 Yes Yes No No

Trial 3 Yes Yes Yes Yes

Trial 4 Yes Yes Yes Yes

Trial 5 Yes Yes Yes Yes
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Figure S9: Glider-bot design. (a,b) unfolded configurations and (c,d) folded configurations.

that all the contracting threads should fit in the area. In order to increase the stability about the

roll axis, the Glider-bot has a W-shaped body with three cylindrical opening channels. This

design allows the wing on each side to be kept upward with a dihedral angle of approximately

33±2◦ (6 samples). Moreover, these symmetrical channels act as stabilizers to keep the robot’s



gliding posture without yaw motion. To form the wing shape, six linear heat-sensitive shrinking

threads are attached. When heat is applied to the structure, the threads contract and produce

the curved wing shape. This design lowers the center of mass and lifts up the wing, enabling

a proper gliding posture with stability about the pitch axis. The structure can be made with

a single layer and thus it is lightweight while maintaining enough rigidity against twisting and

bending when gliding. In addition, the shape provides a space for the pit for Walk-bot to position

itself. The sheet has a dimension 99.8 × 49.8mm2 and once it configures as Glider-bot it has a

dimension 83.6 × 49.8 × 17.9mm3. The body of Glider-bot exoskeleton weighs 0.585 g and

the body of Glider-bot including Walk-bot weighs 0.825 g.

We have demonstrated a successful end-to-end cycle for gliding. The success and failure

of events occurring in each trial are detailed in Table 4. The main reasons for failure were

Table 4: Success and failure events with Glider-bot.
Walk-bot

alignment

Glider-bot

self-folding

Glider-bot

ramp sliding

Glider-bot

gliding

Trial 1 Yes Yes Yes Yes

Trial 2 Yes Yes No No

Trial 3 Yes Yes Yes No

Trial 4 Yes Yes Yes No

Trial 5 Yes No No No

misalignment of the walk bot on exoskeleton, misfolding of the Glider-bot exoskeleton (the

wings would buckle or fold non-symetrically), and inability to fly once folded. The challenge

has been alignment with the gliding ramp, due to the significantly larger size of Glider-bot.

Producing a glider at this scale with self-folding methods has proven to be an exacting process

where even a small misalignment of Walk-bot could spell the difference between success and

failure. Our challenge was designing around the immense difficulties of flight at this scale, to

which we have achieved a complete successful end-to-end cycle.



Multimedia Extension

We provide four movies that display the typical metamorphic behavior of (1) Scaled walk-bot

as shown in Fig. 2 (Movie 1), (2) Wheel-bot as shown in Fig. S6 (Movie 2), (3) Boat-bot as

shown in Fig. S8 (Movie 3), and (4) Glider-bot as shown in Fig. 2 (Movie 4).


