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ABSTRACT

Anticipating the impact of urgent emergency arrivals on operating room schedules remains
methodologically and computationally challenging. This paper investigates a model for sur-
gery scheduling, in which both surgery durations and emergency patient arrivals are sto-
chastic. When an emergency patient arrives he enters the first available room. Given the sets
of surgeries available to each operating room for that day, as well as the distributions of the
main stochastic variables, we aim to find the per-room surgery sequences that minimise a
joint objective, which includes over- and under-utilisation, the amount of cancelled patients,
as well as the risk that emergencies suffer an excessively long waiting time. We show that a
detailed analysis of emergency break-ins and their disruption of the schedule leads to a
lower total cost compared to less sophisticated models. We also map the trade-off between
the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient
heuristic is proposed to accurately estimate the value of a solution with significantly less
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computational effort.

1. Introduction

The growing demand on healthcare services in the
developed world has fuelled a vast amount of
research in providing care more efficiently and effect-
ively, much of it within the context of Operations
Research. A particular focus has been put on the
operating room (OR), as it forms a central nexus in
the hospital, while also being responsible for a large
share of expenses. Despite these research efforts,
however, surveys have found that the level to which
research solutions are implemented, remains low
(Brailsford, Harper, Patel, & Pitt, 2009). Van Riet
and Demeulemeester (2015) note in their recent lit-
erature review on surgery scheduling that if
Operations Research models are to become widely
adopted, it is crucial that they tackle the components
that differentiate traditional (industrial) scheduling
models from those used in the OR. The authors spe-
cify the arrival of emergency patients as such a com-
ponent; while last-minute orders may exist in an
industrial context, they rarely have the same level of
urgency as medical emergencies.

However, emergency patients are no monolith.
Most patients who arrive at an emergency department
do not suffer from life-threatening conditions, and
their treatment can be deferred for several hours. In
contrast, a minority of cases are highly urgent, and the

imperative of beginning emergency surgery within 1h
of diagnosis is established by various triage systems
(Eitel, Travers, Rosenau, Gilboy, & Wuerz, 2003).
Emergency classification systems and other regulations
often stipulate a maximum waiting time for patients
(Eitel et al., 2003), especially for “emergent” patients,
the highest category of urgency. The link between rapid
intervention and medical outcomes is further expressed
by the maxim of “the golden hour” (Fleet & Poitras,
2011; Newgard et al., 2010).

In general, the criticality of timely interventions for
emergent patients is well established in the medical lit-
erature but rarely featured in the OR planning litera-
ture. The following papers represent some notable
exceptions. The BIM (Break-In-Moment) model
articulated by van Essen, Hans, Hurink, and Oversberg
(2012) optimises the sequencing of surgeries in antici-
pation of an emergent patient, by minimising the max-
imum interval between any two surgery completion
times. This establishes a worst-case bound on the max-
imum time until any OR becomes available, allowing
the emergency to “break into” the schedule without
interrupting the previous surgery. This first investiga-
tion into bounding emergency waiting times used the
assumption of deterministic surgery times, and made
no assumptions regarding emergency arrivals. Our pre-
vious paper on the Stochastic BIM problem
(Vandenberghe, De Vuyst, Aghezzaf, & Bruneel, 2019)
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extended this problem to the more general case where
surgery durations are only known stochastically, how-
ever, the actual break-in of emergencies and their
impact, ie. the way they disrupt the intended OR
schedule, remained unexplored. In this paper, our
intention is to include and investigate this dynamic
component. Latorre-Nunez et al. (2016) also sought to
restrict the worst-case waiting time for emergencies by
penalising excessive distance between consecutive com-
pletion times, but without considering the stochasticity
of emergency arrivals themselves. Paul and MacDonald
(2013) used non-preemptive multi-priority queuing
models to determine the optimal number of ORs
needed to ensure that emergent patients (of various lev-
els of severity) do not exceed their acceptable waiting
time. This study, however, focused exclusively on OR
performance related to emergent patients, rather than
including elective patients as well. To the best of our
knowledge, it has not been investigated how to create
surgery schedules where the “golden hour” is robust
for a series of stochastically arriving emergency
patients, and under general stochastic sur-
gery durations.

Anticipating the arrival of emergencies is hardly
the only focus of OR planning, however. The sched-
ule used by the OR department has multiple down-
stream effects on the intensive care unit, the nursing
schedule, the amount of hospital beds required, etc.
As a consequence, OR planning must consider a
number of objectives: over- and under-utilisation of
resources, overtime, risk of cancellation, as well as
sequencing constraints (e.g. children are generally
planned early; infected patients are planned at the
end). However, as alluded to earlier, break-ins by
emergent patients can have a disruptive impact on
these objectives as well: additional surgeries enter
the schedule and receive priority, which can lead to
subsequent elective surgeries being delayed or can-
celled. This then again affects the break-in potential
for future emergencies. Unfortunately, emergent
patients are rarely modelled in enough detail to cap-
ture this impact.

Our goal in this paper is to optimise a subset of
the more common performance criteria for OR
scheduling (expected over-utilisation, under-utilisa-
tion and patient cancellations), while taking into
account the dynamic disruptions caused by emer-
gencies. At the same time, we ensure that the min-
imal requirements for emergency waiting times are
not exceeded, by adding waiting cost penalties to
the objective function. The combination of these
two elements has not been investigated yet, and rep-
resents a more fine-grained analysis of the impact of
emergencies than is common.

This paper investigates the resulting scheduling
problem, where the focus is on the creation of a

one-day operational schedule. We start from a large
set of patients (waiting list) that would ideally be
scheduled on the following day, and we decide
which surgeries should be performed, and in what
order. The objective is to minimise the total operat-
ing cost, which includes over-utilisation, under-util-
isation, cancellation risk, as well as the need to
service emergent patients before a certain time
threshold is exceeded. One limitation is that we do
not include the assignment of surgeries to ORs. This
is because, in practice, higher-level schedules such
as a master surgical schedule (Hans & Vanberkel,
2012; Vanberkel et al., 2011) typically pre-assign OR
time blocks to certain surgical specialties. As each
patient belongs to one surgical specialty, the possi-
bility of swapping patients between rooms tends to
be limited. We thus work on the assumption that
each OR has a dedicated set of surgeries available
for scheduling. This mimics the reality of waiting
lists: the set of surgeries assigned to each OR repre-
sents a larger workload than they can (on average)
process in one day. The scheduling decisions thus
comprise the selection of surgeries from each OR’s
waiting list, and the sequence of performing them
within each room. We further assume that all ORs
are equipped to deal with emergent patients, and so
due to their urgency, the only criterion for their OR
assignment will be which room becomes avail-
able first.

Our contribution is three-fold: (i) modelling the
various stochastic components of emergent arrivals
and associated break-in mechanics, and proposing
solution methods for this problem (ii) estimating
the stochastic value of a detailed modelling of emer-
gent patients, as contrasted with more common
methods of modelling emergency impact (iii) devel-
oping an efficient heuristic that allows practitioners
to accurately estimate the impact of emergencies on
a schedule, without needing to replicate our
entire model.

2. Related literature

Given its importance in the hospital’s value chain,
the scheduling of ORs has been analysed from mul-
tiple perspectives. Typically, OR planning is divided
into three subproblems, each one associated with a
different decision level (Testi, Tanfani, & Torre,
2007). The strategic level forms the most long-term
view, and sets the number of ORs, staff size, and
general hospital policies. The tactical plan is
medium-term, and typically deals with the amount
of rooms and working hours assigned to various
specialties over weeks or months. Finally, the oper-
ational level covers with both the creation and adap-
tation of short-term (often daily) surgery schedules;



referred to as offline operational and online oper-
ational, respectively. As this manuscript focuses on
the creation of daily schedules, our literature review
centres on contributions to offline operational plan-
ning, and in particular to how emergencies
were modelled.

We briefly survey the field of online operational
planning first, however, as it often contains the
most detailed modelling of emergency patients. The
online operational level deals with adapting daily
schedules to unexpected events, which may include
finding the least costly way to adjust an ongoing
schedule in the face of emergency arrivals. Erdem,
Qu, and Shi (2012) were one of the first authors to
tackle this real-time rescheduling aspect. They pro-
posed a Mixed Integer Program (MIP) and a genetic
algorithm that support rescheduling decisions upon
the arrival of emergency patients, over a planning
horizon of a few days. Surgery on emergency
patients must begin at the moment of arrival, and
total cost calculations determine which OR will be
required to free up its schedule. van Essen, Hurink,
Hartholt, and van den Akker (2012) developed a set
of decision support systems in the case of emer-
gency arrivals. For any emergency arrival, the sys-
tem returns three options for rescheduling, which
each balance the competing desires of the various
stakeholders in different ways. While the online
operational level provides a necessary layer for
immediate adjustments to an existing schedule, it
provides no guidance for creating an initial schedule
that anticipates the arrival of emergency patients.
This remains the purview of the offline operational
level, to which we turn now.

The offline operational layer deals with the con-
struction of daily schedules over a planning horizon,
so the layer can be broadly divided into first assign-
ing patients a provisional surgery date (referred to
as advance scheduling) and then finalising the daily
schedules (allocation scheduling). Allocation sched-
uling thus involves OR assignment, decisions to re-
balance surgery loads, and the precise sequence and
starting times of surgeries. While many papers
(including ours) lie squarely within one category,
others straddle both or have sought to combine
them. Below we list recent contributions that
involve (but may not be limited to) selection and
sequencing decisions, as these form the best com-
parison for our specific planning problem. Landa,
Aringhieri, Soriano, Tanfani, and Testi (2016) cre-
ated a joint optimisation model that assigns surgery
dates and OR blocks to patients at a high level, and
then determines the optimal room sequences, in
order to balance the trade-off between OR utilisa-
tion and surgery cancellations. The problem is
solved using a combination of neighbourhood
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search techniques and Monte Carlo simulation. The
model recently proposed by Moosavi and
Ebrahimnejad (2018) consists of a set of MIPs
which roughly correspond to the various operational
planning stages, each with its own objective func-
tion. The first minimises the deferral of patients to
the next planning period, the second minimises the
waiting cost of scheduled patients, and the last
adjusts sequencing to minimise idleness and OR
overtime. Molina-Pariente, Fernandez-Viagas, and
Framinan (2015) address a scheduling problem
where surgeries are performed by a team of sur-
geons, and where their respective experience influ-
ences the surgery duration. The authors developed
both a MIP model and an approximate algorithm
which tackle date and OR assignment, as well as
sequencing. Meskens, Duvivier, and Hanset (2013)
created a model that includes the real-life con-
straints of availability, staff preferences, and affin-
ities among members. Sequencing decisions are
made in order to minimise makespan and overtime.
Recently, Eun, Kim, Yih, and Tiwari (2018) consid-
ered a single-OR system in which patients must be
assigned a date of surgery and a sequence number
in the OR. Elective patients each have a time-
dependent health status, which may deteriorate if
their case is delayed; emergency patients are, how-
ever, not considered.

Next, we wish to survey offline operational plan-
ning papers that have specifically modelled emer-
gency patients; for this, both advance and allocation
scheduling papers may be of interest. As described
in the introduction, few papers have considered the
criticality of timely interventions for emergent
patients, or sought to ensure them. Yet researchers
are well aware of the impact of emergency patients:
their arrivals can significantly disturb the oper-
ational surgery schedule by delaying other patients
and taking up extra capacity and resources. This
may in turn cause OR teams to run overtime (incur-
ring personnel costs and dissatisfaction) or cancel
some elective patients and postpone them to
another day (reducing patient satisfaction). As
reducing overtime and the likelihood of patient can-
cellations are central objectives in OR scheduling,
several papers have included emergencies in their
analysis. In Jebali and Diabat (2017), elective sur-
geries must be assigned intervention dates within a
planning horizon, but sufficient resources (OR cap-
acity and recovery beds) must be reserved to satisty
a daily stochastic demand of emergency capacity. A
two-stage chance-constrained stochastic program is
used to minimise costs while limiting the risk of
surgery cancellations. Rachuba and Werners (2014)
propose a multi-objective approach that takes the
differing needs of patients, staff and management
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into account. As the study is focused on a longer
planning horizon, emergency demand is modelled
per day as a stochastic demand, which may be
spread out over several ORs as required. The model
of Adan, Bekkers, Dellaert, Jeunet, and Vissers
(2011) creates tactical master plans that are also
feasible at the operational level, when accounting for
both elective and emergency patients. An estimate
of emergency patients informs the creation of the
operational schedule, and once it is in motion,
emergency patients may be admitted to ORs (lead-
ing to potential cancellations of elective surgeries)
or be deferred to other hospitals. Emergency arrivals
do not have a precise arrival time during the day,
but do have an internal sequence; later emergency
arrivals are more likely to be deferred. The extensive
patient admission model of Ceschia and Schaerf
(2016) schedules patients across an extended plan-
ning horizon, and its objective function assigns costs
to OR over- and under-utilisation, and the use of
ORs by various specialties. A local search method is
used to come to solutions, even in a dynamic envir-
onment where unexpected events occur; these events
include the arrival of a stochastic number of urgent
patients, which must receive surgery in any OR on
that day. In Molina-Pariente, Hans, and Framinan
(2016), the authors focus on an open scheduling
strategy, starting from a waiting list that exceeds the
total OR time available in the planning horizon.
Their goal is to assign an intervention date and an
OR in a way that minimises undertime and over-
time costs, and surgery cancellations. During a
Monte Carlo simulation, a number of emergency
patients are generated each day, who are then ran-
domly assigned across the available ORs.

The above papers show two broad strategies to
depict emergencies: modelling them as a single
amount of emergency capacity which must be fit
across the various ORs (Adan et al, 2011; Jebali &
Diabat, 2017; Rachuba & Werners, 2014), or model-
ling them as discrete patients who require interven-
tion sometime during the date of admission
(Ceschia & Schaerf, 2016; Molina-Pariente et al,,
2016). Both of these methods help to model the
impact of emergencies on total available capacity,
but do not consider the time-sensitive needs of
emergent patients and the (also time-specific) result-
ant disruptions they cause. Offline operational mod-
els in which emergency patients have a more
specific arrival time are comparatively rare. Moosavi
and Ebrahimnejad (2018) use a robust optimisation
approach to predict the capacity required for emer-
gency patients. Emergency patients must be sched-
uled in the same time block (of which there are 2-5
per day) as they arrive, but there is no decision pro-
cess for what room they enter. Duma and

Aringhieri (2015) create a simulation model to solve
the online rescheduling problem. They discuss an
extension of their main model to deal with time-
specified emergency surgeries as well, which tracks
(but does not optimise) the number of emergencies
operated on within 1h.

3. Model formulation

This section expounds the various components used
in our model. We begin by discussing the mechanics
of how emergency arrivals disrupt the initial sched-
ule, and the assumptions regarding emergency dis-
tributions. We then address the various components
of the objective function, and the impact of some
related design choices. Figure Al serves as a visual
illustration of the main model components.

3.1. Model dynamics

Let Z be the set of patients who require elective sur-
gery (with |Z| = M), which are available to be
scheduled on that day in one of K ORs, K=
{1,..,K}. OR k has an available time capacity Dy,
though each is permitted some allowed overtime
DPT. We will assume that ORs open at the same
time (+=0), and a regular workday lasts for 8h
(t=38). Unless stated otherwise, we initialise Dy =
8 ,k € KC; i.e. each OR is available for a full work-
day. Allowed overtime is initialised to DYT = 0.75.

The assignment of surgeries to ORs is assumed
to be given, for reasons specified in Sections 1 and
2. That is, T is already partitioned in subsets Iuke
IC, being the patients assigned to OR k. Not all
available surgeries must be scheduled, however, we
distinguish between the set Z of surgeries taken up
in the day’s operational schedule, and the set 7' Q of
annulled patients, where Z UZ? = 7. The selection
of surgeries to either Z or Z< is part of the model’s
decision variables.

The problem is specified by several random varia-
bles. First, we model surgery durations of elective
patients P = (Py, ..., Py) as independent random var-
iables, each having a known distribution with p; =
E[P;] and ¢? = Var[P;],i € Z. Second, a number of
emergencies ] will arrive during schedule execution,
which is a random variable with a known distribu-
tion. Third, for each emergency j€ J ={1,...,]},
let A} be the arrival time of emergency j with density
ft) and distribution function F(t) = Prob[AJ{ <tl,
where it is assumed that F(t) has no discontinuities
in its domain. We assume these arrival times A’ to
be independent and identically distributed. Then, let
A = (Ay,...,A)) be the increasing order statistics of
A' = (A}, .., A}), ie. we have, almost surely, A; <
A, < ... < Aj. So to be clear, Ajis the arrival time of



the jth emergency that arrives during the day, not
necessarily the arrival time of emergency j. Finally,
the emergency surgery durations Pj,j € J are also
independent and identically distributed with a known
distribution.

Surgeries are scheduled according to the (initial)
global schedule 7 = (n!, ..., 7X) € II. The schedule =
is the main decision variable, and 7* forms a partial
permutation of the surgery set Z allocated to OR k.
Each room schedule 7* thus consists of:

1. A selection decision, namely the partitioning of
the surgery set Zy into a set 7y of patients
selected for surgery and a set I,? of surgeries
that are annulled.

2. A sequencing decision, namely a permutation of
the selected surgeries Z.

Time in the OR is highly valuable, so we assume
that surgeries take place contiguously without inten-
tional idle time. Given the surgery durations P, any
particular schedule of surgeries 7 then results in a set
of completion times. However, the break-in of emer-
gency patients in specific rooms may delay subsequent
elective surgeries, disrupting the initial schedule 7.
Completion times are thus characterised as Cy, i€
Z,j € J, which is the completion time of surgery i
after the arrival of j emergencies. Note that Cjy are the
completion times under the condition that no emer-
gencies have arrived. Figure Al(c) illustrates how J=1
emergency disrupts an initial schedule.

We then define the BIM sequence B;; as the com-
pletion times C;; in ascending order. So, because of
the reordering, BIM Bj; is not necessarily related to
the completion time of surgery i. The intervals
between these BIMs form the Break-In-Intervals
(BIT)

Sij:Bij_Bi—l,j ,BOjZO ,iEI ,jE j

The BIMs constitute potential times when emer-
gency patients can break into the operating sched-
ule. From the perspective of each emergency, it is
not known when the next BIM will occur; but once
it does, the assignment is immediate. By default,
emergency patient j takes advantage of the first BIM
after its arrival time, denoted by

B]‘?:min{B,»j:iGI, sz>Aj} jed.

The jth emergency will therefore incur a waiting time
Wj = Bj—Aj. Furthermore, future completion times
in the corresponding OR will be incremented by the
emergency surgery duration P;. Note that while mul-
tiple emergency patients may be waiting for a BIM,
only one (the earliest arrival) can take advantage of it:
the next possible BIM in that room takes place when
the emergency surgery is completed.
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The mechanic of emergencies entering the first
available room creates an interdependency between
the various ORs. In Figure A2, we take a schedule
n, and focus only on one particular room. Within
this room, we generate different sequences of the
elective surgeries. When excluding emergencies, the
different sequences do not change the total work-
load in that room. When we do include emergen-
cies, the break-in rules above imply that a certain
room sequence may increase or decrease the chance
that the room will have to service an emergency.
This in turn affects other ORs. This interdependence
renders a room-by-room decomposition of the
problem impossible.

3.2. Emergency arrival process

The use of a homogeneous Poisson process is
likely to be a good fit for the day-to-day arrival
variability of emergent patients, and its use for this
purpose is established (Cardoen, Demeulemeester,
& Belién, 2010). However, no similar convention
exists for a nonstationary arrival process with an
arrival rate that changes from hour to hour
according to a known daily pattern. This time-
dependent arrival rate is likely to depend on fac-
tors such as country, season, day of the week, type
of hospital, and so on.

The arrival model for the emergency arrivals as
explained in Section 3.1 is a fairly broad class of
models which encompasses, for example, the nonho-
mogeneous Poisson processes. Such a nonhomoge-
neous Poisson process X(t), 0 <t <1 with bounded
rate function A(t) is a counting process with X(0) =
0 and with independent increments X(t + u)—X(¢)
having a Poisson distribution with mean | A(7)dr.
Let X; be the event times in which X(t) makes a
jump, then as discussed in e.g. Kao (1997), the
expectation function

t
A(f) = BIX(0)] —J Moo, 0<t<1,
0
transforms these event times into a (homogeneous)
Poisson process with rate 1. That is, the points
U; = A(X;) form a regular Poisson process with
fixed rate 1. This property allows us to show that
nonhomogeneous Poisson processes can be charac-
terised by the emergency arrival model explained
above. It is known (Pyke, 1965) that to generate
the event times U’ of a Poisson process U(t) with
rate 1 confined to t € [0,u], one can first generate
the total number of events J as a sample of the
Poisson distribution with mean u and then gener-
ate Uj,i = 1,...,], as independent samples from the
uniform distribution between 0 and u. From this,
the transform property gives the (still unordered)
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event times X, = A"'(U!) of a nonhomogeneous
Poisson process on the unit interval with expect-
ation function A(t) so that A(1) = u. Now, since
the U] are independent, so are the X|. Therefore,
in the emergency arrival model above, if we choose
J to be Poisson with mean A(l) and F(t) =
A(t)/A(1), the described emergency arrival model
will be equivalent to a nonhomogeneous Poisson

process with expectation function A(#).

3.3. Objective function

The collective waiting times W;, j € J, of the emer-
gency patients will feature as a component of the
objective function, under a cost function h(W) and

cost factor cy:
> k(W) (1)
€T

gwait (1) = cwE

The other components of the objective function are
more common in OR planning literature. To start, we
penalise the number of cancellations that occur during
the day’s execution. Note the difference between
annulling a surgery (deciding in advance not to
include a surgery into the day’s schedule) versus can-
celling a surgery (the online decision not to perform
surgery due to lack of capacity). We only penalise the
latter, not the former. Emergency surgeries cannot be
cancelled. An elective surgery may be cancelled if per-
forming it is likely to result in an excessively late com-
pletion time, defined as the available capacity plus the
“allowed overtime” capacity. Formally, surgery i will
be cancelled from instant f, provided that ¢+ u; >
Dy + DOT. Cancellations are determined sequentially:
if the ith surgery in the sequence is cancelled, a
shorter (i+ 1)th surgery could still start. The decision
to cancel is made at its would-be start time, but more
frequent evaluations could be easily implemented. The
cancellation variable Z; equals 1 if in the state when
all emergencies have arrived (j=]), surgery i has been
cancelled; and 0 otherwise. Cancellations receive a
penalty in the objective function:

gCancel(TC) = CZE |:Z Zl:| > (2)

i€l

Next, we add objectives related to OR utilisation.
We assume that all ORs open at the same time in
the morning; and that they close once both their
emergency surgeries have been completed, and their
elective surgeries have been either completed or can-
celled. In other words, they are utilised until C; =
max{Cy, B + P{ :i € Iy, Z; = 0,j € Ac} where A
is the set of emergencies assigned to OR k, and C;
denotes the state when all emergencies have arrived
(j=J). Given the bottleneck status of the OR,
under-utilising one day’s OR capacity can create

capacity problems in the future. Yet an OR running
past closing time incurs costs as well. The variables
UTy and OTy respectively track unused and over-
used capacity in room k, defined as

UTy = max(Dk—Ck, 0), ke Kk
OT; = max(Ck—Dk, 0),]{ e

Under-utilisation and over-utilisation are penal-
ised in the objective function using the factors cyr
and cor. This leads to the final two objectives:

gor,ur(m) = corE [Z OTk] + curE {Z UTk] ,

kel kel
(3)

Summarising, the objective function in this paper
takes the form:

ming(n) , with

nell

g(m) = cwE [Z h<wj>} +ez Y ElZ]

jeJ i€l (4)

+ cor: [Z on} + curE [Z UTk] :

kel kel

Our contribution in this paper relates mainly to the
first term in this objective, as the other terms have
featured in the literature already (see Section 2) and
are understood to be important. For this reason, we
will refer to the latter terms as the “core” objectives,
and to the first term as the “emergency waiting
time” objective:

g(m) = cwE [ZMWD} +E[gooe(m)] . (5)

j€eJ

The core objectives can be combined in various
ways, but a total cost evaluation as above is relatively
common. How to include emergency waiting times is
more open to debate. Some previous research has
argued that the typical waiting time bounds set by
emergency classification systems represent an underly-
ing continuum of risk (Dexter, Macario, Traub,
Hopwood, & Lubarsky, 1999). In this sense, low
waiting times have an intrinsic medical value,
which could be reflected by simply assigning a cost
cw to the term. But while shorter waiting times
may lead to slightly more successful surgeries,
avoiding the ramifications of excessive waiting time
may be a more critical point of motivation for
hospitals. As such waiting time optimisation may
be better reflected by a threshold objective, which
incurs a (large) penalty cost cy when the threshold
Wy, is exceeded, but is zero otherwise. This is the
approach we will take in this paper.

with  h(x) = 1(x > Wy,) ,



3.4. Impact of design choices

It is clear that the objectives above can compete, and
depending on the sizes of the respective cost factors,
some may dominate others. In particular, other
authors have commented on the trade-off between
minimising under-utilisation on the one hand, versus
the risk of cancellations and over-utilisation on the
other (Adan et al., 2011; Rachuba & Werners, 2014).
This dynamic applies to our model as well: when cost
factors are chosen which punish over-utilisation far
more than under-utilisation or vice versa, this results
in schedules which are heavily skewed towards one
objective over others.

A similar impact, more specific to our research,
can be seen when over-emphasising the waiting
time cost factors (Wy, and associated cost cy);
especially when the emergency arrival distribution is
very concentrated. An illustration of this is shown
in Figure A3(a,b). For two emergency arrival den-
sities, we found the best schedule for a set of cost
factors Wy, = 15min and ¢y, = 10,000, and display
the expected BIMs of this schedule across all scen-
arios. We can see that in the resultant schedules, a
high emphasis has been put on centring expected
BIMs around the density peaks.

We also note that the choice of a threshold
objective is not the only mechanism to avoid exces-
sive emergency waiting time. Other objectives could
serve the same purpose, such as the minimisation of
a set number of the largest BII intervals. However,
as discussed in Vandenberghe et al. (2019), the
impact of this decision is relatively limited: 1% of
schedules with the best values for one of these
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objectives, also score (on average) in the top 3% of
schedules for the other objectives.

4. Solution methods
4.1. Objective value estimation

In order to solve the problem min, g(n) of selection
and sequencing in each room, several methods are
available, but because in general no closed-form
expression for g(7) is available we will resort to an
approximate method. To capture the stochasticity of
the problem, we can create a large set N of inde-
pendent scenarios (with || = N). Each scenario
contains independent realisations of the surgery
durations P, the number of emergency arrivals J,
emergency arrival times A and emergency surgery
durations P°. These realisations are respectively
referred to as P", J%, A", P°". For solution =, let
g(m; P, J", A", P") be the deterministic value of the
cost in the nth scenario, then the true expectation
g(m) in (4) is replaced by the unbiased estimator

O 1 . n n n pen
gN(ﬂ)zﬁ;g(n,PJ,A,P ) )

called the sample average function. The minimisa-
tion of g,(m) serves as an approximation to the
“true” problem (4). This method of tackling stochas-
tic problems is referred to as sample average
approximation (SAA) and its convergence to the
true optimum was studied in great detail by
Kleywegt, Shapiro, and Homem-de Mello (2002).

To be clear, the sample average evaluation of a
schedule requires the following steps:

Algorithm 1. Sample average function for objective g(n) (Full Estimator)

for each scenario n € N do

Generate surgery durations P” for each of the M elective surgeries

Generate J" emergencies with ordered arrival times A" and durations P*"

for each emergency arrival j = 1,...,J" do

if surgery i is not yet cancelled then

Inspect the start time t = C;—P}’ of this surgery in the scenario

If the cancellation rule is violated at start time f, cancel surgery i

1:
2
3
4
5: for each selected elective surgery i € Z do
6
7
8
9

Identify the first available BIM (Bj) for j among non-cancelled surgeries

10: Enter emergency j into the schedule at B;, in respective room k

11: Decrease room capacity Dy by P, and update future BIMs and Cj;

12:  Calculate the four cost components to obtain g(x, P",J", A", P*")

13: Calculate the average cost across scenarios ¢ (7) as in (7)
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We emphasise that the break-in of emergencies does
not use “future” knowledge in its decisions: the interpret-
ation of being assigned the next B; is not that it knows
when the next BIM will occur, but that it waits for the
BIM to occur. Furthermore, emergencies must be
handled sequentially, as each changes the state of the
schedule for the next arrival. In computational terms, sig-
nificant speed gains can be achieved by performing the
evaluation in parallel across the N scenarios, and by limit-
ing re-calculations (e.g. if no emergency has entered a
cancellations within that room remain
unchanged). Nonetheless, the evaluation is expensive for
large sets of 7. In order to make a compromise between
calculation time and accuracy, we will propose an
approximation method in Section 5.6.

room,

4.2. Genetic algorithm

Genetic algorithms (Goldberg, 1989) are local
search methods that allow for a high degree of

customisation. Solutions are represented as chro-
mosomes, and follow a process mimicking genetic
propagation. Promising chromosomes are selected
to combine with others, and mutation operators
help explore more of the search space. Algorithm
2 presents pseudo-code for the implementation of
the genetic algorithm. The parameter values used
throughout this paper are listed in Table Al, and
were chosen based on a preliminary analysis on
the benchmark set. Note that we limit the number
of generations to 500 as our experiments require
iterations over large numbers of instances and
parameters; practitioners could comfortably pick a
higher value. Performance results of these parame-
ters on a mid-size (K=10) test instance are dis-
played in Figure A4. The rest of this section
consists of a detailed explanation of each step in
the algorithm.

Algorithm 2. Genetic Algorithm (GA)

1: Generate population Il of ¢ chromosomes through random partial permutation
2: Evaluate the fitness function value of all solutions in ITj.

3:for {=1,...,0n. do
for0=1,...,0 do

Choose 2 parent chromosomes from IT,_; for recombination, using rank-based selection.

Apply the mutation operator on both offspring.

Evaluate fitness of both offspring.

4
5:
6: Apply appropriate crossover operator to obtain 2 offspring.
7.
8
9

if an offspring has a similarity score of > 90% with either parent then

10: Compare fitness of this offspring with the most similar parent

11: if parent fitness is superior then

12: Discard the offspring

13: From the current population Il,_; plus non-discarded offspring, create the next population Il, by

selecting v chromosomes through elitist selection and ¢—v through rank-based selection.
14: From the final population Iy, , choose final solution 7 so that g\ (7) < gy(n) ,Vn eIl ,n# 7

4.2.1. Representation of the solution

Our model uses an integer representation of candi-
date solutions. This allows surgery IDs to simply be
transcribed into the representation. To retain infor-
mation about the total amount of patients assigned
to each room, we use “negative IDs” to represent
annulled patients; these annulled surgery IDs are
sorted to the end of a sequence to avoid symmetry.
For a room k which has surgery IDs {1,2,3} avail-
able to schedule, the planned sequence (1, 3) is thus
represented as (1,3,—2) in the chromosome. For ease
of interpretation, we represent the surgery schedule
as a matrix. The various ORs are defined as rows,
whereas columns represent places in the sequence. If

not all rows are of the same length, we pad the
schedule with zeroes in between selected and
annulled patients. For instance, a possible schedule
for the room assignments Z, = {1,2,3};Z, = {5,6}
can be rendered as (1,2,—3);(6,0,—5).

4.2.2. Selecting best-fit individuals for crossover
An exhaustive combination of all chromosomes in
the population is typically not efficient. Instead, we
first evaluate the respective fitness of each chromo-
some. As covered in Section 4.1, this can be done
by evaluating (7). In all further experiments, we
select N=2000 as the number of scenarios
to estimate.



We then use rank-based selection to select chro-
mosomes for crossover. After sorting, each chromo-
some 7; receives a rank 1 < R; < R« based on its
fitness g, (m;), and an associated probability
R;/ Zf:‘"f* (Rj); where Ry is determined by the
number of candidates. As this is a minimisation
problem, the lowest objective value would receive
the best (i.e. highest) rank Ryax. A weighted random
selection then determines the selected chromosomes.
This mechanism ensures a balance between better
solutions having a higher chance of propagating
their content into the next generation, but maintain-
ing genetic diversity as well. It is furthermore robust
to high differences in fitness between chromosomes.
Ranks are kept up-to-date as chromo-
somes enter.

new

4.2.3. Crossover operator

We employ the two-dimensional substring crossover
and associated repair mechanisms, initially proposed
by Tsai, Hong, and Lin (2015). This operator is
defined specifically to work with a two-dimensional
matrix, making it well suited for our case of surgery
sets assigned to ORs. Furthermore, the authors
show that it performs well compared to competing
operators, such as the widely used partially
mapped crossover.

The essence of the operator is that a single cross-
over point in room k and sequence position m is
chosen, as well as a crossover direction (horizontal
or vertical). In the case of the horizontal direction,
the first offspring is formed by copying the rooms
1,..,k—1 from parent 1, as well as the first part of
the sequence in room k (namely the surgeries at
indices 1, ..., m); the second part of room k and any
remaining rows k+ 1,...,K are copied from parent
2. The second offspring is created analogously, but
swapping the roles of both parents. Finally, the case
of vertical crossover works by copying columns
rather than rows.

The crossover operator is likely to result in
invalid schedules: the room sequences of offspring
may contain the same surgery ID twice, or contain
a surgery ID in both the positive (planned) form
and negative (annulled) form. As an example, for
the room assignment Z; = {1,2,3}, the room
sequences (1, 3) and (3,2,—2) are both invalid. If an
invalid offspring is detected, we apply a repair oper-
ator, which iterates over one half of the schedule to
sequentially resolve duplicates. The precise steps of
this repair operator are slightly different depending
on whether it is repairing the 1st or 2nd offspring,
and whether this offspring was constructed through
the horizontal or vertical crossover direction. We
refer the reader to Tsai et al. (2015) for the detailed
repair steps.
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4.2.4. Mutation operator

After crossover, both offspring are subjected to a
mutation operator. We implement the equivalent of
a bit-by-bit mutation operator, which acts on every
part of a chromosome with probability ppy.

First, the operator can make changes to the selec-
tion of surgeries in the given chromosome: sched-
uled surgeries may be annulled, and annulled
surgeries may be added to the schedule. We do not
iterate over each of the surgeries to determine this
change, as this would lead to a “drift” towards hav-
ing half the surgeries scheduled and half annulled.
Instead, both the number of surgeries to add (Ngd4)
and annul (Njnu) are determined independently,
using two samples from the binomial distribution
with success probability pmy and |Z| = M number
of trials. Afterwards, a number of surgery indices
equal to Ny are chosen from the pool of sched-
uled surgeries; and vice versa for N,qq. If either N,gq
or Nynnu exceeds the available number of surgeries
to add or annul, we choose the available num-
ber instead.

Second, we iterate over all scheduled surgeries for
a possible change to their sequencing. With prob-
ability pmu, surgery i is moved to a random pos-
ition in the room sequence (excluding its current
position).  Other surgeries are moved up
accordingly.

4.2.5. Maintaining diversity
In order to limit the number of nearly identical
chromosomes in the population, we compute a
schedule similarity score for each offspring with
each of its parents. If an offspring is judged as too
similar to either parent, its fitness is compared to
that of the most similar parent. If the offspring’s fit-
ness is superior, the offspring remains a candidate
for the next population; otherwise, it is discarded.
The similarity score of two schedules is computed
by iterating over all available surgeries Z. If a sur-
gery is annulled in both schedules, this surgery is
marked as a point of similarity. If a surgery is
planned in both schedules and occupies the same
absolute position in the room sequence, it is marked
as a point of similarity. A percentage score is then
obtained by dividing the number of points of simi-
larity by the total number of surgeries available (M).
As an example, the room schedules (1,2,3,—4,—5)
and (3,2,4,1,—5) have two points of similarity, for a
similarity score of 40%.
4.2.6. Replacing least-fit chromosomes with
new offspring
After sorting all chromosomes of both the old and
the new generation, we choose the amount v of
chromosomes with the best objective value, and
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these are directly copied into the new generation.
The remaining ¢—v are determined through a
rank-based selection, as in Section 4.2.2.

5. Analysis
5.1. Surgery and emergency data

Our data regarding elective surgeries is mainly com-
prised of instances from the full benchmark set cre-
ated by Leeftink and Hans (2018). This benchmark set
was created by collecting 200,000 surgery realisations
from five Dutch hospitals, and clustering these into
1018 surgical types. These surgery types are then
sampled to create various surgery clusters and theoret-
ical case mixes; we select the RealLifeSurgeryTypes mix
of instances.

The resulting instances are composed of a set of
surgeries, represented as three-parameter lognormal
distributions, which we use to draw duration samples
from; we truncate these to be between 10 and
400 min. Each instance is further characterised by a
number of ORs K =5,...,40, and by a surgery load
0.8, ..., 1.2 representing total expected workload versus
total capacity. As our algorithms are capable of select-
ing which surgeries must be performed, we construct
instances with a high surgery load to simulate a wait-
ing list. To do this we select all instances with surgery
load 0.8, and with number of ORs K= 10, 20, 30. By
then halving the number of ORs in each instance, we
obtain a set of 30 instances with a surgery load of 1.6
and with K=5, 10, 15.

As the benchmark set only concerns elective sur-
geries, we base the durations of emergency surgeries
on the results of Huber-Wagner et al. (2009), in
which the authors analyse data collected by the
Trauma Registry of the German Trauma Society
and calculate their mean and interquartile range
(IQR). This registry records urgent and life-saving
operations, making it a good fit for our focus on
emergent patients. Huber-Wagner et al. (2009) list
five classes of emergency operations with their own
mean and IQR, and their relative proportion. Based
on these data, we fit three-parameter lognormal dis-
tributions, the precise values of which can be found
in Appendix A.

In the OR scheduling literature, emergency arriv-
als usually follow a Poisson distribution, which is
well suited for modelling the total amount of emer-
gencies per day. This is, however, insufficiently
granular for our purposes. Further, while a number
of papers modelling patient flow in the emergency
department have been more explicit about the
arrival distribution, it is clear that this distribution
can vary significantly according to country, season,
day of the week, type of hospital, and so on
(McCarthy et al.,, 2008). Our methodology does not

presuppose any particular distribution, and in fact,
we would recommend practitioners to use their own
historical data on emergency arrivals to create a dis-
tribution. To reflect this, we seek to estimate the
added value of our model for various types of emer-
gency arrival distributions, and so experiments are
run for a variety of emergency arrival models:

e UniformLow, UniformMid, UniformHigh: these

models share an underlying uniform distribution
for arrival times (spread over the day between
t=0 and t=28), but differ in the amount of
emergency patients likely to arrive. Within any
scenario n, the arrival amount J” is obtained by
drawing a sample from a discrete uniform distri-
bution. The number of arrivals in “UniformLow”
follows U(0, 4); “UniformMid” follows U(3, 7);
“UniformHigh” follows U(6, 10).
After drawing ] samples from the underlying
distribution, we order the samples to obtain the
increasing order statistics of A’ = (A}, ...,A}),
as per Section 3.2.

o RealisticPoisson: this model is based on the
most granular estimation of emergency arrival
times (McCarthy et al., 2008) that we were able
to find. Based on this input, we defined a non-
homogeneous Poisson process (depicted in
Figure A5) which defined an arrival rate for each
of the hours from 8 AM until 5PM. To form
each scenario, we sample across this range in
increments of 0.5min and a rate 1/120th the
hourly rate. The resulting Poisson events deter-
mine the number of arrivals as well as their
arrival time, precise to 0.5 min.

e BimodalPoisson: using a non-homogeneous
Poisson process (also depicted in Figure A5), this
model creates a bimodal distribution for arrival
times, with the peaks roughly corresponding to
periods of high traffic congestion (9 AM and
16 PM). As an emergency distribution with lower
entropy, this provides insight into a case where
emergency arrivals could be more clearly antici-
pated. Scenarios are generated according to the
same method described for “RealisticPoisson”.

5.2. Cost parameters

We set our cost parameters in accordance with
other research papers. Olivares, Terwiesch, and
Cassorla (2008) report that healthcare practitioners
perceive the costs associated with under-utilisation
as 60% higher than over-utilisation costs. We couple
this with the data from Argo et al. (2009) that
under-utilisation costs amount to about $600 per
hour in American public hospitals; a figure in line
with values reported for European hospitals (Lamiri,



Xie, Dolgui, & Grimaud, 2008). Adjusting for infla-
tion and currency, we set under-utilisation to €600
per hour, and over-utilisation at €375 per hour.
Cancellations incur an additional €250 per cancelled
patient, which reflects the cost of patient dissatisfac-
tion and resources spent on preparing the patient and
OR. We emphasise that the precise value of these
parameters is hospital-dependent, and indeed the lit-
erature contains several sets of parameters. As our
methods and estimators do not hinge on any particu-
lar parameter combination, we expect them to be
fairly robust to parameter changes.

To our knowledge, this is the first paper that fea-
tures a penalty cost for excessive waiting time in the
objective function. While recent years have seen sev-
eral papers argue for the importance of short
response times for emergencies (Mclsaac et al,
2017; Wilde, 2013), estimates on the impact of
excessive delay are scarce. We base ourselves on the
recent paper by Mclsaac et al. (2017), in which the
authors use propensity score-matched analyses to
measure the association between surgical delay and
death. Their results estimate the total cost difference
between delayed and non-delayed emergency sur-
gery to around €1325. This is an average across all
five emergency classifications (using a very similar
system to ESI), but it stands to reason that for the
most urgent categories (which we focus on) this will
function as a lower bound. Adjusting for this
slightly, we set the excessive waiting time cost to
€1500. While this is relatively high, our solution
method will try to avoid incurring it in too many
scenarios. The associated threshold for what is con-
sidered excessive waiting time is set to 45 min. This
is the threshold analysed in Mclsaac et al. (2017)
and is consistent with the latest stipulations for
appropriate waiting times.

5.3. Objective function of special cases

We also set a few special cases for the calculation of
the objective function. Recall that ORs open at the
same time in the morning, and that each room
closes at the time C; when emergency surgeries
have been completed, and elective surgeries have
been either completed or cancelled. Then Cy;, =
mingex Cy represents the first time an OR completes
all its surgeries, and closes. Cyax = maxgexcCk is the
moment at which all ORs close, and this represents
the end of the day shift. Emergency patients arriving
after Cpax and/or Cpy, represent a special case.

First, if emergency patients arrive after Cp,y, this
is an arrival outside of all scheduled operating
blocks of the daily surgery schedule. We thus
assume that these patients will be handled by the
evening shift or an equivalent emergency readiness
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team, but do not see it as part of the planned sched-
ule. These emergencies are discarded and not con-
sidered in the objective function.

Second, it is possible that emergency patients arrive
when a few (but not all) ORs have finished their daily
workload, i.e. between Cuin and Cpax. One could pre-
sume that such emergencies can be handled in the
vacant rooms, voiding the need for break-ins and for
this part of the objective function. In fact, our experi-
ments show that under certain parameters, the opti-
mal schedule would be one that leaves one or more
ORs entirely empty, in preparation for emergency
arrivals. This encroaches on a common and popular
research topic in surgery scheduling: is it better to
reserve one or more ORs for emergencies only (dedi-
cated OR policy), or reserve some capacity in each
elective OR (flexible policy)? The results of compara-
tive studies on both policies remain inconclusive, with
some studies favouring the former (Ferrand,
Magazine, & Rao, 2010) others the latter (Wullink
et al., 2007), and still others proposing hybrid policies
(Ferrand, Magazine, & Rao, 2014). As the pure prob-
lem (4) presupposes neither policy, our solution meth-
ods may choose to pursue either a dedicated or
flexible policy depending on cost parameters, and pro-
vide evidence which is superior under what circum-
stances. While this topic has the potential for
interesting findings, it is not within the scope of this
paper. Given that the concept of BIMs is very aligned
with the flexible OR policy, we will assume that it is
in effect. Concretely, we assume that once an OR k
finishes its daily workload, the room and its surgical
team go offline and cannot be used for emergencies
arriving after Cy. This disincentivises the creation of
empty rooms, and reflects the fact that in a flexible
policy, hospital staff is not idling in anticipation of
emergencies.

5.4. Value of the stochastic solution

To gain insight into the value of the stochastic solu-
tion, we will seek to solve the problem (4) using dif-
ferent estimators: the Full Estimator, CapacityDet, and
CapacityStoch. The latter two include stochastic infor-
mation about emergency arrivals to various degrees of
sophistication, and thus represent models that mimic
emergency  break-ins in less detail.  Since
CapacityStoch does not use A, and CapacityDet uses
neither A, J nor P¢, they estimate only the “core” cost
components (i.e. gcore(7) = Zeancel () + got, ur(7)).
We refer to their estimations as gy cs n(7) and
&core,cp, N (1) respectively. And as these estimators still
use SAA, we use gcorecs(m; P J%PY)  and
Zcore,cp (7, P") for the deterministic values of the costs
in the nth scenario for both estimators, respectively.
The estimators are defined as follows:
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Algorithm 3. Sample average function of CapacityDet for gcore ()

for each scenario n € N do

Generate surgery durations P” for each of the M elective surgeries
Calculate the rounded expected amount of emergencies |E[J]] and their expected durations E[P°]

for j=1,...,|E[J]] do

Assign emergency j to room k, and decrease available capacity Dy by E[P¢|

for each selected elective surgery i € Z do
if surgery i is not yet cancelled then

1:
2
3
4
5: Choose room k by weighted random selection (using room weights RW)
6
7
8
9

Inspect the start time t = Cjj—P} of this surgery in the scenario
10: If the cancellation rule is violated at start time ¢ (with respect to updated Dy), cancel surgery i
11: Calculate the three core components to obtain gcore, cp (70, P”)
12: Calculate average cost over scenarios g, cp, n(7T) = #ZL &core,cn (70, P")

Algorithm 4. Sample average function of CapacityStoch for gcore ()

for each scenario n € N do

Generate surgery durations P” for each of the M elective surgeries

Generate J” emergencies with durations P*"

for each emergency arrival j = 1,...,]" do

Assign emergency j to room k, and decrease available capacity Dy by P"

for each selected elective surgery i € Z do
if surgery i is not yet cancelled then

1:
2
3
4
5: Choose room k by weighted random selection (using room weights RWy)
6
8
9
9

Inspect the start time ¢t = Cjj—P} of this surgery in the scenario
10: If the cancellation rule is violated at start time ¢ (with respect to updated Dy), cancel surgery i
11: Calculate the three core components to obtain gcore, cs(7, P”, J", P")
12: Calculate average cost over scenarios g ¢, cs (%) = %Zle Zcore,cs (1, P™, ], P")

CapacityDet (detailed in Algorithm 3) optimises
Elgcore(m)], but only utilises knowledge about the
expected number of emergencies that can arrive, as
well as their expected surgery duration. The estima-
tor randomly reserves |E[J]] blocks of length E[P]
across the ORs. This will lead to a higher workload
in some ORs, and lead to commensurate changes in

over-utilisation, under-utilisation and cancella-
tion risk.
CapacityStoch  (detailed in  Algorithm 4)

improves on the first estimator by actually drawing
samples from the distributions of both the number
and the duration of the emergencies. However, an
emergency is still randomly assigned to an OR,
instead of assigning it to the OR with the earliest
completion time after the emergency’s arrival.
Therefore, no samples of the emergency arrival
times are used. This estimator is similar to the
methods used in some of the latest papers on sur-
gery scheduling (Adan et al., 2011; Molina-Pariente
et al., 2016; Moosavi & Ebrahimnejad, 2018).

Full Estimator is our own estimator (detailed in
Algorithm 1) for the full objective (4), using all
available stochastic information (surgery durations,

emergency arrival times, and emergency surgery
durations), as well as break-in mechanics.

Each estimator will make selection and sequenc-
ing decisions based on its own estimate of the
objective function, which is in turn based on the
stochastic information which it can process.
Assuming that the dynamics regarding break-ins we
described in Section 3 represent the most realistic
environment, we can compare the performance of
each estimator by taking their respective optimal
schedules and inspecting performance in this most
realistic environment. Note that in CapacityDet and
CapacityStoch, we assign emergencies to rooms ran-
domly (according to the uniform room weights
RW; =1/K ,k € K), rather than in ways that might
help minimise their estimate of gcore (e.g. by
choosing the room with the lowest assigned work-
load). This is because the environment that the
estimators will be tested against, will not allow
such choices either. As CapacityDet and
CapacityStoch do not track arrival times or avail-
able BIMs, choosing a random room k is a safe
prediction; other choices would in fact disadvan-
tage these estimators further.
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Table 1. Average performance results reached for the benchmark set.

Emergency arrival distributions

ORs Realistic Poiss. Bimodal Poiss. Uniform Low Uniform Mid Uniform High
5 3598 (287]) 3980 (364 3197 (187].) 4598 (530 -
+188 (—35|+223) +328 (+37|+291) +163 (+137]+26) +563 (+463|+100) -
+398 (+183]+215) +551 (+275]4-276) +306 (4+204]+102) +491 (+381]+110) -

10 6884 (53], 6645 (47).) 6678 (38, 7037 (71].) 7703 (178].)
+241 (+55]+186)  +337 (—1]4338) +141 (+2]+139) 4223 (+61]+162) +340 (+84]+-256)
+892 (+20|+872) +-808 (+16|+792) +534 (—3]+537) 4878 (4+20|+858) 4901 (+136]+765)

15 10,426 (10].) 9719 3l 10,002 (519 10,373 (15].) 10,805 (30].)
+132 (+10]+122) 4273 (4+25|+248) +165 (+1]+164) 4292 (—3]+295) +316 (+23]+293)
+737 (+3]+734) +796 (—2|+798) +711 (+3]+708) 4898 (—3]+901) +1221 (+5|+12716)

Experiments where the expected number of emergencies exceeds the number of ORs, are omitted. Each triplet of cells lists the average objective
value of the best schedules obtained by (from top to bottom) the Full Estimator, CapacityStoch, and CapacityDet. For the Full Estimator, we provide
the absolute cost, and in brackets, its composition (x|.); where x is the value of Gy, (%), and the value of §c,.(n) can be inferred. For the other
estimators we list respective deviations from the absolute cost, and between brackets (x|y) the composition; where x = changes in gy, (7), and

y = changes in Gy ().

In Table 1, we compare the three estimators.
Using the genetic algorithm defined in Section 4.2,
each instance of the benchmark set is solved for
each of the three estimators, and each of the emer-
gency arrival models. The resulting best schedules
are then evaluated as gy (m) where 7 is the best
schedule 7icp n,7Tics,y or 7y for CapacityDet,
CapacityStoch and Full Estimator respectively. The
final evaluation uses a larger number of scenarios
N’ = 25000 to obtain a more precise estimate. Note
that as the genetic algorithm does not guarantee
optimality, the comparison of the various estimators
is inexact. However, as we consistently use the same
genetic algorithm to search the same solution space,
only with different objective estimators, we expect
the relative performance differences between estima-
tors to still be informative.

The results show that the cost composition of
g(@) is clearly dependent on the parameters of the
specific benchmark set, particularly on the ratio
between ORs and the average number of emergency
patient arrivals. When the number of ORs is low
and the number of emergent patients comparatively
high, waiting cost violations gy,.(7) account for a
significant percentage of the cost. However, as the
ratio of ORs to emergent patients increases, the
schedule contains more surgeries (and more BIMs).
This increases the likelihood that at least one OR
will complete its surgery before excessive waiting
time occurs, and in turn reduces the importance
Of &yt (2)-

In comparing the various estimators, we empha-
sise that even the first estimator (“CapacityDet”) is
already fairly sophisticated, as it uses the genetic
algorithm to find a solution that (across N=2000
scenarios) anticipates total emergency capacity and
minimises cancellations, over- and underutilisation.
Nevertheless, the schedules it finds tend to have a
significantly higher cost than those found by
CapacityStoch, which is in turn consistently outper-
formed by the Full Estimator.

The superiority of the full estimator can partly be
explained by the tendency of simpler estimators to
incur more frequent threshold violations for emer-
gency waiting time. This is mainly true for the
instances with K=5, and is as expected, since the
simple estimators could not anticipate this cost
component. However, for most instances, the better
prediction of emergency break-in dynamics leads to
a gain for the core cost components as well, and
particularly for the K=10 and K= 15 instances, this
accounts for the vast majority of improvement.
Interestingly, the absolute added value of the full
estimator is relatively consistent over the various
instances, usually achieving an objective value
between h Stoch, which iser than CapacityStoch. In
relative terms, this means cost improvements are
most significant for the K =5 instances.

When comparing the various emergency arrival
distributions, the general pattern is that the added
value of the full estimator improves with the average
number of emergencies. This is particularly visible
for the three uniform distributions: CapacityStoch is
quite competitive with the full estimator when
applied to UniformLow (E[J] = 2), but gets progres-
sively worse when applied to UniformMid and
UniformHigh. Of particular interest is the full esti-
mator’s performance when applied to the
BimodalPoisson distribution. Though its average
number of emergencies is quite low (E[J] = 2.9), the
cost improvements achieved by the full estimator
are some of the highest across all instances. As
BimodalPoisson is a low-entropy distribution (and
the most dissimilar from the uniform distribution),
its emergency arrivals are the most “predictable”,
and the easiest for the full estimator to
guard against.

5.5. Threshold sensitivity and cost sensitivity

As shown in the previous section, using stochastic

information about emergency arrivals can
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significantly reduce the cost associated with exces-
sive waiting time. As the cost factors related to
excessive waiting time (cy and Wy,) become more
strict, however, we might expect a more pronounced
trade-off: reducing the occurrence of excessive wait-
ing time becomes more critical, even at the expense
of the core objectives.

We present an experiment to map this trade-off,
and its sensitivity to the strictness of the waiting
time cost factors. Using the genetic algorithm, we
solve all instances of the benchmark set for the dual
parameter ranges cy = 750,1500,2250 and Wy, =
15,30,45,60,75,90. In Figure A6, we record the
average waiting time endured per emergency, as
well as the value of core costs g .(7); both aver-
aged over all K=5 and K=10 instances in the
benchmark set. We do not display the value of
Zwair(T), as it of course fluctuates depending on the
value of threshold and cost multipliers.

Though our algorithms only penalise emergency
waiting time if it exceeds the threshold, this affects
average waiting time per patient as well. If either
the waiting time threshold or cost factor becomes
especially strict, optimal schedules begin to put
more emphasis on providing rapid break-in, though
there appears to be a lower bound of what can be
achieved. This also shows how practitioners can use
particular cost combinations to accentuate hospital
priorities. Accommodating stricter waiting time
costs does require the expected trade-off versus core
objectives: the best-found solutions for larger cy,
and smaller Wy, have higher core costs, presumably
to find a solution that scores better on g, It's
worth noting, however, that this trade-off is rela-
tively limited: for ¢y, = 1500, moving the waiting
time threshold from Wy, = 90 to Wy, = 45 leads
to significantly lower waiting times while incurring
around 5% more core costs.

5.6. Approximation of the objective function

Our experiments have shown that a detailed evalu-
ation of emergency arrivals and the disruption they
cause, allows to find solutions with lower total
costs. But as may be evident from evaluation algo-
rithm 1, this evaluation is computationally inten-
each emergency arrival can change the
schedule state for the next arrival (by causing can-
cellations and changing the remaining BIMs), and
so each emergency must be dealt with sequentially.
Further, finding the first available BIM for an
emergency arrival, always requires a small scen-
ario-specific minimisation. This
bottleneck on the evaluation function, making
approximate methods tempting.

sive:

forms a dual

One approximation method is to simply revert to
a less  sophisticated  estimator (such as
CapacityStoch), which does not model emergencies
in detail. CapacityStoch assumes that each emer-
gency has an equal chance to enter each of the K
rooms; an assumption that comes with a cost, as
per Section 5.4. However, we can expect the accur-
acy of this approximation to be dependent on how
well this equal break-in chance reflects reality!
Figure A7 supports this intuition by showing the
correlation between the percentage error of
CapacityStoch, and the value of the expected max-
imum BII of each schedule. Clearly, CapacityStoch
gets progressively worse when schedules have
larger maximum BIIs. This is because having a
large expected maximum BII is an indicator for
how (non-)uniformly BIMs are distributed across
the available interval, and thus for how (non-)uni-
form the chance is that an emergent patient enters
any particular room.

We can build an approximation heuristic from
this general insight: the chance that an emergency
enters a particular room k, is determined by (i)
the length of the intervals where room k serves as
the first available BIM, and (ii) the likelihood that
an emergency will arrive during these intervals.
Thus, the choice of which room to enter can be
modelled by a weighted random number selection,
determined by the schedule m and arrival time
density f(t). We can estimate these weights dir-
ectly by inspecting a number of scenarios N and
recording which rooms have the largest BIIs,
adjusted for the arrival time density. Note that
these estimates are most accurate at modelling the
room that the first emergency will enter, and will
deteriorate for subsequent arrivals. Still, since j
emergency arrivals disrupt at most j rooms, and
the size of the disruption P° is identically distrib-
uted across all rooms, we expect the deterioration
to be gradual.

The above method allows us to estimate the
disruption caused by emergencies on overall cap-
acity, i.e. the core objectives gcore(m). However,
this leaves out waiting cost objective gwait(7).
Fortunately, the above inspection of the largest
BIIs per scenario, can also identify the number of
BlIls larger than Wy,,. The length by which these
intervals exceed Wy, adjusted for arrival time
density f(t), provides an estimator for the chance
that any emergency arrival will face excessive
waiting time.

Detailed steps for the Weighted Room Break-in
Heuristic (WRBH) are provided in Algorithm 5. For
this, we supplement the notation in Section 3.1 with
the following function. Recall that 7 contains all
scheduled surgeries before any cancellations occur



due to emergency arrivals, ie. before disruption.
Counting on the fact that simultaneity of comple-
tion times will almost surely not happen, we define
the function p by

p(l) =k <=3 €Ty :Cipo=Bj ,i € {1,..., |I|} .

That is, p(i) is the room in which the ith BIM
occurs, which is a stochastic function that depends
on the surgery durations P. In a specific scenario n
with durations P”, it is fixed and we denote it as
p". In Algorithm 5, only the I largest BIIs are con-
sidered. First, we compute improved room weights
RW, which are then substituted into the
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CapacityStoch estimator for gcore(m) of Algorithm
4. Then the waiting time cost gw.it(7) is estimated
by assuming that the probability of an emergency
having to wait longer than Wy, can be approxi-
mated by the probability that an emergency occurs
in the critical zone of the undisrupted schedule.
The critical zone is defined as all time points in the
I' largest BIIs that are further than Wy, removed
from the next BIM. The discretisation of the emer-
gency arrival time distribution F(f) into slots of
length ¢ in lines 11 and 12 is a feature that allows
evaluation by look-up table, which can speed up
the execution when F(¢f) is hard to
ate directly.

evalu-

Algorithm 5. Weighted Room Break-in Heuristic (WRBH) estimator for gcore(7) and gwait(7)

: Choose parameter ak-in Heuristic (WRBH) estimator for n by
: Choose parameter ¢ (length of slots for discretisation)

: for scenario n € A/ do

Evaluate scenario n before emergency disruption: compute Cjj, Bjy and S},

1

2

3

4

5: Set V' = ()
6 fory=1,...,I" do

7 I} = arg maXer\»Sj
8 V=V UudL}

9: Obtain improved room weights

T
RW;
y=1
RWi  — RWi/ S o RW,

10: Obtain single patient waiting time

= Yuen Y Hp (1)) = K)(E(| B}, o/510)—F(| B}, 4/513))

T
WSingle = %Z Z MSZ*?,O > Wthr>(F( L(Bzv,o_wthr)/gl 5)_F( LB??—I,()/&}é))

neN =1

11: Estimate gcore(7) @S §core, wran, v (7)> Obtained by executing Algorithm 4 with room weights RW} instead

of 1/K (possibly using the same scenario set)

12: Estimate gwait(7) as 1 wrpp n(7) < cWE[J] Wsingle

We test the WRBH heuristic with the following
experiments, described in Table 2. First, the full esti-
mator provides the “true” estimates for gco(m) and
8(x)» averaged across all instances in the benchmark
set, and split up for the five emergency distributions
defined earlier. We then record the accuracy (percent-
age error) with which the approximations WRBH and
CapacityStoch are able to estimate these objectives.
Note that CapacityStoch is not able to estimate the
waiting time cost, so we only list gcore (7). We also list
average computation time.

The results show that the estimates of gcore(7)
made by CapacityStoch have an average error of

around 4-17%. When also accounting for the exces-
sive waiting time cost, this error would be larger still.
Clearly, using WRBH significantly improves accur-
acy: for three of the emergency distributions, WRBH
is able to estimate the objective value with a percent-
age error of < 1.5%; and for the other emergency dis-
tribution  with < 3.5%.  Furthermore,  while
computation times do increase compared to
CapacityStoch, they remain low overall and are virtu-
ally unaffected by the average number of emergencies.
This in contrast to the computation times for the full
estimator, which linearly increase with the number of
emergencies, and are around 3.5x slower overall.
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Table 2. Average performance

results of the two approximations WRBH and CapacityStoch.

Emergency distributions

Realistic-Poiss. Bimodal-Poiss. Uniform-Low Uniform-Mid Uniform-High
Estimators EJ] =29 EJ] =29 EJ=15 EJ] =45 Ey =7
Full Estim. Obj. gcore(7) 21,323 21,365 21,715 20,624 19,630
Obj. g(m) 21,711 21,745 21,940 21,305 21,023
Time (sec) 26.77 27.38 15.07 23.10 31.33
Cap. Stoch Err. geore (1) (%) 57 6.2 4.2 10.4 17.3
Err. g() (%) - - - - -
Time (sec) 438 433 3.76 3.94 424
WRBH Err. geore (1) (%) 0.3 0.9 0.5 1.6 1.7
Err. g(n) (%) 0.7 14 08 24 34
Time (sec) 6.89 6.99 6.42 6.57 6.91

The full estimator provides the benchmark values for both gcoe () and g(), averaged across 5000 randomly chosen schedules for each of the 30
analysed instances. We then record the total percentage error of WRBH for both objectives, and for CapacityStoch only for gcore (7). Solution times

are the total time to evaluate 5000 schedules using N =2000, averaged across the 30 analysed instances.

6. Conclusion

We have proposed a new model for OR scheduling at
the offline operational level, which incorporates the
arrival of emergent patients and their break-in to a
more granular level. The model includes common
objectives such as the minimisation of over- and
under-utilisation, and introduces the minimisation of
excessive waiting time for emergent patients as an add-
itional objective. A genetic algorithm was developed to
solve the resulting model by determining the set of
selection and sequencing decisions required.

The added value of this approach is two-fold.
First, avoiding excessive waiting time for emergent
patients contributes significantly to their health out-
comes, and second, including break-in decisions
into the model allows a more accurate estimate of
the total workload and disruption of the various
ORs. Computational experiments quantify the
objective gains under a variety of emergency distri-
butions, and we map the sensitivity of these results
to more and less strict time thresholds.

On a more practical note, we develop the WBRH
heuristic to estimate the objective value faster and
with high accuracy. This allows practitioners and
other researchers to estimate the impact emergency
arrivals will have on their schedule, without replicat-
ing all model dynamics related to break-ins.

Given the complexity of the problem, we limited
the number of decision variables, and e.g. chose not
to include ad-hoc deferrals of cancelled surgeries to
other ORs, or patient-driven cancellations (no-
shows). Further, we focused our analysis mainly on
the allocation phase of operational scheduling (selec-
tion and sequencing decisions), and did not include
advance scheduling (assigning patients to ORs over
a longer time-horizon). Creating an integrated
framework for both offline operational planning
stages —that is similarly granular with respect to
emergencies —remains an open challenge.
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Figure A1. Visual example of the scheduling model, illustrated for a single scenario. (a) shows the surgeries that were
annulled on this particular day. (b) displays the planned schedule for the day, and the arrival of an emergency. (c) shows the
further execution of the schedule, which culminates in a cancellation. (b) and (c) also display the sets of BIMs for each situ-
ation. Note that the model reacts to events as they unfold in any particular scenario. (a) Annulled surgeries. (b) Before emer-

gency arrival. (c) After emergency arrival.
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Figure A2. lllustration of OR interdependence. For an instance of five ORs, we compare four schedules (71, 7, 73, 74) Which
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time, under the four sequences and under either J=0 or /=2 emergency arrivals. Without emergencies, all sequences lead
to the same completion time distribution (dashed line). If emergencies do arrive, however, different sequences change the
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Figure A3. Comparison of the best-found schedules for two different emergency arrival distributions, for an instance of K=5
and M =35, divided equally across rooms. We use a combination of cost factors which heavily penalises excessive waiting
times; thus incentivising schedules which usefully spread the set of BIMs. We illustrate the two resulting sets of BIMs using

expected surgery durations.
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execution, we display the best objective value encountered,
and plot its evolution across 500 generations.
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Figure A5. Visualisation of the non-homogeneous Poisson
processes used for two of the emergency distributions. A(t)
represents the hourly rate of emergency arrivals. The
expected amount of emergency arrivals E[J] = j: A(t)dt is
2.9 in both cases.
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Figure A7. An illustration of the correlation between the
expected maximum BIl in a schedule, and the percentage
error of the CapacityStoch approximation (against the value
of the full estimator). For a single benchmark instance, we
record both properties for 5000 random schedules (that is,
randomly chosen partial permutations of the fixed assign-
ment). Based on the size of the expected maximum BIl, we
sort the 5000 points into horizontal bins of 5min. The three
lines represent the average percentage error, and 5% and
95% empirical quantiles of the average percentage error.
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Figure A6. Cost evolution for different values of the waiting time threshold Wy, and cost factor cW, for the emergency model
“RealisticPoisson”, and averaged across all K=5 and K= 10 instances in the benchmark set. Subfigure (a) shows the average
waiting time endured per emergency arrival, i.e. Zf:1 W;/ElJ], (b) shows the value of the core objectives gy (7).



Appendix B. Lognormal distributions for
emergency surgeries

Three-parameter lognormal distributions are characterised
by u, ¢ and y, corresponding with mu, sigma and location
(threshold). Their distribution is characterised as:

Y=y+¢ with X~ N(u0)

Since the maximum size of our experiments is N= 25,000
scenarios with at most J” = 10 emergencies per scenario, we
created 250,000 emergency durations by sampling from each
surgery category in the proportion provided. The resultant
samples were truncated between 10 and 420 min.

The lognormal parameters for emergency surgeries are
based on the estimates of Huber-Wager et al. (2009) and
displayed in Table A2.
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Table A2. Details of the emergency surgery durations used
in experiments.

Lognormal fit

Region Proportion (%) Mean (min) IQR (min) " o y
Head 26.3 110 55-140 446 071 0
Thorax 5.0 91 8-146 395 1.2 0
Abdomen 54.1 137 70-175 46 075 10
Pelvis 1.5 136 60-185 46 085 5
Extremities 3.1 142 80-180 48 06 0

The first four columns are taken from the analysis of Huber-Wagner
et al. (2009), and in the last three columns, we show the parameters of
the three-parameter lognormal distributions that gave the best fit to
the mean and IQR range provided.
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