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Abstract−− The generation of an optimal schedule 

of elective surgery cases for a hospital surgery ser-

vices unit is a well-known problem in the operations 

research field. The complexity of the problem is 

greatly compounded when uncertainties in the pa-

rameters are considered and is an issue that has been 

addressed in few works in the literature. Uncertain-

ties appear in surgery durations and the availability 

of downstream resources such as surgical intensive 

care units (SICU), presenting large deviations from 

their expected value and impacting in the perfor-

mance of the scheduling process. The technique pre-

sented here addresses the uncertainties in the optimal 

scheduling of a given set of elective surgery cases by 

means of simulated-based optimization. The main ad-

vantage of this approach over previous works is that 

detailed systems’ simulations can be constructed 

without losing computational performance, thus im-

proving the robustness of the scheduling solution. 

Keywords−− Surgery cases scheduling, Parametric 

uncertainty, Simulation-based optimization. 

I. INTRODUCTION 

Surgery is one of the most important functions in hospi-

tals and it generates revenue and admissions to them. The 

operating cost of a surgery department is one of the larg-

est hospital cost categories, approximately one-third of 

the total cost (Macario et al., 1995). Surgery is thus the 

area with the highest potential for cost savings. While 

surgery is the largest cost center, it also accounts for ap-

proximately two-third of hospital revenues (Jackson, 

2002). Therefore, small improvements in efficiency 

could translate into significant savings and benefits to the 

patient as well as the hospital. For these reasons, manag-

ing the surgical resources effectively in order to reduce 

costs and increase revenues is one of areas that draw con-

siderable attention of the healthcare community. 

The problem of modeling and optimizing surgery op-

erations has been documented in the literature, which can 

be categorized as problems of capacity planning, block 

scheduling, surgery scheduling and surgery sequencing. 

This study focuses on scheduling elective surgery pa-

tients over a planning horizon. The decision of schedul-

ing elective surgery patients is to determine whether an 

elective patient should be scheduled and, if so, to deter-

mine when the patient should be scheduled. There are 

two challenges in this problem: capacity constraints of 

downstream resources such as surgical intensive care unit 

(SICU) beds (or ward beds) and the uncertainty in surgi-

cal operations. 

The elective surgery schedule will attempt to admit as 

many patients as possible while satisfying resource con-

straints (e.g. minimizing overtime works) in order to 

maximize the quality of care (e.g. minimizing patient 

waiting time). With regard to resource constraints for 

scheduling elective surgeries, the consideration of oper-

ating room (OR) capacity alone does not yield good 

schedules. Capacity shortage of downstream resources 

will keep patients from moving forward and it will sig-

nificantly deteriorate OR utilization. For example, when 

there are not enough SICU beds to accept all incoming 

patients, some patients have to remain in OR or should 

find other compatible resources, generating additional 

costs. Jonnalagadda et al. (2005) show that 15% of the 

total cancellation is caused by the lack of an available re-

covery room bed in the hospital they investigated. Sobo-

lev et al. (2005) also show that patients’ length of stay 

(LOS) in intensive care unit (ICU) and the ICU availabil-

ity affect a surgery schedule. Therefore, it is important to 

consider downstream resource availability in addition to 

OR capacity. 

Scheduling surgery becomes challenging when con-

sidering the uncertainty in surgery operations. Surgery 

operations have case-dependent durations and there is of-

ten a large variation between scheduled durations and ac-

tual durations. After surgery in an OR, LOS in a SICU is 

also uncertain as well. Emergency surgery is another im-

portant source that introduces additional uncertainty to 

the problem. To address the issue of uncertainty, stochas-

tic optimization has been used in the surgery scheduling 

problems. Hans et al. (2008) introduce sufficient planned 

slacks to surgery durations for hedging uncertain surgery 

durations. Finally, a stochastic mixed integer program-

ming model has been proposed for the surgery scheduling 

problem (Lamiri and Xie, 2006; Lamiri et al., 2008a,b). 

However, surgery durations of all elective cases are as-

sumed to be known and deterministic, considering emer-

gency demand as the only uncertain factor in the models. 

However, uncertain surgery durations may lead the solu-

tion based on deterministic durations to be infeasible. 

Denton et al. (2009) formulate the surgery scheduling 

problem for assigning surgeries on a given day of surgery 

as a two-stage stochastic linear programming. Min and 
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Yih (2010) utilized an L-shape method and sample aver-

age approximation (SAA) algorithm, and included down-

stream capacity constraints, while Yahia et al. (2015) in-

cluded personnel constraints. 

Another approach for stochastic optimization is the 

Simulation-based Optimization (SbO) framework. This 

approach originally presented in the Process Systems En-

gineering literature by Subramanian et al. (2001) applied 

to the optimal selection of the portfolio of drug research 

and development projects, proposes the combination of 

simulation by discrete events and deterministic and sto-

chastic optimizations. 

The SbO approach has been used in different papers 

presented in the literature (Subramanian et al., 2001, 

Mele et al. 2006, Durand et al. 2011 and 2012). More 

than a particular algorithm, it is a conceptual optimiza-

tion framework for addressing problems with uncer-

tainty, which combines the resolution of different deter-

ministic and / or stochastic type problems in two resolu-

tion loops, one external and one internal or embedded 

(Durand et al., 2011). 

The objective of this paper is to apply the SbO frame-

work to the stochastic surgery scheduling problem while 

considering downstream capacity constraints (i.e. SICU 

beds). 

II. PROBLEM DESCRIPTION 

This section describes the problem that will be solved 

with the Simulation-based Optimization framework. For 

simplicity, the deterministic version of the problem will 

be described first, and the inclusion of uncertainty latter. 

A. Deterministic Block Scheduling 

Given a set 𝐼 of patients waiting surgery of different spe-

cialty and a series 𝐵 of available surgical blocks within 

an arbitrary planning horizon that consists of a set 𝑇 of 

days, the goal of the scheduling is to minimize the total 

cost that consists of the patient costs and expected over-

time costs by assigning all patients to surgery blocks. The 

scheduling also includes the decisions of how to allocate 

the downstream intensive care unit. Expected overtime 

costs are penalties that arise when a surgery block is used 

beyond its time limits and/or when a patient is assigned 

to a dummy block representing allocations to the next 

planning horizon. Patient costs are induced when a pa-

tient is assigned to a block, and its value depends on the 

urgency of the surgery case. 

When a patient’s surgery is finished the patient is sent 

to a SICU bed, where the LOS can last from 0 hours 

(when a SICU bed is not needed) to more than one day. 

The availability of SICU beds is determined by their total 

number and by the fact whether or not they are used by 

previous patients. 

The planning of the surgery cases is carried by the 

technique called “block scheduling”. In this approach, 

commonly used in many hospitals, each specialty is pre-

assigned one or more surgery blocks within the planning 

horizon. If a patient of the list of cases to be done needs 

that specialty, the operation must be carried in one of 

those pre-assigned blocks. This method of scheduling 

greatly reduces the complexity of the planning, and a fea-

sible schedule can be reached rapidly even without the 

use of computer assistance. However, its restrictions 

make the solution not as good as a one obtained with a 

more flexible technique. The approach presented here 

will need to solve a large number of scenarios, therefore 

the selection of this technique. 

The resulting mathematical model is a Mixed-Integer 

Linear Problem, since it includes allocation binary varia-

bles that indicate if patient 𝑖 is assigned to surgery block 

𝑏, and integer variables that count how many SICU beds 

are in use each day.  

B. Stochastic surgery scheduling problem 

The randomness in surgery operations comes from the 

duration of the surgery, the length of stay in the SICU 

beds and the capacity of each surgery block debt to the 

possibility of having to use operating room for urgencies, 

but the availability of a large quantity of historical data 

allows to model their probability distribution in a fairly 

precise manner. The probability distribution of surgery 

length and LOS in SICU depend mainly on the specialty 

of the case. 

In this work the uncertainties will be sampled in a set 

𝑁 of scenarios, large enough to represent the variability 

in length of surgery, LOS in SICU beds and block capac-

ity (measured in available time). Since the allocation of 

patient to the blocks must be done before the real surger-

ies’ durations are known, it is not needed to sample the 

decision variables modelling this stage (𝑥𝑖𝑏). Neverthe-

less, the decisions of whether to send a patient to a SICU 

bed or wait for one to be freed is done after the surgery, 

once its actual duration is known, therefore these varia-

bles have to be sampled for each scenario. Likewise, the 

overtime of each block is a calculated variable that also 

is affected by the surgeries’ durations and need to be sam-

pled. 

The model describing the stochastic surgery block 

scheduling problem results in the following equations: 

Min ∑ ∑ 𝐶𝑄𝑖𝑏𝑥𝑖𝑏𝑏∈𝐵𝑖𝑖∈𝐼 +
1

𝑁
∑ ∑ 𝐶𝑂𝑏𝑜𝑏

𝑛
𝑏∈𝐵∖{𝐵′}𝑛𝜖𝑁  (1) 

 ∑ 𝑥𝑖𝑏𝑏∈𝐵𝑖∖{𝐵′} = 1           ∀𝑖 ∈ 𝐼 (2) 

𝑜𝑏
𝑛 ≥ ∑ 𝑊𝑖

𝑛𝑥𝑖𝑏𝑖∈𝐼𝑏
− 𝐶𝑏

𝑛     ∀𝑏 ∈ 𝐵 ∖ {𝐵′}, 𝑛 = 1. . 𝑁 (3) 

 𝑦𝑖𝑡
𝑛 ≥ 𝑥𝑖𝑏        𝑡 = 𝑡(𝑏) … 𝑡(𝑏) + 𝑑𝑖

𝑛 , ∀𝑏 ∈ 𝐵𝑖 ∖ {𝐵′}, ∀𝑖 ∈
𝐼, 𝑛 = 1. . 𝑁 (4) 

 ∑ 𝑦𝑖𝑡
𝑛

𝑖∈𝐼 ≤ 𝐶𝑡
𝐼𝐶𝑈      ∀𝑡 ∈ 𝑇 ∖ {𝑇′}, 𝑛 = 1. . 𝑁 (5) 

 𝑥𝑖𝑏 ∈ {0,1}     ∀𝑖 ∈ 𝐼, ∀𝑏 ∈ 𝐵 (6) 

 𝑦𝑖𝑡
𝑛 ∈ {0,1}     ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇, 𝑛 = 1. . 𝑁 (7) 

 𝑜𝑏
𝑛 ∈ ℝ+     ∀𝑏 ∈ 𝐵 ∖ {𝐵′}, 𝑛 = 1. . 𝑁 (8) 

Objective (1) minimizes the total cost that consists of 

the patient costs and expected overtime costs. In the ob-

jective function, implicitly, the value of 𝐶𝑄𝑖𝑏  is a priority 

score given to a patient waiting for surgery. That is, a pa-

tient whose 𝐶𝑄𝑖𝑏  is higher than any others should be  
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Table 1.  Nomenclature 

Indexes and sets 

𝑖 ∈ 𝐼 Index of patient waiting for surgery 𝑡 ∈ 𝑇 Index of day 

𝑏 ∈ 𝐵 Index of available surgery block 𝑛 ∈ 𝑁 Index of scenario 

𝑖𝑏 ∈ 𝐼𝑏 Subset of patients whose specialty is assigned 

to block b 

𝑏 ∈ 𝐵𝑖 Subset of blocks that were assigned to patient i’s 

specialty 

𝑔 ∈ 𝐺 Index of GA generation 𝑝 ∈ 𝑃 Index of GA individual 

Parameters 

𝐶𝑄𝑖𝑏 Cost of assigning patient i to block b 𝐶𝑏
𝑛 Capacity of surgical block b under scenario n in 

hours 

𝑊𝑖
𝑛 Surgery duration for patient i under scenario n 𝐶𝑡

𝐼𝐶𝑈 Capacity of SICU at day t in number of beds 

𝑑𝑖
𝑛 LOS in SICU for patient i under scenario n   

Variables 

𝑥𝑖𝑏 1 if a patient i is assigned to a surgical block b, 

0 if otherwise 

𝑦𝑖𝑡
𝑛  1 if a patient i occupies a SICU bed at day t under 

scenario n, 0 if otherwise 

𝑂𝐿𝑝,𝑔 Outer loop’s objective function term of individ-

ual p of generation g 

𝐼𝐿𝑝,𝑔 Inner loop’s objective function term of individual 

p of generation g 

𝑜𝑏
𝑛 Total overtime work of a surgical block b under 

scenario n 

  

scheduled first when the surgical block capacity is 

enough. Since a patient’s waiting time depends on his/her 

priority, the patient cost 𝐶𝑄𝑖𝑏  should be designed with 

care. The term modeling the expected cost is the average 

impact of all scenarios, therefore, it is supposed that each 

scenario has the same probability. Equation (2) is a pa-

tient assignment constraint. The following three con-

straints show capacity constraints of two resources in sur-

gery operations; surgical blocks (i.e. OR) and SICU beds. 

Constraint (3) is the capacity constraint of a surgical 

block, and determines the total amount of overtime work. 

Equations (4) and (5) ensure that patients in SICU will 

not be over the maximum number of SICU beds at day 𝑡. 

Here 𝑡(𝑏) is a day 𝑡 at which a surgical block 𝑏 is carried 

on. Equations (6) to (8), defines the type of variables. 

The shortage of SICU beds restricts moving patients 

from OR, and patients hold an OR until a SICU bed is 

available. Consequently, the availability of SICU beds is 

critical to decide the admission of elective patients. 

III. SIMULATED-BASED OPTIMIZATION 

With the model shown in the previous section and by 

enumeration, an exact solution can be obtained for a 

small size problem quickly and accurately. However, if 

the problem size gets bigger, the model becomes intrac-

table. 

In the SbO framework utilized here, the decision var-

iables will be divided in two levels, depending on when 

the decision has to be done. This separation scheme is 

similarly done in two- and multi-levels stochastic pro-

gramming techniques. 

The variables that model decisions that have to be 

taken before the actual value of uncertain parameters is 

known (realization of uncertainty) are called “here and 

now”. In the case of the surgery scheduling problem these 

would be the assignation of patients to surgery blocks. 

The rest of the decisions are made after the realization of 

the uncertain parameters, and the associated variables be-

long to the “wait and see”. These variables are often 

called recourse variables, because they are used as a 

means to correct deviations from the behavior that was 

expected in the “here and now” level. In the present work, 

the variables that belong to this level are the assignation 

of SICU beds. 

Figure 1 shows the SbO framework utilized here. The 

“wait and see” variables are decided in the Inner Loop 

where a cycle evaluates many scenarios sampling differ-

ent combinations of the uncertain parameters. Since for 

each cycle of the Inner Loop the parameters are fixed, the 

optimization is deterministic. The SbO framework allows 

to evaluate the solution with a simulation, that will pro-

vide a better insight in the behavior of the problem. In the 

present work, the simulation is carried on by looping on 

each of the days of the horizon time and fixing the “wait 

and see” variables of the corresponding days. “Wait and 

see” variables of latter days are not fixing since the un-

certain parameters of those days are not yet realized. The 

model in the deterministic optimization/simulation block 

is comprised of Eqs. (3), (4), (5), (6) and (8). 

 

  
Figure 1: Simulation-based framework for the surgery sched-

uling problem 
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The “here and now” 𝑥𝑖𝑏
𝑝,𝑔

 variables are explored in the

Outer Loop, and the total costs incurred in the assignation 

of patient to blocks are summed in 𝑂𝐿𝑝,𝑔 for each indi-

vidual 𝑝 of each generation 𝑔. Since the Inner Loop 

works as a function of the Outer Loop, where the ins are 

the “here and now” variables and the out is the expected 

value of all scenarios, and where there is a procedural 

simulation, the optimization has to be done with me-

taheuristic algorithms. In this paper, the selected method 

is a Genetic Algorithm (GA), with Eq. (1) as objective 

function and Eq. (2) as a constraint. 

The GA takes an initial generation of individuals 

(each individual is a solution of the Outer Loop) and, uti-

lizing breeding, mutation and selection operators creates 

successive generations of individuals, looking for better 

values of the objective function. The objective function, 

expressed in Eq. (1), is the sum of the costs from the as-

signation of patients to blocks (first term, represented by 

𝑂𝐿𝑝,𝑔 in Fig. 1) and the expected overtime costs esti-

mated by the Inner Loop (second term, 𝐼𝐿𝑝,𝑔 in Fig. 1).

For each generation, the incumbent objective function 

value is the one from the best individual 𝑝 found in it 

(𝐹𝑂𝑔 in Fig. 1). At the end of the GA run the resulting

optimal solution is the best 𝐹𝑂𝑔 of all generations.

IV. CASE STUDY AND COMPARISON

The performance of the SbO on this case study optimiza-

tion was compared to the technique developed by Min 

and Yih (2010). The authors of this work were not able 

to find another hybrid simulation-optimization method 

for the scheduling of elective surgery under uncertainty 

in the literature. 

A. Numerical data 

Part of the data utilized in this case study was extracted 

from Section 4 of Min and Yih (2010). A list of 150 sur-

gery cases to be scheduled was randomly generated fol-

lowing the distribution presented in that work. The num-

ber of cases was chosen on purpose to surpass the capac-

ity of the surgery services; therefore, it was assured that 

not all patients could be scheduled without delay. The 

same surgery cases’ list was used for all optimizations in 

this case study. 

For the Genetic Algorithm the number of generations 

(𝐺) was set to 20 and the number of individuals (𝑃) to 50, 

100 and 200. The initial generation of “here and now” 

solutions is generated by means of sampling the uncertain 

parameters and solving the resultant deterministic MILP. 

For the Min and Yih technique it is necessary to find 

the number of scenarios that provides a good solution, 

measured in the gap between the statistical lower and up-

per bounds. It was found that, for the numerical data uti-

lized here, 200 cases give a solution of 0.49% of optimal-

ity gap. The time needed to find the number was not in-

cluded in this analysis. 

B. Implementation 

The Genetic Algorithm used in the Outer Loop is from 

the GA toolbox of MATLAB R2014a. The GA of 

MATLAB cannot handle equality constraints when using 

integer variables, as in Eq. (2). So, a transformation of 

the 𝑥𝑖𝑏
𝑝,𝑔

binary variables to integer variables has been

done in the implementation, where the value of the inte-

ger variable indicates the index of the surgery block the 

patient is assigned to. 

The Inner Loop, and Min and Yih method, is carried 

on in the GAMS modeling/solving software v24.2.3, with 

CPLEX 12.6 as MILP solver. 

The techniques were implemented in an Intel Core i7-

7500U computer, running at 2.70GHz with 8.00GB of 

RAM memory. 

C. Results 

Since the final best individual found by the GA can vary 

depending on many random samplings, for each number 

of individuals 20 optimizations were run. Figure 2 pre-

sents the results showing the average of the best solutions 

found at each generation for each group of runs. The 

shaded areas around each line show the range between 

the worst run (upper limit) and the best (lower limit). The 

dash-and-dot line with no markers is the result of apply-

ing the solution of the deterministic model to the Inner 

Loop’s performance evaluator. For comparison, the up-

per bound of the Min and Yih’s optimization is also in-

cluded (dashed line). 

It is clearly shown that the quality of the solution im-

proves with the number of individuals employed in each 

run. This effect is partly based on the fact that better so-

lutions are found when the initial generation of each run 

finds better individuals, and the likelihood of this in-

creases when the population is greater. 

However, a greater population implies more passes 

through the Inner Loop, increasing the time required for 

each optimization in a less linearly way with the number 

of individuals. Therefore, it is important to reach an equi-

librium between the quality of solution and reasonable 

optimization times. 

Table 2 shows statistics of the average of solutions 

found when using different population sizes. The average 

solution when using a population of 100 individuals is 

almost 21% better than when using 50 individuals’ pop-

ulations, while taking 53% more time to finish 20 gener-

ations. The average time for a 100 individuals’ optimiza-

tion is less than 14 minutes, that can be considered rea-

sonable to find a better solution. 

However, Fig. 2 and Table 2 show that increasing 

population size to 200 individuals increases the average 

optimization run time in almost 90% but the average so-

lution is only 6% better. Figure 2 even shows that the 

range of solutions for populations of 200 individuals 

overlap the range of 100 individuals’ optimizations. 

Moreover, the average solution for a 100-population size 

is inside the range of solution of 200 individuals’ optimi-

zation. Therefore, it can be concluded that increasing the 

population to 200 individuals is not recommendable. 

Table 2. Average solutions for different population sizes 

Population size Total costs [103 $] CPU time [s] 

50 259.78 541.9 

100 224.06 829.6 

200 210.62 1567.9 
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Figure 2: Average solutions and range for different population 

sizes. Circle marker: 50 individuals; Rhomboid marker: 100 

individuals; Triangle marker: 200 individuals. Graph also in-

cludes the performance of the deterministic solution (dash-

and-dot line) and Min and Yih’s optimization (dashed line). 

Table 3. Average statistics of SbO with a population size of 100 

individuals 

Concept Value 

Objective function [103 $] 224.06 

Found in generation 6 

Outer loop costs [103 $] 164.29 (73%) 

Inner loop expected costs [103 $] 59.77 (27%) 

Patients not allocated within horizon 71.4 

Total expected overtime [hr] 76.63 

Best individual found in [s] 628.9 

Obj. func. of initial generation [103 $] 240.63 

Table 4. Performance of Min and Yih’s technique 

Concept Value 

Objective function [103 $] 203.14 

Assignation costs [103 $] 174.22 (86%) 

Recourse variable costs [103 $] 28.92 (14%) 

Patients not allocated within horizon 74 

Total expected overtime [hr] 31.20 

CPU time [s] 1109.5 

In Table 3 are shown the average statistics of an opti-

mization run with a population of 100 individuals. Each 

quantity in Table 3 was obtained by averaging the corre-

sponding value of all runs. The mayor contribution (73%) 

to the objective function value comes from the costs of 

assignation of patients to blocks, with the Inner Loop 

contributing the rest. As expected, an important number 

of cases go into overtime (almost 77 hours), thus explain-

ing the relatively large contribution to the total costs. 

Also, the great impact of the allocation variables 𝑥𝑖𝑏
𝑝,ℎ

is

in part due to the large number of patients that could not 

be scheduled within the horizon time. This result was ex-

pected because the number of patients was chosen in or-

der to surpass the capacity of the surgery service. The 

penalty for delaying surgery for a patient is accounted for 

in the value of the 𝐶𝑄𝑖𝑏  parameter assigned to the dummy

block, which was set to a very large number. 

Table 4 shows the performance of the Min and Yih 

technique applied to the present problem. Although their 

method was able to find a better solution in terms of the 

objective function’s value (9.3% cheaper than the aver-

age 100 individuals’ solution and 3.6% lower than the 

average 200 individuals’ ones), it does not represent a re-

alistic situation. From Table 4 it can be seen that Min and 

Yih solution incurred in lower recourse variables costs, 

even at the expense of a more expensive assignation 

schedule (leaving more patients without service). For 

comparison, Assignation costs equate to the Outer Loop 

costs in SbO, and the recourse variables’ level equals to 

the Inner Loop. The lower costs in the recourse variables’ 

level can be achieved because all days in the schedule are 

sampled at the same time and at the beginning of the sce-

nario. Therefore, the scheduler knows since the first day 

the duration of each surgery and LOS at the SICU beds, 

so, it can plan in advance how to better use the resources. 

This is a situation that does not happen in reality, since 

the scheduler cannot know, i.e., on Monday, what will 

happen the following days. It should be also noted that 

Min and Yih technique employed 33% more CPU time 

to finish it run. 

As a final observation, although an SbO optimization 

run takes an average of 829.6 seconds, the best individual 

if generally found in 628.9 seconds, in the 6th generation. 

The improvement of the solution stopped at that genera-

tion even in the best run, but the runs with populations of 

200 individuals show that exist solutions with lower total 

costs. The reason of this behavior could be a “niching” 

process. A niching process is a behavior found in me-

taheuristics algorithms where individuals converge to 

good solutions and stay in their vicinity, not looking for 

better values. For future works, a “deniching” technique 

(such as in Durand et al., 2010) can be applied to study if 

better solutions can be found. 

V. CONCLUSIONS

In this work, the Simulation-based Optimization frame-

work for optimization under parametric uncertainty has 

been applied to the problem of scheduling of elective sur-

gery under uncertainty and downstream capacity con-

straints. 

While the problem of elective surgery scheduling has 

been approached in many works, even under parametric 

uncertainty, the SbO framework gives the capacity to bet-

ter asses the behavior of a surgery unit with the imple-

mentation of simulation. This better assessment does not 

resent computing performance, and finds very good so-

lutions in a reasonable time. 

Compared against to a non-simulation technique, the 

SbO method gives solutions with worse objective func-

tions, but it is balanced with a more realistic modelling 

of the behavior of the scheduler. 

In future works, the performance of the SbO frame-

work will be compared to other techniques of scheduling 

under uncertainties that exist in the literature. 
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