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Abstract 

Recent research shows that simulated annealing with orthogonal array based 

neighbourhood functions can help in the search for a solution to a parametrical problem 

which is closer to an optimum when compared with conventional simulated annealing. 

Previous studies of simulated annealing analyzed only the main effects of variables of 

parametrical problems. In fact, both main effects of variables and interactions between 

variables should be considered, since interactions between variables exist in many 

parametrical problems. In this paper, an improved orthogonal array based neighbourhood 

function (IONF) for simulated annealing with the consideration of interaction effects 

between variables is described. After solving a set of parametrical benchmark function 

problems where interaction effects between variables exist, results of the benchmark tests 

show that the proposed simulated annealing algorithm with the IONF outperforms 

significantly both the simulated annealing algorithms with the existing orthogonal array 

based neighbourhood functions and the standard neighbourhood functions. Finally, the 
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improved orthogonal array based simulated annealing was applied on the optimization of 

emulsified dynamite packing-machine design by which the applicability of the algorithm 

in real world problems can be evaluated and its effectiveness can be further validated. 
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1. Introduction 

Simulated annealing (SA) is a point-based stochastic optimization method, which 

explores iterationally from an initial solution to the optimum [4, 14]. Each iteration 

employs a neighbourhood function to generate a candidate solution by a randomized 

perturbation on a current solution. Therefore, design of neighbourhood functions plays an 

important role in developing an effective simulated annealing. The searching mechanism 

of SA has a very good convergent property [19] and SA has been widely applied in 

solving many hard optimization problems [32, 33]. However, it can be noted in many 

previous researches [1, 17, 26] that SA can find good or reasonable solutions, but in 

many cases it cannot search for a global optimum. The searching ability of SA improves 

in the earlier stages of the searching process, but it saturates or even terminates in later 

stages. Therefore, it is difficult to obtain any substantial improvements by examining 

neighbouring solutions in the later stage of the search. Vaessens et al. [34] put this 

searching method into the context of a local, or neighbourhood search. Also it has been 

noted in some previous researches that long computational time is commonly required for 

SA to search for an acceptable solution for solving hard optimization problems [29, 38, 

39]. Various approaches have been proposed to improve the searching mechanism by 

modifying neighbourhood functions [8, 38, 39, 30], modifying criterion of accepting a 

new candidate solution [28], incorporating with other optimization methods [7, 21, 36] 

and parallelized computing [1].  

A recent approach to improving the searching mechanism of SA has been 

proposed by introducing orthogonal arrays into neighbourhood functions of SA [9, 10, 

12, 27]. The Orthogonal arrays exploit the neighbourhood of a current solution by 
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analyzing the main effect of variables in the current solution. The neighbourhood 

function, which uses the orthogonal array for exploiting solution spaces, is called 

orthogonal array based neighbourhood function (ONF) in this paper. It has been shown 

that ONF can speed up the search of SA and determine a more accurate candidate 

solution for electromagnetic problems [27], floorplanning problems [10] and controller 

design problems [9, 12] compared with other neighbourhood functions. However, we 

found that the exploitation of candidate solutions can be further improved by considering 

not only the main effects of variables but also the interaction effects between variables. It 

is due to the fact that strong interaction effects could exist between variables in many 

optimization problems. If strong interaction effects exist in localized features of a search 

space, poor results may be obtained by considering main effects only in variables [6, 23, 

24, 25]. In this paper, an improved orthogonal array based neighbourhood function 

(IONF) for SA which considers both main effects in variables and interaction effects 

between variables is proposed. Application of the proposed simulated annealing 

algorithm with the IONF on the optimization of emulsified dynamite packing-machine 

design is also described. IONF employs the approach of interaction plots [22] to analyze 

interaction effects between variables. Interaction plots have been commonly used to 

analyze interaction effects between parameters in industrial systems [31, 13, 18, 20, 40]. 

The background of orthogonal arrays and ONF, as well as the proposed IONF are 

described in Section 2 and 3 respectively. Benchmark results of solving a set of hard 

benchmark problems [37, 11] using the three simulated annealing algorithms with 

employing ONF, IONF and the standard neighbourhood function respectively are shown 

in Section 4. Application of the improved simulated annealing on the optimization of  
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emulsified dynamite packing-machine design and further validation of the effectiveness 

of the algorithm are described in Section 5. 

 

2. Orthogonal Experimental Design and Neighbourhood Function 

The use of orthogonal arrays in planning experiments and analyzing experimental data is 

briefly described in Section 2.1. In Section 2.2, background and limitations of the 

orthogonal array based neighbourhood functions (ONF), that has been applied in solving 

many hard optimization problems [9, 10, 12 and 27], are presented. 

 

2.1 Orthogonal Experimental Design 

One major objective of an experimental design is to find the best combination of 

parameter levels for optimal performance of a system or a model. If an experimental 

design is based on the full factorial one and the number of parameters to be investigated 

is large, a large number of experimental runs always are required to be carried out. To 

reduce the number of experimental runs, a fractional factorial design is an alternative in 

which the experimental design can be based on orthogonal arrays [2]. An experimental 

plan based on an orthogonal array L2N+1(pN) involves a maximum N parameters and p 

levels in each parameter for 2N+1 experimental runs. 

If an orthogonal array L2N+1(3N) with 3 levels is considered, for j=1,2,…N and k = 

1,2,3, main effect Mjk of the parameter j for level k is defined as: 

 ∑
+

=
×=

12

1

N

t
tFtyjkM         (1) 

where yt denotes an objective function value of the combination corresponding to 

experiment t, and  
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.not  is  experiment of parameter  of level if 0
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ktj

ktj
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For smaller-the-better type problems, the best level Best(j) of the j-th parameter is 

denoted as: 

 ( )( )321 ,,minarg)( jjj MMMjBest =       (2) 

where 'arg(min(..))' is a function that returns the index of the minimum value. For 

example, if the value of Mj2 is the smallest among the values of Mjk where k=1,2 and 3, 

then Best(j)=2. For larger-the-better type problems, the best level Best(j) of the j-th 

parameter is denoted as: 

 ( )( )321 ,,maxarg)( jjj MMMjBest =        (3) 

where ' arg(max(..))' is a function that returns the index of the maximum value. 

  

2.2 Orthogonal Array based Neighbourhood Function (ONF) 

Ho et al [9, 10, 12] and Shu et al [27] proposed an orthogonal array based neighbourhood 

function (ONF) which aims at generating a candidate solution by using the combinations 

of the orthogonal array ( )N
NL 312 + . ONF generate a candidate solution Q=ONF(P1) from 

P1, where ( )mSSP ,...,11 =  is the current solution. First two temporary solutions, P2 and P3 

are generated by perturbing P1 as follows: 

 ( )11
12 ,..., mSSP =   and ( )22

13 ,..., mSSP = ,      (4) 

where iiiiii SSSSSS −=+= 21  and , i=1,...,m. All iS  are generated based on the Cauchy-

Lorentz probability distribution [29]. Consequently, Q is produced by a combination of 

variables of P1, P2, and P3. 
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 In ONF, P1, P2 and P3 are considered as level 2, level 1 and level 3 of an 

experimental design. To assign the m variables from P1, P2 and P3 into the N parameters 

in ( )N
NL 312 + , the m variables are divided into N non-overlapping groups. Each non-

overlapping group of variables is considered as a parameter in ( )N
NL 312 + . The number of 

variables in each group is determined by a generated random integer li, i=1,2,…N, where 

 ml
N

i
i =∑

=1
         (5) 

ONF then uses the t-th combination of ( )N
NL 312 +  to compute yt corresponding to the 

t-th experiment with t=1,...2N+1, and computes all main effects jkM with j=1,2,..,N and 

k=1,2,3 based on (1). Finally, it determines the best level of each parameter based on the 

computed main effects by (2) for smaller-the-better type problems or (3) for larger-the-

better type problems. The algorithm of the ONF, Q=ONF(P1), is shown in the Appendix 

1. 

 ONF uses the analysis of main effects to determine the optimal levels of 

parameters which is the simplest approach to analyze experimental results [2, 22]. 

However, it is quite common that an interaction effect exists between two parameters in a 

function [6]. Further studies of interaction effects and main effects in a function have 

been done by [23, 24, 25] based on ‘analysis of variance (ANOVA)’. The parametrical 

effects of a function are analyzed using a total sum of squared deviations SS, which can 

be divided into SS of main effects and interaction effects as shown below: 

Total SS = SS of main effects + SS of interactions 

 With the higher SS of interactions, the lack of provision of adequacy dealing with 

the potential interactions between parameters is a major weakness of ONF. To solve the 
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optimization problems where low interaction effects exist between parameters, ONF 

could work properly. However, if strong interaction effects exist between parameters in 

optimization problems, the optimal combination based on ONF may not be reproducible. 

 

3   An Improved Orthogonal Array Based Neighbourhood Function  

In this paper, an improved orthogonal array based neighbourhood function (IONF) is 

proposed with the consideration of interaction effects between parameters. In the ONF, 

the children are produced by considering only the largest main effects of parameters. But, 

in IONF, the children are produced by considering both main effects of parameters and 

interaction effects between parameters. Interaction plots [22] are adopted to investigate 

the magnitudes of interaction effects between parameters. 

 In the IONF, an interaction matrix MIij is generated to estimate the magnitudes of 

interaction effects between parameters i and j, where i, j=1,2,..N. It can be expressed as: 

 ( )( )
33

3nm,1for  ;,
×

≤≤= nmIMI ijij       (6) 

where the numbers of rows and columns of the interaction matrix MIij are both equal to 

the number of levels of L2N+1(3N) which is 3. The elements of MIij, ( )nmIij , , which 

represents the average fitness of the thi  parameter with level m and thj  parameter with 

level n, are defined as: 

( )

( )

( )
∑
= 















+

∑
= 















+⋅

=
N

p nthj

mthiN
NLthp

N

p nthj

mthiN
NLthp

pf

nmIij

1  isparameter    theand

  isparameter    theof level  the,312 ofn combinatio  In the

1  isparameter    theand

  isparameter    theof level  the,312 ofn combinatio  In the

,  (7) 
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where fp denotes an objective function value of the combination corresponding to the p-th 

row of L2N+1(3N), 3,1 ≤≤ nm  and  

[ ]




=
 otherwise. 0

 true.isbracket   theinsidestatement   theif 1
condition   

 Then interaction plots are used to investigate the magnitude of interaction effects 

between parameters i and j. The thr  line of the interaction plot is defined as: 

 ( ) ( ) ( )( ) 3. 2, 1,  where,3,,2,,1 == rrIrIrI(r)Line ijijijij    (8) 

 Figure 1 shows that the lines cross indicating the existence of strong interactions. 

If strong interaction effects do not exist in all parameter pairs, only the main effects of 

parameters need to be studied. The candidate solution Q of the IONF is generated by the 

combination of the parameters with the largest main effects based on (2) for smaller-the-

better type problems or (3) for larger-the-better type problems. In this case, the algorithm 

of IONF is identical to the one of ONF. However, if strong interaction effects exist in any 

one of the parameter pairs, the candidate solution Q is first generated by the best level 

combinations of the orthogonal array L2N+1(3N) with the optimal yt. For those parameters 

without strong interaction effects between each other, the level combinations in Q are 

replaced by the parameters with the largest main effects based on (2) or (3). 

The algorithm of the IONF, Q=IONF(P1), is given as follows: 

Algorithm Q=IONF(P1) 

Step 1) Generate P2 and P3 with ( )mSSP ,...,11 =  based on (4). 

Step 2) Divide P1, P2 and P3 into N groups based on (5). 

Step 3) Represent levels 2, 1 and 3 of the j-th parameter of ( )N
NL 312 +  by the j-th 

group of P1, P2 and P3 respectively. 
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Step 4: Compute yt based on the t-th combination of ( )N
NL 312 +  of the t-th 

experiment. 

Step 5: Compute the main effects Mjk where j=1,...,N and k=1,2 and 3 based on 

(1). 

Step 6: Construct the interaction matrices ijMI  by (6), where i, j=1,2,…N with 

ji ≠ . 

Step 7: Construct the interaction plot for ijMI  where i, j=1,2,…N with ji ≠ . 

Step 8: Check whether the parameters i and j have a strong interaction effect of 

each other, where i, j=1,2,…N with ji ≠ . 

Step 9: If strong interaction effect exists in any one of the parameter pairs, goto 

Step 10, otherwise goto Step 13. 

Step 10: Form the candidate solution Q by the combination of the ( )N
NL 312 +  with 

the optimal yt. 

Step 11: For the parameter pair with no strong interaction effect, the level 

combinations in Q are replaced by the level combinations with the largest 

main effects based on (2) or (3).  

Step 12: Output Q as the resulting solution of IONF. Then goto step 15. 

Step 13: Determine the best level Best(j) on the j-th parameter based on (2) for 

smaller-the-better type problems and (3) for larger-the-better type 

problems. 

Step 14: The candidate solution Q is produced by the combinations of best levels 

of parameters. 

Step 15: Terminate the algorithm. 



 11 

4   Benchmark results based on non-separable functions 

To evaluate the effectiveness of the proposed IONF, benchmark tests based on the three 

simulated annealing algorithms, which employ the standard neighbourhood function SNF 

[32], ONF [9, 10, 12, 27], and the proposed IONF respectively, were conducted to solve a 

set of selected parametrical benchmark functions. Those benchmark functions ( 61 ff − ) is 

shown in Table 1, in which interaction effects exist between variables. 41 ff −  were 

collected from [12], while 65 ff −  were collected from [37]. They cannot be decomposed 

into linear combinations of independent sub-functions since variables interact with each 

other and cannot be enumerated completely. They can be classified as good test suites for 

the algorithms since they are non-separable in which each sub-function contains at least 

two variables [35]. 

 To evaluate the performance of the three neighbourhood functions (SNF, ONF 

and IONF), the simulated annealing algorithm used by [12, 27] was employed in this 

research which is shown below.  
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Algorithm of simulated annealing 
Begin 
i=1 
Randomly generate a candidate solution s 

Repeat 
t=T0; I=I0 

Repeat:- 
Q = neighbour_function(s) 
if f(Q)< f(s) then replace s with Q 
else 
 generate a random number r 
 if exp(-(f(s)-f(Q))/t)>r then replace s with Q 
 endif 
endif 
t=t*CR 

 until t<I*CR 
 i=i+1 
         Until i=( pre-defined number of function evaluations) 

End. 
 

 In the algorithm, a candidate solution s is randomly initialized first, and then it 

starts with the highest temperature (t=T0). The algorithm then modifies the candidate 

solution Q by using a neighbourhood function and judges if the yielded solution will be 

promoted for the next inner iteration. Then the algorithm reduces the temperature t to 

t=t*CR by a cooling coefficient (CR) at the end of each inner iteration. When the 

temperature reduces to I*CR, the solution Q results from the inner iteration. The 

simulated annealing algorithm stops iterating until i reaches the pre-defined number of 

functional evaluations. 

 The three simulated annealing algorithms with SNF, ONF and IONF respectively 

are called standard simulated annealing (SSA), orthogonal simulated annealing (OSA) 

and improved orthogonal simulated annealing (IOSA). They have been implemented to 

solve the benchmark functions 1f  to 6f . By referring to the previous research [9], the 

parameters used in OSA and IOSA are T0=50, I0=5 and CR=0.95. The orthogonal array 
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used in OSA and IOSA is also same as the one used in [9], which is L2N+1(3N), where 

( ) ( ) 2/13 12log3 −= +pN  and p is the number of variables of the optimization problem. 

 Since only one functional evaluation is implemented in SNF, a functional 

evaluation is required in each iteration of SSA. However, 2N+1 functional evaluations are 

implemented in the ONF and IONF. Therefore, 2N+1 functional evaluations are required 

in each iteration of the OSA and IOSA. To make the number of functional evaluations of 

all the algorithms to be the same, the number of iterations used in SSA is larger than 

those used in both the OSA and IOSA. Therefore, value of CR used in SSA is larger than 

the one used in the OSA and IOSA. The parameters of SSA used are T0=50, I0=5 and 

CR=0.99. The pre-defined number of functional evaluations used in all the algorithms is 

10 000. 

 Tables 2 to 7 as shown in Appendix 2 are the statistical results based on the 

algorithms for solving the functions f1 to f6 respectively, where the dimensions, p= 20, p= 

40, p= 60, p= 80 and p= 100, are used. The statistical results of means and standard 

deviations of the solutions over the 30 runs are shown as well. It can be seen from the 

tables that the mean values based on the IOSA are smaller than those based on the OSA 

or SSA. Also the standard deviations of IOSA are found to be the smallest compared with 

those of the other two simulated annealing algorithms in all benchmark functions. 

Therefore, in terms of quality and robustness of the solutions obtained, IOSA 

outperforms the other two simulated annealing algorithms in all the six benchmark 

functions. Based on Tables 2 to 7, Figures 2 to 7 can be generated, which show the means 

of the solutions based on the three simulated annealing algorithms respectively for the six 

benchmark functions. It can be found from the figures that the IOSA outperforms the 
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OSA and the SSA in all the six benchmark functions with various number of dimensions. 

This indicates that the IOSA can perform well in solving the problems where interaction 

effects exist between variables with small and large numbers of dimensions. 

5   Application of IOSA on design optimization and further validation 

In weapon manufacturing, handling of dynamite is in powder state which is easy to 

explode during transportation or storage. Nowadays, dynamite is first emulsified into 

liquid state which is more safe in handling. A machine normally is required to perform 

the emulsification of dynamite which is commonly named as an emulsified dynamite 

packing machine. In this section, optimization of emulsified dynamite packing machine 

design based on the IOSA is illustrated. An optimization problem of the machine design 

formulated by [16] was adopted in this research which contains the following engineering 

requirements (i.e. X=X1, X2,…, X7) and customer requirements (i.e. Y=Y1, Y2,…, Y4): 

X1 – precision of molding of clip 

X2 – precision of dynamite packing 

X3 – control force of dynamite packing 

X4 – efficiency of dynamite packing 

X5 – hardness of pressing hammer 

X6 – noise of cam power transmission 

X7 – height of machine bed 

Y1 –quality of packing dynamite 

Y2 – efficiency of packing dynamite 

Y3 – packing noise 

Y4 – rigidity of machine 

 Details of the optimization problem [16] are shown below. 

 ( )rrrrr yyyyosc
1

4321 10.016.028.046.0 +++=      (9) 
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 subject to: 

 88.037.133.098.5 3211 +−−= xxxy       (10) 

 54.025.196.045.2 5432 +++= xxxy       (11) 

 00.120.4 63 += xy         (12) 

 25.100.4 74 += xy         (13) 

 ( ) ( ) 22
2

2
1 5.013.1 ≤−+− ff        (14) 

 43211 166.0217.0449.0464.0 yyyyf +−+=      (15) 

 43212 695.0508.0100.0030.0 yyyyf −−−−=     (16)  

 10083051510252050 7654321 ≤+++++++ xxxxxxx    (17) 

 4,...,1 ,51 =≤≤ iyi         (18) 

 7,...,1 ,10 =≤≤ jx j         (19) 

where  

- xi (i=1,2,…7) is the level of attainment of Xi; yi (i=1,2,…4) is the value of 

customer satisfaction of Yi; 

- (9) is the objective function of deriving overall customer satisfaction (OCS); 

- (10) to (13) are the models of functional relationship between customer 

requirement Yi, i=1,…,4 and engineering requirements, Xj, j=1,…,7; 

- (14) to (16) are the constraints of product positioning; 

- (17) is the cost constraint that is subject to a budget with the fixed cost and the 

cost incurred for achieving each engineering requirement, Xj, j=1,…,7; 

- (18) and (19) are the ranges of values of the customer satisfactions and levels 

of attainment of the engineering requirements respectively. 
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 The IOSA was used to determine the optimal setting of levels of attainment of the 

engineering requirements, x1, x2, x3, x4, x5, x6 and x7, by maximizing the overall customer 

satisfaction. The algorithm was implemented by using Matlab, in which a candidate 

solution is represented as: 

 [ ]7654321 ,,,,,, xxxxxxxs =        (20) 

 The objective function used in the algorithm is defined by maximizing the 

optimization function (9) subject to the constraints. It is defined as: 

 ( ) ( ) ( )( ) ( ) ( )
( ) 











 <<−−

=
                        otherwise                         
0or  0 if ,min

max
sf

sfsfsfsf
sf

a

cbcb   (21) 

where ( ) ( )rrrrr
a yyyysf

1

4321 10.016.028.046.0 +++= ;    (22) 

 ( ) ( ) ( )[ ]2
2

2
1

2 13.15.0 −+−−= ffsfb ;      (23) 

 ( ) ( )7654321 83051510252050100 xxxxxxxsfc −−−−−−−−= ;  (24) 

 ( ) ( )  
           51 if 0

5 and 1 if 1
R ;R3

4

1

2





≤≤
<<

=⋅−=∑
= i

ii
ii

i
id y

yy
ysf     (25) 

 y1, y2, y3 and y4 can be found in (10), (11), (12) and (13) respectively; f1 and f2 can 

be found in (15) and (16) respectively. (23) is formulated to handle the constraints 

(14)-(16). (24) and (25) are formulated to handle the constraints (17) and (18) 

respectively. The constraint (19) can be dealt with by setting the ranges of 

solutions in the simulated annealing.  

 The parameter setting used in the IOSA is the same as the one used in Section 4 

except the number of functional evaluations. The variable r used in (25) was set to 1, 2, 3, 
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4 and 5. With a higher value of r, interaction effects between variables are higher. Since 

the simulated annealing algorithm is stochastic one, different solutions are obtained from 

different runs. Therefore, 30 test runs were performed in order to obtain the two statistics, 

means and variances of overall customer satisfaction with respect to the values of r. After 

assessing the interaction effects between the requirements as shown in the house of 

quality for the machine design [16], they were assessed as ‘low to medium’ and hence r 

value was set as 2. After running the IOSA for 30 times, the optimal solutions s 

corresponding to r=2 was found to be (0.8735, 0.0002, 0.8055, 0.5479, 0.9913, 0.3211, 

0.2076).  

 To further evaluate the effectiveness of the IOSA in solving real world 

optimization problems compared with other simulated annealing algorithms, SSA and 

OSA were also used to solve the same optimization problem using the same parameter 

setting and number of test runs. Table 8 shows the means and standard deviations of the 

runs with different values of r. It can be found from the table that the means of the overall 

customer satisfaction based on the IOSA for any value of r are larger than the ones based 

on the OSA and SSA, except r=1. It is because there is no interaction between variables 

of (9) while r=1. Therefore the overall mean of customer satisfaction based on the IOSA 

is nearly identical to that based on the OSA. Regarding the standard deviation, it can be 

found from Table 8 that the average standard deviations of the IOSA is smaller than the 

ones based on the OSA and SSA. 

 The t-test was conducted to evaluate how significantly the IOSA is better than the 

other two simulated annealing algorithms in this optimization problem. The t-values 

between the IOSA and the other two simulated annealing algorithms are shown in Figure 
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8, from which it can be seen that all the t-values are higher than 1.675 except the t-value 

for OSA-IOSA while r=1. Based on the normal distribution table, if the t-value is higher 

than 1.675, the difference of performance between two algorithms is significant with a 

confidence level of 95.3%. Therefore it can be concluded that the performance of the 

IOSA is significantly better than the SSA and OSA. As explained before, while r=1, 

interaction effects does not exist in (9). There is no significant difference in performance 

between the OSA and IOSA. The significance of the difference increases as r increases. It 

can be explained that with a larger value of r, interaction effects between variables 

become stronger. 

On the other hand, computational times of generating solutions based on the 

IOSA were also compared with those based on the OSA and SSA. Figure 9 shows the 

computational times of the three algorithms with respect to different values of r. 

Execution of the algorithms is based on a Pentium 4 PC with 2.26 MHz. It can be seen 

from the figure that the times taken to search for solutions based on the IOSA are less 

than those based on the OSA and SSA for all values of r, except r=1. When r=1, the time 

taken based on the IOSA is identical to that based on the OSA, but is still less than that 

based on the SSA. 

6   Conclusion and further work 

In this paper, an improved orthogonal array based neighbourhood function (IONF) for 

simulated annealing which considers both main effects of individual variable and 

interaction effects between variables is described. The proposed IONF is to make up the 

deficiency of the existing orthogonal array based neighbourhood functions (ONF), which 
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is lack of consideration of interaction effects between variables. Benchmark tests 

involving 6 parametrical benchmark functions were conducted based on the 3 simulated 

annealing algorithms, IOSA, OSA and SSA, which were incorporated with the IONF, 

ONF and SNF respectively. Results of the benchmark tests indicate that IOSA 

outperforms OSA and SSA in terms of quality and robustness of solutions.  

The IOSA was successfully applied to solve the design optimization problem of 

emulsified dynamite packing machines in which interaction effects exist between the 

requirements. Further validation tests based on the case of the machine design were 

conducted in order to evaluate the effectiveness of the IOSA in solving real world 

optimization problems compared with the OSA and SSA. Results of the validation tests 

also indicate that IOSA outperforms the other two simulated annealing algorithms in 

terms of quality and robustness of solutions. T-tests were also conducted. Results of the 

tests indicate that the IOSA outperforms the other two algorithms significantly. Besides, 

the times taken to search for solutions based on the IOSA are the smallest compared with 

those based on the other two algorithms. 

Further work would involve the study of interaction effects among three or more 

variables in the IOSA. On the other hand, the orthogonal arrays with considering 

interaction effects could also be investigated in particle swarm optimization. The 

resulting algorithm could be used to model those systems or processes which are highly 

dimensional and nonlinear. 
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Appendix 1 
Algorithm Q=ONF(P1) 

Step 1) Generate P2 and P3 with ( )mSSP ,...,11 =  based on (4). 

Step 2) Divide P1, P2 and P3 into N groups based on (5). 

Step 3) Represent levels 2, 1 and 3 of the j-th parameter of ( )N
NL 312 +  by the j-th 

group of P1, P2 and P3 respectively. 

Step 4) Compute yt based on the t-th combination of ( )N
NL 312 +  as the t-th experiment. 

Step 5) Compute the main effect Mjk where j=1,...,N and k=1,2,3 based on (1). 

Step 6) Determine the best level Best(j) on the j-th parameter based on (2) for 

smaller-the-better problems and (3) for larger-the-better problems. 

Step 7) The candidate solution Q is produced by the combinations of best levels of 

parameters. 

 

Appendix 2 

[Insert Tables 2 to 8 here] 
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Figure 1 Strong interaction effect exists between parameters i and j 
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Figure 2 Results of function f1 
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Figure 3 Results of function f2 
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Figure 4 Results of function f3 
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Figure 5 Results of function f4 
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Figure 6 Results of function f5 
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Figure 7 Results of function f6 
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Figure 8 t-values between the algorithms 
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Figure 9 Computational time on solving the emulsified dynamite packing-machine design 

problem 
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Table 1 Selected test suites 
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Table 2 Result of benchmark tests based on  f1 

N= 20 40 60 80 100 

SSA mean 0.5701×10-3 0.6776×10-3 0.7053×10-3 0.1411×10-1 0.1522×100 

SSA std 0. 6554×10-3 0.5836×10-3 0.6530×10-3 2.7248×10-3 0.1494 

OSA mean 0. 4088×10-3 0.5686×10-3 0.6393×10-3 0.5546×10-2 0.0123×100 

OSA std 0.1086×10-3 0.4831×10-3 0.5799×10-3 1.7035×10-3 0.9814×10-1 

IOSA mean 0. 1284×10-3 0.1105×10-3 0.4091×10-3 0.1562×10-2 0.0085×100 

IOSA std 0.0173×10-3 0.0854×10-3 0.4887×10-3 0.4785×10-3 0.4959×10-1 

std – standard deviation 
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Table 3 Result of benchmark tests based on f2 

N= 20 40 60 80 100 

SSA mean 0. 3879×10-2 0.8310×10-4 0.0269 0.0549119 0.0610416 

SSA std 0. 6680×10-2 1.9315×10-4 0.1473 0.2037 0.2206 

OSA mean 0.0013×10-2 0.1989×10-4 0.2635×10-5 0.003210 0.02036 

OSA std 0.4111×10-3 0. 2368×10-5 07335×10-5 1.7452×10-4 0.1010 

IOSA mean 0.0002×10-2 0.0192×10-4 0.2286×10-6 1.410343×10-

6 

1.25755×10-

6 

IOSA std 0. 4765×10-4 0. 2503×10-5 0.5935×10-6 1.7535×10-6 1.0850×10-6 

std – standard deviation 

 

Table 4 Result of benchmark tests based on f3 

N= 20 40 60 80 100 

SSA mean 1.61998×102 3.322986×104 2.01267×105 4.5998×105 7.9039×105 

SSA std 1.02351×102 2.036671×104 7.195423×104 1.006506×105 1.37904×104 

OSA mean 1.262328×102 4.853939×102 2.02662×103 4.04657×104 9.57764×104 

OSA std 42.70728 1.99286×102 1.35091×103 2.61012×104 3.84730×104 

IOSA mean 1.046856×102 4.09799×102 1.45172×103 1.6685×104 4.599238×104 

IOSA std 30.61629 1.31064×102 1.095457×103 1.32495×104 1.923225×104 

std – standard deviation 

 

Table 5 Result of benchmark tests based on f4 

N= 20 40 60 80 100 

SSA mean 5.78800 8.31013 8.18400 7.6318988 7.238934 

SSA std 2.20272 0.69861 0.349668 0.24445 0.2487 

OSA mean 0.9788 2.06892 3.93421 6.18335 6.170734 

OSA std 0.1888 0.58577 0.75633 0.52325 0.3433 

IOSA mean 0.8939 1.727303 3.60402 5.36611 5.60388 

IOSA std 0.17321 0.343023 0.659474 0.57294 0.3425 

std – standard deviation 
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Table 6 Result of benchmark tests based on f5 

N= 20 40 60 80 100 

SSA mean 6.10265 1.26377×102 2.53108×102 3.62345×102 4.673949×102 

SSA std 4.66434 25.6713 23.0232 30.8571 30.6804 

OSA mean 1.98888 8.42111 39.66437 1.36615×102 2.8576×102 

OSA std 0.48300 1.70283 8.56296 28.47988 31.3114 

IOSA mean 1.37129 7.59070 31.42920 1.17040×102 2.5174×102 

IOSA std 0.362736 1.424418 9.39414 34.64055 28.96643 

std – standard deviation 

 

Table 7 Result of benchmark tests based on f6  

N= 20 40 60 80 100 

SSA mean 5.19732×103 1.56938×105 1.11410×106 3.83418×106 8.24746×106 

SSA std 1.1171×104 6.9159×104 2.73481×105 7.26947×106 1.09917×106 

OSA mean 2.39963×102 1.52578×103 3.27441×104 3.42513×105 1.34091×106 

OSA std 1.24722×102 2.3918×102 2.71025×104 1.22372×105 5.93870×105 

IOSA mean 1.82887×102 1.4093×103 2.321762×104 2.87125×105 1.11755×106 

IOSA std 1.0915×102 1.8154×102 1.28995×104 1.14011×105 3.04895×105 

std – standard deviation 

 

Table 8 Results of validation tests based on the case of design optimization 

r= 1 2 3 4 5 

SSA mean 4.1223 3.5952 4.0196 4.0130 3.9232 

SSA std 0.1223×10-3 0.4756 0.1509×10-0 0.8520×10-1 0.1190×10-1 

OSA mean 4.2372 4.0089 4.1333 4.1246 4.0010 

OSA std 0.9903×10-6 0.4792 0.9413×10-1 0.1658×10-1 0.3740×10-1 

IOSA mean 4.2373 4.3098 4.2372 4.2368 4.2373 

IOSA std 0. 2679×10-5 0.4793 0.6072×10-1 0.1391×10-1 0.1264×10-1 

std – standard deviation 
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