3,518 research outputs found

    Stochastic surgery selection and sequencing under dynamic emergency break-ins

    Get PDF
    Anticipating the impact of urgent emergency arrivals on operating room schedules remains methodologically and computationally challenging. This paper investigates a model for surgery scheduling, in which both surgery durations and emergency patient arrivals are stochastic. When an emergency patient arrives he enters the first available room. Given the sets of surgeries available to each operating room for that day, as well as the distributions of the main stochastic variables, we aim to find the per-room surgery sequences that minimise a joint objective, which includes over- and under-utilisation, the amount of cancelled patients, as well as the risk that emergencies suffer an excessively long waiting time. We show that a detailed analysis of emergency break-ins and their disruption of the schedule leads to a lower total cost compared to less sophisticated models. We also map the trade-off between the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient heuristic is proposed to accurately estimate the value of a solution with significantly less computational effort.Anticipating the impact of urgent emergency arrivals on operating room schedules remains methodologically and computationally challenging. This paper investigates a model for surgery scheduling, in which both surgery durations and emergency patient arrivals are stochastic. When an emergency patient arrives he enters the first available room. Given the sets of surgeries available to each operating room for that day, as well as the distributions of the main stochastic variables, we aim to find the per-room surgery sequences that minimise a joint objective, which includes over- and under-utilisation, the amount of cancelled patients, as well as the risk that emergencies suffer an excessively long waiting time. We show that a detailed analysis of emergency break-ins and their disruption of the schedule leads to a lower total cost compared to less sophisticated models. We also map the trade-off between the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient heuristic is proposed to accurately estimate the value of a solution with significantly less computational effort.A

    Operating room planning and scheduling: A literature review.

    Get PDF
    This paper provides a review of recent research on operating room planning and scheduling. We evaluate the literature on multiple fields that are related to either the problem setting (e.g. performance measures or patient classes) or the technical features (e.g. solution technique or uncertainty incorporation). Since papers are pooled and evaluated in various ways, a diversified and detailed overview is obtained that facilitates the identification of manuscripts related to the reader's specific interests. Throughout the literature review, we summarize the significant trends in research on operating room planning and scheduling and we identify areas that need to be addressed in the future.Health care; Operating room; Scheduling; Planning; Literature review;

    Robust Optimization Framework to Operating Room Planning and Scheduling in Stochastic Environment

    Get PDF
    Arrangement of surgical activities can be classified as a three-level process that directly impacts the overall performance of a healthcare system. The goal of this dissertation is to study hierarchical planning and scheduling problems of operating room (OR) departments that arise in a publicly funded hospital. Uncertainty in surgery durations and patient arrivals, the existence of multiple resources and competing performance measures are among the important aspect of OR problems in practice. While planning can be viewed as the compromise of supply and demand within the strategic and tactical stages, scheduling is referred to the development of a detailed timetable that determines operational daily assignment of individual cases. Therefore, it is worthwhile to put effort in optimization of OR planning and surgical scheduling. We have considered several extensions of previous models and described several real-world applications. Firstly, we have developed a novel transformation framework for the robust optimization (RO) method to be used as a generalized approach to overcome the drawback of conventional RO approach owing to its difficulty in obtaining information regarding numerous control variable terms as well as added extra variables and constraints into the model in transforming deterministic models into the robust form. We have determined an optimal case mix planning for a given set of specialties for a single operating room department using the proposed standard RO framework. In this case-mix planning problem, demands for elective and emergency surgery are considered to be random variables realized over a set of probabilistic scenarios. A deterministic and a two-stage stochastic recourse programming model is also developed for the uncertain surgery case mix planning to demonstrate the applicability of the proposed RO models. The objective is to minimize the expected total loss incurred due to postponed and unmet demand as well as the underutilization costs. We have shown that the optimum solution can be found in polynomial time. Secondly, the tactical and operational level decision of OR block scheduling and advance scheduling problems are considered simultaneously to overcome the drawback of current literature in addressing these problems in isolation. We have focused on a hybrid master surgery scheduling (MSS) and surgical case assignment (SCA) problem under the assumption that both surgery durations and emergency arrivals follow probability distributions defined over a discrete set of scenarios. We have developed an integrated robust MSS and SCA model using the proposed standard transformation framework and determined the allocation of surgical specialties to the ORs as well as the assignment of surgeries within each specialty to the corresponding ORs in a coordinated way to minimize the costs associated with patients waiting time and hospital resource utilization. To demonstrate the usefulness and applicability of the two proposed models, a simulation study is carried utilizing data provided by Windsor Regional Hospital (WRH). The simulation results demonstrate that the two proposed models can mitigate the existing variability in parameter uncertainty. This provides a more reliable decision tool for the OR managers while limiting the negative impact of waiting time to the patients as well as welfare loss to the hospital

    Scheduling Elective Surgeries in Multiple Operating Rooms

    Get PDF
    This thesis focuses on the problem of designing appointment schedules in a surgery center with multiple operating rooms. The conditions under which overlapping surgeries in the surgeons’ schedule (i.e. parallel surgery processing) at the lowest cost are investigated with respect to three components of the total cost: waiting time, idle time, and overtime. A simulation optimization method is developed to find the near-optimal appointment schedules for elective surgical procedures in the presence of uncertain surgery durations. The analysis is performed in three steps. First, three near-optimal operating room schedules are found for different cost configurations based on the secondary data of surgery durations obtained from the Canadian Institute for Health Information. Second, these near-optimal appointment schedules are used to test a parallel scheduling policy where each surgeon has overlapping surgeries scheduled in two operating rooms for the entire session (480 minutes) and only attends the critical portions of surgeries in the two operating rooms. Lastly, another parallel scheduling policy is tested where each surgeon has overlapping surgeries scheduled for half of the session duration (240 minutes) and only has surgeries scheduled in one operating room for the remaining time. These two policies are tested using simulation with scenarios for parallelizable portions of surgeries varying from 0.1 to 0.9 at 0.1 increments and three cost configurations. In the simulated scenarios, the total cost is calculated as the weighted sum of patient waiting time, surgeon idle time, surgeon overtime, operating room idle time, and operating room overtime. Out of the nine scenarios for each policy and each cost configuration, the parallelizable portion of surgeries that result in the lowest total cost is identified. The results from both policies indicate that implementing parallel scheduling policies for surgery types with higher parallelizable portions results in surgeons remaining idle for longer periods during the session. This idle time cost is justified by a decrease in other cost components for surgeries with parallelizable portions 50% or less; however, the total cost is higher for surgeries with parallelizable portions over 50%. In addition, it has been observed that overlapping surgeries with lower parallelizable portions is more expensive than overlapping those over with 50%. Therefore, it is concluded that the surgery types that allow parallel surgery scheduling policies to be implemented at the lowest cost have 50% of their duration parallelizable

    Implications of Non-Operating Room Anesthesia Policy for Operating Room Efficiency

    Get PDF
    This thesis focuses on examining the use of Non-Operating Room Anesthesia (NORA) policy in Operating Room (OR) scheduling. A NORA policy involves a practice whereby the administration of anesthesia stage is performed outside the OR. The goal of the thesis is to determine whether NORA policy can improve OR efficiency measured by the performance of total costs, which consists of a weighted sum of patient waiting time, OR overtime and idle time. A simulation optimization method is adopted to find near-optimal schedules for elective surgeries in an outpatient setting. The results of a traditional OR scheduling model, where all stages of the surgery are performed in the OR, will be compared to the results of a NORA OR model where the initial anesthesia stage is performed outside of the OR. Two cases are considered for the NORA model given the decrease on mean durations: (1) a model with the same number of surgery appointments and shorter session length and (2) a models with the same session length and more surgery appointments. . The impact of a NORA policy on OR performance is further analyzed by considering scenarios that capture Surgery duration variability and mean surgery durations which are two traits for surgeries that have been shown to impact OR performance. This thesis aims to investigate how a NORA policy performs when standard deviations and mean surgery durations change. The results show that NORA policy can improve OR efficiency in all settings

    Simulation-Based Optimization for the Scheduling of Elective Surgery Under Uncertainty And Downstream Capacity Constraints

    Get PDF
    The generation of an optimal schedule of elective surgery cases for a hospital surgery services unit is a well-known problem in the operations research field. The complexity of the problem is greatly compounded when uncertainties in the parameters are considered and is an issue that has been addressed in few works in the literature. Uncertainties appear in surgery durations and the availability of downstream resources such as surgical intensive care units (SICU), presenting large deviations from their expected value and impacting in the performance of the scheduling process. The technique presented here addresses the uncertainties in the optimal scheduling of a given set of elective surgery cases by means of simulated-based optimization. The main advantage of this approach over previous works is that detailed systems? simulations can be constructed without losing computational performance, thus improving the robustness of the scheduling solution.Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentin

    Minimizing bed occupancy variance by scheduling patients under uncertainty

    Get PDF
    International audienceIn this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results

    Dynamic Surgery Assignment of Multiple Operating Rooms With Planned Surgeon Arrival Times

    Get PDF
    International audienceThis paper addresses the dynamic assignment of a given set of surgeries to multiple identical operating rooms (ORs). Surgeries have random durations and planned surgeon arrival times. Surgeries are assigned dynamically to ORs at surgery completion events. The goal is to minimize the total expected cost incurred by surgeon waiting, OR idling, and OR overtime. We first formulate the problem as a multi-stage stochastic programming model. An efficient algorithm is then proposed by combining a two-stage stochastic programming approximation and some look-ahead strategies. A perfect information-based lower bound of the optimal expected cost is given to evaluate the optimality gap of the dynamic assignment strategy. Numerical results show that the dynamic scheduling and optimization with the proposed approach significantly improve the performance of static scheduling and First Come First Serve (FCFS) strategy
    corecore