3 research outputs found

    Improved orthogonal array based simulated annealing for design optimization

    Get PDF
    Recent research shows that simulated annealing with orthogonal array based neighbourhood functions can help in the search for a solution to a parametrical problem which is closer to an optimum when compared with conventional simulated annealing. Previous studies of simulated annealing analyzed only the main effects of variables of parametrical problems. In fact, both main effects of variables and interactions between variables should be considered, since interactions between variables exist in many parametrical problems. In this paper, an improved orthogonal array based neighbourhood function (IONF) for simulated annealing with the consideration of interaction effects between variables is described. After solving a set of parametrical benchmark function problems where interaction effects between variables exist, results of the benchmark tests show that the proposed simulated annealing algorithm with the IONF outperforms significantly both the simulated annealing algorithms with the existing orthogonal array based neighbourhood functions and the standard neighbourhood functions. Finally, the improved orthogonal array based simulated annealing was applied on the optimization of emulsified dynamite packing-machine design by which the applicability of the algorithm in real world problems can be evaluated and its effectiveness can be further validated

    Orthogonal learning particle swarm optimization

    Get PDF
    Particle swarm optimization (PSO) relies on its learning strategy to guide its search direction. Traditionally, each particle utilizes its historical best experience and its neighborhood’s best experience through linear summation. Such a learning strategy is easy to use, but is inefficient when searching in complex problem spaces. Hence, designing learning strategies that can utilize previous search information (experience) more efficiently has become one of the most salient and active PSO research topics. In this paper, we proposes an orthogonal learning (OL) strategy for PSO to discover more useful information that lies in the above two experiences via orthogonal experimental design. We name this PSO as orthogonal learning particle swarm optimization (OLPSO). The OL strategy can guide particles to fly in better directions by constructing a much promising and efficient exemplar. The OL strategy can be applied to PSO with any topological structure. In this paper, it is applied to both global and local versions of PSO, yielding the OLPSO-G and OLPSOL algorithms, respectively. This new learning strategy and the new algorithms are tested on a set of 16 benchmark functions, and are compared with other PSO algorithms and some state of the art evolutionary algorithms. The experimental results illustrate the effectiveness and efficiency of the proposed learning strategy and algorithms. The comparisons show that OLPSO significantly improves the performance of PSO, offering faster global convergence, higher solution quality, and stronger robustness
    corecore