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Abstract 

Manufacturing plants are subject to dynamic constrains requiring robust optimization methods for 

improved performance and efficiency. A novel AI based optimal control system for a Digital Twin of 

a manufacturing plant is presented in this report. The proposed system implements an AI based state 

observer to predict the internal state of a highly uncertain and non-linear process model, such as a real 

production system. A multi-objective optimization function is used to control production parameters 

and keeps the process running at an optimal condition. The AI Optimization Control method was 

implemented on a study case on a steel manufacturing plant. The performance of the system was 

evaluated using the relevant manufacturing KPIs such as the equipment utilization and productivity 

rates of the process. The use of the AI optimal control system successfully improves the process KPIs 

and could potentially reduce production costs. 
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Resumen 

Les plantes de fabricació estan subjectes a restriccions dinàmiques que requereixen una optimització 

robusta per millorar el rendiment i l' eficiència del sistema. En aquest projecte es presenta un nou 

sistema de control òptim basat en IA per a un bessó digital d' una planta de fabricació. El sistema 

proposat implementa un observador d' estat basat en IA per predir l' estat intern d' un model de procés 

altament incert i no lineal, tal com seria un sistema de producció real. Una funció d' optimització multi-

objectiu es utilitzada per controlar els paràmetres de producció i mantenir el procés funcionant en 

condicions òptimes. El mètode d'Optimització del Control basat en AI es va implementar en un cas 

d'estudi d'una planta de fabricació d'acer. El rendiment del sistema es va avaluar utilitzant els KPIs de 

fabricació rellevants, com ara les taxes d'utilització i productivitat de l'equip del procés. L'ús de sistema 

de control optimitzat via AI millora amb èxit els KPIs de procés i potencialment podria reduir els 

costos de producció. 
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Resume 

Las plantas de fabricación están sujetas a restricciones dinámicas que requieren una optimización 

robusta para mejorar el rendimiento y la eficiencia. En este informe se presenta un nuevo sistema de 

control óptimo basado en IA para un gemelo digital de una planta de fabricación. El sistema propuesto 

implementa un observador de estado basado en IA para predecir el estado interno de un modelo de 

proceso altamente incierto y no lineal, tal y como sería un sistema de producción real. Una función de 

optimización multiobjetivo es utilizada para controlar los parámetros de producción y mantener el 

proceso funcionando en condiciones óptimas. El método de Optimización del Control basado en AI se 

implementó en un caso de estudio de una planta de fabricación de acero. El rendimiento del sistema 

se evaluó utilizando los KPIs de fabricación relevantes, como la utilización del equipo y las tasas de 

productividad del proceso. El uso del sistema de control óptimo de IA mejora los KPIs del proceso y 

podría reducir potencialmente los costos de producción. 
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Preface 

Companies today need to be competitive in today’s rapidly changing market. The long-term 

sustainability of most businesses is hinged on their ability to stay competitive and adopt emerging 

technologies that have a high impact on their success. And digital transformation is, arguably, the most 

influential technology at present times.  

With the strong believe that digitalization is the way of the future, I find myself compelled by the new 

advancements in information technology and digital simulations. The new technology brough on by 

Industry 4.0 has enabled the development of various industries and allowed them to join-in on the 

digital transformation trend.  

With this research, my aim is to contribute to the development and advancement in the digital 

transformation of the industrial sector.  
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1 Introduction 

The first industrial revolution started in the late 18th century, enabling mass production by means of 

machinery. In the second industrial revolution, assembly lines and electric power generators brought 

a new level of efficiency to the manufacturing industry. By the 20th century, a third revolution started, 

led by advanced computers and programmable logic controllers which promoted automated control 

and increased industrial productivity (IBM, Industry 4.0). 

We are now facing the fourth industrial revolution, commonly referred to as Industry 4.0. The term 

“Industrie 4.0” was initially cited by the German government as a high-tech strategy for the purpose 

of maintaining global competitiveness in the manufacturing industry (Federal Ministry for Economic 

Affairs and Energy, 2021). This revolution involves IoT technology, Artificial Intelligence (AI) and 

smart manufacturing which provide intelligent architectures for flexible production. 

One of the emerging technologies of Industry 4.0 is the application of Digital Twins (DT) of production 

systems. They consist of virtual simulations designed to reflect physical counterparts in the real world. 

They typically evolve with their physical counterpart throughout its life cycle, from design to end-of-

service (IBM, Digital Twins).  DT simulations are considered a novel concept with high potential for 

enhancing manufacturing efficiency through automated process control. They are also reputable for 

enabling process optimization, evaluating production scenarios, and detecting anomalies in the 

production process.  

The conducted research on Digital Twin applications for manufacturing plant simulation and 

optimization is presented in this thesis report. This research introduces a novel application of an AI 

predictive control system used to optimize a steel manufacturing process. The aptness of the AI 

Optimization Control system is investigated by use of a Digital Twin simulation.     

1.1. An Introduction to Digital Twins 

The first concept of a Digital Twin was introduced by David Gelernter in 1991. However, the first 

concept of applying DTs to manufacturing processes was introduced by Dr. Michael Grieves in 2002. 

Grieves defined the DT as “a set of virtual information constructs that fully describes a potential or 

actual physical manufactured product … any information that could be obtained from inspecting a 

physical manufactured product can be obtained from its Digital Twin” (Grieves, 2002).  



AI Based State Observer for Optimal Process Control: Application to Digital Twin Design of Manufacturing Plants   

 

2 

 

In the manufacturing industry, DTs can encompass various levels of product details. A part DT is the 

smallest example of a DT, representing a single component. A unit DT is a higher level of virtual 

representation, consisting of different assets that form a functioning system. And, at a macro level, a 

process DT provides insight on the entire production process. The latter requires a high abstraction 

level of detail to model the system (IBM, Digital Twins). 

The most promising applications for DTs in manufacturing plants consist of evaluating system 

performance, predicting maintenance schedules, and optimizing energy consumption. However, one 

of the biggest challenges of DT applications is the concept of real-time synchronization and 

adaptiveness to a dynamic environment. In the future, the widespread use IoT sensors and smart 

gateway communication networks in smart factories can enable continuous real-time connections for 

DT applications in manufacturing.  

1.2. An Introduction to Steel Manufacturing  

The ramped production of steel was led by the increased development of infrastructure projects and 

the growing global consumption. In 2021, the global production of crude steel has surpassed 1.95 

billion tons. Today, steel production is one of the most energy and material intensive industries. Thus, 

many companies are developing new strategies to improve resource efficiency and achieve sustainable 

growth (WorldSteel, 2021).  

Steel manufacturing relies on two main processes: using the Basic Oxygen Furnace (BOF) and using 

the Electric Arc Furnace (EAF). Most of the produced steel (70%) follows the BOF steelmaking route. 

In this process, iron ore is reduced to pig iron before being converted to steel. Alternatively, the EAF 

process uses electricity to melt steel. Then, alloys are added to adjust the chemical composition 

required for strength and quality (WorldSteel, 2021). 

Secondary refining processes are performed on liquid steel, commonly refer to as metallurgical 

refining processes. In secondary refining, impurities are removed, and the chemical composition of 

steel is adjusted. Secondary refining takes place in a vessel compartment, called a ladle. Secondary 

refining processes include the Ladle Furnace (LF), the Ruhr Stahl-Heraeus (RH) process, and the 

Vacuum Arc Degasser (VAD) (Sumitomo Metal Ind., 2009). 
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Following the secondary refining process, liquid steel is continuously casted using the Continuous 

Casting Machines (CCM). This process allows the metal to solidify at a slow rate, producing a semi-

finished slab metal part. The continuous casting process requires continuous metal flow; a ladle 

exchange system provides continuous pouring of the molten steel. The tundish, illustrated in Figure 1, 

controls the pouring speed and allows the removal of slag and other impurities before the steel casting 

process. (Calmat, Continuous Casting)  

Finally, the semi-finished metal slabs are hot rolled at high temperature in order to produce high quality 

steel products. Hot rolling is a cost-effectiveness and simple manufacturing process that produces high 

quality steel at very low production costs. (Masteel, 2018) 

 

Figure 1: The Steel Manufacturing Process (Alchevsk Iron &Steel Works, n.d.) 

The research conducted in this project will be presented as follows. The Analysis section will present 

the development of the Digital Twin model of a steel manufacturing plant. This section will cover the 

implementation of optimization process methods, including the development of the AI based state 

observer for this manufacturing process. Subsequently, the Results section will summaries the results 

obtained for the implemented process optimization methods. Then, the Environmental Impact is 

presented, followed by final remarks in the Discussion section.  
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2 Literature Review 

The concept of Digital Twins was introduced many years ago, and ever since, this technology has 

gained popularity and interest. With the overwhelming advancements brought on by Industry 4.0, 

simulation methods and communication networks are rapidly being developed, enabling the DT 

transformation in the manufacturing sector.  

The literature content relevant to DT applications in manufacturing is in fact insurmountable. DT 

simulations of manufacturing plants are already being implemented in real-life applications. The new 

staggering research pertinent to this technology cannot be fully covered in this text. Hence, this 

literature survey only highlights a few topics that are relevant to this project.  

The literature review will be sectioned in the following manner. The first section will refer to DT 

application in the manufacturing industry. The subsequent section will focus on advanced optimization 

techniques for the steel manufacturing industry. And the final section will address Model Predictive 

Control (MPC) and the use of AI and ML.  

2.1.  Digital Twins in Manufacturing  

Digital Twins of manufacturing plants are the virtual component of a cyber-physical system (CPS). 

They replicate the real system and encapsulates and model its behavior. In manufacturing systems, 

DTs consist of cooperative elements and subsystems representing multi-levels of production:  

machines, processes and logistics networks (Elmarghy et al, 2021). Presently, virtual simulators are 

being used in the building phases of manufacturing systems, in order to validate designs and perform 

what-if scenario evaluations. Yet, there is a gap between the initial simulation of a production plant 

and its commissioning and real-time connectivity during manufacturing (Morabito et al, 2021).  

Manufacturing process simulations often rely on Discrete Event Simulation (DES) models, which are 

used to simulate production logistics and identify bottlenecks. There are few study cases for the 

development of DTs in manufacturing using combined DES models and continuous real-time models. 

Some simulation tools, such as Simulink, provide the functionality of integrating DES models with 

continuous time models, for the purpose of mirroring real physical equipment. (Vachalek et al, 2017). 

A Digital Twin application based on DES simulation was implemented on two assembly lines of the 

Comau plant in Italy. Morabito and others proposed a methodology on the use of a DES simulation as 
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a virtual counterpart for the DT. The DES simulation (using FlexSim software) was connected to the 

physical machinery and was able to extract data relevant to the plant performance, effectively closing 

the loop on communication between the virtual and real system. The implemented DT model was able 

to predict the production performance and detect anomalous behavior of the physical plant (Morabito 

et al, 2021).  

Another worthy application of DTs is the System Digital Twin (SysDT), which was presented by 

Magnanini et al. This system was based on a Markovian representation of system interactions using a 

stochastic parametric model for evaluating the performance of the manufacturing process. The SysDT 

method was implemented in a rail-way manufacturing company. A product tracking system, using IoT 

sensors, was used to collect data on machine cycles, failure occurrences and repair instances. The 

SysDT was responsive to variations in the production plan, allowing managers to make better decisions 

(Magnanini and Tullio, 2021).  

2.2. Steel Manufacturing Optimization  

The steel industry is an energy and resource intensive business. Companies are actively looking to 

improve their process efficiency and integrate advanced technology with high potential for economic 

benefits. Simulation optimization methods are gaining a lot of attention, which include the use of DTs, 

IoT sensors, and AI / ML techniques. The industrial efforts in optimizing the steelmaking process 

focus on the following: Planning and Scheduling, Real-Time Optimization and Control, and Energy 

Sustainability (Backman et al, 2019).  

2.2.1 Planning and Scheduling 

Planning and scheduling are a challenging problem for the steelmaking industry, considering their 

reliance on batch production processing (continuous casting process). A case study involving optimal 

planning and scheduling for a continuous casting process was implemented in a plant in Austria 

(Missbaur et al, 2009). Lin et al (2016) used a model based on a multi-objective optimization targeting 

the hot-charge ratio of steel slabs. The multi-objective function considers utilization rates of tundishes 

and additional costs of technical operations.  Furthermore, intelligent job scheduling was introduced 

by Sobaszek et al. (2018) as a solution for production disturbances and uncertainties in the system. 
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2.2.2 Real-Time Optimization and Control 

 In the steel industry, a real-time optimization system for an Electric Arc Furnace (EAF) was 

introduced by Shyamal and Swartz. In their research, they propose an advisory system that provides 

online decision-making support for the EAF plant operators, incorporating a moving horizon estimator 

(MHE), which is used to assess the state of the plant using current and past measurements. Shyamal 

and Swartz further demonstrate the potential economic benefits of implementing their real-time 

optimization-based advisory system by simulating study cases related to electric-arc processes in 

steelmaking (Shyamal and Swartz, 2018).  

Monitoring of complex industrial batch processes was implemented in a steel plant in Lulea, Sweden. 

Basic Oxygen Furnace (BOF) control devices were installed for the purpose of developing a dynamic 

system for sloping predictions. Based on a multivariate data analysis, an online prediction model for 

the phosphorus content in steel end-of-blow was implemented. The prediction model is used to adjust 

and control the BOF process (Brämming et al, 2016).   

Rotevatn et al (2015) implemented an MPC system for the predictive model control of a Composition 

Adjustment by Sealed Argon Bubbling (CAS) process. The model integrates the CyberneticaTM 

CENIT framework for online applications, allowing for an online steel metal temperature prediction 

using a built-in Kalman filter and a moving horizon estimator (MHE). The presented work achieves 

control of the steel metal temperature before the continuous casting process, optimizing the plant for 

energy efficiency.  

2.2.3 Sustainable Development and Energy Optimization  

Regarding energy optimization and sustainable development in manufacturing “three pillars for 

sustainability improvement have been stated: Minimizing waste of energy and materials, maximizing 

the use of the renewable resources, and sustainable and efficient processing”.  (Fan et al. 2017) 

Lu et al. (2016) addressed the issue of energy consumption in the steel and iron production industry. 

The authors identified that in steel-rolling, energy saving margins are limited due to the constrained 

process path. They suggested that increasing the sinter grade, scrap usage and lump ore usage are 

effective ways to reduce the energy demands of the process. Furthermore, the authors conclude that 

optimal routing should be adopted through advanced technological measures.   
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Hu et al. (2022) characterized the energy flow in a steel manufacturing plant. A dynamic optimization 

model was built based on an objective function and the operational efficiency indicators of the plant. 

A steam energy system was tested, where the dynamic optimization of steam energy was effective in 

reducing the plant’s energy consumption.  

In response to the volatility of energy sources and high price fluctuation, Gajic et al. (2017) presented 

an electricity optimization system that adjusts production schedules in a steel melt shop. The 

optimization problem is solved using a continuous-time mixed-integer linear programming model. The 

power optimization system was successfully implemented and adopted at a stainless-steel mill facility 

in Italy. The system was able to reduce electricity costs by 3%.  

 Another effort in sustainable manufacturing was led by Maddaloni et al. (2015) focusing on the 

optimal exploitation of process resources in steelmaking.  Their work takes into consideration CO2 

emission savings and natural gas consumptions of the plant, aiming to improve the process gas 

network. The optimization model is dynamic in the sense that it can be adapted to variability in the 

network and changing operating conditions common to an industrial context.  

2.3. MCP and AI Process Control 

Model Predictive Control (MPC) is already widely employed in the oil-refining and petrochemical 

industries using linear dynamic models. MPC is also used in the steel industry for monitoring plant 

settings and process quality. However, very few nonlinear MPC models are used due to their 

complexity and lack of commercial availability (Backman et al, 2019). Plant-wide control of dynamic, 

nonlinear, and uncertain systems are novel to the manufacturing industry. Furthermore, the 

implementation of AI and ML for predictive control is a state-of-the-art approach.  

There are various new MPC methods that are being developed for dynamic, nonlinear, and uncertain 

system. These methods include the Robust MPC, the Stochastic MPC for softly constrained systems, 

and the Adaptive MPC. However, many problems still need to be addressed regarding the dynamic 

stability and convergence of these systems (Mayne, 2014).  
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A novel concept using NN for a model prediction system was initially proposed by Sha (2008).  Sha 

introduced the use of NN for the predictive control of unknown multiple non-linear systems. The 

effectiveness of the MPC control system was demonstrated using a Simulink model. The scheme of 

the proposed non-linear system compromising an online NN training of the system is shown in Figure 

2.  

 

Figure 2: Modeling of a Non-Linear System by NN  

Additionally, Jakovlev et al. (2013) implemented a multilayer perceptron NN for the predictive control 

of a radio telescope. This approach was developed for the purpose of analyzing the working conditions 

of a small DC motor. The NN model predicts voltage fluctuations which are used to dynamically 

correct the disk rotation of the radio telescope.  
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3 Problem Statement  

Steel manufacturing is a complex process that relies on batch processing and optimal process control 

for the continuous casting of steel. The challenging optimization problem pertinent to steel 

manufacturing requires effective resource management and production planning tools. In real 

production systems, the steel making process is subject to dynamic constrains that can pose a 

significant problem for production engineers and human controllers. Therefore, the steel making 

industry is considering dynamic system models that can help in decision making in critical time-

sensitive applications.  

Digital Twins provide a dynamic simulation that can respond to abrupt changes in external/internal 

constraints. DTs can implement automated process control, requiring minimal human interventions. 

DT models are constantly up to date with the dynamic constrains imposed on the manufacturing 

process. The objective of this research is to leverage the DT simulation of a manufacturing plant for 

the purpose of automating and controlling the process. Presented in Figure 3, the conventional 

manufacturing process control is compared to the DT manufacturing concept.  

 

Figure 3: Conventional Manufacturing vs Digital Twin Manufacturing Concept for Automated Plant Control 
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As shown above, the design of DTs for manufacturing can provide a dynamic update of constraints, 

effectively reducing manual interactions. Furthermore, DTs can provide automatic process 

optimization and control, reflecting the current state and objectives of the industry.  

The conducted research on a DT application for an AI based optimal control is presented in the 

following Analysis section. First, a use-case of a steel manufacturing plant is presented. Then, the 

development and validation of the DT simulation models are demonstrated. Afterwards, the 

optimization of the steel manufacturing plant was achieved using the following two methods: a steady 

OptQuest optimization, and a dynamic AI based optimization. The obtained results are documented in 

the following text.   
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4 Analysis  

4.1.  Use-Case: Steel Continuous Casting Process  

The Shougang Jingtang United Iron Steel Co. Ltd (SGJT) is one of China’s major steel producers, 

aggregating an annual output of 9.7 Mt of steel and 9.13 Mt of steel products. The company deploys 

large-scale equipment, including 5,500 cubic meters burning furnaces, in conjunction with 300t 

capacity steel converters. The steel manufacturing plant is located on the coast of Tangshan China, 

where a main seaport is situated within its vicinity (Shougang, 2022).  

A study was conducted by Shuai Deng et al. (2018) apropos the production logistics of SGJT, 

examining the equipment efficiency under different production modes of the converters. The current 

steel production relies on three types of smelting processes: the dephosphorization converter (DeP), 

the decarburization converter (DeC), and the duplex process (DeP + DeC).  In their paper, Shuai Deng 

et al propose an optimized solution based on adjusting the ratio from 33% to 100% employment of the 

duplex (DeP + DeC) converter process. The authors compared their simulation results against 

production statistics from collected field data pertaining to the SGJT steel manufacturing plant. 

Shuai Deng et al. (2018) used the Tecnomatix Plant Simulation software, developed by Siemens, to 

create discrete-event modeling using object-oriented programming. A single steel ladle was defined as 

the base unit for the simulated process, and the ladle turnover control logic was implemented using 

SimTalk language.  

 

Figure 4: Shougang Jingtang United Iron Steel Co. Ltd Facility, Tangshan China 
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4.1.1 Steel Manufacturing Process & Equipment  

The production of crude steel consists of three main steps: 1-The Converter Process, 2-The Secondary 

Refining Process, and 3-The Continuous Casting Process. Depending on the steel application and steel 

grade, each method entails different process specifications for smelting, refining and casting. The plant 

contains two DeP converters and three DeC converters, each of which has a 300t capacity. In secondary 

refining, the plant deploys one LF (Ladle Furnace), two RH (Ruhr Stahl-Heraeus) refining furnaces, 

and one CAS (Composition Adjustment by Sealed Argon) refining furnace. Subsequently, continuous 

casting of steel ladles is carried out over four CCMs (Continuous Casting Machines). Table 1 

summarizes the list of equipment used by SGJT. (Deng et al, 2018)  

Table 1: A List of Equipments in the Steel Manufacturing Plant 

 

4.1.2 Steel Production Methods  

SGJT produces both low-carbon steel and ultra-low-carbon steel, with a proportion of 85% and 15% 

respectively. Each ladle is assigned a process path based on the required steel properties, which depend 

on customer orders. Process paths 1-12 produce low-carbon steel, while paths 13 and 14 produce ultra-

low carbon steel. Table 2 presents the field data pertaining to SGJT’s production orders. Table 3 

presents information regarding each process path and its respective frequency of production. Within 

the 14 process methods, there are 6 methods that involve the duplex converting process. Particularly 

high-end steel entails duplex smelting, while the majority of steel undergoes a conventional smelting 

routine. (Deng et al, 2018)  

Table 2: Historical Data on Production Orders. 

 

Name Type Discription Capacity Count

KR Reactor Kanbara Reactor Hot Metal Desulfurization - 4

DeC Converter Dephosphorization Smelting Process 300t 2

DeP Converter Decarburisation Smelting Porcess 300t 3

RH Refining Ruhrstahl-Heraeus - Secondary Metalurgical Refining Process 300t 2

LF Refining Ladle Furnace - Secondary Metalurgical Refining Process 300t 1

CAS Refining 

Composition Adjustment by Sealed Argon - Secondary Metalurgical 

Refining Process 300t 1

CCM Contious Casting Steel Solidification by Continous Casting - 4

List of Equipments 

Ratio

Low-Carbon 85%

Ultra Low-Carbon 15%

Steel Order

Steel Grade
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Table 3: Descriptions of Each Process Method and their Frequency Distribution. 

 

4.1.3 Processing Time & Inter-Process Conveying Time 

The field statistics pertaining to the SGJT plant provide the processing times of each equipment.  The 

processing time is normally distributed, and the maximum, minimum, mean, and standard deviation 

values are shown in Table 4, Table 5 and Table 6 . The reported statistics regarding the CCM 

equipment make a distinction between CCM 1&2 and CCM 3&4. For the purpose of simplifying the 

model, a cumulative average was calculated as presented in Table 5. (Deng et al, 2018) 

Table 4: Historical Statistical Data on the Converting Process 

 

Table 5: Historical Statistical Data on the Continuous Casting Process 

 

* The cumulative average is calculated from the reported statistics of CC1,CC2  and CC3,CC4. 

1 Low- C DeP–DeC–RH–CC 1466 11.69%

2 Low- C DeP–DeC–LF–CC 214 1.71%

3 Low- C DeP–DeC–CAS–CC 182 1.45%

4 Low- C DeP–RH–CC 936 7.46%

5 Low- C DeP–LF–CC 740 5.90%

6 Low- C DeP–CAS–CC 1007 8.03%

7 Low- C DeC–RH–CC 3051 24.33%

8 Low- C DeC–LF–CC 836 6.67%

9 Low- C DeC–CAS–CC 1393 11.11%

10 Low- C DeP–DeC–LF–RH-CC 485 3.87%

11 Low- C DeP–LF–RH-CC 94 0.75%

12 Low- C DeC–LF–RH-CC 307 2.45%

13 Ulow-C DeP–DeC–RH–CC 1784 14.23%

14 Ulow-C DeP–DeC–LF–RH-CC 44 0.35%

Frequency  % Method Process Flow # Furnaces  Steel Grade

Methods Grade

Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv.

4, 5, 6, 11 Low-C 46.43 33.05 38.35 3.14 - - - -

7, 8, 9, 12 Low-C - - - - 45.32 30.17 35.54 2.84

Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv.

1, 2, 3, 10 Low-C 30.80 17.17 22.45 3.13 37.93 27.03 30.94 2.26

13, 14 Ulow-C 30.80 17.17 22.45 3.13 37.93 27.03 30.94 2.26

DeP DeC

Duplex - DeP

Converter Process

Duplex - DeC

Methods Grade

Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv.

1 - 12 Low-C 52.00 39.00 43.76 3.31 66.00 39.00 46.62 5.78 66.00 39.00 45.19 4.55

13, 14 Ulow-C 52.00 39.00 43.76 3.31 66.00 39.00 46.62 5.78 66.00 39.00 45.19 4.55

CC3, CC4 Average All CCMs *

Continuous Casting Process

CC1, CC2
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Table 6: Historical Statistical Data on the Secondary Refining Process 

 

In addition to the equipment processing times, the field statistics also report the conveying time of 

ladles from one equipment to another. The conveying time is directly related to the plant layout and 

path distances between the equipment. However, no information was provided on the adopted 

transportation mechanism (cranes, forklifts, conveyor-belts or transport-carts). Table 7 presents the 

total waiting and transporting times between the equipment in the SGJT plant. (Deng et al, 2018) 

Table 7: Historical Statistical Data on Inter-Process Conveying Times 

 

4.1.4 Continuous Casting Process  

The continuous flow of molten steel is of high importance in the continuous casting process. In a 

typical casting process, molten steel flows out from the ladle, through a tundish, then into the mold, 

where the tundish provides continuous flow when the ladles are being exchanged. In the plant 

simulation developed by Deng et al. (2018), 8 ladles are continuously casted together. For this research, 

a similar approach will be adopted when simulating the process. The SGJT steel plant outputs 572 

ladles/week. Additional field statistics on production logistics and equipment utilization rate will be 

reported in the subsequent sections.  

 

Methods Grade

Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv. Max (min) Min (min) Mean Stdv.

2, 5, 8 Low-C 65.23 35.40 48.71 6.78 - - - - - - - -

1, 4, 7 Low-C - - - - 34.00 20.00 24.96 2.93 - - - -

13 Ulow-C - - - - 43.00 25.00 32.50 4.58 - - - -

3, 6, 9 Low-C - - - - - - - - 47.67 23.92 32.34 5.12

10, 11, 12 Low-C 65.23 35.40 48.71 6.78 34.00 20.00 24.96 2.93 - - - -

14 Ulow-C 65.23 35.40 48.71 6.78 43.00 25.00 32.50 4.58 - - - -

Secondary Refining

RH LF CAS

DeP 1 DeP 2 DeC 1 DeC 2 DeC 3 RH 1 RH 2 LF CAS CCM 1 CCM 2 CCM 3 CCM 4

DeP 1 - - 22.0 22.3 23.3 - - 22.6 - - - - -

DeP 2 - - 18.9 20.7 25.7 10.4 11.0 16.1 13.3 - - - -

DeC 1 - - - - - 7.4 7.7 8.6 9.0 - - - -

DeC 2 - - - - - 9.1 8.3 9.6 10.0 - - - -

DeC 3 - - - - - 8.6 7.0 9.2 7.9 - - - -

RH 1 - - - - - - - - - 9.1 9.4 10.8 11.8

RH 2 - - - - - - - - - 12.2 10.8 8.0 7.7

LF - - - - - 10.3 13.2 - - 6.0 7.7 9.0 9.9

CAS - - - - - - - - - 9.1 10.2 6.1 7.3

Conveying Time (min)
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The following section is dedicated to the development of a Baseline Steel Plant Model. 

4.2.  Modeling Software 

Process simulation relies on software tools that can describe physical, chemical, biological or 

operational relationships between interacting units. Discrete-event simulation (DES) is a prevalent 

method used in modeling production and logistics systems. A discrete-event model depends on 

asynchronous discrete incidents which control the advancement of entities in a queue system or in state 

charts. Hence, DES is a suitable modeling approach for the above-mentioned steel manufacturing 

process. (Cassandras and Lafortune, 2010)  

Although many simulation programs are commercially available, particular ones provide added 

programming flexibility, real-time connections, and API modeling.  Additionally, AI and ML 

techniques deliver an outstanding advantage in Smart-Manufacturing and Digital Twin models.  

AnyLogic:  The AnyLogic software was identified for its convenience in multi-method modeling, 

ease-of-use, and programming flexibility. AnyLogic simulation combines three modeling approaches: 

Dynamic Systems, Agent-Based, and DES modeling. The tool also provides 2D and 3D graphics for 

animated simulations, open API programming and ML/RL. (AnyLogic, n.d.) 

MATLAB Simulink:  Simulink is a general-purpose modeling tool that integrates MATLAB 

algorithms and programming flexibility. In particular, SimEvents is a component library that provides 

DES modeling and combines time-based simulation with discrete-event systems. (MathWorks, n.d.) 

Table 8 lists several software applications, both commercial and openly sourced, that are commonly 

used for process modeling and manufacturing plant simulations.  

Table 8 : Steel Plant Baseline Model Validation with Respect to the Actual Plant Statistical Data 

 

Software Availability Modeling Capabilities Animation 

AnyLogic  by The AnyLogic Company Commercial DES, agent-based,  system dynamics 2D, 3D 

Simulink MATLAB  by MathWorks Commercial DES,  multi-domain, dynamic systems 2D 

FlexSim  by FlexSim Soft. Products, Inc. Commercial DES 2D, 3D

Arena  by Rockwell Automation Commercial DES 2D, 3D

Plant Simulation  by Siemens PLM Commercial DES 2D, 3D

SimPy  (python) Open Source DES -

Sim.JS  (JavaScript) Open Source DES -
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4.3.  Baseline Steel Plant Model  

A baseline model refers to a well-determined / current state of the process. The baseline serves as a 

benchmark point against which performance improvements are measured. The most important 

characteristic in a baseline model is the capability of reproducing empirical observations that match 

the actual system. Performing tests on the real system serves to calibrate the prediction accuracy of the 

baseline mode, validating the system for analytical use, and further re-engineering and re-design.  

Two baseline models were created in parallel, using the AnyLogic software and MATLAB Simulink. 

Both models were created using an identical modeling approach and a uniform database corresponding 

to the steel manufacturing plant. The duplication of two models aims to eliminate bias and reduce 

uncertainty with respect to the used software tool. In case one model falls short in reproducing 

verifiable results, the second model serves as a fallback option to continue with this research project.  

Firstly, the AnyLogic simulation is presented. An interactive user-interface is designed for dynamic 

visualization and convenient navigation. The created model consists of three viewing areas: the 

Parameters view, the Process view and the Control Panel view.  

4.3.1 Parameters View (AnyLogic) 

The Parameters View is displayed upon start-up of the simulation. It allows the user to adjust the 

production parameters and displays the input constraints of the steel manufacturing process. The 

Parameter View is presented in Figure 5. This research narrows on a particular subset of critical 

production parameters, only those are enabled for manual adjustment by the user.  

The following list provides a detailed description of these parameters.  

● Incoming Rate: The incoming flow rate of steel ladles where the arrival rate is defined by a 

time interval (in minutes) between ladle creation.  

● Low Carbon Steel: The percentage value of low carbon steel orders with respect to the 

cumulative total of steel orders.  

● Ultra-Low Carbon Steel: A percentage value representing the orders of ultra-low carbon steel 

with respect to the cumulative total of steel orders.   
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Figure 5:Parameter View - Steel Plant Simulation in AnyLogic 

4.3.2 Process View (AnyLogic) 

The Process View displays the processes implemented in the steel manufacturing plant. This view is 

accessed using the navigation button at the top right corner.  The different processes are grouped in 

designated areas, as shown in Figure 6. Each type of equipment is modeled using a ‘resource pool’ 

block with a defined capacity representing the number of available machines.  The processing of each 

equipment is modeled using a ‘service block’ with a delay function (normally distributed delay 

function, as explained previously). When a ladle enters the process, a machine equipment is acquired, 

then released upon completion of the process. During the continuous casting process, 8 ladles are 

batched, then simultaneously casted. Before casting, the ladles are split-up by steel grade. Lastly, inter-

process transportation is modeled using a ‘delay’ block.  

4.3.3 Output Statistics (AnyLogic) 

The Control Panel View is shown in Figure 7. This view displays the collected statistics on steel ladles 

and machine equipment. The top left section displays the Ladle Statistics, consisting of results on lead 

time, idle time, processing time, and transporting time. The bottom section is dedicated to Equipment 

Statistics, which displays the equipment utilization rates per machine type. In the bottom left-corner, 

the simulation weekly statistics are summarized for added user-functionality.  
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Figure 6: Process View - Steel Plant Simulation in AnyLogic 

 

 

Figure 7: Control Panel View - Steel Plant Simulation in AnyLogic 
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Figure 8: Graphical Interphase - Steel Plant Simulation in AnyLogic 

The Simulink baseline model is presented in the following paragraphs.  

4.3.4 Process Overview (Simulink) 

In Simulink, the SimEvent library was used to model the steel production process. Here, the different 

processes were similarly grouped in designated areas, as shown in Figure 9. The source of steel ladles 

modeled using an ‘Entity Generator’ block, and the ladle incoming rate is defined by the user. Each 

generated entity (ladle) contains attached attributes that define an assigned method and a corresponding 

process path, as shown in Figure 10.  

Similar to the methodology implemented in AnyLogic, the steel ladles are collected in batches of 8 

units before passing to the conscious casting machine. A splitting port (OutPort 5) is used to separate 

the low steel and ultra-low steel ladles before casting.  Finally, ladles exit the plant into a sink block.  
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Figure 9: Process Overview - Steel Plant Simulink Diagram 

  

Figure 10: Entity Generator Block Properties - Steel Plant Simulink Diagram 

Each equipment type was modeled in a subsystem, as shown in Figure 11. The ‘Resource Pool’ block 

is used for equipment acquisition / release. The ‘Entity Server’ block is used to simulate the processing 

of each ladle, where the ladle method controls the processing time consumed by this block.  The ‘Time 

Delay’ block is used to model inter-process conveying.  
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Figure 11: DeP Process - Steel Plant Simulink Diagram (Subsystem) 

4.3.5 Output Statistics (Simulink) 

The output results of the Simulink model are graphically represented in Figure 12. A MATLAB code 

was programmed to set-up production parameters and run the simulation. The code generates summary 

plots describing the utilization statistics of each equipment type. Figure 12 presents the simulation 

results of the Simulink baseline model over a one-week period.  

 

Figure 12: Equipment Utilization Rates - Steel Plant Simulink Model 
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4.4.  Baseline Model Validation 

In Digital Twin applications, historical data is crucial for validating the accuracy and reliability of the 

virtual simulation. Conveniently, the SGJT steel plant presents an extensive amount of field statistics, 

making it a suitable case-study that can be tested and validated. The historical data from the SGJT 

plant was adopted for a baseline simulation model. Two baseline models were built, using AnyLogic 

and Simulink. The results obtained from the baseline models are compared against the collected field 

statistics on equipment utilization, production rates, and steel grade ratios.  

Statistical variability is an intrinsic property of both baseline simulations due to the variability in model 

inputs. Hence, an average of 5 simulation runs was considered a more sensible result. The average 

values for equipment utilization rates, production output rates, and steel grade ratios are summarized 

in Table 9. [ consult Appendix II – Baseline Simulation Data Results]  SGJT’s field statistics include 

the utilization rates for each individual unit. However, in the simulations, each equipment is modeled 

as a resource pool, therefore, the statistics represent the average utilization rate per equipment type. 

For this reason, only the average utilization rates per equipment type are compared herein.  

The obtained results from AnyLogic and Simulink are nearly identical, determining that both software 

tools have congruent design methodologies. Moreover, both simulation results are consistent with the 

actual field statistics of the plant and the error falls within an acceptable range [ < ± 5 % ].  A better 

prediction accuracy can possibly be achieved through additional refining of the model, however, for 

the purpose of this research project, the model’s accuracy is satisfactory.   

Table 9: Steel Plant Baseline Model Validation with Respect to the Actual Plant Statistical Data. 

 

Plant Statistics AnyLogic Simulation * % Error MATLAB Simulation * % Error 

Ladle Output Rate (min/Ladle) 17.04 17.81 4 % 17.71 4 %

DeP_D 0.48 - -

DeP_E 0.55 - -

DeP Avg. 0.51 0.46 -5 % 0.47 -5 %

DeC_A 0.53 - -

DeC_B 0.54 - -

DeC_C 0.51 - -

DeC Avg. 0.53 0.52 -1 % 0.52 -1 %

LF no data 0.59 0.59

RH no data 0.52 0.52

CAS no data 0.40 0.41

CCM Avg. 0.64 0.64 0 % 0.64 0 %

Low Carbon 85.00% 84.85% 0 % 85% 0 %

Ultra-Low Carbon 15.00% 15.15% 0 % 15% 0 %
Steel Grade 

Equipment Utilization Rate 

Baseline Model Validation 
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4.5.  Sensitivity Analysis  

 A sensitivity analysis determines the impact of uncertainties of one or more input variables, and their 

impact on the overall uncertainty of the model. In other words, it is a study that investigates the model’s 

response to changes in an input variable. This is an essential part of process modeling which identifies 

priority parameters that have the highest influence on the system outputs.  

Apropos the adopted use case of the SGJT steel manufacturing plant, key performance indicators 

(KPIs) ought to be deliberately decided beforehand. KPI’s are subjective measures that aim to 

quantitatively and qualitatively assess the performance of the process. These KPI’s are contingent on 

the company's goals, the type of industry, and their customer needs. Different manufacturing processes 

may have distinctly unique KPIs to measure performance attributes.  

In this research, the focus will be on four quantifiable KPIs that correspond to steel manufacturing. 

These KPIs reflect the objectives of a steel manufacturing process, which aim to increase revenue and 

cut back on energy losses, without compromising overall costs.  Therefore, the four selected KPIs, 

pertinent to steel manufacturing and continuous casting, are the following:  

● KPI #1- Lead Time: This is a measure of the cumulative time that a steel ladle spends in the 

process before exiting the manufacturing line. This measure reflects the energy, time and 

manpower required to produce the ladle. Lower expenditures are achieved by reducing the 

average lead time per ladle within the manufacturing process.   

● KPI #2 Time Lost: This is a measure of the cumulative time that a ladle wastes in ‘idle’ state, 

that is, without having value added. This measure reflects the energy losses of the system as 

ladles dissipate heat and require energy to be heated again. An efficient process aims to reduce 

the average time lost per ladle. 

● KPI #3-Productivity Rate: The productivity rate of a ladle is the ratio of processing time to 

total lead time. This is another measure that reflects the efficiency of the process. A higher 

productivity rate means that less time is lost per ladle.  

● KPI #4 Utilization Rate: The utilization rate is a measure of how much time each equipment 

is being ‘in-use’ versus being ‘idle’. A higher utilization rate usually reflects a higher revenue 

and a higher return on investment. Furthermore, higher utilization means that less energy is 

consumed to reheat the equipment. Usually, a higher utilization rate is a desired objective 

within a manufacturing process.  
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A sensitivity study is carried out on the baseline model built in AnyLogic. The sensitivity analysis 

investigates the relationship between the critical production parameters (the ladle incoming rate and 

steel order ratio) and the KPIs mentioned above. The analysis consists of varying one parameter input, 

while keeping all other parameters at a constant state, and observing the change in the simulation 

output results.  

4.5.1 KPIs Sensitivity to Ladle Incoming Rate  

First, the ladle incoming rate is studied. A sensitivity experiment is carried out, by varying the 

incoming rate (time between incoming ladles) from 8 minutes to 20 minutes, with a step of 25 seconds. 

The steel grade ratio is kept constant at 85% low carbon steel and 15 % percent ultra-low carbon steel. 

The simulation results are shown in Figure 13. The KPIs, LeadTime, TimeLost, Productivity and 

Utilization are measured in response to the varying incoming rate. The sensitivity analysis indicates 

that some KPIs present conflicting trends, such that a slower incoming rate (increased time interval) 

leads to better ladle productivity, yet decreased utilization rates. The optimal range of ladle incoming 

rate is highlighted on the graphs as shown in the Figure 13.  

    

a) KPIs #1&2 : Lead Time and Time Lost ( Ladle)  b) KPI #3 : Productivity Rate (Ladle) 

 

b) KPI #4 : Utilization Rate 

Figure 13: Baseline Model KPI Sensitivity to the Incoming Rate Parameter 
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4.5.2 KPI Sensitivity to Steel Order Ratio 

Subsequently, the sensitivity of the steel order ratio is investigated. Another sensitivity experiment was 

built in AnyLogic, where the varying parameter was the low carbon steel percentage. The ratio was 

varied between 50% and 100% of low carbon steel, while the ultra-low counterpart was adjusted 

accordingly. The incoming rate was fixed at a constant value of 17 min between incoming ladles. The 

results of the experiment are presented in Figure 14. Only the ladle Productivity is sensitive to the steel 

grade ratio, as a higher proportion of low carbon steel indicates a better productivity rate. However, 

the other KPI measures were not significantly impacted by the variation in steel grade ratio.  

    

a) KPIs #1&2 : Lead Time and Time Lost ( Ladle)  b) KPI #3 : Productivity Rate (Ladle) 

 

b) KPI #4 : Utilization Rate( Equipment )  

 
Figure 14: Baseline Model KPI Sensitivity to the Steel Order Ratio 

  

 

The results obtained in the sensitivity analysis show that the incoming rate parameter has more impact 

on the performance of the steel plant. Therefore, the incoming rate between ladle creation has a higher 

potential for effectively optimizing the process. In contrast, the steel grade parameter only impacts the 

productivity output.  Therefore, the control of steel grade ratio will not be highly beneficial for this 
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process.  Also, the steel grade ratio is an external constraint that is imposed by customer orders. For 

this reason, this project will only focus on optimizing the incoming rate parameter to achieve an 

improved performance of the manufacturing plant. 

In the following section, the ladle incoming rate will be considered the control variable. Further 

analysis will be carried out with respect to this production parameter, in aims of achieving better 

performance with respect to the baseline model.  

4.6. Steel Plant Optimization 

In the past, manufacturing plant optimization relied on industrial experts and conducting experiments 

on the physical process. These optimization methods are economically burdensome and unreliable for 

dynamic systems.  Alternatively, optimal process control is a cost-effective solution that requires little 

investment and can potentially achieve better optimization of the manufacturing plant.  

In this section, the DT simulation of the steel manufacturing plant is used for implementing an optimal 

process control system. Two optimization methods are compared: a steady-state optimization of a 

process variable, and a dynamic optimal process control using an AI state observer. The advantage of 

the DT simulation is providing a limitless testing environment for various scenarios of the production 

system. The DT simulation of the manufacturing plant allows for the evaluation of these optimization 

methods. The simulation provides extensive data on the measured performance of the system and the 

KPIs pertinent to steel production.  

Process optimization is a discipline that quantitively searches for the optimal solution for a process 

model. Various optimization methods are presently used, depending on the system constrains and the 

nature of the problem. For example, linear programming is a deterministic algorithm that solves an 

optimization problem by solving a linear objective function. Where as, other stochastic algorithms are 

more suited for unconstrained and nonlinear process models (Fikar and Kostur, 2012).  

Furthermore, an optimization model adheres to the following basic classifications: constrained vs 

unconstrained, linear vs non-linear, and single-objective vs multi-objective. The presented steel 

manufacturing plant exhibits non-linear characteristics with indeterministic outputs. Although an 

objective function depends on the company’s goals, a multi-objective function is used to optimize the 

plant. 



AI Based State Observer for Optimal Process Control: Application to Digital Twin Design of Manufacturing Plants   

 

27 

 

A stochastic optimization engine is provided in the AnyLogic software, called the OptQuest Engine.  

OptQuest Optimization Engine:  OptTek is specialized in providing optimization solutions for 

complex systems. One of their leading products is the OptQuest Engine, which is dedicated for 

optimization in simulation environments. The algorithm implements a sophisticated, stochastic 

searching technique based on evolutionary methods. It is highly efficient for complex problems 

involving elements of uncertainty (OptTek, 2022).  

4.6.1 Multi-Objective Function 

The objectives of a steel manufacturing process are maximizing efficiency and productivity, while 

minimizing energy costs. A multi-objective function considers these conflicting objectives 

(representing the steel plant KPIs). Certainly, a multi-objective function is subjective to the company’s 

goals. Depending on the industry, the company and the external economic factors that are imposed, 

the multi-objective function reflects priorities that are unique to the organization.  

The KPIs presented for this steel manufacturing plant are inter-dependent. It is imminent that the 

Productivity of ladles is dependent on the attained lead times and processing times. It is not simple to 

define an objective function that relates these dependencies, without consulting the actual company. 

In fact, this research does not focus on the multi-objective function, perse, but focuses on implementing 

a methodology using a multi-objective function for optimal control of the system. Considering the 

simulation results obtained in the sensitivity analysis, a relationship was deduced relating the KPI 

outputs. Using the obtained data, the measured outputs are fitted in three forms of equations: a linear 

model, a weighted linear model, and a nonlinear model.   

Normalization: The KPIs (Lead Time, Time Lost, Productivity, and Utilization) are on different 

scales. Normalizing these variables is necessary to have a uniform scale that varies from 0-1. The 

scaling is performed using the minimum-maximum scaling formula, as described in Eq. 1, where  𝑥𝑖
′ 

is the scaled data variable.  

𝑥𝑖
′ =  

𝑥𝑖 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
        Eq.  1 

KPI Sampling Frequency: The statistics collected on ladles and equipment can be sampled on a 

weekly basis, as shown in the sensitivity analysis, or they can be sampled at a higher frequency rate. 

Given that the average processing time of ladles is around 5 hours, it is sensible to collect KPIs at a 
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sampling rate that captures this dynamic system. Therefore, a sampling rate ¼ day (6 hours) was used 

to collect the KPI statistics reflecting the dynamic response of the system to changes in the plant. On 

the other hand, a the one-week sampling rate represents the steady-state response of the process.   

The first equation is a linear model that relates the normalized KPIs in equal proportions. KPIs 3 and 

4, referring to the Utilization and Productivity rates, respectively, are in positive correlation of the 

objective output. Whereas KPIs 1 and 2, referring to the Lead Time and Time Lost, respectively, are 

in a negative correlation with respect to the function output. Therefore, maximizing the objective 

output reflects higher Utilization and Productivity, and lower Lead Time and Time Lost. The linear 

multi-objective function is presented in Eq.2.   

𝐿𝑖𝑛𝑒𝑎𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐾𝑃𝐼′4  +  𝐾𝑃𝐼′3    −  𝐾𝑃𝐼′1   −  𝐾𝑃𝐼′2                            Eq.  2   

 

a) Weekly Sampling Rate - Steady-State Response   

 

  b)     ¼ Day Sampling rate - Dynamic Response 

Figure 15: Fitting of A Linear Multi-Objective Function 
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Figure 15 presents the fitting of the simulation data using Eq.2. Subplot a) presents fitting of data 

sampled after one week of plant up-time. Subplot b) present the fitting of data sampled every ¼ day. 

Evidently, b) portrays a higher scatter reflecting the dynamic response of the system. While the data 

in a) is closely fitted, representing the steady-state response of the system. A polynomial fitting of the 

data is performed to compare the models. The polynomial fitting yields better a coefficient of 

determination (R-squared) for the steady-state model in graph a).  

Alternatively, a weighted linear multi-objective function can be used to model the KPIs, as expressed 

in Eq. 3. In this model, the equation variables are multiplied by weights, such that higher priority is 

given to KPI 3, reflecting a higher priority for increased ladle Productivity. The weighted linear model 

slightly reduced the scatter of the data, resulting in improved R-squared values, as shown in Figure 16.  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 0.5 ⋅ 𝐾𝑃𝐼′4 +  0.75 ⋅ 𝐾𝑃𝐼′3 − 0.5 ⋅ 𝐾𝑃𝐼′1 − 0.5 ⋅ 𝐾𝑃𝐼′2              Eq.  3 

  

a) Weekly Sampling Rate - Steady-State Response   

 

b) ¼ Day Sampling rate - Dynamic Response 

Figure 16: Fitting of Linear-Weighted Multi-Objective Function 
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Lastly, a nonlinear model is used as multi-objective function relating the KPIs for an optimal output.  

The nonlinear multi-objective function is expressed in Eq. 4.  

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 0.5(𝐾𝑃𝐼′4)1/2 +  0.75(𝐾𝑃𝐼′3)1/2 − 0.5(𝐾𝑃𝐼′1)1/2 − 0.5(𝐾𝑃𝐼′2)1/2     Eq.  4 

Figure 17 presents the data fitting applied to the nonlinear model. Compared with the previously 

presented linear models, the nonlinear multi-objective function yields the best results in terms of 

reduced scatter and R-squared values obtained for the polynomial fitting of the data.  

 

a) Weekly Sampling Rate - Steady-State Response  

 

b) ¼ Day Sampling rate - Dynamic Response 

Figure 17: Fitting of A Nonlinear-Weighted Multi-Objective Function    

In summary, the optimization function can be adjusted depending on the desired objectives of the 

process. It is a subjective evaluation that models the relationship of a system’s outputs with respect to 

its performance. Based on the analysis presented above, it can be presumed that the non-linear model 



AI Based State Observer for Optimal Process Control: Application to Digital Twin Design of Manufacturing Plants   

 

31 

 

is the most appropriate for this steel manufacturing process. The non-linear model produces the best 

fitting of the data and reduces scatter.  

4.6.2 OptQuest Optimization 

As previously stated, the OptQuest Engine provides a robust search based on stochastic and 

metaheuristic techniques. OptQuest is integrated in AnyLogic and can control simulation runs as well 

as manipulate input parameters. The algorithm implements a smart search for a continuous or discrete 

variables. After every iteration, the objective function is used to evaluate the fitness of the solution. 

The objective of the experiment is to maximize the multi-objective function, as explained in the 

previous section. The program code tracks the BestObjective value, the BestIteration, and the 

BestSolution of the experiment. The BestSolution refers to the optimal incoming rate parameter, while 

the BestObjective refers to the output of the defined optimization function. The experiment was 

programmed using Java script [consult Appendix I – Optimization Code (OptQuest)]. The maximum 

number of iterations was set to 150 simulations. Figure 18 presents the user-interface of the OptQuest 

Optimization experiment. 

 

Figure 18: Steel Plant KPI with respect to each replication run. 

The OptQuest algorithm is attempted for the optimization of the incoming rate parameter. In Figure 

19, the output results of one experiment are presented. The Objective value is plotted against the 

iteration runs, indicating the stochastic search property of this algorithm. The BestObjective was 

encountered after 45 iteration runs, for which a multi-objective value of 0.585 was obtained.  
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Figure 19: OptQuest Optimization Performance 

Evidently, the stochastic nature of the algorithm does not yield a nondeterministic solution. Different 

optimization experiments produce unique solutions.  This can be seen in Figure 20 showing the output 

variability between three OptQuest experiments. The optimal solutions for the incoming rate were 

12.12, 12.38, and 11.52 min. The average value of the optimal solution is 12.08 min, which is 

consistent with the results of the sensitivity analysis previously performed on the baseline model.  

 

Figure 20: Stochastic Nature of the OptQuest Optimization Algorithm 

To conclude, the OptQuest algorithm offers an efficient optimization tool applicable to plant 

simulations. This optimization method provides a steady-state optimal variable that can potentially 

improve the performance of the process. The results obtained for this process improvement method 

are presented later in the Results Section.   

In the following section, an AI based process control is implemented.  
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4.7.  AI Optimization Control  

AI Optimization Control is based on the Model Predictive Control (MPC) concept which is reputable 

for high performance and minimal intervention from human controllers. In MPC applications, the 

control problem emanates from optimizing system dynamics subject to high uncertainties in real-time 

processes. In contrast with deterministic systems, the control of uncertain systems requires a feedback 

signal which was historically challenging to implement in large-scale plants (Morari, Garcia, and Prett, 

1998).  Yet, technological advancements have made great strides in developing communication 

networks and IoT sensors in the manufacturing industry. Therefore, the future of manufacturing can 

effectively rely on adapted MPC methods to control complex processes.  

MPC is commonly applied to process plants with slow control, due to the high computational cost 

required for solving the optimization problem. In more recent years, embedded MPC processors have 

integrated micro-controllers that can be applied to fast dynamic systems. Robust control using MPC 

has been a high-interest research topic, especially with regard to achieving sufficient stability against 

internal and external disturbances. Various MPC algorithms have been introduced in the literature for 

nondeterministic systems, such as tube based MPC, adaptive MPC and stochastic MPC, however, real 

applications of these algorithms are scarcely implemented. (Chalupa et al, 2013) 

In this research project, an optimization control algorithm was inspired from the MPC concept. In this 

control method, an AI predictor is trained to provide an early forecast of the process outputs. The 

predicted outputs provide an estimate on the current state of the plant, which are considered by the 

optimization control algorithm, essentially achieving a feedback loop to control the process. Figure 21 

presents a process control diagram representing the AI Optimization Control method.  

 

Figure 21: AI Optimization Control System  
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Figure 22: Conventional Manufacturing vs Digital Twin Manufacturing Concept for Automated Plant Control 

In large-scale production, significant cost saving, and process optimization can be achieved by means 

of automation. Specifically in relation to steel manufacturing, which involves a high volume of 

materials, energy consumption and process complexity, the industry is actively looking for sustainable 

ways to optimize energy and manage resources. The industry has a lot to gain from automated process 

control that can adapt quickly to volatile changes in internal and external constraints. A potential 

application for DTs in manufacturing is enabling automated control through the simulation 

environment. In Figure 22, the conventional manufacturing process control is compared against the 

Digital Twin concept for automated plant control. On the right side, the conventional process relies on 

manual updates for constraints and objectives, resulting in a slow rate of optimization for plans and 

schedules (daily, weekly or monthly basis). Comparatively, a Digital Twin plant allows for a dynamic 

update of constraints. Further, the latter can provide automated control using the innovative AI 

Optimization Controller, which is introduced in this research thesis.  

The following text is dedicated to explaining the AI Optimization Control methodology. First, the AI 

state observer (AI Predictor) is introduced. Then, the various NN models implemented in the AI state 

observer are compared. Finally, the AI Optimization Control algorithm is explained.  
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4.7.1 AI State Observer  

In control theory, the state-observer is a computer implementation that estimates the internal state of a 

system. Sometimes, systems have immeasurable states, for which a state observer is used to provide 

feedback at each control step. The knowledge of the current state of the system is crucial for closed-

loop process control, as it is utilized to optimize the future course of the plant. A popular state observer 

is based on the Kalman filter for stochastic systems. The Kalman filter infers the current state from 

previous observations and the initial state of the plant. However, the drawback of the Kalman filter is 

that convergence is inadequate in nonlinear systems (Chalupa et al, 2013). 

Artificial Intelligence (AI) and Machine Learning (ML) algorithms have been successfully 

implemented in forecasting applications for diverse industrial fields. Similar to a state observer in a 

control system, AI/ML models can serve to predict the state of an immeasurable system. Following 

this logic, and with enough training data, an AI predictor can be used to accurately represent the current 

state of a manufacturing plant. The AI model can be trained to forecast production KPIs, given 

knowledge about the manufacturing process from its previous and current states.  

The aim of this research project is to implement an AI state observer to control and optimize the steel 

manufacturing plant. The created baseline model represents a virtual replication of the process, which 

can be exploited for training data. Since the reliability of the mode is validated, the DT simulation can 

be effectively consulted to generate an infinite amount of data points to be used for AI training. In fact, 

it is mainly for this purpose that DTs of manufacturing plants are the most potentially groundbreaking 

technology for the manufacturing industry. The purpose of a DT model is to provide a reliable source 

of additional data relevant to the plant, which is otherwise very expensive to obtain through testing.   

Synthetic Data: As mentioned, the baseline model provides a reliable source of data pertaining to the 

steel manufacturing plant. Select parameters are identified, which can serve to represent the current 

state of the plant. The simulation model was adapted for additional data collection. First, the ladle 

parameters are presented in the following list:  

● Id: A sequential ID number referring to each ladle.  

● Method: [1-12] referring to the process path. 

● SteelWeight: The steel weight in a ladle is randomly sampled from a normal distribution.   

● Grade: [ 0 = Low Carbon Steel, 1 =Ultra-Low Carbon Steel]  

● Status: [0 = Processing, 1= Processing Completed]  
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Secondly, the predictor variables are collected at the time the ladle enters into the process:  

● Steel_Ratio: The ratio Low-Carbon/Ultra-Low Carbon steel that is currently being processed 

in the plant.  

● In_Process: The number of ladles currently being processed in the plant. 

● Incoming Rate: The average incoming rate of ladles with respect to the last 40 ladles that 

entered the process.  

● DeC_Queue: The current queue size of the DeC equipment.  

● DeP_Queue: The current queue size of the DeP equipment.  

● RH_Queue: The current queue size of the RH equipment.  

● LF_Queue: The current queue size of the LF equipment.  

● CAS_Queue: The current queue size of the CAS equipment.  

● Batch_Queue: The current size of the collected batch, depending on the steel grade.  

Finally, the output variables (KPIs) to be predicted, are collected when the ladle exits the process. 

Therefore, the data effectively collects information at the initial state of ladle creation, to be correlated 

with the KPI outputs at the final state of the process. In order to represent the dynamic state of the 

process, the KPIs were sampled at ¼ day rate (every 6 hours).  

All the ladle parameters, predictor variables and KPI outputs can be seen in Figure 23, presenting the 

graphical editor of the ladle agent in AnyLogic.   

 

Figure 23: AnyLogic Graphical Editor - Ladle Parameters and Variables 
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In order to create a synthetic database for training, the simulation model was operated at various 

incoming rates. Some outliers were introduced in the simulation in order to prevent over-fitting. The 

data was collected from simulating 635,040 minutes (equivalent to 63 weeks) of plant up-time. The 

dataset consists of 44,665 ladles each representing one data point.  

Correlation Analysis: Before training the AI Predictor model, a correlation analysis was performed 

to evaluate the relationship between the predictors and output variables (KPIs). The first is the Pearson 

correlation coefficient which evaluates the linear relationship between the variables.   The second is 

the Spearman correlation coefficient, which evaluates the nonlinear correlation between the variables. 

The results are summarized in Table 10 and Table 11 . Based on the results of the correlation analysis, 

the variables having insignificant linear and nonlinear correlations will be omitted in the AI training. 

This ensures that the trained model is not subject to random sporadic correlations. The variables with 

high correlation coefficients are highlighted in green, as shown in the tables below.  

Table 10: Correlation Analysis Results: Pearson Coefficient Matrix (Linear) 

 

 

The queue size of each machine equipment has the highest correlations with respect to the output 

variables (KPIs). On the other hand, the ‘id’ variable is randomly assigned, and the ‘steelWeight’ is 

randomly sampled from a normal distribution. Therefore, it is expected to see no correlation with 

respect to these variables. Consistent with the sensitivity analysis on steel order ratio, the ‘steel_ratio’ 

Predictors / Ouput Variables Time Lost Lead Time Productivity Utilization

id -0.069 -0.068 0.082 -0.031

method 0.056 0.058 -0.052 0.007

grade 0.076 0.078 -0.069 -0.006

steelWeight 0.006 0.006 -0.004 0.010

steel_ratio -0.042 -0.040 0.003 -0.050

inProcess 0.9234 0.9218 -0.8581 0.6454

incomingRate -0.3087 -0.3073 0.4198 -0.8744

DeC_queue 0.7062 0.7044 -0.5724 0.4384

DeP_queue 0.4981 0.4962 -0.4202 0.3533

RH_queue 0.4332 0.4321 -0.4739 0.4452

LF_queue 0.8027 0.8018 -0.7435 0.5314

CAS_queue 0.2403 0.2391 -0.2786 0.3613

CCM_queue 0.9258 0.9243 -0.8283 0.4513

batch_queue 0.003 0.003 -0.018 -0.005

 Pearson Coefficient Matrix
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variable also exhibits little correlation with respect to the outputs. To conclude, 10 predictor variables 

are selected, which are highlighted in green in Table 11.  

Table 11: Correlation Analysis Results: Spearman Coefficient Matrix (Nonlinear) 

 

 

4.7.2 Neural Network Models   

Neural Networks (NN) are prevalent in regression problems and can be applied to both supervised and 

unsupervised learning. The concept of NN is derived from the biological interactions of neuron cells. 

NN models are composed of interconnected nodes each with an associated weight and threshold value, 

adapting to flow of input data. There is a comprehensive list of NN model types designed to serve 

various problem-solving objectives. Researchers are actively testing and developing new NN models 

to solve complex problems.  

In this research project, three NN architectures are investigated. The first architecture is the Feed 

Forward Neural Network (FFN), also known as the multi-layer perceptron. The second architecture 

type is the Convolutional Neural Network (CNN). And the third architecture, which particularly 

implements a feedback loop, is called the Recurrent Neural Network (RNN).  

Feed Forward Neural Network (FFN): This architecture is the most conventional and simple to use. 

It consists of an input layer, a number of hidden-layers and a final output layer. The input layer takes 

Predictors / Ouput Variables Time Lost Lead Time Productivity Utilization

id -0.073 -0.071 0.082 -0.028

method 0.1312 0.1330 -0.065 0.008

grade 0.1904 0.1913 -0.093 -0.007

steelWeight 0.0029 0.0032 -0.003 0.010

steel_ratio 0.080 0.082 -0.083 -0.022

inProcess 0.6316 0.6307 -0.6599 0.8296

incomingRate -0.3622 -0.3614 0.4005 -0.8886

DeC_queue 0.4895 0.4883 -0.5136 0.5888

DeP_queue 0.4091 0.4081 -0.4227 0.4754

RH_queue 0.3696 0.3690 -0.3924 0.4753

LF_queue 0.5744 0.5775 -0.5882 0.6437

CAS_queue 0.1941 0.1925 -0.2098 0.3394

CCM_queue 0.7252 0.7229 -0.7524 0.5865

batch_queue 0.020 0.018 -0.032 -0.006

Spearman Coefficient Matrix
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multiple values (predictor variables) and the output layer produces multiple values (KPIs). A deeper 

network contains a higher number of hidden layers between the input and output layers. (IBM, Neural 

Networks) 

Convolutional Neural Network (CNN):  CNNS are widely used in image recognition and computer 

vision applications. CNNs implement matrix multiplications that are useful for feature extractions. A 

CNN architecture consists of a convolutional layer, a pooling layer, a fully connected layer, and finally 

an output layer similar to FFN models. More CNN layers translate to higher model complexity, which 

is useful for identifying more features. (IBM, Convolutional Neural Networks) 

The CNN architecture can be applied to extract information from the previous states, such as time 

series datasets. For this, the collected data from the steel plant simulation needs to be rearranged from 

an array of [44,665 x 10] to an array of [44,665 - L x  L  x 10], where L is the temporal lookback step.  

This is illustrated in Figure 24 below. Given the fact that an average of 30 ladles are usually present in 

the process, the temporal timestep L was selected to be 24. That means that for every output variable 

(KPI), the previous 24 incoming ladles are considered in the input.  

 

Figure 24: Rearranging The Dataset for a Temporal Representation 

 

Recurrent Neural Network (RNN): The RNN architecture is considered to be a more novel 

application of NNs. It is commonly used for speech recognition as well as ordinal temporal problems. 

Long Short-TermMemory (LSTM) are distinguishable networks, having a memory property that takes 

previous information into consideration. LSTMs were introduced by Sepp Hochreiter and Juergen 

Shmidhuber to solve the problem of the vanishing gradients pertinent to RNNs. LSTMs have three 
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gates in their hidden layers, the input gate, the output gate and the ‘forget’ gate. These gates control 

the flow of input data, as needed, in order to achieve better prediction models. (IBM, Recurrent Neural 

Networks) 

The implementation of LSTM networks for this project also entails the rearrangement of the dataset to 

consider a lookback time step. The arrangement of the data follows the same format as the one 

presented in Figure 24. The same temporal frame is implemented, where 24 previous ladles are 

considered for each output variable.   

Data Preprocessing:  AI algorithms are usually highly sensitive to the training data. Hence, it is 

essential to clean and preprocess the data before implementing it in the training process. Furthermore, 

the data needs to be normalized in order to obtain reasonable results. The normalization of this dataset 

was achieved by applying a minimum-maximum scaling, as previously presented in Eq_. This scaling 

method is only applicable to ordinal variables. A one-hot encoding algorithm was used to normalize 

the categorical variables.  

Moreover, the dataset was split into two separate sections, one used for training, while the other was 

used for validating the prediction model.  In addition to this, a separate smaller dataset was collected 

from the steel plant simulation, to be used for testing purposes.  

The three datasets are the following:  

1. Training Data = 33, 499 data points ( 75%  split ) 

2. Validation Data = 11,166 data points ( 25%  split ) 

3. Testing Data = 2, 087 data points (from a separate simulation) 

Training Parameters:  The parameters used in NN training algorithms are subject to tuning, 

depending on the problem. For this application the ‘relu’ activation function was used for all NN 

because of the regression nature of the predictions. The NN models were trained using 30 epochs and 

a batch size equal to 64. The loss function is based on the mean-squared error, which is evaluated for 

each iteration.  

NN Performance Evaluation Measures:  Regression evaluation metrics are assumed for comparing 

the performance of each NN model. These metrics include the Mean Absolute Error (MAE), the Root 

Mean Squared Error (RMSE), the R-squared adjusted parameter, and the Explained Variance. The R-
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squared adjusted metric evaluates how well the model is fitted to the data. It is not an accuracy score, 

yet it can indicate how well the variance is explained. The difference between R-squared and the 

Explained Variance is that the latter does not consider the mean absolute error of the data.  

The results of the NN model performances are summarized in Table 12.  The best performing models 

are highlighted in green.  

Table 12: Evaluation of Neural Network Model Performances 

 

The training of various NN models to predict KPI outputs of the steel plant was successful, by evidence 

of the results presented above. The MAE and RMSE values are below 0.05 and 0.07, respectively, 

indicating the good prediction accuracy of the models. The values of MAE and RMSE of both the 

validating and testing datasets are comparable. The R-squared value is around 0.89 which is 

considerably excellent for the validation set. This value drops to 0.58 for the testing set, considering 

that less data points are fitted, and less scatter is explained by the data. In summation, the presented 

NN prediction models perform very well overall, and the NN models do not exhibit over-fitting issues. 

Figure 25, Figure 26, and Figure 27 present the predicted versus actual KPI outputs for the FFN_model, 

the CNN_32 model, and the LSTM_8 model.  

It can be seen that the CNN and LSTM models predict a more stable output that is less affected by the 

high statistical variability of the process. As shown in Figure 25, the lead time and time lost averages 

collected over ¼ day (6 hours) are highly irregular. This is expected for most production lines. 

Contrarily, the measured utilization rates are less prone to this erratic behavior. Arguably, it is not 

Validation Test Validation Test Validation Test Validation Test 

1. FFN (n=0 linear) 44 307us/step 0.0464 0.0458 0.0662 0.0669 0.8718 0.5579 0.8767 0.5770

2. FFN_32 (n=1) 484 430us/step 0.0405 0.0435 0.0603 0.0640 0.8932 0.5986 0.8941 0.6058

3. FFN (n=7) 1,878 700us/step 0.0458 0.0475 0.0703 0.0688 0.8508 0.5418 0.8523 0.5519

 Convolutional  (CNN)

4. CNN_16 (n=1) 948 24 4ms/step 0.0393 0.0413 0.0596 0.0620 0.8951 0.5897 0.8954 0.5945

5. CNN_32 (n=1) 1,892 24 4ms/step 0.0391 0.0413 0.0597 0.0623 0.8949 0.5822 0.8962 0.5858

 Recurrent (RNN)

6. LSTM_8 (n=1) 644 24 7ms/step 0.0411 0.0420 0.0622 0.0643 0.8850 0.5581 0.8943 0.5809

7. LSTM_16 (n=1) 1,796 24 12ms/step 0.0424 0.0432 0.0639 0.0656 0.8780 0.5467 0.8932 0.5872

8. LSTM_4_4 (n=2) 1,188 24 13ms/step 0.0596 0.0575 0.0837 0.0814 0.7679 0.4611 0.8554 0.5581

 CNN_LSTM 

9. CNN_32_LSTM_4 (n=2) 964 24 7ms/step 0.0388 0.0408 0.0602 0.0629 0.8923 0.5683 0.8940 0.5849

 FeedForward Network (FFN)

Stepsize
MAE RMSE R2_adjusted Explained Variance

Neural Network Model Performance 

Computation    

Cost
ParametersNeural Network Model 
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important to follow these irregular peaks, and it is more important to closely follow the trend of the 

observed KPIs. Furthermore, the steady output of the AI perdition model will help in achieving a stable 

AI based control system in the next step of this project.  

 

Figure 25: Predicted vs. Actual KPIs Using the FFN_32 (n = 1) Model  

 

 

Figure 26: Predicted vs. Actual KPIs Using the CNN_32 (n = 1) Model  
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Figure 27: Predicted vs. Actual KPIs Using the LSTM_8 (n = 1) Model  

 

As previously mentioned, it is not highly important to predict the erratic nature of lead time and time 

lost KPIs, instead it is more important that the trend is accurately predicted. When comparing the NN 

models, the best performance is observed using the CCN architecture [ # 5 CNN_32]. This assessment 

was made based on the obtained results for MAE and RMSE scores. Furthermore, the CNN prediction 

model has the most closely fitted and stable output. Therefore, this was the model that was chosen to 

be implemented in the AI based state observer for the control system.   

4.7.3 Optimization Control Algorithm  

In control theory, a control algorithm governs the system inputs in order to manipulate the system 

towards the desired state. An ideal control algorithm provides a functional compromise between 

minimizing the response delay and overshoot, while achieving a fast steady-state response. In closed-

loop control, various mathematical models can be used to develop the relationship between the set-

point and measured feedback signal.  

For this AI based optimal controller, a control algorithm was developed. The algorithm is a simple 

application based on the gradient of the multi-objective function. The algorithm is comparable to the 

gradient descent optimization method, which essentially uses the gradient function to reach an optimal 

solution. The algorithm achieves optimal control by governing the required input change that will lead 

to maximizing the multi-objective value.  
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The control algorithm developed for this project consists of the following steps:  

Step 1:    Predict KPIs using the AI state observer.  

Step 2:    Calculate 𝛥𝐹 ,  the gradient of the multi-objective function.  

Step 3:    Calculate  𝛥𝑃, the gradient of the control parameter (incoming rate). 

Step 4:    Calculate the new parameter 𝑃𝑡+1  using Eq. 5.  

𝑃𝑡+1  =  𝑃𝑡  + 𝜂𝑎𝑑𝑎𝑝𝑡𝑒𝑑   ( 𝛥𝐹 ⋅  𝛥𝑃)               Eq.  5 

𝑖𝑓 𝑃𝑡  ≤ 10 ∶    𝑃𝑡+1  =  0.5 (10 − 𝑃𝑡 ) + 𝑃𝑡      

𝑖𝑓 𝑃𝑡  > 16 ∶    𝑃𝑡+1  =  0.5 (16 − 𝑃𝑡 ) + 𝑃𝑡      

Step 5:  Set the control parameter to the new 𝑃𝑡+1  .  

where   𝜂𝑎𝑑𝑎𝑝𝑡𝑒𝑑   is an adaptive learning rate 𝜂 that regulates the momentum of the applied change.  

𝜂𝑎𝑑𝑎𝑝𝑡𝑒𝑑  =   𝜂 ∗ [  0.57 / 𝑓(𝑦1, 𝑦2, . . . 𝑦𝑖) ]       Eq.  6 

𝑓(𝑦1, 𝑦2, . . . 𝑦𝑖) represents the obtained objective value using the predicted KPIs (𝑦1, 𝑦2, . . . 𝑦𝑖).  

 

 

Figure 28: Implementation of the Control Algorithm In AnyLogic. 
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In order to improve the convergence and stability of the control system, it was deemed necessary to 

impose limitation on the control parameter when outside the stability range. Therefore, soft constraints 

are imposed to limit the incoming rate parameter within with 10 and 16 min. The algorithm logic was 

programmed in an AnyLogic function, as shown in Figure 28. 

Evidently, the algorithm’s performance is highly sensitive to the tuning parameters, such as the 

learning rate ƞ. The sensitivity of the control parameters was analyzed and will be presented in the 

Results section.  

4.7.4 AI Optimization Simulation (AnyLogic) 

The AI Optimization control was integrated in the Anylogic Simulation of the steel manufacturing 

plant. A Python connector is integrated into the simulation, where the java-based environment can 

interact with python code using JSON data formatting. JSON data formatting is a data exchange tool 

that allows different programming languages to interact.  

In the Control Panel view, a visualization board is implemented which displays the KPI forecasting of 

Lead Time, Time Lost, ladle Productivity and equipment Utilization rates. The predicted KPIs are 

plotted (in red) when the ladle enters the process, while the actual KPI outputs are plotted (in blue) at 

a later time when the ladle exits the process.  

 

Figure 29: KPI Forecasting and AI Optimization Control Implemented in AnyLogic 



AI Based State Observer for Optimal Process Control: Application to Digital Twin Design of Manufacturing Plants   

 

46 

 

Figure 29 presents the implemented KPI forecasting plots in the Control Panel in the Anylogic 

simulation.  By consulting this visualization board, the human-controller can access the actual state of 

the plant in terms of measurable performance indicators. The controller can make better decisions 

regarding the manufacturing plant, having these forecasted measures ahead of time.  

Additionally, the AI Optimization Controller can be activated using the ON/OFF buttons to the right 

of the KPI Forecasting area. By activating the ON button, automatic control is implemented on the 

steel manufacturing plant. The optimization rate was initially set to 1 hour, with a first optimization 

instance occurring after 12 hours. The delay in first occurrence was necessary to ensure that the plant 

is operating in steady state before the initial optimization is implemented. Every 1 hour, the 

optimization function is triggered, and a new incoming rate is set, effectively steering the production 

process towards an optimal production.  

Now that system is successfully implemented, the AI Optimization Control is tested and compared 

against other optimization techniques. In the next section of this thesis report, the analytical results 

pertaining to this research are presented.  

 

Figure 30: AI Optimization Control Interface 
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5 Results 

The results obtained in this project are presented in this section. First, OptQuest and the AI 

Optimization Control methods are compared against the baseline model performance. The results of 

these optimization techniques are benchmarked against the previously published results by Deng et al. 

(2018). Second, an evaluation of the AI Optimization Control method is discussed. This evaluation 

investigates the potential parameter-tuning of the AI based control system for a real production 

environment. 

5.1.  Plant Optimization Results  

The performance of the steel manufacturing plant is evaluated using the Key Performance Indicators 

(KPIs) of the steel production process. The baseline performance values are compared against the 

OptQuest model and the AI Optimization Control model, as shown in Table 13.  Given the 

nondeterministic nature of these models, an average value is calculated from 5 simulation runs. Each 

simulation was conducted for a one-week simulation of the steel plant. The improvement is calculated 

with respect to the baseline model values, and the standard deviations reflect the variability in the 

simulation results.  

Table 13: Steel Plant Optimization Results Compared Against the Baseline Model 

 

* The indicated values for the OptQuest Model and AI Opt Control Model represent the average results of 5 simulation runs.  
 

Table 13 indicates that the OptQuest model achieves a 39% improvement on the total steel produced. 

Furthermore, a 21 % improvement was measured for the average utilization rate of all equipment. In 

Baseline Model
OptQuest     

Model                                            
 sdv. 

AI Opt. Control 

Model
 sdv. 

 Incoming Rate ( min ) 17.00 12.08 - - - - -

 Steel Grade Ratio % 85/15 85/15 - -85/15 - -

Ladles In unit 593 833.80 0.84 41% ± 0% 782 45.29 32% ± 8%

Ladles Out unit 560 776.00 5.66 39% ± 1% 739.4 52.62 32% ± 9%

Ladle Output Rate  (min/ladle) 17.98 12.84 0.12 29% ± 1% 13.89 0.77 23% ± 4%

Total Steel Produced ( kg ) 167,966.76 232,756.85 1,647.06 39% ± 1% 216,925.15 10,123.86 29% ± 6%

Average Production Rate (kg/min) 16.681 23.25 0.13 39% ± 1% 21.56 1.02 29% ± 6%

Average Ladle Lead Time ( min ) 277.859 308.29 20.78 -11% ± 7% 278.92 6.30 0% ± 2%

Average Ladle Time Lost ( min ) 155.795 185.29 20.75 -19% ± 13% 155.94 5.89 0% ± 4%

Average Ladle Productivity rate 0.538 0.48 0.01 -5% ± 2% 0.51 0.01 -3% ± 1%

Average Equipment Utilization rate 0.522 0.73 0.01 21% ± 1% 0.69 0.04 17% ± 8%

Improvement   ± 1 sdv  Improvement   ± 1 sdv

Key Performance Indicators (KPIs) 
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contrast, a -5% decline in ladle productivity, an 11% increase in lead time, and a 19% increase in time 

lost were observed.  

The AI Optimization Control model also achieves a significant improvement on the total output 

production of steel, equivalent to a 29% increase. The average utilization rate of equipment was also 

improved by 17%. A better outcome was achieved in relation to the productivity of the plant. Only a  

-3% decline was noticed for the productivity rate, and the lead time and time lost were not affected.  

The KPI outcomes of each optimization method are plotted in Figure 31. As shown in the figures, the 

OptQuest simulation exhibits a much higher variability in lead time and time lost, in comparison to 

the dynamic control of the AI Optimization model.  

In fact, one of the significant advantages of implementing a dynamic control of the process, as done 

by the AI based optimal control system, is the diminution of the variability in highly scattered KPIs 

(specifically lead time and time lost). This is an extremely desired improvement in the process 

performance. Clearly, the advantage of dynamic process control is manifested in these results.  

 

 a) KPI #1 : Lead Time      b) KPI #2 :Time Lost  

 

 c) KPI #3 : Productivity Rate ( Ladle )     d) KPI #4 : Utilization Rate( Equipment )  

Figure 31: Steel Plant KPIs Optimization Results 
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Table 14 and Table 15 present the results obtained for each simulation run for both the OptQuest model 

and the AI Optimization Control model, respectively.  

In summary, both models perform very well with respect to the baseline process of the steel plant. The 

AI Optimization Control model improved KPI measures without compromising the lead time and time 

lost. This reflects a higher productivity of the plant, as more steel is produced, with lower time and 

energy consumption.      

Table 14: Steel Plant KPI Results of the OptQuest Optimization 

 

 
Table 15: Steel Plant KPI Results of the AI Optimization Control Model 
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5.1.1 Benchmarking The Performance of the Models 

The obtained results in this research are benchmarked against the previously published optimized 

process regarding the SGJT steel manufacturing plant. In their paper, Shuai Deng et al (2018) proposed 

an optimization based on increasing the deployment of the duplex (DeP + DeC) converter process. 

Their research suggested that a 100% employment of the duplex process yields a 10-15% improvement 

on converter productivity and a 5% improvement on the overall equipment utilization rates (Deng et 

al, 2018). 

The optimized process suggested by Shuai Deng et al. (2018) was simulated using the DT plant 

simulation. The results obtained were consistent with the claims made by Shuai Deng et al. (2018), 

however, these results do not outperform the plant optimization techniques that are presented in this 

research paper. Table 16 and Table 17 benchmark the results obtained for the OptQuest model and the 

AI Optimization Control model.  

Table 16: Benchmarking of Steel Plant KPIs 

 

Table 17: Benchmarking of Steel Plant Equipment Utilization Rates 
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5.1.2 Dynamic Optimal Control 

A major process improvement was attained by implementing an AI based optimal control providing a 

dynamic system response.  The presented AI Optimization Control model can react to input changes 

in the incoming rate, and reactively adjust the process parameters of the plant. This indicates that the 

system is constantly optimized, even when unexpected changes occur in the process. Even more, the 

statistical variability of the process is mitigated by the dynamic control system. This dynamic response 

is further investigated in the following paragraphs.     

5.2. AI Control System Sensitivity to the Learning Rate η   

Given the scope and timeframe of this project, the AI Optimization Controller could have been further 

ameliorated in order to achieve better control performance. Nevertheless, this investigation aims to 

identify the potential improvement of the control system by means of parameter-tuning.  

Parameter-tuning is essential in achieving a stable and high-performance control system. For instance, 

the simulation is highly sensitive to the learning rate η.  For this reason, an adaptive learning rate was 

attempted to improve stability and response time of the system. After numerus simulations, the 

learning rate of η -6 was deemed suitable by means of trial and error.  

 

Figure 32: The Evaluation of Stabilization Time of the AI Control System 
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First, the stability of the system response with respect to the learning rate was investigated. In order to 

evaluate the stabilization time, a stimulus was applied by manipulating the incoming rate. The stimulus 

is applied after the system reaches a steady-state response (approximately after 12 hours of plant up-

time). Then, the stimulus is applied by manipulating the incoming rate to a value outside of the optimal 

range (i.e. 17 min between incoming ladles). The stability of the system is observed until the system 

is brought back within ± 5% of its stability range. In this control system, the stability point is the 

optimal multi-objective function output (0.55). Figure 33 further explains the method of calculating 

the time to stabilization of this system. 

It can be seen in Figure 33 that as the learning rate η increases, a better time response is achieved. This 

is because a higher momentum is used to steer the control system toward the desired range. With these 

results, it can be deduced that better performance is potentially feasible if the learning rate is tuned for 

optimal response. Further results of this analysis are tabulated below in Table 18.  

 

Figure 33: Sensitivity of the Learning Rate Parameter with Respect to the Stability of the AI Control System 

 

Furthermore, the impact of the learning rate η parameter on the KPIs of the manufacturing plant was 

investigated. Figure 34 present the steel plant KPI sensitivities with respect to the learning rate of the 

control system. Consistently, an improved performance is observed when the learning rate is 

increased.  
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Table 18: Steel Plant KPI Results of the AI Optimized Control Model with Respect to the Learning Rate η. 

 
* Time to Stabilization calculated after parameter change (Incoming Rate = 17) to the time that the MO variable is stabilized within 5% of the optimal value (0.55)  

 

   

a)  KPI #1 : Lead Time      b)  KPI #2 :Time Lost  

   

 c)  KPI #3 : Productivity Rate ( Ladle )    d)  KPI #4 : Utilization Rate( Equipment )  

 

Figure 34: Steel Plant KPI Sensitivity to the Learning Rate  
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6 Environmental Impact  

Digital Twins can be tools that guide the manufacturing industry towards better and more sustainable 

processes. For instance, the presented AI Optimization Control system could potentially increase 

resource efficiency, thus reducing costs and energy consumptions. The manufacturing KPIs used in 

the optimization function reflect the energy requirements and resource productivity of the 

manufacturing plant. By optimizing the process based on these KPI objectives, the process can be 

controlled to always run at the most energy-efficient state. 

Implementing the AI Optimization Control system has associated risks of failure and breakdowns. It 

is important to consider that the control system may go into instability or fail to accurately represent 

the current state of the plant. In these failure scenarios, risk prevention and mitigation measures need 

to be implemented. For example, a disconnect switch is a risk mitigation measure that allows the 

controller to disengage the AI Optimization Control system if it fails. This risk mitigation approach 

was implemented in the AnyLogic simulation of the steel manufacturing plant using the OFF button 

to stop the automated control at any moment.  Another risk mitigation system is the use of alarms 

which can go off in the event of system instability or deviation beyond the desired range.  The potential 

environmental impact of a control system failure can be costly and detrimental to the safety of the 

system and its surroundings. Therefore, Digital Twin design of manufacturing plants must take these 

risks into consideration.  
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7 Discussion  

The reliable use of Model Predictive Control (MPC) for optimizing manufacturing processes depends 

on the linearity of the model and the uncertainty level inherent to the system. For highly nonlinear 

models, such as batching processes, this control method is challenging to implement due to the 

nondeterministic nature of the system output. Additional research is required to develop effective 

automated control systems that can be reliable in controlling and optimizing uncertain manufacturing 

processes.  

The development of an AI predictive control system based on Neural Networks was proposed in this 

research project. The AI prediction model was created based on synthetic data collected from the DT 

simulation of a steel manufacturing plant. The proposed methodology integrates the AI predictions 

with the simulation environment and achieves an optimal process control. The obtained results 

demonstrated an astounding improvement in performance by evaluating the KPIs related to the 

process. The proposed optimization method yields a better performance when compared to the 

benchmarked optimization methods (Deng et al, 2018).  

The proposed AI based optimal control method improves the performance of the system and also 

achieves an automatic control that dynamically reacts to changes in the production plan. This method 

provides an alternative to manual control and optimization methods, and effectively minimizes 

interventions by human controllers. Furthermore, the dynamic control of the process reduces the 

variability in highly scattered KPIs as achieved by the implemented AI based optimal control system. 

This is an extremely desired improvement in the performance of manufacturing processes.   

This research demonstrated how NN prediction models could be effectively applied to nonlinear, 

probabilistic systems such as manufacturing processes. However, the true reliability of NN prediction 

models in in real system is still in question. The NN model is highly sensitive to the quality and span 

of the data used to train the model. Therefore, more research and investigation are needed to identify 

the challenges of AI predictive control in real production environments.   

There remains the challenge of online process optimization and real-time connections in DT 

applications. More case-studies are needed to test and validate data-driven synchronization and 

traceability. The feasibility and cost effectiveness of real-time solutions has been well documented in 
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literature, however, there is a shortage of real-life applications that effectively deploy such systems in 

the manufacturing industry.   

Future Work  

• The AI Optimization Control presented in this work could be further developed for higher 

stability and control performance. Tuning the control parameters, such as the learning rate, can 

be further investigated. The analytical work presented herein demonstrated a high potential for 

better performance based on parameter tuning. Furthermore, more advanced control 

algorithms, such stochastic optimization algorithms, can be tested in this context.  

• This research only focused on the overall system performance related to a steel manufacturing 

process. The same methodology can be applied to a smaller critical system. The methodology 

can be evaluated and specifically adapted for critical processes that have high economic and 

environmental impacts.  

• In this case-study, a DES-based simulation model was considered. However, it is also possible 

to have agent-based or dynamic system simulations for manufacturing plants. More so, 

complex systems might call for a multi-method modeling approach. Therefore, further research 

can be dedicated to other DT simulation models to investigate the applicability of the AI 

Optimization Control method.  

• Finally, real-life applications are needed to validate the concept of the AI based optimization 

control process. A feasibility study can be conducted to evaluate the applicability of this 

solution in a real production environment.  
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Conclusion   

This research demonstrates the benefits of using Digital Twins for manufacturing process optimization. 

Complex manufacturing systems exhibit nonlinear and nondeterministic characteristics that make 

them challenging for implementing process control. This research present an AI based optimal control 

system that effectively addresses the issues of nonlinearity and uncertainties in these processes. Neural 

Network based predication models provide a robust tool for estimating the state of the manufacturing 

plant. In this research, the trained NN models demonstrated high prediction performance that could 

successfully be implemented as an AI based state observer for process control application.  

A Digital Twin simulation of a steel manufacturing plant was used to implement the novel AI based 

optimal control system. This control system uses a multi-objective function relating the key 

performance parameters (KPIs) of the manufacturing process to dynamically adjust the production 

parameters. The results obtained for implementing the AI Optimization Control method proved to be 

outstanding with respect to the baseline model performance. The control system successfully achieves 

higher equipment utilization and higher process productivity. The dynamic control also reduces the 

high scatter that is inherent to naturally sporadic KPIs. The indicated improvement in KPIs lead to 

energy-cost savings and higher revenues for the manufacturing process.  

In closing, the use of an AI based state observer for optimal process control of manufacturing plants 

has great potential for making progress in the manufacturing industry. The methodology proposed in 

this research should be further developed in the future, in order to bring forth digitalization and 

automation of manufacturing plants.   
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Economic Assessment 

The economic assessment of this project consists of evaluating the budget allocated to finance and 

produce this work. The project was carried out over the course of 4 months, at the R&D facilities of 

Ikerlan. The company provided technical and financial support throughout the course of this research.  

Given the financial support provided by Ikerlan, professional software licenses for MATLAB and 

AnyLogic were used. However, it is also possible to carry out this project using free software licenses 

available for academic research and development.  

The project costs are summarized in the following Table 19.  

Table 19: Project Economic Break-Down 

Resource Requirements  Cost Rate Total Cost 

Man-hours (intern rate) 

 

6.25 € /Hour 3,360.00 € 

Equipment (Computer + Monitors) 

 

1,500.00 €  1,500.00 € 

Software 

        MATLAB License  

       AnyLogic Professional License  

 

250.00 € 

12,000.00 € 

 

/ Year  

/ Year  

 

 

85.00 € 

4,000.00 € 

Energy Consumption 

 

50.00 € / Month  

 

200. 00 € 

Unexpected Costs (~ 10%) 1,000. 00 €  1,000. 00 € 

  Total   =    10,145.00 € 
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Appendix I – Optimization Code (OptQuest)  

try { 
 // Create Engine, initialize random number generator: 
 Engine engine = createEngine();  
 
 engine.setStartTime( 0.0 ); 
 engine.setTimeUnit( MINUTE ); 
 engine.setStartDate( toDate( 2022, FEBRUARY, 28, 0, 0, 0 ) ); 
 engine.setStopDate( toDate( 2022, MARCH, 7, 0, 0, 0 ) ); 
 engine.setDefaultRandomGenerator(new java.util.Random()); 
 
 // Create optimization variable  
 final COptQuestContinuousVariable v = new COptQuestContinuousVariable(); 
 v.SetLowerBound(8.0); 
 v.SetUpperBound(22.0); 
  
 // Create objective 
 final COptQuestObjective obj = new COptQuestUserControlledObjective(); 
 obj.SetMaximize(); 
  
 // Create optimization engine 
 final COptQuestOptimization opt = 
ExperimentOptimization.createOptimization(engine, new OptimizationCallback() { 
 
  @Override 
  public void evaluate(COptQuestOptimization optimization, 
    COptQuestSolution solution, Engine engine) { 
   // Create new root object: 
   MainPlant root = new MainPlant(engine, null, null);  
    
   // Setup parameters of root object here 
   root.Low_C_Steel = 85.0 ;    
    
 
   root.setDefaultRandomGenerator(new java.util.Random()); 
    
   root.IncomingRate = solution.GetVariableValue(v); 
   // Prepare Engine for simulation: 
   engine.start( root ); 
   // Start simulation in fast mode: 
   engine.runFast(); 
   // Process results of simulation here 
   solution.SetObjectiveValue( obj, root.Objective ); 
   // Destroy the model: 
   engine.stop(); 
  } 
   
  // Trace each iteration (optional!) 
  @Override 
  public void monitorStatus(COptQuestOptimization optimization, 
    COptQuestSolution solution, Engine engine) { 
   try { 
    traceln(String.format("  %3d : %6.2f : %8.2f  -- %8.2f", 
     solution.GetIteration(), solution.GetVariableValue(v), 
     solution.GetObjectiveValue(), 
     optimization.GetBestSolution() != null ? 
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     optimization.GetBestSolution().GetObjectiveValue(obj) : 
Double.NaN)); 
   } catch (COptQuestException e) { 
    traceln(e.Description()); 
   } 
  } 
   
 }); 
 
 // Setup optimization engine 
 opt.AddVariable(v); 
 opt.AddObjective(obj); 
 // Set the number of iterations to run 
 opt.SetMaximumIterations(150); 
  
 // Add suggested solution (initial solution) 
 COptQuestSolution suggestedSolution = opt.CreateSolution(); 
 suggestedSolution.SetVariableValue(v, 12.075); 
 opt.AddSuggestedSolution(suggestedSolution); 
  
 traceln(" Iter : Param  : Objective -- Best obj."); 
 traceln("-------------------------------------------"); 
 // Perform optimization 
 opt.Optimize(); 
 traceln("-------------------------------------------"); 
  
 // Output results 
 COptQuestSolution bestSolution = opt.GetBestSolution(); 
 traceln("Best objective: " + format(bestSolution.GetObjectiveValue(obj))); 
 traceln("   is feasible: " + format(bestSolution.IsFeasible())); 
 traceln("Best parameter: " + format(bestSolution.GetVariableValue(v))); 
 traceln("Best iteration: " + bestSolution.GetIteration()); 
  
 BestSolution = bestSolution.GetVariableValue(v) ;  
 BestObjective = bestSolution.GetObjectiveValue(obj);  
 BestIteration = bestSolution.GetIteration() ;  
  
  
} catch (COptQuestException e) { 
 traceln(e.Description()); 

} 
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Appendix II – Baseline Simulation Data Results  

Table 20: Baseline Model Simulink Simulation Results 

 

Table 21: Baseline Model AnyLogic Simulation Results 
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