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Abstract 
Modular Supply Network Optimization of Renewable Ammonia and Methanol Co-production 

Benjamin Akoh 

To reduce the use of fossil fuels and other carbonaceous fuels, renewable energy sources such as 

solar, wind, geothermal energy have been suggested to be promising alternative energy that 

guarantee sustainable and clean environment. However, the availability of renewable energy has 

been limited due to its dependence on weather and geographical location. This challenge is 

intended to be solved by the utilization of the renewable energy in the production of chemical 

energy carriers. Hydrogen has been proposed as a potential renewable energy carrier, however, its 

chemical instability and high liquefaction energy makes researchers seek for other alternative 

energy carriers. Ammonia and methanol can serve as promising alternative energy carriers due to 

their chemical stability at room temperature, low liquefaction energy, high energy value. The co-

production of these high energy dense energy carriers offers economic and environmental 

advantages since their synthesis involve the direct utilization of CO2 and common unit operations. 

This problem report aims to review the optimization of the co-production of methanol and 

ammonia from renewable energy. Form this review, research challenges and opportunities are 

identified in the following areas: (i) optimization of methanol and ammonia co-production under 

renewable and demand uncertainty, (ii) impacts of the modular exponent on the feasibility of co-

production of ammonia and methanol, and (iii) development of modern computational tools for 

systems-based analysis.
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CHAPTER 1. Introduction 
 

The global population has been observed to be growing astronomically with time. The United 

Nations (UN) estimated the world population to be 8 billion at the end of 2022 fiscal year which 

is a 1 billion increase from 2010 [1]. The population is expected to rise to 9.7 billion in 2050 and 

could reach 10.4 billion around the 2080s. As the global population is increasing, there will be an 

exponential increase in the consumption of the social amenities of the society such as energy. 

Energy demand has been shown to be increasing with the global population. The higher the 

population, the higher the consumption of energy. The US Energy Information Administration 

(EIA) estimated the global energy consumption in 2021 to be 603.321 quad BTU which is almost 

double the consumption rate of 292.94 quad BTU in 1980 [2]. They further projected a 50% 

increase in energy consumption by 2050. This exponential energy demand is largely driven by 

population and economic growth. To meet this growing energy demand, there is a need to look 

towards renewable energy sources (wind, geothermal and solar) to supplement the conventional 

energy sources such as coal and fossil fuels. Renewable fuels are primarily energy derived from 

solar, wind and geothermal. They are proven to be environmentally safe such that their usage can 

lead to drastic reduction in CO2 emissions. The adoption of these fuels has begun in many countries 

such as China, USA, Germany and among others. For instance, in 2021, 18% of the energy 

consumed in the USA was renewable energy which is 12.2 Quad BTU [3].  Although renewable 

energy consumption is projected to be 20 quad BTU, [3,4], the production capacity of renewable 

energy is largely limited by its dependence on season of times and geographical location. To solve 

this problem, chemical storages have been studied to store these energies for later use. Hydrogen 

is suggested to be a promising energy carrier for renewable energy [5]. However, the chemical 

instability and high liquefaction energy of hydrogen gas makes researchers find other stable energy 

carriers.  

Among other promising energy carriers, methanol (MeOH) is found to be a good supplement to 

hydrogen due to its high energy-density (22.7 MJ/kg, 18 MJ/L HHV) and wide applicability to be 

used as fuel [6], solvent, and intermediate feedstocks for synthesizing hundreds of chemical and 

products, including dimethyl ether (DME), gasoline, kerosene, olefin, and among others [7]. 

MeOH is one of the top produced chemical substances with the global production of about 92 



2 
 

metric million tons/year in 2016 [8]. It can be used as a transportation fuel, hydrogen carrier for 

fuel cells and for electricity generation. At present, commercial MeOH is mainly produced in a 

two-step process, wherein steam methane reforming (SMR) reaction converts CH4 into syngas (i.e., 

a mixture of H2, CO and CO2). The syngas formed is further converted into MeOH, at elevated 

temperature (~523.15 K) and pressure (50–100 bar) [9]. This conventional method of producing 

MeOH is used to satisfy 90% of the global demand but it largely contributes to the global emission 

of CO2 (670–790 g CO2e/kg MeOH [10,11]). This motivates the production of methanol with 

renewable energy, for instance, using power from solar and/or wind turbines to produce the 

precursors needed for its synthesis. Consequently, the development of Power-to-MeOH synthesis 

with renewable energy has received considerable attention over the years. One of the forerunners 

in Power-to-MeOH synthesis is via CO2 hydrogenation with renewable hydrogen in a two-step 

process [12]. Decades of R&D efforts on catalytic CO2 hydrogenation made this process 

economically competitive as compared to the conventional MeOH synthesis route [13].   

Ammonia is equally considered a good candidate for storing energy due to its high chemical and 

thermal stability. Ammonia can easily be liquified and transported because of its low boiling point 

and pressure, hence, requires low energy for liquefaction. Although the synthesis of ammonia from 

its elemental precursors is environmentally friendly, the conventional large production of ammonia 

contributes to 1% global carbon emission. This is primarily due to the utilization of fossil fuels 

such as coal, natural gas to produce hydrogen molecules, a needed reactant for ammonia synthesis 

[14,15]. This then necessitates the need for the usage of renewable sources of energy to power 

ammonia production.  Ammonia is an essential chemical that is quite responsible for the easy 

accessibility of food to the world since it is generally used as a precursor or directly as a fertilizer 

[16], hence, its well-established supply chain. These facts ultimately made ammonia an attractive 

energy carrier. This research is essentially highlighting the benefits of integrating renewable power 

plants in the production of ammonia and methanol, and also to reduce unit operations by co-

producing ammonia and methanol in the same plant since their synthesis involves a common 

molecule, i.e., hydrogen. 

The conventional ammonia and methanol production results in the release into the atmosphere 

about 0.5 Gt and 0.3 Gt of carbon per annum respectively [17,18]. This emission is solely due to 

the utilization of fossil fuels in running the production of the energy carriers. This environmental 
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problem associated with the conventional production could be solved by integrating renewable 

energy into the process plant. Wind and solar energy sources have been found to be clean and 

sustainable. Compared to the conventional method of production, integration of renewable energy 

into ammonia and methanol production can potentially reduce carbon footprint by 65 to 90% [19]. 

Hence, the need to study the renewable production of ammonia and methanol.  

In order to accomplish this task, the review study of the energy carriers would be carried out across 

their production scale, network scale, and energy conversion level to cover the supply chain of the 

energy carriers. This study on the co-production of ammonia and methanol is motivated by the 

following advantages over standalone production: (i) Reduction in unit operations such as steam 

methane reforming, water electrolysis for the production of hydrogen, which is a common reactant 

in methanol and ammonia synthesis, (ii) Multi-functional use of shared utilities, (iii) Reduction in 

unit cost of production and emissions, and (v) Flexible operations and control of ammonia and 

methanol unit independently. These advantages of integrated methanol and ammonia production 

would ultimately lead to lower Capital expenditure (CAPEX) and operating expenditure resulting 

in higher return on investment and reduction in environmental damages.   

This study is aimed at achieving the following objectives: 

1. Process synthesis of energy-chemical co-production plants to determine optimal and 

sustainable process routes 

2. Integrated energy systems operation under renewable energy intermittency 

3. Dynamic supply chain optimization with considerations of modular plants 
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CHAPTER 2. Towards Energy Transition 
 

2.1 Ammonia in Energy Transition 

2.1.1 Ammonia as Energy Carrier 

 

Ammonia is found to be a suitable alternative energy carrier because its lack of carbon in its 

molecular structure. Ammonia allows hydrogen to be stored in liquid form without needing a 

cryogenic storage [20]. Furthermore, Ammonia can be synthesized from renewable hydrogen and 

nitrogen from air, and hence, does not directly involve carbon/CO species. This makes ammonia 

an attractive energy carrier since its production is environmentally friendly.  Energy, nitrogen and 

water are the only reactants and feedstock required from the production of ammonia.  

Table 1: Properties of Various forms of Energy Carriers [21] 

Fuel Energy 

Density 

LHV 

(Mj/Kg) 

Volumetric 

Energy 

Density 

(Gj/m3) 

Storage 

Pressure 

(Bar) 

Liquified 

Storage 

Temperature(oC) 

Hydrogen 

Content  

%H 

Compressed 

Hydrogen 

120 4.7 700 20 100 

Liquid Hydrogen 120 8.5 1 -253 100 

Ethanol 26.7 21.1 1 20 13.04 

Methanol 19.9 15.8 1 20 12.5 

Liquid Methane 50 23.4 1 -162 25 

Liquid Ammonia 18.6 12.7 1 -34 17.64 

 

As shown in table 1, storing ammonia is less energy intensive compared to other energy carriers 

such as hydrogen and methanol. For instance, through gaseous has low energy density of 4.7 GJ/m3 

compared to liquified hydrogen (8.5 GJ/m3), liquefying hydrogen is an energy intensive process 

requiring a compressed pressure of 700 bar [22].  These properties of ammonia make ammonia an 

attractive sustainable and cheap energy carrier. 
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2.1.2 Synthesis of Ammonia 

 

Ammonia is mainly synthesized through a chemical reaction termed Harber-Bosch Process, it is a 

reaction which is commonly used and studied in the laboratory and industry for over centuries. 

The Harber-Bosch process is used to produce about 85% of the world’s ammonia [23]. For 

effective yield of ammonia, the reaction must be catalytically performed at the temperature and 

pressure of 400-500oC and 10-30 MPa respectively which required 30 MJ/kg-NH3 of energy [24]. 

The feedstocks for the synthesis of ammonia are Hydrogen from coal, oil, natural gas (mostly 

methane) and nitrogen obtained from air [25].  Ammonia is directly synthesized by reacting 

Hydrogen gas with Nitrogen gas in the presence of iron filling as catalyst. The stoichiometry of 

the reaction is represented in Equation (1). 

3𝐻2 + 𝑁2 ⇌ 2𝑁𝐻3   Δ𝐻27𝑜𝐶 = −46.35 𝑘𝐽/𝑚𝑜𝑙    (1). 

Regardless of the exothermic nature of the Harber-Bosch process, the energy of ammonia, 28.4 

Gjt1 is greatly higher than the energy loss, 1.5 Gjt-1 during the reaction [26]. The energy 

consumption of the Harber-Bosch process largely depends on the plant size, and source of the 

hydrogen. The energy consumption values with NG, Coal, and fuel oils are 7.8, 10.6 and 11.7 

MWh per ton of ammonia respectively with the corresponding CO2 emission of 1.6, 3.0, and 3.8 

tons per ton of ammonia [27]. Due to high emission associated with conventional ammonia 

production, researches are ongoing on the viability of the use of renewable energy such as wind, 

solar, geothermal, biomass for ammonia production. Furthermore, Figure 1 shows the blueprint of 

ammonia as hydrogen carrier. Renewables energy such as wind, solar, hydro and geothermal are 

used to power the electrolysis of water to give hydrogen (feedstock), this process is largely 

responsible for the environmental friendliness of ammonia synthesis.  
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Figure 1. The schematic of Ammonia as Energy carrier [28] 

 

2.1.3 Ammonia Energy Conversion Technology 

 

The carbon-free molecule structure of ammonia and its high hydrogen content of 17.6 wt% makes 

it a promising energy carrier for energy and electricity generation. Ammonia can be liquefied at 

low temperature, dissolved in water for high energy storage and transported to end-users [29].  

Among other conversion technology for ammonia, fuel cells and gas turbines are receiving 

attractions from industries and researchers due to their relatively high conversion efficiencies. 

Some of the advantages associated to ammonia fuel cells includes high conversion efficiency, low 

emission of oxides of Sulphur, nitrogen and other contaminants, easy operation and among others. 

Table 2 summarizes the fuel cells that utilizes ammonia as direct fuel. 

Furthermore, ammonia have been used as a direct fuel in turbine engines and internal combustion 

engines. A combustion efficiency of 40-60% have been reported by Reiter and Kong [30] when 
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ammonia is blended with diesel in a four-cylinder turbocharged diesel engine. They further 

reported a reduction in the emissions of soot. Researches and implementation of the direct use of 

ammonia as fuel in turbine engines is ongoing. For instance, a research group at Fukushima 

Renewable Energy Institute, Japan, has successively used ammonia to run a micro gas turbine of 

50 kW capacity with 89-96 % combustion efficiency [31]. Ammonia due to its carbon neutrality 

and low liquefaction energy, would replace conventional fuels in the future. 

Table 2: Ammonia Fuel Cell Technologies. 

Fuel Cells Type Operating 

Temperature 

(oC) 

Power 

Density  

(mW/cm2) 

Efficiency 

(%) 

References 

Alkaline Fuel 

Cells 

Molten 

hydroxide 

NaOH/KOH 

KOH 

220  

 

 

80 

16 

 

 

8.86 

- 

 

 

- 

[32] 

 

 

[33] 

Alkaline 

Membrane 

Fuel Cells 

KOH 50 - - [34] 

Solid Oxide 

Fuell Cells 

Sm2O3-CeO2 650 1190 - [35] 

Microbial 

Fuel Cells 

- - 132 - [36] 

 

2.2 Methanol in Energy Transition 

2.2.1 Methanol as an energy carrier 

 

Methanol have been identified as a promising alternative hydrogen carrier because of its 

thermodynamic stability. Compared to other energy carriers, methanol is a liquid room temperature 

and hence, allows easy transportation and storage. The energy storage of methanol was reported 

to be within the range of 13.8 % and 17.6 % [37]. Several works have been done on the viable of 
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methanol as an energy carrier [38, 39, 40]. The properties of methanol compared to other energy 

carriers are summarized in table 1.  

2.2.2 Conventional and Renewable Synthesis of Methanol 

 

Commercially, methanol was produced in 1923 at BASF’s Leuna site [41]. Extensive review works 

have been done on the history of methanol production [41, 42]. the production capacity of 

methanol on a large scale have risen to more than 5000 metric tons per days [41]. In recent times, 

methanol production comprises of three stages; synthesis gas production, methanol synthesis and 

methanol purification as shown in Figure 2. 

  

Figure 2. Schematic diagram of conventional methanol production process [42] 

Conventionally, the synthetic gas is predominantly produced from non-renewable sources such as 

coal, Natural gas, liquified petroleum gas and biomass [43]. The syngas primarily contains CO, 

CO2, H2 and H2O. On the commercial scale, methanol is produced at 200-300 oC and 50-100 bars 

over copper-based catalyst [44,45]. The synthesis of methanol basically involves the reverse water-

gas shift and hydrogenations of the oxides of carbon. 

𝐶𝑂 + 2𝐻2 ⇌ 𝐶𝐻3𝑂𝐻      Δ𝐻298𝐾 = −91
𝑘𝐽

𝑚𝑜𝑙
   (2) 

𝐶𝑂2 + 3𝐻2 ⇌ 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂    Δ𝐻298𝐾 = −49
𝑘𝐽

𝑚𝑜𝑙
   (3) 

𝐶𝑂2 + 𝐻2 ⇌ 𝐶𝑂 + 𝐻2𝑂     Δ𝐻298𝐾 = +41
𝑘𝐽

𝑚𝑜𝑙
   (4) 

The synthetic gas production stage has received numerous attentions due to its importance in the 

technoeconomic and environmental sustainability of methanol production plant. To curb the 
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problem of emission associated with methanol production, methanol is been from renewable 

feedstocks such as hydrogen from water electrolysis powered by renewable energy (solar, wind 

and geothermal) and carbon dioxide from biogas or air capture [46,47].  

Furthermore, the integration of renewable energy in methanol production from captured CO2 

allows it to be used as a carbon source for the industry [48,49,50]. 

2.2.3 Methanol Energy Conversion Technologies 

 

Methanol containing 12.5 wt% of hydrogen have been utilized as alternative energy fuel for 

decades. In 2012, about 85% of methanol produced was used in the chemical industry for the 

manufacturing other derivatives [51]. However, there is a paradigm shift that leads to the energy 

sector is consuming 40% of methanol production [52]. Methanol usage as fuels in internal 

combustion engines is due to its high latent heat, no carbon-carbon bond, fast-burning velocity and 

high-octane rating, hence, knock resistance [53,54]. In recent times, methanol is used as a 

precursor to produce other alcohols, Methyl Tertiary Butyl Ether (MTBE) which are utilized as 

blends in gasolines [55]. Furthermore, for effective energy conversion, methanol is used in fuel 

cells such as direct methanol fuel cells (DMFCs), High Temperature Proton Exchange Membrane 

Fuel Cells (HT-PEMFCs) to generate electricity. HT-PEMFCs have been reported to have 50% 

electricity conversion efficiency [56]. 

2.3. Renewable Energy Sources  

2.3.1.  Wind Energy 

 

Wind energy has been a fast-growing renewable energy in global energy systems. Wind been a 

clean and sustainable form of energy can be converted to power via wind turbine generator which 

is under development. There is a gradual increase in the power output of a wind turbine. According 

to figure 3, the yearly wind energy contribution to the total U.S. electricity is currently at about 

380 billion kWh in 2021 which is 98% increase from 2000 [57]. 

Texas has the largest market for wind energy in the U.S. because of its enormous wind resources. 

The state consumed about 10 % of the generated electricity from wind energy, accounting for the 

16% of the total generation capacity in 2018. Despite the abundance of the wind energy resources, 
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there is a problem of connecting the supply and the demand which leads to grid inefficiency to 

transmit within long-distance. 

 

Figure 3. Wind energy generated and the percentage of the electricity shared [58] 

 

2.3.2.  Solar Energy 

 

The use of solar energy as an alternative energy source is rapidly growing because its carbon 

neutrality. This growth is largely encouraged by the financial incentives for the solar energy usage. 

The solar energy consumption in the U.S increased from about 600 billion BTU in 1984 to almost 

1,501 trillion BTU in 2021 with 4% of the solar energy been used for heating.  In 2021, the annual 

electricity contribution by solar energy was about 164 billion kWh which is an increase of about 

99.99% from 1984. There is a mismatch between the location of supply and demand which creates 

inefficiency in grid transmission. 
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Figure 4. Solar Electricity generated by U.S. states [58] 
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CHAPTER 3. Process Synthesis of Energy-Chemical Co-Production 

Plants to Determine Optimal and Optimal Sustainable Process Routes. 
 

  3.1 Process Design and Optimization 

 

Process design optimization is the selection of the optimal process flow or routes to produce a 

desired product. The performance of the proposed design is evaluated through economic analysis, 

environmental sustainability, and or a combination of the two above. 

 

 

Figure 5: Process Superstructure for a typical process design and optimization routes. 

3.1.1 Methanol Production 

 

The optimal design of methanol synthesis is one of the research relevant to studying methanol as 

an energy carrier. Liu et al.,2020 [59] investigated the operability of a proposed design for 

producing methanol from sour natural gas. They incorporated a steam reforming technology with 

hydrogenation of CO2/CO unit operation. They determine the maximum profit from running their 

design by solving a multi-variant optimization model in Aspen Plus using a built-in SQP optimizer. 

Their results showed an operating profit of $8.69 MM/yr. 

Borisut and Nuchitprasittichai, 2019 [60] formulated a non-linear response surface methodology 

to optimize the methanol production from CO2 hydrogenation by minimizing the operation cost of 
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the process. The model was solved in Microsoft Excel using an NLP solver. They reported a 

minimum production cost of $565.54 per ton at some optimal reaction conditions.  

Zang et al., 2021 [61] performed a techno-analysis on methanol synthesis from the hydrogenation 

of industrial byproduct CO2. They reduced methanol price from $0.56-0.59/kg when a CO2 credit 

of $35/MT is applied. The optimal design of methanol production has been investigated using 

multi-objective models.  

Taghdisan et al., 2015 [62] formulated a multi-objective model to minimize CO2 emission and 

maximum methanol production using a genetic algorithm. They reported an optimal methanol 

production and CO2 efficiency of 196 ton/hr and 345 KgCO2/ton MeOH.   

Arora et al., 2018 [63] used a grey-box optimization algorithm to obtain the optimal design of a 

proposed sorption-enhanced methanol synthesis process. They formulated a multi-objective model 

to optimize syn gas consumption and methanol yield.  

Li et al., 2020 [64] developed a multi-objective model to minimize the production cost of methanol 

from shale and simultaneously minimize the emissions from the plants. Their results displayed a 

minimum operation cost of 58.13 $/ton methanol with the lowest emission of CO2, SO2, NOx and 

soot to be 124.7 kg/ton, 0.181 kg/ton, 0.226 kg/ton and 0.054 kg/ton, respectively.  

Zhang and Desideri et al., 2020 [65] formulated an MINLP multi-objective problem to maximize 

energy efficiency and minimize methanol production cost. They used this model to determine the 

optimal design of a proposed heat-integrated model for methanol production based on co-

electrolysis.  The minimum production cost and maximum LHV energy efficiency of $530/ton 

methanol and 72%, respectively, through a Pareto-optimal multi-objective solution. 

3.1.2 Ammonia Synthesis 

 

Many researchers are developing complex nonlinear models to describe the optimal design and 

synthesis of ammonia production either in steady or dynamic conditions or both [66].  

Palys et al., 2018 [67] developed a dynamic model for absorbent-enhanced methanol production. 

This model was used to formulate an MINLP to evaluate the optimal process design and minimize 

the net present cost of the process. They found that the proposed process with a 0.77 capacity 
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exponent and production scale below 6075 kg/h is less expensive than the conventional Haber-

Bosch process.  

Sanchez et al., 2018 [68] formulated multiple NLPs to determine the optimal design of ammonia-

to-power technology. In their proposed process, they incorporated a catalytic membrane reactor 

for ammonia decomposition and further performed selective catalytic reduction to remove oxides 

of nitrogen emissions during the decomposition process. At the end of their work, they obtained 

the levelized power cost of $0.23/kWh at a 100 MW scale and the range of 30 to 45% as ammonia-

to-power efficiencies.  

Demirhan et al., 2019 [69] developed a process flowsheet of integrated biomass-based ammonia 

production powered by wind and solar energy. The model was formulated as MINLP and solved 

using a deterministic global optimization-based branch-and-bound- algorithm. They found that a 

75% GHG restriction is placed, biomass-ammonia route is comparable to the conventional routes.  

Xu et al., 2020 [70] proposed a 24-hour scheduling model to represent ammonia storage in a CHP 

microgrid. To reduce computational complexity, the MINLP model was decomposed into NLP and 

MIQP. They found that using ammonia as energy storage in CHP is less efficient in scenarios such 

as charge/discharge and on/off. 

 

3.2 Operational Optimization: Planning and Scheduling 

 

Planning and Scheduling deals with the management of plant resources so as to produce a product 

that meets the demand requirement [71. The planning and scheduling activities are commonly 

performed over a time period. The metrics for determining the effectiveness of a proposed 

scheduling method includes minimizing cost, reducing carbon emission, reducing utilities 

consumption, maximizing profit. These metrics are mostly achieved using PSE methods. Many 

researchers have utilized PSE techniques to study the scheduling and planning of methanol and 

ammonia production process.  
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3.2.1 Methanol  

 

Xi et al., 2021 [72] proposed an AI based energy scheduling for a steel mill gas utilization system 

(SMGUS) integrated with a renewable energy and carbon capture and storage (CCUS) 

technologies. They applied the AI technologies of GBRT (Gradient boosted regression trees) and 

PSO (Particle swarm operation) to the scheduling to control the interactions between the unit 

operations to obtain a safe, low-carbon and economical SMGUS operation. To capture and utilize 

the CO2 from the SMGUS, methanol production plant was incorporated into their proposed design. 

First principal models were formulated to model the key unit operations involve in the process. 

They used the GBRT machine learning algorithm to develop surrogate models using the input-

output data from the first principal models. In their study, they minimized the cost of producing 

methanol over a scheduling period of 24 hours. Their objective function accounts for the cost of 

emission, profit of selling crude methanol, cost of grid electricity. The optimization equation was 

solved using Particle swarm optimization algorithm (PSO) an AI based algorithm. Three scenarios 

were considered; Conventional SMGUS with Renewable power, SMGUS without considering 

CO2 utilization and proposed low-carbon SMGUS. Their results show that optimal scheduling 

could be used to manage the integration of renewable energy to process, leading to 62% reduction 

in carbon emission and 126 ton of methanol production in 24 hrs.  

Zheng  et al., 2022 [73]  performed a data-driven robust optimization for optimal scheduling of 

power to methanol. They built optimization model for the conventional on-grid power-to-methanol 

system such as electrolyzer model, methanol converter model, material and energy flow model. 

The scheduling was done for a 24 hours operation. They fixed the daily methanol production to 

minimize the daily operational cost of methanol production. They account for the uncertainity in 

the price uncertaining by introducing a forcast error parameter into the cost function.  The MILP 

formulation was solved using Guropi and CPLEX. The hourly electricity prices parameter was 

obtained by using a multi-layer perception neural network (MLPNN) to predict the electricity price 

parameter. The input and output parameter into the network were the previous seven-day price and 

the next day hourly price. They concluded that the proposed scheduling, the operational cost could 

be reduced by 4.5% and the levelized cost of methanol was within 584 to 1146 €/t.  

Svitnic and Sundmacher, 2022 [74] optimized the scheduling of a renewable production process 

with a waste-heat integration using FluxMax technique. They used the FluxMax technique to 
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formulate the heat integration model for the utility section of the process. Models was formulated 

for the different sections of the proposed design. Notably, the renewable energy (solar and wind) 

time generation series of 8760 hrs were model aggregated into a daily profile of 24 hrs using tsam-

time series aggregation module, this allows for proper representation of the seasonal variation of 

the renewable energy. The scheduling for methanol storage was performed for time stamp of days. 

The resulting linear model was implemented in GAMS and solved using CPLEX.  The obtained 

that optimal design gave a levelized cost of 1392 $/t and 799 $/t for the reference year (2019) and 

2030 respectively. 

Chen et al., 2021 [75] optimized the scheduling of renewable methanol production process to 

understand the interaction between renewable mix, storage sizing and dispatchable energy price. 

The renewable energy mix considered are solar and wind, they study their daily generation over a 

year period which is cumulatively 8760 hrs. The intermittency of the renewable energy was 

accounted for using extent of surplus generation factor (over-provision factor). The full storage 

operation is measure from time 1 hr to time 8760. The scheduling design was achieved by 

minimizing the levelized cost of MeOH for an assumed plant life of 30 years. In parallel to the 

minimization, the levelized energy cost was minimized. The optimization is done using data from 

two locations; Kramer Junction and Norderney.  The NLP optimization problem was solved using 

FMINCON solver in MATLAB. They found that the minimized levelized cost of MeOH was 106 

$/MWh and 103 $/MWh for operations in Kramer Junction and Norderney respectively using a 

dispatchable energy price of 230 $/MWh. 

Chen and Yang (2021) [76] studied the effects of renewable methanol production flexibility by 

optimizing the system operation. They formulated a planning and scheduling model to explained 

the operations of electrolysis, methanol synthesis, and distillation. To deal with the challenge of 

varying ramping capacities and dynamic ranges, they suggested the installation of storage for 

hydrogen and raw methanol produced. The LP was formulated for a year period and a hourly 

horizon for scheduling process. The LP was implemented in GAMS and solved using CPLEX 

solver. They obtained that the methanol production cost was reduced by 35% by combining the 

over-sized and dynamically operated electrolysis and methanol processes.  
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3.2.2 Ammonia 
 

Palys and Daoutidis, 2020 [77] compared the economic viability of ammonia as renewable energy 

storage to conventional hydrogen energy. They formulated a MILP combined capacity planning 

and scheduling model to minimize the levelized cost of energy by determining the optimal 

production rates, unit selection and size, and storage inventories for each period of operation. They 

aggregated the hourly resolution input data into 672 optimal scheduling periods. The developed 

model was tested on the data from 15 U.S cities to comprehensively study the geographical sparsity 

of renewable energy. The model was formulated in GAMS and solved using CPLEX. They found 

that the use of hydrogen in the locations with high solar potential slightly lowers the LCOE, 

whereas a 30% reduction in LCOE is provided with the usage of Ammonia in the location with 

high wind potential and greater seasonal storage demands. 

Allman et al., 2018 [78] applied a time-variant operation to study the optimal scheduling of a 

proposed wind-powered ammonia production process. They proposed an approach for determining 

the optimal design of time variant system. Of the novelties of this work is the removement of the 

time variant, or operational constraints from CDS (combined design and scheduling) and placing 

them into a newly optimal scheduling problem. A scheduling informed design model was 

formulated for a 48-hour scheduling horizon. The wind speed forecasts were generated using 

normal distribution centered around a historical load value. The operating cost of the process was 

minimized and the model was applied to a wind-powered ammonia production. The problems were 

modeled in GAMS and solved using CPLEX. They concluded that the proposed design improves 

the computational tractability of the design problems and high prediction accuracy of the operating 

cost.  

Palys et al., 2019 [79] proposed design for renewable ammonia production process which is 

suitable for food-energy-water sustainability, the ammonia was synthesis from an agricultural 

waste using renewable energy from wind. They formulated a hourly scheduling optimization 

model over a year, to account for the seasonal variation in the wind energy generation, demands 

for ammonia, water and power. The demand for power, ammonia and hydrogen were accounted 

for in the formulation. Notably, a discretization was performed for hourly battery charge and 

chemical storage. To demonstrate the effectiveness of the proposed design, they minimized the net 

present cost of the process. They reported a converging time of the MILP formulated to be 1 hour 
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25 minutes and 44 seconds. They found that the optimal net present cost for the system was $56, 

500 with a corresponding reduction in emission cost of $12.90/ton of CO2. Furthermore, their 

system was able to prevent the importation of 477m of water and water loss of 558, 000 m of 

cooling water. 

Osman et al., 2020 [80] proposed a design for the continuous production of renewable ammonia. 

They formulated an MILP to optimize the selection, sizing, scheduling of the upstream electrical 

and thermal energy, nitrogen and hydrogen production and storage. To study the scheduling of the 

production of the ammonia, a full year hourly resolution was considered. They found the present-

day levelized cost of ammonia (LCOA) of $718/ton NH3 and further reduction of the LCOA to 

$450/ton NH3 due reduction in projected technology cost.  

Armijo and Philibert, 2020 [81] used a simulation-based optimization technique to calculate 

ammonia production costs over a range of synthesis-to-electrolysis and solar-wind rations. They 

determined the optimal sizing of the PV arrays and wind turbines energy production while 

scheduling the purchase of “firming” power from the local utility. They further computed the size 

of hydrogen buffer storage from its oversizing and the configuration that demonstrate lowest cost 

of production is labeled optimal. At the end of their optimization, they found that a reduced 

ammonia production cost of below $500/t of ammonia and further concluded that their proposed 

configuration can be cost competitive. 

Kelley et al., 2022 [82] developed a Hammerstein-Weiner process flowsheet model based on the 

first principles and linear dynamic blocks to describe the dynamics of ammonia synthesis loop. 

They utilized this model to formulate a time-variant demand response (DR) scheduling problem. 

They solved the formulated problem using gPROMs, and found a 50% reduction of the peak-time 

power consumption in each of the considered cases.  

Nayak-Luke et al., 2018 [83] expanded on their previous work to include a rule-based scheduling 

to find the optimal cost of producing renewable ammonia for 534 locations. The availability of the 

wind and solar energy was scheduled using hourly resolution, and then optimized the power 

generation fractions and the system design. Their formulation was modeled and solved in 

MATLAB. They found that the future production cost of ammonia to be $310/ton in 2030, a 

decrease from $473/ton today. 
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3.2.3 Hydrogen Production 

 

El-Taweel et al., 2019 [84] proposed a model for hydrogen production through electrolysis and the 

optimal scheduling of hydrogen fueling stations to be used in transportation and other electricity 

needs. Their major contributions are; (i) the evaluation of the profitability of the hydrogen stations 

under capacity-based demand response (CBDR) (ii) the incorporation of the CBDR management 

system to achieve profit at lower hydrogen sale price (iii) the demonstration of the responses of 

the hydrogen fueling stations under variable demand. Their proposed model is aimed at 

maintaining the expected profit using stacked profit and also to procure lowest values for hydrogen 

sale prices. The optimization horizon is taken to be 3 hours with 1-hour interval and the hydrogen 

storage is prepared for the next available hour. The non-linear problem was solved in MATLAB 

in a convergence time of about 10 seconds. They found that the annual rate of return of the plant 

was $1.475 M at a 13% of the CAPEX value of the plant. 

Palys and Daoutidis, 2020 [85] performed a comprehensive techno-economic analysis of a 

combined renewable hydrogen and ammonia for energy storage. They utilized a consecutive 

temporal clustering algorithm to model the varaible-length operation periods which are then used 

as input into the optimization model. A full year hourly time series data was used as input into the 

algorithm. the objective of the model developed was to minimize the levelized cost of energy 

(LCOE) supply, consisting of the total capital investment of all the units, total operating cost in 

each weighted period. The annualized net present cost of the capital investment was calculated 

using a discount rate of 10% for 20 years. The formulated MILP was solved using CPLEX in 

GAMS. They found that hydrogen and ammonia storage is more suited in cities with high solar 

intensity and wind capacity respectively. The LCOE for the combined system was obtained to be 

within $0.17 /kWh and $ 0.28 / kWh. 

Marocco et al., 2021 [86] formulated a MILP problem to evaluate the optimal design of renewable 

hydrogen battery energy system for off-grid insular environments. In their work, they utilized a 

means of times of use to evaluate the effect of demand response program, and worked on the 

single-layer MILP approaches with a 1-year horizon. The ambient air temperature and solar 

irradiance were modeled using an hourly data as input. To evaluate the effect of the demand 

response program, they used a time-of-use method over a daily time horizon by switching between 

loads at expensive periods to cheaper periods. The reliability of the hydrogen battery system was 
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determined by minimizing the localized cost of energy of the system. They MILP was modeled in 

MATLAB and solved using IBM CPLEX. Their results suggests that LCOE changes from 0.455 

€/kWh to about 0.402 €/kWh without and with demand response program respectively. They 

suggested that the reduction in cost is probably due to the decrease in the battery storage capacity. 

Arora et al., 2022 [87] demonstrated the optimization of a proposed renewable hydrogen 

production for refueling stations. They used a process intensification concept to propose a small-

scale and modular hydrogen production technology powered by a renewable energy. Sorption 

enhanced reaction process was used as the intensified process for the hydrogen production, this 

sorption process simultaneously performs chemical reaction and the removal of the byproduct. 

During the formulation, artificial neural network regression model was developed to explain the 

nonlinear dynamics of the sorption enhanced-steam methane reforming process, which takes 

process design and operation commands as input. The MILP model was formulated to minimize 

the hydrogen production cost at a time horizon of one representative day for 4320 discrete time 

periods. The formulated model was applied to Oakland, CA and then the nation for the 

investigation of the effect of hydrogen demand, renewable energy on the cost of hydrogen 

produced. Their results showed that for nationwide hydrogen production of 2 ton/day, hydrogen 

can be produced 50% less than the conventional method.  

Mallapragada et al., 2020 [88] conducted a survey to determine the optimal PV-based hydrogen 

production costs with the aim of determining the schedules and sizes of PV arrays, batteries and 

electrolysis to satisfy continuous hydrogen production set point. They realized that $2.5 /kg of 

hydrogen or less can be achieved through an over-sized electrolysis which is powered with solar 

energy, thereby minimizing the local battery capacity. Therefore, their designs were conclusively 

suggested to be favorable considering the reduction in the cost of electrolysis and hydrogen 

storage. 

Zhang et al., 2018 [89] Performed the optimization of a hybrid system of renewable hydrogen 

storage and battery using a simulated annealing algorithm. In their approach, they proposed a 

hybrid heuristic method which include the chaotic search, harmony search, and simulated 

annealing algorithms. The model developed was to optimize the supply of residential electricity 

load through a stand-alone hybrid energy system, with the aim of minimizing the cost of the hybrid 

energy system. Notably, the optimal sizing of the components of the energy systems including the 
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hydrogen storage, solar and wind energy were evaluated. Their model was formulated and solved 

in MATLAB. They found that the life cycle cost of wind turbine, batteries and converter are 67%, 

5%, and 28% respectively. Hence, from the low value of the relative mean index of the algorithm, 

they conclude that the proposed algorithm is more robust than the other algorithms.  

3.2.3 Combined Chemical Energy Storage 

 

Due to the potentials of the stand-alone chemical energy carriers such as hydrogen, ammonia, and 

methanol, many researchers are making efforts in studying the operability of the combined 

production of two of the common chemical storage or the combination of the three carriers.  

Yuksel et al., 2021 [90] developed a novel a combined energy plant for the co-production of 

hydrogen and ammonia. In their proposed plant, a treated freshwater was sent to a PEM 

electrolyzer powered by the electricity from the methane gas turbine. The water-splitting reaction 

took place at the PEM unit. They further combined the generated hydrogen for the synthesis of 

ammonia gas. The energetic and exergetic efficiency of the proposed plant was evaluated using a 

parametric analysis. Each unit of the process plant was modeled using mass, energy, exergy and 

entropy balance and these equations were solved in Engineering Equation Solver pocket software. 

They found out that the hydrogen and ammonia production rates decrease from 0.0665 kg/s and 

0.2582 kg/s to 0.0587 kg/s and 0.2310 kg/s respectively with increase in the pinch point 

temperature of the superheater. On the other hand, the increasing mass flow rate of the methane 

fuel contributes positively to the performance of the plant. 

Palys and Daoutidis, 2020 [91] performed a comprehensive techno-economic analysis of a 

combined renewable hydrogen and ammonia for energy storage. They utilized a consecutive 

temporal clustering algorithm to model the variable-length operation periods which are then used 

as input into the optimization model. A full year hourly time series data was used as input into the 

algorithm. the objective of the model developed was to minimize the levelized cost of energy 

(LCOE) supply, consisting of the total capital investment of all the units, total operating cost in 

each weighted period. The annualized net present cost of the capital investment was calculated 

using a discount rate of 10% for 20 years. The formulated MILP was solved using CPLEX in 

GAMS. They found that hydrogen and ammonia storage is more suited in cities with high solar 
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intensity and wind capacity respectively. The LCOE for the combined system was obtained to be 

within $0.17 /kWh and $ 0.28 / kWh. 

Ganzer and Dowell, 2020 [92] compared optimal production of methanol and ammonia from solar 

renewable energy. Their formulation includes the optimal scheduling and its effect on the 

renewable process design. In their modeling, a sequence of days was considered to represent year 

to account for the seasonal intermittency of the renewable energy, a hourly resolution which is 

represented by six sequences of twelve days. Accounting for the heat utilized in their process, heat 

integration in the process was evaluated using a minimum temperature approach for the streams 

exchanging heat. Their formulation was aimed at minimizing the operating cost of the production 

process including the contribution of the operational and capital expenditure of the proposed 

superstructure. The MILP model was implemented in GAMS and solved using CPLEX, which was 

applied to two locations; London and Dubai. They found that the cost of producing ammonia and 

methanol in London are both 6000 $/t and in Dubai are 2600 $/t and 1700 $/t respectively. 

Furthermore, they concluded that the use of renewable energy makes the entire process to be driven 

by the Capital expenditure as against the conventional operational expenditure driven. 

Palys et al., 2021 [93] formulated a combined optimal design and scheduling model for the 

production of renewable hydrogen and ammonia for combined heat and power use. Their model 

is to minimize the annual net present cost of supplying power and heat at different period of 

scheduling. The scheduling horizon of the model was chosen to be a full year with hourly 

resolution. To capture the seasonal variability of the renewable energy, temporal aggregation by 

consecutive clustering with full year hourly resolution time series data of 8760 was utilized.  The 

formulated MILP was implemented in GAMS and solved suing CPLEX, with a computational 

time of 8 hours and 40 minutes. Their model was applied to 12 different cities in the USA. They 

found that at least 85% of the power demands and 75% heat demands were met using the renewable 

energy. 
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CHAPTER 4. Integrated Energy Systems Optimization under 

Renewable Energy Uncertainties 
 

The availability of renewable energy sources significantly depends on weather and geographical 

location. This temporal fluctuation introduced uncertainties into every energy system powered by 

renewable energy, which could be have impact on the operation and effectiveness of the energy 

system. This section tends to highlight the literatures that optimize the renewable energy powered 

systems under the impact of the renewable energy uncertainties. 

 

4.1 Methanol-integrated energy system 

 

Martin, 2016 [94] optimized the production of renewable methanol under uncertainty. They 

developed a surrogate model for the operation of the process and cost estimation. This was to 

include uncertainty into the multiperiod optimization problem and the surrogate model was 

formulated under steady condition. The uncertain parameters such as the solar and wind energy 

availability was accounted for using two-stage stochastic programming. The probability 

distribution of the uncertain parameters was approximately discretized. This was done using three 

different levels of solar irradiation, low, medium, and another three levels representing wind 

velocity over monthly basis. They finally determined the third uncertain variable to be the 

electricity cost. The MILP formulated is to minimize the methanol production cost, and the 

problem was implemented in GAMS. They applied their problem to two cases, Spain and UK. 

They concluded that the usage of wind turbines is favorable in UK and the excess electricity would 

be produced in winter, while in Spain, electricity could be produced from solar panels ad sold 

without restriction. 

Martin and Grossmann, 2018 [95] developed a two-stage stochastic programming problem to 

minimize the cost of producing bioethanol from biomass and renewable energy. In their 

formulations, they considered the power demand, biomass, wind and solar availability to be 

uncertain. Three scenarios were considered for each of the parameters, probability of low, medium 

and high. The optimal integration of renewable technologies into the proposed design was to be 

determined over 12 months. The formulated MILP was solved in GAMS using CPLEX. They 
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found that the system demonstrated a slight reduction in CO2 emission of 0.23 t/s and there is a 

larger investment of 4 billion € due to the production of additional hydrogen and hydropower as 

well as methane as a form of excess power. 

Li et al., 2023 [96] designed and optimized a proposed flexible poly-generation process for 

methanol and formic acid under uncertain product price. They developed a surrogate model of the 

production of methanol and formic acid using Aspen Plus to determine the optimum process 

parameters, and performed a sensitivity analysis on the impact of the vent gas on energy 

consumption and capacity of the equipment. Assuming the methanol and formic acid prices as 

uncertain parameter, they performed a two-stage optimization on the integrated system. After their 

work, they achieved an increase in the annual net profit of 8.97% and decrease of return on 

investment by 4.67%. 

Lee et al., 2022 [97] formulated a two-stage stochastic optimization problem to optimize the design 

and emulation of renewable electrochemical CO2 reduction to methanol. In their design, methanol 

is synthesized when CO2 is reduced by reacting it with hydrogen from water in a proton exchange 

membrane powered by wind and solar energy. In their the two-stage stochastic optimization is 

performed to account for the uncertainty in the availability of the wind and solar energy. To 

account for the seasonal variation in the wind and solar intensity, 30 weather scenarios were 

generated for a year. The objective function of the optimization problem is to minimize the overall 

cost of the proposed system. Their formulated MILP was modeled in Pyomo and solved using 

Gurobi. Their results show that at a methanol price of 550 $/ton, the optimized design of the system 

is economically viable. Also, the two-stage stochastic optimization demonstrated to be the best 

way of addressing the uncertain availability of the renewable energy sources. 

Chen et al., 2021 [98] evaluated the impact of process flexibility on the production of methanol 

from different renewable energy sources. In their work, they tried to understand the mechanism of 

the influence of flexibility on the economic and environmental metrics of a renewable methanol 

production process. Their proposed superstructure involves the reaction of CO2 with the generated 

hydrogen from water electrolyzer. Each of the unit operations is explained using a simple 

equilibrium and kinetic model. Notable, the renewable energy fluctuation in availability was 

modeled using the hourly dispatchable energy and the today capacity factor of the wind and solar 

sources. Their formulation is aimed at the minimization of levelized cost of methanol. They found 
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that the levelized cost of methanol reduced by 21 and 34% in the two locations considered when 

the production was 100% renewable. 

 

Gu et al., 2022 [99] performed the techno-economic analysis on the green methanol process plant. 

They proposed a renewable methanol plant comprising a hydrogen generation unit and the CO2 

hydrogenation unit. The economy of the system was evaluated by minimizing the levelized cost 

of methanol to ascertain the performance of the proposed plant, and with the combination of the 

effect of wind turbines, Photovoltaics arrays fluctuations, electrolyzer capacity on the levelized 

cost of methanol of the renewable plant. furthermore, they performed the sensitivity of the 

economic analysis on the fluctuation of the prices of the renewable energy (wind turbines, solar 

energy). The one-way sensitivity analysis performed showed that when the price pf the 

Photovoltaics array reduced by 50%, the levelized cost of methanol of the solar powered H2-

Methanol system decreased by 28% (4618 RMB/ton). Whereas, the levelized cost of methanol of 

hybrid-H2-Methanol system and wind-H2-Methanol system reduces by 32% and 37% respectively 

when the price of wind turbines decreases by 50%. 

 

Huang et al., 2022[100] combined the study of the modular design of renewable methanol 

production process. They evaluated the impact of uncertainty in renewable energy and the modular 

designs on the operation of the methanol synthesis lines by considering the continuity and stable 

operation targets. In their proposed methanol production superstructure, hydrogen is generated 

from a solar and wind energy driven electrolysis and combined with a captured CO2. In addition 

to the material balances of the unit operations in ASPEN HYSYS, heat integration was performed 

and included among the constraints in their formulation. The MILP formulated was implemented 

in GAMS and solved using CPLEX. They found that the energy storage capacity needed in the 

modular methanol unit are significantly reduced to 85.33% and 87.36% for battery and hydrogen 

respectively, which was attributed to the ability of the modular methanol production system to 

account for the fluctuations in the renewable energy through the adjusting of the number of the 

modular production lines. Furthermore, they explained that it could be means that the methanol 

synthesis is capable of maximizing the production capacity when the renewable energy is abundant 

and minimize the energy consumption when the renewable energy is insufficient. 
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4.2 Ammonia Production under uncertainty 

 

Verleysen et al., 2020 [101] performed the optimization of wind powered ammonia synthesis 

under operational uncertainties. They modeled the main unit operations (Pressure Swind 

Adsorption, Haber-Bosch Reactor) in Aspen Hysys and the wind speed was converted to wind 

power in Python. The models of the unit operations were optimized using a Multi-Objective 

Genetic Algorithm (MOGA) to determine a set of optimized designs and further used Polynomial 

Chaos Expansion Algorithm (PCE) to quantify the uncertainties parameters for each subunit. They 

further formulated a Robust Optimization programming problem (a combination of the MOGA 

and PCE) to maximize the wind energy storage through a metric, load factor. Their preliminary 

results suggests that an effective design produces 3.2 times more Ammonia with 2.6 times less 

robustness. On further global sensitivity analysis, average ammonia production is more by 99.7% 

with a reactor with a controllable temperature. 

 

Verleysen et al., 2021 [102] studied the sensitivity of a dynamic synthesis process for flexible 

seasonal energy storage. They created a dynamic Haber-Bosch loop in ASPEN Plus dynamics 

which includes operational and parametric uncertainties. The operational uncertainties considered 

in their study include variant temperature at the; reactor inlet, condenser’s cooling and variant 

H2/N2 ratio at the Haber-Bosch synthesis inlet feed. The temperature fluctuation at the reactor inlet 

and condenser’s cooling was modeled using gaussian distribution. To quantify the combined effect 

of all the uncertain parameters on the performance of the systems, global sensitivity analysis was 

done. Sobol’s decomposition was performed to quantify these contributions. They further extended 

their model to include a polynomial chaos expansion. The problem was model in Aspen Plus 

Dynamics. They found that the uncertainty on the inlet temperature controls the overall standard 

deviation of the ammonia synthesis by 87.8%. 

 

Laṧṧảk et al., 2010 [103] formulated models to determine the effect of parameter uncertainty on 

the modeling of industrial reactor considering safety and operability. The influence of temperature 

fluctuation was evaluated using the enthalpy of the reaction. Gaussian normal distribution 

probability function was used to describe the uncertain temperature parameter. This model was 

solved using Monte Carlo approach. They found that a small change in the uncertain parameter or 
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combination of the key parameters can lead to a greater change in the steady states results of the 

operating quantities. 

 

Dechany Antoine, 2021 [104] formulated multi-objective model to perform optimization and 

quantification of uncertainty of renewable Ammonia-to-power approach. They proposed a design 

for the conversion of renewable ammonia into power using a proton exchange membrane fuel cell. 

The operability of their proposed design was evaluated through the voltage and current output from 

the fuel cell. In their optimization, their objective functions were grouped into four to reduce 

computational cost, they include the minimization of the power overshoot, minimization of the 

voltage response transient time, minimize the average difference between the power demand and 

the power produced by the system in a unit time step. To quantify the uncertainty, a Polynomial 

Chaos Expansion (PCE) algorithm was used and the characterization of the uncertain parameters 

were evaluated using probability density function which follows a Gaussian normal distribution. 

They found that extreme high uncertainties (between 64.1% and 92.1%) are caused from the 

variation in power demand throughout the year. 

 

Ghappani and Karimi, 2023 [105] determined the optimal operation of an energy hub with 

combined heat, hydrogen and power system powered by renewable ammonia. In their proposed 

energy hub, wind, solar energy sources, hydrogen and ammonia are integrated as a flexible energy 

hub with combined heat, power and hydrogen system. In the modeling, the power capacity of each 

of the systems in the energy hub was model including the ammonia energy carrier system. The 

objective function of the optimization is the minimization of operational cost of the hub with the 

cost contribution of each of the systems. Notably, the uncertainty associated with the availability 

of solar and wind power, was modeled by generating stochastic scenarios using Monte Carlo 

approach. The MILP formulated was modeled in GAMS and solved using CPLEX solver. They 

found that there was a 16.8% cost reduction when ammonia energy carrier is used as fuel in the 

energy hub. 

 

Verleysen et al., 2022 [106] performed the optimization of remote and local production of 

renewable ammonia under uncertainty. They proposed a standalone power-to-Ammonia system 

which was divided into five parts starting from the part where sun irradiation is converted to energy 
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and to the part where the produced ammonia is transported to the demand site. Each part of the 

system was modeled individually using energy and material balances. The operability of the 

proposed design was evaluated using multi-objective functions; minimizing the levelized cost of 

ammonia, maximizing the total energy efficiency of ammonia in the system while accounting for 

the influence of uncertainty. In characterizing the uncertain parameters, solar irradiance and 

temperature were considered as Gaussian distributions while other uncertain parameters are 

represented as uniform distribution. They formulated the robust design optimization model using 

Polynomial Chaos Expansion approach and applied their problem two countries namely; Belgium 

and Morrocco. After comparing the flexible and robust design optimization, they found that there 

is a 48.2% reduction in the ammonia production with 20.9% increase in flexibility. 

 

Cesaro et al., 2021 [107] forecasted the levelized cost of electricity generated from a renewable 

ammonia production plant. In their work, they hope to (i) predict the levelized cost of ammonia 

(LCOA) produced from a solar energy and its sensitivity on the LCOA (ii) predict the levelized 

cost of electricity (LCOE) from a plant that convert ammonia to power to meet energy demand. 

Their contribution is in the production of ammonia using a solar energy and batteries and the 

conversion of ammonia to power using combine cycle gas turbines. They formulated two separate 

models for minimize the LCOA of green ammonia synthesis and the localized cost of electricity 

of ammonia-to-power technology. When performing the sensitivity analysis on the renewable 

intermittency on the LCOA and LCOE, they found that the average of the lowest and the highest 

sensitivity are approximately 294 $/t and 450 $/t.  

 

Qi et al., 2022 [108] proposed a surrogate based optimal design for a green ammonia and electricity 

co-production system through the use of liquid air energy storage. They hypothesized that the 

liquid air energy storage (LAES) has a large storage capacity with no geographical restrictions. To 

deal with the situation of renewable energy intermittency, the concept of co-production system 

was introduced which can absorb the dispatchable electricity produced from the grid while meeting 

the electricity demand at a peak hour and therefore leading to a reduction in cost. Furthermore, a 

scheduling model was integrated with the renewable power generating profile at an hourly 

resolution to study the influence of the power allocation and storage sizing on renewable 

generation and the cost of producing the green ammonia. The peak hours for the electricity 
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generation were assumed to be 8 hours every day from 12 am to 8 pm. The formulated model was 

to minimize the levelized cost of ammonia which was gotten to be 360.74 €/t at a renewable 

penetration of 77% suggesting that the renewable ammonia is cost-effective compared to the 

conventional ammonia production process.  

 

4.3 Hydrogen Production under Renewable Uncertainties 

 

Serrano-Arevalo et al., 2023 [109] formulated a MILP problem for the optimization of renewable 

hydrogen production under renewable energy and storage uncertainty. Their model was aimed at 

minimizing the energy production cost and the emission taking into account the intermittency of 

the renewable energy. They presented a disjunctive optimization model to guide in the selection 

of the different energy generation processes and their corresponding storage units. To account for 

the variability of the solar and wind energy, the renewable technologies were divided into variable 

technologies and non-variable technologies. Their formulated MILP was applied to a case study 

in Mexico, particularly the peninsular region. Their model was implemented in GAMS and solved 

using CPLEX. They found that an increase of 300 $/t hydrogen in the selling price decreases the 

total cost by 1.80 %, and triples the profits and increase the hydrogen production. furthermore, 

about 913.92 t of CO2 was saved when the renewable technologies are compared to the 

conventional technologies. 

 

Tatar et al., 2022 [110] formulated a novel MILP model for the optimal design and operation of a 

microgrid integrated with green hydrogen under renewable uncertainties and demand scenarios. 

They utilized a probabilistic scenario generation approach to handle the uncertainty associated 

with the wind speed, air temperature, solar irradiance. The solar irradiance is modeled using its 

dependence on air temperature, alternatively, the variation in the wind speed is modeled according 

the Weibull distribution equation. Finally, to accurately model the uncertainty of the renewable 

energy, they formulated the time variant renewable energy using probability density distribution 

with generated scenarios covering next twenty years. Their formulation is to minimize the net 

present cost of the microgrid over twenty years, which was implemented in GAMS and solved 

using CPLEX. They found that the electricity demand is mostly met through the solar energy for 

the likely and mid-likely scenarios and the bio gasifiers for the unlikely scenarios. Furthermore, at 
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12% inflation rate, the initial investment, operational and maintenance cost is 9.6, 8.01 and 7.36 

billion TRY for the likely, mid-likely and unlikely scenarios respectively. 

 

Cooper et al., 2022 [111] formulated a framework for the design and operation of a large-scale 

stand-alone wind powered water electrolyzer. They intend to minimize the levelized cost of 

hydrogen and the emission from the proposed design. In their formulation, the time-variant power 

consumed by the electrolyzer was calculated using a block specific fractional ramping rate 

approach. To model the behavior of the system to the changes in the renewable inputs, three 

electricity profiles were considered to be the starting point. Notably, the second profile represents 

the wind power profile with an hourly data for every quarter year. The profiles equally provide the 

energy as a framework with a full 3983 hrs. The MILP formulated was modeled in GAMS and 

solved using CPLEX. They found that the levelized cost of hydrogen for regular wind profile, 

wind quarter load, are 1.9% and 8.9% respectively at a hydrogen production rate of 6%. They 

stated that this difference is due to the difference between the electrolyzer used.  

 

Mehrjerdi et al., 2020 [112] integrated a hydrogen system with a solar energy unit. They 

considered the off-grid system for three different buildings operated through peer-to-peer home 

energy management, and each building energy demand is met via solar panels and hydrogen 

storage. To handle the uncertainty associated with the renewable energy, they formulated a 

stochastic MILP model using 10 scenarios of the solar energy capacity factor and power demand, 

with four season representative days and hourly resolution for the operation decisions. Their MILP 

was modeled in GAMS and solved using CPLEX. They found that the fuel cell and the elctrolyzer 

overcomes the uncertainty by adapting to the changes in the different scenarios, and hence, cause 

a balance between the power generation and consumption. In addition, at hour 20 and 18, the 

system is fuel cell and electrolyzer driven respectively, and the cost remains unchanged after 7 

scenarios of operation.  

 

Kotzur et al., 2018 [113] evaluated the influence of time variant aggregation approach on a wind 

and solar-based stand-alone hydrogen energy storage systems. They formulated a MILP to 

determine the optimal sizing of the renewable generation for hydrogen production, storage and 

fuel cell technologies. They found that the cost of the energy system is mainly driven by the 



31 
 

renewable energy investment, and also, the optimal hydrogen storage has a higher capacity for 

longer storage duration than the batteries storage technologies.  

 

Heras and Martin, 2021 [114] proposed a time-invariant a low-cost magnesium hydrogen energy 

hub for the storage of wind and solar energy. They hypothesized that magnesium hydrogen is low-

cost storage chemical for solar and wind energy, and hence developed a non-linear programming 

model for the storage and the discharging of the chemical storage.  Their formulated model was to 

found the optimal location, and the scaling of the proposed storage technologies along with the 

hydrogen production through electrolysis and the wind and solar generation in Spain. The 

formulated model was implemented in GAMS and solved using CONOPT solver. They found that 

if the heat and O2 byproduct are sold, the cost of electricity is as low as $0.1 /kWh. 

 

Qi et al., 2021 [115] formulated a two-stage stochastic programming for the optimization of the 

capacity of a high temperature electrolysis system for dynamic operation. In their proposed system, 

hydrogen is generated from a renewable powered water electrolyzer. Their model is to address the 

impact of wind-solar intermittency on the optimal capacities and operation of the proposed 

systems. To account for the seasonal and daily temporal characteristics of the renewable energies, 

a probability distance approach was used to reduce the number of generated scenarios. The 

reduction method was used to reduce the time periods to 96 from 8760 for four representative days. 

The formulated stochastic model was used to minimize the capital expenditure of the high-

temperature electrolysis system. To solve the developed nonconvex MINLP, an integrated interior-

point and branch and bound algorithm was employed. They found that the at above hydrogen price 

of about 4.2 $/kg, the optimal device capacities increased with the power source fluctuation, while 

at a price below 4.2 $/kg, the optimal capacities decreased with the fluctuation. They stated that 

this was due to the renewable energy spillage.  

 

Giannakoudis et al., 2010 [116] used a stochastic annealing algorithm to handle the renewable 

uncertainty in the optimal design and operation of hydrogen production and storage systems. In 

their systems they considered the production of hydrogen using wind and solar energy sources. 

The weather uncertainty associated with the renewable energy was determine through the 

metrological and historical data of the solar and wind energy, hence, the uncertain parameters 
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considered in their formulations are solar radiation, wind speed, and the efficiencies of the 

electrolyzer and the fuel cell. The net present value of the investment for operating period of ten 

year was to be minimized. The formulation was applied to two cases; with uncertainty and without 

uncertainty of solar radiation and wind speed. They observed a robust performance under an 

achievable system design, in response to uncertain operating conditions. 

 

4.4 Combined Chemical Storage production 

 

Hernandez-Perez et al.,2022 [117] formulated a multi-objective model for optimizing ammonia 

and methanol production processes under shale/natural gas ratio uncertainties. Their multi-stage 

optimization was carried out by first simulating the co-production process in ASPEN HYSYS to 

evaluate the performance of the process through their economic objective function and the 

sensitivity of the design parameters on the feed stream. To perform the optimization of the 

processes, they applied an improved multi-objective differential evolution (I-MODE) algorithm 

based on a metaheuristic-deterministic optimization strategy. This algorithm is based on a 

simulated stochastic optimization method and hence used to address the uncertain introduced into 

the system through natural gas composition fluctuation. They found that the net profit of the 

process is 388 MM$/yr and total emission of 3.3 MM TonCO2/yr at an optimized shale/natural gas 

feed and division fraction of 130170 lb/hr and 0.31 respectively. 

Zhang et al., 2019 [118] formulated a MILP model for the integration of design and operation of 

renewable energy fuels and power networks. In their superstructure, they considered the wind, 

solar, biomass, hydro and waste as the renewable energy input. These energy sources were used to 

power different unit operations for the production of multi-energy storages such as bioethanol, 

hydrogen, methanol, thermal energy and others. To address the uncertain with the renewable 

energy, they divided the planning horizon (a year) into seasons through a representative set of time 

periods. Their multi-scale model was formulated to minimize the total cost of the energy 

production, this model was implemented in Julia and solved using CPEX. Applying the model to 

Spain, particularly in Almeria, they found that 10% of gasoline, 5% of diesel and 60% of electricity 

demanded can be met using the renewable process network. 
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Kenkel et al., 2022 [119] performed the optimization of a superstructure for the production of fuels 

from renewable energy sources. Among the fuels produced is the jet fuel which production 

involves different routes including methanol production, Fischer-Tropsch, biomass-to-X process. 

Their modeling is carried out using a novel approach, Open Superstructure modeling and 

Optimization Framework (OUTDOOR). This method is to basically account for the advance mass 

balances of each of the processes and the uncertain data associated with the superstructure. The 

OUTDOOR model was formulated as MILP which aimed to minimize the net production cost of 

the entire process. The model was implemented in PyOMO and solved using guropi solver. They 

found that the cost of production using the integrated biomass-methanol-to-jet fuel plant is 211 

Eur/MWh which is a reduction from 21% to 11.5% as compared to the electricity or biomass-based 

plant. 

Demirhan et al., 2020 [120] demonstrated the reliance of a novel multiscale energy systems 

approach for the optimization of renewable power generation and storage systems. Their proposed 

design consists of renewable energy sources from wind and solar energy, hydrogen synthesis from 

water hydrolyzer, which was then sent to the methanol synthesis for the hydrogenation of captured 

CO2 for the production of methanol, also, part of the hydrogen produced from water electrolysis 

was further combined with N2 from air to produce ammonia. In their MILP formulation, the 

intermittency in the availability of wind and solar energy is handled using a Time representation 

and data clustering approach, which involves the distribution of the characteristic time into season, 

which was taken as a 24-hr. process, and used k-means clustering approach to reduce the data set 

into small clusters. The formulated MILP was used to minimize the total annualized cost of 

meeting the power demand, which was applied to data from Texas and New York. They found that 

the dense energy carriers are capable of reducing the total power generation and the battery storage 

by 30-50% when renewable energy is used.  

Tso et al., 2018 [121] performed a deterministic global optimization of a renewable ammonia and 

methanol co-production processes. They formulated a MINLP model with the objective for the 

minimization of the cost of hydrogen production, with a set hydrogen production output of 500 

MT/day.  The computational studies were carried out on three processes, methanol production 

only, ammonia only, and ammonia-methanol co-production. From their mass conversion analysis, 

the 500 MT/day of hydrogen was used for the production of 2830 MT/day ammonia and 4000 
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MT/day methanol. Emission was restricted to less than 50%. They found that the co-production of 

ammonia and methanol reduces the breakeven price of methanol and ammonia individual 

production to about 4-7%. 

Li et al., 2023 [122] designed and optimized the poly-generation process for the production of 

renewable methanol and formic acid from the hydrogenation of CO2. In addition to the uncertainty 

associated with renewable energy source, they included the price related uncertainty. They applied 

a two-staged scenario approach to model the uncertainty section of the process. This approach 

involves the representation of the uncertain parameters using Gaussian probability distribution. To 

evaluate the flexibility of the process, they minimized the return on investment of the production 

from the gas feed, CO2 and H2 of 200 and 572.73 kmol/h, respectively. They found that under 

uncertain condition, the flexibility indices of the methanol and formic acid production processes 

are 1.088 and 1.194 respectively, leading to an increase of fixed investment cost to $ 39190000. 

Conclusively, the flexible process can lead to a higher profit and reduces market risk. 
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CHAPTER 5.  Supply Chain Optimization 
 

Considering the promising potential of hydrogen, methanol, and ammonia in storing the 

fluctuating renewable energy, the study of the supply chain of the energy carriers have attracted 

the attention of many researchers. This section highlights the works done the optimization of the 

supply chain of the energy carriers to inform decision makers of the optimal location, optimal 

facility sizing, optimal production capacity and optimal transportation/distribution routes for 

meeting the demand. 

 

Figure 6: Superstructure for a supply chain network of multiproduct systems 

 

5.1 Methanol Supply Chain Optimization 

 

Methanol is a promising energy carrier which has caught the attention of several researchers. 

Hence, there is a need for the optimization of its supply chain.  

Villicaña-García et al., 2020 [123] performed the optimization of supply chain of methanol 

produced from conventional and unconventional resources using economic incentives. In their 

work, unconventional sources of natural gas considered are shale gas and offshore extraction, with 

uncertainties associated with the demand of the natural gas and methanol. Their formulation 

contains the constraints on the  total natural gas distributed to the markets: Both extracted and 

imported natural gas, the amount of natural gas distributed to the cities and methanol production 

facilities, the cost of transporting the natural gas to the markets (Cities and methanol facilities), 

the Natural gas sale, expected Methanol production, Cost of Methanol production in the new 

plants, Operating cost of producing Methanol in existing facilities, Cost of importing Methanol, 
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Amount of methanol distributed to the markets (imported, produced in new and existing plants), 

Methanol transportation cost, and among others. The MILP was modeled to maximize the profit 

and minimize fresh water usage and CO2 emitted.  To introduce the economic incentive term, three 

scenarios were considered. Methanol production greater than the expected production leading to 

greater incentives, Methanol production lower than expected production leading to penalization of 

the incentives, and methanol production equal to the expected production leading to the basis 

incentives. Disjunction was utilized to allow for the selection of one scenario at a time for the new 

and existing plant. The total incentive is the sum of the incentives in the new and existing plant. 

The MILP was applied to a case study in Mexico with two scenarios; methanol is produced without 

considering uncertainty and economic incentive Ton, and methanol production with uncertainty 

and economic incentive. They found that production of new methanol plants, the incentive 

generated are about 113% better than the importation and production from existing plants. 

Leduc et al.,2008 [124] formulated a facility location model to optimize the location of a wood 

gasification process plants for the production of methanol. Their model was aimed to determine 

the optimal sizes and locations of plants and gas stations. In their formulation, considered the 

parameters to be number of biomass supply locations, gas stations, demand sites. Notably, the heat 

recovery system was integrated into their plant and total cost of the plants were minimized to 

determine the optimal sites for the plants. Among their parameters are the methanol conversion of 

60%, heat conversion of 10%, load hours of 7200 hrs and the economic life of the plants to be 25 

years. To ascertain the feasibility of their formulation, they tested the model on different plants 

located at designated locations in Austria, they marked three production sites with M5, M10 and 

M20 representing the location for the production of different blends of methanol-5ton gasoline, 

Methanol-10tons gasoline and Methanol-20 tons gasoline respectively. They found that there is 

sufficient arable land (8%) for the production of M5, M10 and M20 in Austria, and cost of 

methanol could be lowered by 12% when heat is recovered. 

Jeong et al., 2018 [125] incorporated Geographical information system (GIS) with MILP model 

to study the supply chain optimization of biodiesel. In their study, they simulated the minimum 

cost routes between origins-destinations (oilseed supply-biodiesel plants, biodiesel plants-

biodiesel demand, and biodiesel plants-demand site) using origin-destination cost matrix approach, 

a network analysis function. Their MILP was to minimize the supply chain cost by optimizing the 
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oilseed, biodiesel and the meal flows through the transportation routes. The model was computed 

to meet 100% and 20% of the biodiesel demand and fossil diesel demand respectively, for a 

specific region. The formulated MILP was applied to regions in Montana, South Dakota and North 

Dakota. They found that the plant construction, biodiesel production and transportation contributed 

5.2, 76.1 and 18.6 % respectively to the optimized cost of $67.3 million/year. Considering the 

transportation network, they found that cost of supply chain significantly depends on the 

transportation cost, and hence, the transportation cost would decrease when new transportation 

routes and infrastructures are developed. 

Moretti et al., 2021 [126] provided a detailed MILP for the optimization of bio-methanol supply 

chains from wood chip biomass. The optimization problem was defined for one year operation and 

the models account for the multi-feedstock biomass supply, seasonal biomass availability, inter-

model and multi-model transportation, and the sizing of the pre-processing facilities. Their 

formulated model was to minimize the fuel production cost which comprises the annual operating 

cost, annualized investment cost. Their model was applied to a case study in Italy, and solved for 

five different scenarios; S1: rejects the selection of optimal conversion plant site, S2 and S3: 

limited the feedstock availability to woodchips and secondary residues, S4: do not allow 

transportation by train and S5: prevent train transportation and used a less accurate conversion 

plant cost function. They found that the cost of producing methanol in S1, S2, S3, S4 and S5 are 

431.5 €/ton, 505.8 €/ton, 433.4 €/ton, 442.2 €/ton and 432.5 €/ton respectively.  They concluded 

that the methanol production form multiple feedstocks was advantageous compared to a single 

feed process. 

Nugroho et al., 2022 [127] optimized the supply chain of methanol produced from a biomass. 

Their supply chain formulation includes the cost of biogas, syngas generation, methanol synthesis, 

methanol retailing and methanol transportation. These functions contributed to the objective 

function for maximizing the supply chain profits. In addition, they integrated a stochastic 

optimization into the stimulation which optimizes the methanol prices at $670 and $500 at 

methanol factories and distributions, and as well minimizes the carbon emissions. They found that 

in the biogas and methanol plants, the biogas farmers, methanol retailers and the transporters 

received 52%, 19%, 25%, and 4% of the profits respectively. 



38 
 

Liu et al., 2014 [128] performed a supply chain multi-objective optimization of biofuel production 

via different process routes. In their study, they integrated a life cycle assessment with the supply 

chain model to perform the trade-offs between the economic, emission, energy objectives and the 

choice between the distributed and centralized process routes. Their centralized routes involve the 

transportation of the raw materials via different routes to the production factories while the 

distribution pathways involve the transportation of raw materials to the pre-treatment location and 

then converted to the intermediate products. The life cycle assessment of the biofuel was divided 

into biomass production, fuel production, fuel consumption and transportation. The multi-

objective MILP formulated was divided into three parts; (i) maximization of revenue (ii) 

minimization of energy usage (iii) minimization of emission, and was solved using ϵ-constraint 

approach. After applying the developed model to 24 provinces in China, they found that the scale 

effect of factories in the centralized system was promising compared to the effect of the lower 

transportation cost in the distribution pathways. 

5.2 Ammonia Supply Chain 

 

Allman and Daoutidis, 2016 [129] developed a new framework for renewable ammonia supply 

chain in Minnesota, optimizing their capacity and location. In their formulation, the problem was 

constraint through ammonia balances at the different nodes in the supply chain, maximum 

capacity, and the nonnegativity of the production and distribution variables. The nonlinear 

programming problem was formulated to determine the optimal location of a new ammonia 

production plants and the capacity of the plant, this was done through the minimization of the 

annualized cost of the supply chain. The model was solved using BARON solver and applied to 

data from Minnesota in the USA. They found that in the base case, the optimal location at Dexter 

in Minnesota with a capacity of 140029 t/y. In addition, the cost of purchasing ammonia, building 

and operating new plant, and the transportation contributed 63%, 26% and 11% of the annual 

supply chain cost. Evaluating the uncertainty associated with the ammonia supply, wind energy 

availability using Monte Carlo analysis suggested that the 48% of the time, building new 

renewable facilities is optimal. Finally, they found that a carbon tax of $35/t decreases the supply 

chain emissions by 65%. 

Allman et al., 2017 [130] developed a framework for the optimization of renewable and 

conventional ammonia supply chain. In their optimization, they tried to compare the environmental 
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and economic cost of conventional and renewable ammonia. The conventional ammonia supply 

chain involves the production of ammonia in a large quantity, transported, transported via rail or 

pipeline to distribution sites and then to the local demand. The renewable route of ammonia 

production was incorporated into the centralized production supply chain. The MILP objective 

function consist the minimizing the annualized cost of ammonia supply chain and the CO2 

emission from the processing plant for 20-year operation. The formulated framework was applied 

to data from Minnesota and Iowa, and solved using BARON solver. They found that the base case 

results favor ammonia purchase from conventional plant and their further analysis showed that a 

carbon tax of more than $25/t will decrease the optimal supply chain by building large renewable 

plants. 

Li et al., 2020 [131] formulated a framework for the optimization of the supply chain of renewable 

ammonia and electricity co-production. Their optimization consists the minimization of ammonia 

production cost by optimizing the facility location, capacities and the supply among the different 

regions in inner Mongolia. The wind energy capacity was predetermined to be approximately 60 

GW with a full load hour of 4000 hrs. The formulation constraints include the limit on the planning 

capacities of the electrolyzer, hydrogen buffer tank, hydrogen storage tank. They found that the 

average localized cost of ammonia in inner Mongolia from wind and conventional energy are 0.57 

€/kg and 0.41 €/kg respectively, which is a reduction of 30% in the capacity cost of the plants. 

Zhao et al., 2021 [132] evaluated a proposed optimal supply chain and expansion of renewable 

ammonia producing in China. Their supply chain consists the hydrogen production, transportation, 

hydrogen storage, and the ammonia production using the produced hydrogen. The MILP 

optimization model involves the decision variables; number of electrolyzer, hydrogen distribution 

rate, hydrogen storage at the power plant and ammonia plant, oxygen storage inventory in the 

power plant. Their objective function is to minimize the total cost of expanded supply system 

which is make-up of the cost of hydrogen production, cost of hydrogen storage, hydrogen 

transportation cost, oxygen storage cost and the revenue from oxygen sales. In their case study, 

they considered ammonia production capacity of 300000 t/y, wind and solar utilization hour of 

2780 and 1520 h/y respectively. Their results show that the cost of renewable ammonia will double 

the conventional production route due to the higher hydrogen production cost. Furthermore, their 
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revenue from oxygen by-product sale could reduce the total cost of renewable hydrogen 

production. 

Salmon et al., 2021 [133] formulated a model for the optimization of the intercontinental energy 

transport of green ammonia production. Their proposed ammonia production superstructure 

involves the use of renewable energy to power water electrolysis, followed by the synthesis of 

ammonia in electrical Haber-Bosch reactor, which is projected to be likely available in 2050. The 

formulated MILP minimizes the net present value of delivering ammonia to the different demand 

sites at the specified global locations. This objective function consists the sum of capital 

expenditure and the operational expenditure of the distribution cost, and a discount of 7% was 

applied for an operational time of 20 years. They found that the economies of scales of the 

renewable ammonia generated a production rate of about 10 million tonnes per annum from less 

than 1 million tonnes per annum. 

5.3 Hydrogen Supply Chain 

 

Woo et al., 2016 [134] optimized the supply chain of hydrogen from biomass. Their aim is to 

formulate an optimization model that incorporate the biomass supply chain into the biomass-to-

hydrogen supply chain, and can equally accounts for the logistic operation under biomass yield 

and demand uncertainties. Their design includes hydrogen production from four different biomass 

due to their availability and high energy content, these includes the forest, agricultural, industrial 

residues. The developed MILP consists of constraints on quantity of land used for the biomass, 

mass balance constraints, facility capacity, with an objective of minimizing the total annualized 

cost of the hydrogen supply chain. The formulated model was applied to six regions in Jeju, South 

Korea and solved using CPLEX solver in GAMS.  They found that the hydrogen demand was met 

by developing new gasification plant when the importation dependence rate is 15%, until the 

hydrogen demand gets to 12, 400 ton/year. 

Yang et al., 2020 [135] formulated a model for the planning and operation of wind-powered 

hydrogen supply chain network in some regions in China.  Their proposed supply chain network 

involves the production of hydrogen from the electrolysis of water using wind, storing the 

hydrogen, and the distribution of the hydrogen to a fueling station and industrial demand site. They 

handle the uncertainty associated to the wind energy using probability density function, while the 
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hydrogen demand uncertainty was modeled using scenarios represented on probability density 

function. Their model includes, the hydrogen production constraints, hydrogen transportation 

constraints, hydrogen storage constraints, wind-batteries constraints, hydrogen demand 

constraints, and the constraints on the design of the unit operations. The two-staged MILP was 

formulated to minimize the capital and operating cost the process. The formulated model was 

applied to a case study in Fujian province in China, and solved using CPLEX. They found that 

increase in the hydrogen demand increases the total cost of the hydrogen supply chain network, 

while the levelized cost of hydrogen reduces with increase in hydrogen demand. The levelized cost 

of hydrogen ranges from 3.073 $/kg to 3.155 $/kg for different hydrogen demand and changes by 

9.5% when the unit cost of the wind turbine was changed by 20%. 

Almansoori and Shah, 2012 [136] developed a three-stage optimization framework for hydrogen 

supply chain under demand uncertainty.  They utilize a scenario planning method for handling the 

fluctuation in hydrogen demand over a long-term planning horizon, and the variations in the 

demand were represented using a moderate number of scenarios represented by probability 

function. At the end, they aim to help the decision makers on ‘Here-and-now and ‘wait-and-see’ 

decisions which are determined from the prediction of the structure of the network, for instance, 

optimal location, sizing, and the capacity of the hydrogen production plants. A three-stage 

stochastic optimization model are broken into; first stage assumed that the hydrogen demand is 

deterministic, the second stage assumes the demand is uncertain. They considered nine different 

demand scenarios for the three time periods which each is represented using 6-year intervals. The 

model consists of the demand constraints, primary energy sources constraints, and others. The 

MILP developed minimized the total daily cost of hydrogen network. They found that the mode 

of transportation affects the total cost of hydrogen, and the variation in the demand has a significant 

impact on the cost. 

Won et al., 2017 [137] optimized the supply of renewable hydrogen. They presented a 

superstructure that consists, different primary energy sources, electricity generation technologies, 

various hydrogen production technologies, and the distribution of the hydrogen. They used 

Weibull’s probability distribution for developing the behavior of wind using mean wind speed. 

Their formulated MILP was aimed to minimize the total annual cost of hydrogen supply systems, 

and this model was applied to Jeju Island in Korea. Their optimal configuration and operation 
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results showed that hydrogen demand is primarily met using alkaline electrolyzer powered by wind 

turbines and direct gasification representing 89.8% and 10.2% of the hydrogen demand. 

5.4 Combined Energy Carriers 

 

Ogumerem et al., 2019 [138] formulated MILP optimization model for the optimization of the 

supply of renewable hydrogen, ammonia and methanol. They applied their model to two case; (i) 

short-term case for hydrogen supply chain in California (ii) long-term case for methanol and 

ammonia supply chains in Texas. In the hydrogen supply chain, they considered the distribution 

of produced hydrogen for the plant to meet the demand of a set costumers over a given time- 

period, the use of different hydrogen production technologies and the transportation modes. In 

modeling the transportation constraints, they assumed that the vehicles are traveling at 12,000 

miles per year. Their multi-objective optimization is to minimize the net present value and the 

emission from the plants. The minimum net present value found was about 5.565 billion dollars at 

zero emission. Considering ammonia and methanol supply chain in Texas, they found that 

levelized cost of energy for ammonia and methanol are $0.664/kWh and $0.636/kWh respectively, 

and concluded that decrease in the cost of renewable energy production favors the entire processes. 

Demirhan et al., 2021 [139] developed a multi-stage energy system approach for the optimization 

of multi-product network. They demonstrated an optimization approach for the optimal design and 

operation of poly-generation systems that is capable of utilizing renewable energy to produce 

power, synthetic fuels, chemical energy fuels (ammonia, methanol, hydrogen). They account for 

the fluctuation in the availability of renewable energy using hourly resolution, which was modeled 

for an entire year (8760 steps/periods). To reduce the computational burden associated with the 

generation of large scenerios, agglomerative hierarchical clustering approach was used. Meaning 

the wind speed, solar irradiation, electricity prices and power load data were clustered together. 

The multi-objective MILP was formulated for the minimization of the total emission form the 

system and the total cost of the operating the network. They also determine the optimal levelized 

cost for zero-emission in hydrogen, methanol and ammonia production. They found that the power 

and hydrogen generation significantly play a role in the integration of the multi-product network 

since the both serve as precursors for the production of other products.   
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5.5 Modular Energy Systems 

 

Palys et al., 2018 [16] investigated the optimization of the supply chain of modular wind-powered 

ammonia production under the influence of production exponent. In their research Minnesota and 

Iowa states were used as case study. The model developed using a mixed integer non-linear 

program model and solved in GAMS and BARON respectively. At the end of the experiment, a 

reduction in the Haber-Bosch conventional cost from $830/t and $745/t to $610/t and $575/t in 

Minnesota and Iowa respectively at a convenient production exponent of 0.9. This was attributed 

to the increase in the savings as a result of economies of mass production caused by increasing 

demand and the availability of large amount of wind in Iowa state to serve the increasing demand 

which allows for higher reduction in transportation costs with the modular approach. 

Huang et al., 2022[100] combined the study of the modular design of renewable methanol 

production process. They evaluated the impact of uncertainty in renewable energy and the modular 

designs on the operation of the methanol synthesis lines by considering the continuity and stable 

operation targets. In their proposed methanol production superstructure, hydrogen is generated 

from a solar and wind energy driven electrolysis and combined with a captured CO2. In addition 

to the material balances of the unit operations in ASPEN HYSYS, heat integration was performed 

and included among the constraints in their formulation. The MILP formulated was implemented 

in GAMS and solved using CPLEX. They found that the energy storage capacity needed in the 

modular methanol unit are significantly reduced to 85.33% and 87.36% for battery and hydrogen 

respectively, which was attributed to the ability of the modular methanol production system to 

account for the fluctuations in the renewable energy through the adjusting of the number of the 

modular production lines. Furthermore, they explained that it could be means that the methanol 

synthesis is capable of maximizing the production capacity when the renewable energy is abundant 

and minimize the energy consumption when the renewable energy is insufficient. 

 

Allman et al., 2021 [140] performed the supply chain optimization of a modular biomass waste-

to-energy system. They proposed both deterministic and two-stage stochastic optimization 

frameworks for waste-to-energy systems, considering the minimum cost of the modular and 

conventional units. The stochastic optimization is to account for the uncertainty in the modular 

units, which was introduced from the biomass supply.  Their formulation is to minimize the supply 



44 
 

chain cost of the energy system. A value of the module mobility (VMM) function was used to 

quantify the economic benefits of the modular units. They found that a saving of 1-4% per year 

were realized when modular production units were used. 

 

Allen et al., 2020 [141] formulated a MILP model for the supply chain optimization for modular 

units.  Their formulation was for the determination of the optimal real-time scheduling of supply 

chain network of a mobile modular units.  The objective of the formulation was to minimize the 

operational cost of the supply chain network. The MILP formulated was applied to a wastewater 

effluents treatment modular unit. They found that it is more economical to operate a modular unit 

than conventional unit. 

 

Chen and Grossmann et al., 2019 [142] formulated a generalized disjunctive programming model 

for the optimization of modular process synthesis. Their problem was formulated as a multiperiod 

allocation, facility location, and design model which compared the effect of the selection of 

conventional and modular units on the economics of the supply chain. The optimization framework 

comprises of the main decision variables includes the locations of the potential units, production 

capacity, shipment of raw materials from the suppliers to the facilities sites, and the Boolean 

decision parameters for the selection of the modular and conventional units. Their objective is to 

maximize the net present value of the network. The framework was applied for the bioethanol 

production process. In the case study, the cost of the process network and production allocation 

were minimized. The modular and conventional cases were solved using Gurobi and Pyomo-

GAMS, respectively. They reported a reduction in the transportation cost by $372 million when 

modular unit is used. 

Baldea et al., 2019 [143] used a scaling function to demonstrate the modularization of a processing 

plant and the cost implication of running a modular unit. In their cost function, they related the 

cost of operating a plant and the processing capacity of the plants. A modular exponent was used 

to make the decision of scaling down/up.  This proposed formulation was applied to a modular 

ammonia production plant. They compared the cost implication of scaling down/up of the 

processing plant, and consequently evaluated the effect of reactor and compressor unit operations. 

They found that if there scaled down the production from the large conventional plant to the 

modular plant, the capacity and the reactor would reduce by a factor of 2514 and 976 respectively. 
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Conclusion  
  

There has been substantial amount of work done on the optimization of the production of the single 

energy carriers such as hydrogen, methanol, and ammonia using renewable energy. The optimal 

operation, optimal scheduling, the influence of various uncertainties and the supply chain of this 

single product networks have been well understood and researched. The continuous investigation 

in the optimization of co-production of ammonia and methanol is important due to; (i) the 

reduction in operating cost (ii) reduction in unit operation since their production shared common 

units and (iii) the reduction in carbon emission. However, limited works [138,139] have been 

identified to have been conducted on the optimization of methanol and ammonia Co-production 

unit. Therefore, there are still problems relating to the optimization of methanol and ammonia co-

production, these include; 

1. The consideration of the modular methanol and ammonia co-production plant   

2. The investigation into the flexibility of the modular units 

3. The formulation of robust optimization model to handle the uncertainties (demand, 

renewable energy, associated with the co-production plant 

4. The integration of modern Artificial Intelligence Algorithms such as machine learning 

algorithms (supervised, unsupervised learning algorithms) in Process Systems 

Engineering. 
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