2,534 research outputs found

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Material and energy flows of the iron and steel industry: status quo, challenges and perspectives

    Get PDF
    Integrated analysis and optimization of material and energy flows in the iron and steel industry have drawn considerable interest from steelmakers, energy engineers, policymakers, financial firms, and academic researchers. Numerous publications in this area have identified their great potential to bring significant benefits and innovation. Although much technical work has been done to analyze and optimize material and energy flows, there is a lack of overview of material and energy flows of the iron and steel industry. To fill this gap, this work first provides an overview of different steel production routes. Next, the modelling, scheduling and interrelation regarding material and energy flows in the iron and steel industry are presented by thoroughly reviewing the existing literature. This study selects eighty publications on the material and energy flows of steelworks, from which a map of the potential of integrating material and energy flows for iron and steel sites is constructed. The paper discusses the challenges to be overcome and the future directions of material and energy flow research in the iron and steel industry, including the fundamental understandings of flow mechanisms, the dynamic material and energy flow scheduling and optimization, the synergy between material and energy flows, flexible production processes and flexible energy systems, smart steel manufacturing and smart energy systems, and revolutionary steelmaking routes and technologies

    Optimal scheduling of industrial task-continuous load management for smart power utilization

    Get PDF
    In the context of climate change and energy crisis around the world, an increasing amount of attention has been paid to developing clean energy and improving energy efficiency. The penetration of distributed generation (DG) is increasing rapidly on the user’s side of an increasingly intelligent power system. This paper proposes an optimization method for industrial task-continuous load management in which distributed generation (including photovoltaic systems and wind generation) and energy storage devices are both considered. To begin with, a model of distributed generation and an energy storage device are built. Then, subject to various constraints, an operation optimization problem is formulated to maximize user profit, renewable energy efficiency, and the local consumption of distributed generation. Finally, the effectiveness of the method is verified by comparing user profit under different power modes

    Demand-side management in industrial sector:A review of heavy industries

    Get PDF

    AI based state observer for optimal process control: application to digital twins of manufacturing plants

    Get PDF
    Les plantes de fabricació estan subjectes a restriccions dinàmiques que requereixen una optimització robusta per millorar el rendiment i l' eficiència del sistema. En aquest projecte es presenta un nou sistema de control òptim basat en IA per a un bessó digital d' una planta de fabricació. El sistema proposat implementa un observador d' estat basat en IA per predir l' estat intern d' un model de procés altament incert i no lineal, tal com seria un sistema de producció real. Una funció d' optimització multi-objectiu es utilitzada per controlar els paràmetres de producció i mantenir el procés funcionant en condicions òptimes. El mètode d'Optimització del Control basat en AI es va implementar en un cas d'estudi d'una planta de fabricació d'acer. El rendiment del sistema es va avaluar utilitzant els KPIs de fabricació rellevants, com ara les taxes d'utilització i productivitat de l'equip del procés. L'ús de sistema de control optimitzat via AI millora amb èxit els KPIs de procés i potencialment podria reduir els costos de producció.Las plantas de fabricación están sujetas a restricciones dinámicas que requieren una optimización robusta para mejorar el rendimiento y la eficiencia. En este informe se presenta un nuevo sistema de control óptimo basado en IA para un gemelo digital de una planta de fabricación. El sistema propuesto implementa un observador de estado basado en IA para predecir el estado interno de un modelo de proceso altamente incierto y no lineal, tal y como sería un sistema de producción real. Una función de optimización multiobjetivo es utilizada para controlar los parámetros de producción y mantener el proceso funcionando en condiciones óptimas. El método de Optimización del Control basado en AI se implementó en un caso de estudio de una planta de fabricación de acero. El rendimiento del sistema se evaluó utilizando los KPIs de fabricación relevantes, como la utilización del equipo y las tasas de productividad del proceso. El uso del sistema de control óptimo de IA mejora los KPIs del proceso y podría reducir potencialmente los costos de producción.Manufacturing plants are subject to dynamic constrains requiring robust optimization methods for improved performance and efficiency. A novel AI based optimal control system for a Digital Twin of a manufacturing plant is presented in this report. The proposed system implements an AI based state observer to predict the internal state of a highly uncertain and non-linear process model, such as a real production system. A multi-objective optimization function is used to control production parameters and keeps the process running at an optimal condition. The AI Optimization Control method was implemented on a study case on a steel manufacturing plant. The performance of the system was evaluated using the relevant manufacturing KPIs such as the equipment utilization and productivity rates of the process. The use of the AI optimal control system successfully improves the process KPIs and could potentially reduce production costs

    Modular Supply Network Optimization of Renewable Ammonia and Methanol Co-production

    Get PDF
    To reduce the use of fossil fuels and other carbonaceous fuels, renewable energy sources such as solar, wind, geothermal energy have been suggested to be promising alternative energy that guarantee sustainable and clean environment. However, the availability of renewable energy has been limited due to its dependence on weather and geographical location. This challenge is intended to be solved by the utilization of the renewable energy in the production of chemical energy carriers. Hydrogen has been proposed as a potential renewable energy carrier, however, its chemical instability and high liquefaction energy makes researchers seek for other alternative energy carriers. Ammonia and methanol can serve as promising alternative energy carriers due to their chemical stability at room temperature, low liquefaction energy, high energy value. The co-production of these high energy dense energy carriers offers economic and environmental advantages since their synthesis involve the direct utilization of CO2 and common unit operations. This problem report aims to review the optimization of the co-production of methanol and ammonia from renewable energy. Form this review, research challenges and opportunities are identified in the following areas: (i) optimization of methanol and ammonia co-production under renewable and demand uncertainty, (ii) impacts of the modular exponent on the feasibility of co-production of ammonia and methanol, and (iii) development of modern computational tools for systems-based analysis

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems

    Get PDF
    This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e., islanded mode). For this purpose, a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem, which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid, (ii) reducing the ohmic power losses, and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model, combining a goal programming approach and Generalized Benders Decomposition, due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach, although increasing the operation cost, does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits, including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally, the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Auction-based approach to resolve the scheduling problem in the steel making process

    Get PDF
    Steel production is an extremely complex process and determining coherent schedules for the wide variety of production steps in a dynamic environment, where disturbances frequently occur, is a challenging task. In the steel production process, the blast furnace continuously produces liquid iron, which is transformed into liquid steel in the melt shop. The majority of the molten steel passes through a continuous caster to form large steel slabs, which are rolled into coils in the hot strip mill. The scheduling system of these processes has very different objectives and constraints, and operates in an environment where there is a substantial quantity of real-time information concerning production failures and customer requests. The steel making process, which includes steel making followed by continuous casting, is generally the main bottleneck in steel production. Therefore, comprehensive scheduling of this process is critical to improve the quality and productivity of the entire production system. This paper addresses the scheduling problem in the steel making process. The methodology of winner determination using the combinatorial auction process is employed to solve the aforementioned problem. In the combinatorial auction, allowing bidding on a combination of assets offers a way of enhancing the efficiency of allocating the assets. In this paper, the scheduling problem in steel making has been formulated as a linear integer program to determine the scheduling sequence for different charges. Bids are then obtained for sequencing the charges. Next, a heuristic approach is used to evaluate the bids. The computational results show that our algorithm can obtain optimal or near-optimal solutions for combinatorial problems in a reasonable computation time. The proposed algorithm has been verified by a case study

    Impacts of renewable energy resources on effectiveness of grid‐integrated systems: succinct review of current challenges and potential solution strategies

    Get PDF
    This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks, as well as often employed state‐of-the‐art solution strategies. The renewable energy resources focused on include solar energy, wind energy, biomass energy and geothermal energy, as well as renewable hydrogen/fuel cells, which, although not classified purely as renewable resources, are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands, the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus, more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies, hence, the need for this review study. First, brief overviews are provided for each of the studied renewable energy sources. Next, challenges and solution strategies associated with each of them at generation phase are discussed, with reference to power grid integration. Thereafter, challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally, expert opinions are provided, comprising a number of aphorisms deducible from the review study, which reveal knowledge gaps in the field and potential roadmap for future research. In particular, these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multi‐sectoral coupling, specifically by promoting electric vehicle usage and integration with renewable‐based power grids; the need for cheaper energy storage devices, attainable possibly by using abandoned electric vehicle batteries for electrical storage, and by further development of advanced thermal energy storage systems (overviews of state‐of‐the‐art thermal and electrochemical energy storage are also provided); amongst others
    corecore