452 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    High-Speed Analog-to-Digital Converters for Broadband Applications

    Get PDF
    Flash Analog-to-Digital Converters (ADCs), targeting optical communication standards, have been reported in SiGe BiCMOS technology. CMOS implementation of such designs faces two challenges. The first is to achieve a high sampling speed, given the lower gain-bandwidth (lower ft) of CMOS technology. The second challenge is to handle the wide bandwidth of the input signal with a certain accuracy. Although the first problem can be relaxed by using the time-interleaved architecture, the second problem remains as a main obstacle to CMOS implementation. As a result, the feasibility of the CMOS implementation of ADCs for such applications, or other wide band applications, depends primarily on achieving a very small input capacitance (large bandwidth) at the desired accuracy. In the flash architecture, the input capacitance is traded off for the achievable accuracy. This tradeoff becomes tighter with technology scaling. An effective way to ease this tradeoff is to use resistive offset averaging. This permits the use of smaller area transistors, leading to a reduction in the ADC input capacitance. In addition, interpolation can be used to decrease the input capacitance of flash ADCs. In an interpolating architecture, the number of ADC input preamplifiers is reduced significantly, and a resistor network interpolates the missing zero-crossings needed for an N-bit conversion. The resistive network also averages out the preamplifiers offsets. Consequently, an interpolating network works also as an averaging network. The resistor network used for averaging or interpolation causes a systematic non-linearity at the ADC transfer characteristics edges. The common solution to this problem is to extend the preamplifiers array beyond the input signal voltage range by using dummy preamplifiers. However, this demands a corresponding extension of the flash ADC reference-voltage resistor ladder. Since the voltage headroom of the reference ladder is considered to be a main bottleneck in the implementation of flash ADCs in deep-submicron technologies with reduced supply voltage, extending the reference voltage beyond the input voltage range is highly undesirable. The principal objective of this thesis is to develop a new circuit technique to enhance the bandwidth-accuracy product of flash ADCs. Thus, first, a rigorous analysis of flash ADC architectures accuracy-bandwidth tradeoff is presented. It is demonstrated that the interpolating architecture achieves a superior accuracy compared to that of a full flash architecture for the same input capacitance, and hence would lead to a higher bandwidth-accuracy product, especially in deep-submicron technologies that use low power supplies. Also, the gain obtained, when interpolation is employed, is quantified. In addition, the limitations of a previous claim, which suggests that an interpolating architecture is equivalent to an averaging full flash architecture that trades off accuracy for the input capacitance, is presented. Secondly, a termination technique for the averaging/interpolation network of flash ADC preamplifiers is devised. The proposed technique maintains the linearity of the ADC at the transfer characteristics edges and cancels out the over-range voltage, consumed by the dummy preamplifiers. This makes flash ADCs more amenable for integration in deep-submicron CMOS technologies. In addition, the elimination of this over-range voltage allows a larger least-significant bit. As a result, a higher input referred offset is tolerated, and a significant reductions in the ADC input capacitance and power dissipation are achieved at the same accuracy. Unlike a previous solution, the proposed technique does not introduce negative transconductance at flash ADC preamplifiers array edges. As a result, the offset averaging technique can be used efficiently. To prove the resulting saving in the ADC input capacitance and power dissipation that is attained by the proposed termination technique, a 6-bit 1.6-GS/s flash ADC test chip is designed and implemented in 0.13-μ\mum CMOS technology. The ADC consumes 180 mW from a 1.5-V supply and achieves a Signal-to-Noise-plus-Distortion Ratio (SNDR) of 34.5 dB and 30 dB at 50-MHz and 1450-MHz input signal frequency, respectively. The measured peak Integral-Non-Linearity (INL) and Differential-Non-Linearity (DNL) are 0.42 LSB and 0.49 LSB, respectively

    Ultra-Low Power Transmitter and Power Management for Internet-of-Things Devices

    Get PDF
    Two of the most critical components in an Internet-of-Things (IoT) sensing and transmitting node are the power management unit (PMU) and the wireless transmitter (Tx). The desire for longer intervals between battery replacements or a completely self-contained, battery-less operation via energy harvesting transducers and circuits in IoT nodes demands highly efficient integrated circuits. This dissertation addresses the challenge of designing and implementing power management and Tx circuits with ultra-low power consumption to enable such efficient operation. The first part of the dissertation focuses on the study and design of power management circuits for IoT nodes. This opening portion elaborates on two different areas of the power management field: Firstly, a low-complexity, SPICE-based model for general low dropout (LDO) regulators is demonstrated. The model aims to reduce the stress and computation times in the final stages of simulation and verification of Systems-on-Chip (SoC), including IoT nodes, that employ large numbers of LDOs. Secondly, the implementation of an efficient PMU for an energy harvesting system based on a thermoelectric generator transducer is discussed. The PMU includes a first-in-its-class LDO with programmable supply noise rejection for localized improvement in the suppression. The second part of the dissertation addresses the challenge of designing an ultra- low power wireless FSK Tx in the 900 MHz ISM band. To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner PA, the Tx showed a measured energy efficiency of 0.2 nJ/bit and a normalized energy efficiency of 3.1 nJ/(bit∙mW) when operating at output power levels up to -10 dBm and data rates of 3 Mbps. To close this dissertation, the implementation of a supply-noise tolerant BiCMOS ring-oscillator is discussed. The combination of a passive, high-pass feedforward path from the supply to critical nodes in the selected delay cell and a low cost LDO allow the oscillator to exhibit power supply noise rejection levels better than –33 dB in experimental results

    Concepts for smart AD and DA converters

    Get PDF
    This thesis studies the `smart' concept for application to analog-to-digital and digital-to-analog converters. The smart concept aims at improving performance - in a wide sense - of AD/DA converters by adding on-chip intelligence to extract imperfections and to correct for them. As the smart concept can correct for certain imperfections, it can also enable the use of more efficient architectures, thus yielding an additional performance boost. Chapter 2 studies trends and expectations in converter design with respect to applications, circuit design and technology evolution. Problems and opportunities are identfied, and an overview of performance criteria is given. Chapter 3 introduces the smart concept that takes advantage of the expected opportunities (described in chapter 2) in order to solve the anticipated problems. Chapter 4 applies the smart concept to digital-to-analog converters. In the discussed example, the concept is applied to reduce the area of the analog core of a current-steering DAC. It is shown that a sub-binary variable-radix approach reduces the area of the current-source elements substantially (10x compared to state-of-the-art), while maintaining accuracy by a self-measurement and digital pre-correction scheme. Chapter 5 describes the chip implementation of the sub-binary variable-radix DAC and discusses the experimental results. The results confirm that the sub-binary variable-radix design can achieve the smallest published current-source-array area for the given accuracy (12bit). Chapter 6 applies the smart concept to analog-to-digital converters, with as main goal the improvement of the overall performance in terms of a widely used figure-of-merit. Open-loop circuitry and time interleaving are shown to be key to achieve high-speed low-power solutions. It is suggested to apply a smart approach to reduce the effect of the imperfections, unintentionally caused by these key factors. On high-level, a global picture of the smart solution is proposed that can solve the problems while still maintaining power-efficiency. Chapter 7 deals with the design of a 500MSps open-loop track-and-hold circuit. This circuit is used as a test case to demonstrate the proposed smart approaches. Experimental results are presented and compared against prior art. Though there are several limitations in the design and the measurement setup, the measured performance is comparable to existing state-of-the-art. Chapter 8 introduces the first calibration method that counteracts the accuracy issues of the open-loop track-and-hold. A description of the method is given, and the implementation of the detection algorithm and correction circuitry is discussed. The chapter concludes with experimental measurement results. Chapter 9 introduces the second calibration method that targets the accuracy issues of time-interleaved circuits, in this case a 2-channel version of the implemented track-and-hold. The detection method, processing algorithm and correction circuitry are analyzed and their implementation is explained. Experimental results verify the usefulness of the method

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers

    Full text link
    We report the demonstration of a low-power pixelated readout system designed for three-dimensional ionization charge detection and digital readout of liquid argon time projection chambers (LArTPCs). Unambiguous 3D charge readout was achieved using a custom-designed system-on-a-chip ASIC (LArPix) to uniquely instrument each pad in a pixelated array of charge-collection pads. The LArPix ASIC, manufactured in 180 nm bulk CMOS, provides 32 channels of charge-sensitive amplification with self-triggered digitization and multiplexed readout at temperatures from 80 K to 300 K. Using an 832-channel LArPix-based readout system with 3 mm spacing between pads, we demonstrated low-noise (<<500 e^- RMS equivalent noise charge) and very low-power (<<100 μ\muW/channel) ionization signal detection and readout. The readout was used to successfully measure the three-dimensional ionization distributions of cosmic rays passing through a LArTPC, free from the ambiguities of existing projective techniques. The system design relies on standard printed circuit board manufacturing techniques, enabling scalable and low-cost production of large-area readout systems using common commercial facilities. This demonstration overcomes a critical technical obstacle for operation of LArTPCs in high-occupancy environments, such as the near detector site of the Deep Underground Neutrino Experiment (DUNE).Comment: 19 pages, 10 figures, 1 ancillary animation. V3 includes minor revisions based on referee comment

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique
    corecore