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Abstract  

 

 

Arrangement of surgical activities can be classified as a three-level process that 

directly impacts the overall performance of a healthcare system. The goal of this 

dissertation is to study hierarchical planning and scheduling problems of operating room 

(OR) departments that arise in a publicly funded hospital. Uncertainty in surgery durations 

and patient arrivals, the existence of multiple resources and competing performance 

measures are among the important aspect of OR problems in practice. While planning can 

be viewed as the compromise of supply and demand within the strategic and tactical 

stages, scheduling is referred to the development of a detailed timetable that determines 

operational daily assignment of individual cases. Therefore, it is worthwhile to put effort 

in optimization of OR planning and surgical scheduling. We have considered several 

extensions of previous models and described several real-world applications.  

Firstly, we have developed a novel transformation framework for the robust 

optimization (RO) method to be used as a generalized approach to overcome the drawback 

of conventional RO approach owing to its difficulty in obtaining information regarding 

numerous control variable terms as well as added extra variables and constraints into the 
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model in transforming deterministic models into the robust form. We have determined an 

optimal case mix planning for a given set of specialties for a single operating room 

department using the proposed standard RO framework. In this case-mix planning 

problem, demands for elective and emergency surgery are considered to be random 

variables realized over a set of probabilistic scenarios. A deterministic and a two-stage 

stochastic recourse programming model is also developed for the uncertain surgery case 

mix planning to demonstrate the applicability of the proposed RO models. The objective is 

to minimize the expected total loss incurred due to postponed and unmet demand as well 

as the underutilization costs. We have shown that the optimum solution can be found in 

polynomial time. 

Secondly, the tactical and operational level decision of OR block scheduling and 

advance scheduling problems are considered simultaneously to overcome the drawback of 

current literature in addressing these problems in isolation. We have focused on a hybrid 

master surgery scheduling (MSS) and surgical case assignment (SCA) problem under the 

assumption that both surgery durations and emergency arrivals follows probability 

distributions defined over a discrete set of scenarios. We have developed an integrated 

robust MSS and SCA model using the proposed standard transformation framework and 

determined the allocation of surgical specialties to the ORs as well as the assignment of 

surgeries within each specialty to the corresponding ORs in a coordinated way to 

minimize the costs associated with patients waiting time and hospital resource utilization. 

To demonstrate the usefulness and applicability of the two proposed models, a 

simulation study is carried utilizing data provided by Windsor Regional Hospital (WRH). 

The simulation results demonstrate that the two proposed models can mitigate the existing 

variability in parameter uncertainty. This provides a more reliable decision tool for the OR 

managers while limiting the negative impact of waiting time to the patients as well as 

welfare loss to the hospital. 
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Chapter 1 

Introduction to Operating Room Planning and 

Scheduling 

 

 

1.1 Healthcare Operations Management 

Healthcare expenditure as a portion of gross domestic product (GDP) has grown 

considerably in North America over the past few decades. The operating costs of surgery 

departments contain a significant portion of the total cost of a healthcare system. Many healthcare 

studies undertaken in Canada show a substantial growth in health spending during the past few 

decades. The amount was close to 10.9% of the Canada’s GDP and reached to $219.1 billion in 

2015 representing a 1.6% growth compared to the last year [1]. Along with the costs, demand for 

healthcare services is increasing which makes maintaining healthcare services a challenging and 

complicated process due to the limited resources. One way to overcome those challenges and 

improve healthcare operations without increasing available resources or compromising required 

demands is by improving the efficiency of the healthcare capacity [2]. 

Hospital managers typically face two types of variability in a health care facility that 

impacts the efficiency and effectiveness of the facility. One is the natural variability, which is 

inherent to the uncertain world of healthcare such as the variability in patient arrivals or surgery
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 durations. The other is artificial variability that originates from poor scheduling policy. For 

example a poor operating room schedule could lead to a longer waiting time and lower service 

level. While many studies in the literature have considered surgery operation durations and 

capacity of available operating rooms as known and fixed parameters [3,4], others have argued 

that uncertainty in surgery durations or resource availability may lead to a solution that is 

infeasible [5,6]. In our model, we include uncertainty of surgery durations as well as patient 

arrivals. Figure 1.1 and 1.2, for instance, depict the likely variability in surgery durations. Figure 

1.1 shows the variation of surgery durations (in minutes) by surgical specialties and Figure 1.2 

depicts the distribution of surgery operations in operating rooms (Figure 1.2 and 1.2 shows actual 

data taken from the operating room department of a local hospital in Southwestern Ontario).  

 

Figure 1.1: Surgery durations by surgical specialty 
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Figure 1.2: Duration distribution of surgery operations 

 

Effective planning and scheduling of operating room (OR) operations within the surgery 
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durations. This uncertainty makes the planning and scheduling decisions more complex and 

challenging for hospital managers. The capacity allocation decisions and the operating cost of 

ORs are greatly impacted by this uncertainty. The decision for OR planning and scheduling 

becomes even more complex when emergency patients are taken into account. Taking care of 
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Previous studies show that ORs and post-surgical units resources are amongst the most 

costly bottleneck in a healthcare system [7]. The cost of running an OR with all the required staff 

and a surgeon is estimated to be as high as $60.50 per minute [8]. Therefore, efficient OR 

scheduling program is the key to success a healthcare operation. The OR planning and scheduling 

literature generally focused on two major characteristics of the patients in the literature, namely 

elective and non-elective patients. While the surgery operation is usually planned early in 

advance for the former class, this surgical treatment is carried out within an urgent situation, and 

consequently emergency, for the later one.  

The surgical scheduling process in a medical facility is a complex and critical process 

where the choice of schedules and availability of resources directly influence on the patient 

throughput, the postponement or cancellation of surgeries, utilization of resources, wait times, 

and the overall performance of the system [9]. Therefore, a systematic approach that takes into 

account a variety of surgical specialties, priorities for service, post- surgical capacity, and the 

combination of both scheduled (elective) and unscheduled (emergency) procedures could lead to 

an improved capacity allocation among various specialties within the system and enhanced policy 

implication that results in expanded effectiveness and patient throughput and reduced wait times. 

Therefore, there is an increasing demand for an efficient operational research study to optimize 

resources in the healthcare system and bridge the gap between surgeons and hospital managers 

through the optimization approaches. 

In general, the procedure for any scheduling of elective surgical processes is considered 

as a three-level process [10,11]. These stages involve activities from allocation of the OR time 

among surgical specialties to the actual assignment of individual cases within the allocated OR 

blocks in a hospital and are usually classified as strategic, tactical, and operational levels of the 

surgery scheduling process respectively [12]. Figure 1.3 gives an overview of the process with 
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respect to the decision that is being made at each decision levels. The assignment of OR time to 

the surgical specialties are the first decision that must be made, usually called case mix planning. 

Figure 1.3: Decision hierarchy in surgery planning process 

 

The allocation of surgical block schedules is developed at the second stage which simply 

determines the surgery time for each specialty in ORs on each day on a cyclic timetable, usually 

called master surgery schedule (MSS). Finally, the third level schedules individual cases on a 

daily basis, normally known as advance scheduling.  

Due to the inter dependence of the decisions at these three levels of planning, any 

scheduling policy obtained in isolation can result in solutions that may not meet the requirements 

set to the decisions made at the upstream stages. Therefore, it is crucial to address the concerns of 

healthcare management regarding the influence of assumptions made about the surgical schedules 

set at higher levels on downstream operations. These assumptions can be for instance the amount 

of flexibility that planning decision of allocating surgical specialties to the OR blocks may 

provide for the decision makers in their attempt to assign individual patients from the associated 

waiting list of those specialties to the allocated blocks or which OR within the system has been 

allocated to which specialty. 
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This study is primarily motivated by surgical activities within the OR department of a 

local hospital to develop a hierarchical planning and scheduling models over all three stages as 

defined above when demand for both elective and emergency cases is considered stochastic and 

surgery durations are not known. 

The surgical scheduling process for elective patients involves a range of activities from 

determining OR time to be allocated in a hospital to actual scheduling of individual cases. One of 

the major activities within this process is to define and assign the OR time to the surgical 

specialties. One main decision that needs to be addressed is: How many OR time in total is 

allocated to each surgical specialty. At this stage the budget often determines the total OR time 

available, also several factors such as waiting time can influence the amount of OR time required 

by each surgical specialty. According to [9], there are several criteria that impact the required 

number of OR time by each surgical specialty, including waiting times as it directly affects the 

throughput of patients, fairness among all the specialties, and maximization of OR efficiency. 

In the first stage, we determine optimal OR hours assigned to each surgical specialty 

under uncertain elective and emergency surgery demands where the proportion of time allocated 

to surgical specialties is subject to several factors such as limited OR capacity as well as underage 

cost of idle resources and overage cost of surgical overtime. The solution at this hybrid stage aims 

at finding an optimal OR allocation planning for surgical specialties that minimizes the postponed 

and/or unmet surgeries resulting from variability in elective and emergency patients demand and 

the expected total cost of resource underutilization and overtime. 

A hybrid tactical and operational framework is developed to capture the integrated 

allocation problem of surgical specialties with the assignment of individual surgery cases within 

the assigned OR blocks by specifying the appointment schedule of each specialty at which the 

required resource(s) such as OR, surgery teams and equipment as well as patients are available. 
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Scheduling of surgical cases directly affects the amount of overtime and undertime of the 

healthcare resources [13]. In OR department, any deviation from the staff scheduled hour can lead 

to a huge staff overtime as well as additional overhead costs. On the contrary, the cost of idle time 

is considered considerable as a result of the cost involved in underutilization of available 

resources. 

Due to the uncertainty in emergency arrivals and surgery durations, some surgeries may 

take longer than planned and might go overtime or even postponed to the succeeding planning 

horizon and start later than its original scheduled time which could trigger controversial social 

issues related to the maximum allowed time for the patients in the waiting list. On the other hand, 

some OR blocks may be under-utilized due to the difference between actual and planned duration 

of surgery operations that could lead to expensive OR idle time. Therefore, there is always a 

trade-off between under-and-overutilization of OR time, overtime, and patient waiting times. The 

solution to this hybrid stage aims at finding an integrated schedule for surgical specialties and 

surgery cases that minimizes the postponed surgeries resulting from patients stayed in the waiting 

list beyond the determined durations and the expected total cost of underutilization and overtime 

of resources. 

In most of the publicly funded hospitals, the maximum patient waiting time before 

receiving surgery operation is normally determined by the government. Hospital decision makers 

must attempt to satisfy this requirements. Limited availability of the operating rooms directly 

affects the number of patients admitted to a hospital within a time period and as a result can 

violate the regulated waiting time. The desired service level of a healthcare provider is directly 

influenced by that waiting factor, and hence, has to be incorporated in the decision making 

framework. 
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Effective management of surgical planning and scheduling is an area that draws 

considerable attention from the healthcare community to reduce costs and increase service level 

[14,15]. The primary goal of the OR scheduling problem is to minimize the total fixed and 

variable costs associated with the overall monthly or yearly schedule while maintaining the 

service level. The operating cost of surgery departments contains a significant portion of the total 

cost of a health care unit. It has been estimated that operating cost of the surgery units accounts 

for more than 40% of the entire expenses of a hospital, [6,7,16,17]. Thus, substantial cost savings 

can be achieved in surgery department. It is well-documented in the literature that operating 

rooms are important revenue generators in a hospital, but also the largest cost centers in a hospital 

[10]. Conflicting objectives of various stakeholders (e.g., patients, OR managers, surgeons, 

anesthetists, and nurses) that need to be reconsidered makes the process of developing a surgical 

plan and schedule a complex issue. Hence, an effective use of the operating rooms can lead to a 

huge cost reduction in hospitals which is the ultimate goal of healthcare managers along with 

optimal utilization of resources to deliver a surgery operation at a right time to the maximum 

number of patients with a minimum amount of waiting [18].  

Operating rooms normally represent a form of bottleneck factor constraining the overall 

surgical throughput in a healthcare system. Thus, it is vital to develop an allocation program that 

utilizes the available resources in an optimal way. The importance of developing a smooth 

allocation program for ORs is not only because of its impact on the surgery operations that is 

performed in a surgical center, but it also determines the amount of resources that are required to 

be assigned to each operation along with the planning horizon. Hence, developing an effective 

OR scheduling plan can assist managers in reducing cost and improving the resource usage. 

The OR planning and scheduling process is strongly characterized by the uncertainty. In 

the key variables impacting the system, some have serious impact on the patients’ satisfaction, 

and hence, needs to be efficiently and effectively handled over the specific decision levels that are 
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addressed. In previous literature on OR planning and scheduling, the inclusion of uncertainty was 

mainly limited to either the uncertainty in arrival of the patients or the duration of the surgical 

procedures [16]. However, the activities inside the OR have a significant impact on many other 

activities within a hospital. For instance, patients waiting for surgery operations are expected to 

be admitted in a certain period of time to comply with governmental regulations. The 

consideration of other source of uncertainties, such as emergency cases is very crucial in 

developing an efficient planning and scheduling program. Consequently, a successful operating 

room schedule depends upon how various source of uncertainties are incorporated into the model. 

Although the study of OR planning and scheduling problems has received extensive 

attention in the literature during the past few decades, the majority of this research has either 

considered unrealistic assumptions by overlooking the existing uncertainty or failing to 

incorporate the impact of inherent variability in emergency arrivals and surgery durations when 

dealing with elective surgery scheduling. In subsequent chapters, we survey the related work 

about the problem under discussion in more details. Other stochastic researches have considered 

isolated decision levels in their attempt to provide optimal plan for the surgery scheduling failed 

to incorporate integrated approach that involves activities from determining allocations of OR 

time blocks through to the actual assignment of individual cases. 

Even though a lot of research has been done in accounting for uncertainty, application of 

robust optimization model has been limited as compared to other stochastic approaches. In 

general, a healthcare system can be called robust if the optimal acquired service level is feasible 

regardless of how variable parameters resulting from inherent uncertainty in the system can 

influence it. More specifically, according to [19], the “robust planning” approach addresses the 

physically efficient system. It is aimed at recognizing and exploring the uncertainty that is 

inherent in the system, and distilling from it planning decisions that will yield more predictable 

and stable results. Unlike in deterministic approaches, variability of the outcomes (e.g., patient 
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arrivals and surgery durations) is considered in this thesis as the replacement of each random 

variable by its expected value. Since costs are extremely important and lack of flexibility is 

always a problem in many healthcare systems, one important factor of cost containment is 

reduction of the number of schedule changes. However, the existing uncertainty will render 

obsolete any medium-term plan based on deterministic numbers, forcing a re-planning cycle. The 

use of risk assessment and risk planning techniques clarifies the effects of uncertainty on planning 

performance. This in turn allows deciding on appropriate levels of resources, yielding schedules 

that remain valid for a longer time period, hence the term “robust planning”. In order to quantify 

this robustness, several approaches are possible. One approach tries to find the decision policy 

that yields the most stable outcome, i.e. with low variability of the key performance measures 

(such as postponed surgery or under-and overutilization of resources) which is called “solution 

robust”. Another approach attempts to find a policy that reduces the number of changes to the 

plan, while keeping the key performance measures fixed at their target level which is named 

“model robust”. The conceptual meaning and advantages of robust planning is visualized in 

Figure 1.4. As it is clearly shown, in deterministic approaches one “optimal” schedule is obtained 

for a deterministic value of each variable (mostly the average or a “good guess”), while the robust 

plan provides a “near optimal” solution, which stays valid over a range of variable values at a 

predictable but higher cost.   

Data uncertainties may lead to quality, optimality and feasibility problems when 

deterministic models are used. Therefore, it is required to generate a solution which is immune to 

data uncertainty. In other words, the solution should be robust [20]. A large portion of the 

literature on OR planning and scheduling deals separately with either determining the number of 

patients that need to be scheduled into a surgical suite or the sequence of cases within an 

operating theatre on a certain day. Hierarchical OR planning and scheduling that includes all 

three decision levels (i.e., strategic, tactical, and operational) to systematically address the 
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allocation of available OR capacity among surgical specialty, development of surgical block 

schedule and assignment of individual cases to the OR blocks in an integrated manner has not 

been fully investigated in the literature. Most of the previous work on OR block allocation 

problems have considered unrealistic assumptions such as the consideration of one type of 

elective surgery demands. In this thesis, we develop a richer model by considering both elective 

and emergency cases in the allocation of surgical OR time among specialties [21]. Furthermore, 

most of the previous works have been developed based on a deterministic planning model and 

hence, the effect of uncertainty has not been incorporated in those model. Moreover, the few 

papers that considered stochastic dependence in the key variables are based on developing 

complicated stochastic programing model that failed to incorporate the effect of emergency 

uncertainty into the modeling framework or considered heuristic approaches with some 

unrealistic assumptions that was unable to generate optimal solutions [16]. Finally, the concept of 

incorporating different aspects of service level into the decision making framework through the 

incorporation of maximum allowed waiting time has not been considered in previous literatures. 

Optimal 
value

Best 
value

Healthcare 
Cost

Deterministic Model
Robust Model

Input parameters

Uncertainty range  

Figure 1.4: Effect of robust optimization model on total costs 
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The solution methods in the literature are diverse including deterministic mixed-integer 

programming (MIP) model to allocate block times of operating room capacity to various 

specialties’ emergency and non-emergency surgery [4,14,22], stochastic programming (SP) 

approaches [6,16,23,24], Monte Carlo simulation method [24], stochastic dynamic programming 

[25], and robust optimization [17, 25]. We refer the readers to [27] for details. The literature can 

be classified by the different methodologies used and modelling aspects considered to evaluate 

various performance measures [28–30]. The main conclusions are that the optimal solutions 

provided by the existing literature are case-specific and cannot be generally applied to the case 

where a systematic planning and scheduling approach is required to capture the hierarchical 

impact of the solutions on the upstream stages. Moreover, robust optimization (RO) as a solution 

methodology has not been fully investigated to account for the effect of inherent uncertainty in 

the system.  

The objective of this research is twofold: 1) To acquire the maximum service level for a 

healthcare provider by developing a RO programming approach to allocate the optimal OR times 

to surgery specialties that can meet the target number of operated patients, thereby minimizing 

the loss incurred to the hospital due to the underutilized capacity of allocated resources while the 

uncertain nature of emergency capacity is taken into consideration. The main trade-off includes 

meeting the target number of patients and making efficient use of resources i.e. a high utilization 

of resources. 2) To develop an integrated master surgery schedule with a surgical case assignment 

problem that address hybrid planning and scheduling problem of the hospital in a systematic 

hierarchical approach. The aim is to obtain an optimal surgery schedule that minimize patient 

waiting times as a societal factor that is crucially important in the Canadian health care system as 

well as the costs associated with underage and overage of OR resources. There is an important 

trade-off between underutilization, overtime, and patient waiting times. 
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Robust optimization techniques [30, 31] provide effective tools with regards to dealing 

efficiently with the inherent uncertainty that often characterizes OR planning programs. In 

Chapter 2, we introduce surgery planning and scheduling models developed in the literature with 

a focus on their strength and weaknesses. We also relate our work to the literature and stress the 

main differences. In Chapter 3, a brief description of the conventional RO methodology is 

presented and the novel general transformation framework is developed to remedy the drawbacks 

in complexity of using the conventional RO model and to reduce its computational difficulties. In 

Chapter 4, a typical surgery allocation procedure is developed and solved using our proposed RO 

transformation framework. In Chapter 5, the proposed RO transformation framework is applied 

on a hybrid MSS and SCA problem to develop an integrated robust OR planning and scheduling 

model. The model determines the optimal assignment of OR block among surgical specialties and 

the allocation of individual cases to the OR blocks within the planning horizon. Furthermore, the 

robust optimization model investigates the effects of uncertain emergency arrivals as well as 

surgery durations. A numerical experiment is conducted to demonstrate the RO model and to 

show that it captures the influence of uncertain parameters in a polynomial time. In Chapter 6, our 

findings are summarized and some future research directions are pointed out. 

1.2 Overview of the Thesis 

1.2.1 Chapter 2: Standard Robust Optimization Transformation Framework 

In Chapter two, we develop a novel standard framework to transform deterministic linear 

programming models into the robust optimization forms. Deterministic models fail to capture all 

aspects of the real world problems due to the variability in the input data. Facing noisy and 

inaccurate data is an inevitable part of dealing with real-world optimization problems. Assuming 

that all the parameters are known with certainty is a highly optimistic assumption in solving 

optimization models [33]. In todays’ world, sources of uncertainty exist in various real world 

problems. Therefore, failing to consider uncertain data can seriously degrade a system’s 

performance. However, developing stochastic models that incorporate the complications of 
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unreliable data uncertainty into the model represents a challenge and requires sophisticated 

knowledge and considerable time and efforts. Therefore, presenting an effective approach to 

generalize transformation of deterministic model to the stochastic form that can handle the 

uncertainty of the real world problems would be of great value. 

Robust Optimization (RO) is a modelling approach that involves uncertainty and was 

initially developed by [34] and [35] to handle the difficulty of unreliable data. RO is a general 

stochastic formulation framework that was constructed based on integration of goal programming 

formulation with a scenario-based description of a problem data to take the various decision 

makers’ risk aversion into account. It is basically a proactive approach to mathematical 

programming for producing solutions which are less sensitive to the input data. Hence, RO can be 

applied in the optimization areas where the optimal solutions obtained through using other 

optimization approaches are highly sensitive to small changes of the input parameters. In fact, this 

methodology is an alternative approach to the stochastic linear programming (SLP) which applies 

probabilistic input data when the probability distributions governing the data are known or can be 

estimated.  

RO is a relatively new approach to optimization under uncertainty when the uncertainty 

does not have a stochastic background and/or that information on the underlying distribution is 

not available, which is often the case in real-world optimization problems. Despite various 

advantages of the RO technique in generating solutions that are relatively less sensitive to the 

realization of noisy data and are immune to the anticipated uncertainty in the problem parameters, 

there is no general framework in the literature that can facilitate the transformation of a 

deterministic model into the RO form. We develop a generalizable RO transformation framework 

to remove this barrier and expand application of RO models in solving stochastic problems. Our 

aim is to provide a RO transformation framework for use as a tool in the context of operation 

research in order to generate the robust part of the deterministic models. Such a framework can 
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assist decision makers in solving complex optimization problem through providing an 

instructional guideline that makes the transformation process more effective and at the same time 

easier to implement. The proposed framework also reduces the formulation burden which has 

always been an obstacle to application of RO in solving operation research problems [32]. The 

proposed novel transformation framework is constructed based on the RO model developed by 

[32]. Three different robust models are then formulated using the proposed transformation 

framework to highlight the capability of the RO model in dealing with variability in stochastic 

environments. The proposed formulation can be generally used as a standard framework to 

transform any linear deterministic model into the stochastic robust form. We demonstrate the 

effectiveness of the proposed framework by applying it on a surgery planning and scheduling 

case of a healthcare problem in the following chapters. The randomness of the actual process is 

captured by testing the proposed formulation on a realistic model from a real case. We elaborate 

on the difference between our proposed framework and the SLP method to highlight the 

advantage of our framework. We believe our proposed framework can assist decision makers in 

solving complex optimization problem through providing an instructional guideline that makes 

the transformation process more effective and also easier to implement while it reduces the 

formulation burden which has always been an obstacle in applications of RO in solving operation 

research problems. Using actual data from a local health care system we demonstrate that our RO 

transformation framework is more efficient than the method presented in  [5] as it works on a 

predefined framework that requires less information about the original deterministic problem 

while it is solved on a polynomial time. Our setting is quite general, thus it can be applied to 

various real life situations, including but not limited to health care, production planning and 

scheduling, and supply chain management while it is sufficiently generic to efficiently solve the 

problems presented in this study. 
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1.2.2 Chapter 3: Robust Surgery Mix Planning  

In the current literature, OR planning and scheduling of healthcare systems is mostly 

considered in a static environment where the bulk of the key variables are known for certain. To 

compensate for the omission dedicated ORs to serve emergency patients or assign a fixed portion 

of existing OR capacity to perform only the emergency surgeries. However, this can easily be 

overlooked when addressing the emergency cases of patients who need to be served on the day of 

arrival as it happens [24]. Uncertainty is always involved in the number of emergency cases a 

hospital can get in a certain day, and hence, even a pre-determined portion of OR capacity may 

not fully absorb the impact of stochastic emergency cases in a developed model. Most of the 

previous work rely only on developing planning and scheduling models for elective patients.  

In Chapter 3, we consider the problem of surgery capacity planning with discrete random 

arrivals for elective and emergency patients under the assumption that surgery demands are 

known only within certain bounds such that the probability distributions of the stochastic data are 

not known. We apply the proposed RO framework to incorporate the uncertainty that in this 

model. The majority of the earlier work on healthcare problems have been conducted under a 

deterministic environment [37]. This demonstrates the importance of developing a stochastic 

model that can capture the impact of the existing uncertainties of the healthcare services in order 

to tackle the challenges of the real-world needs of the underlying healthcare problems. 

We consider the problem of operating room (OR) block allocation planning for multiple 

surgical specialties of a healthcare system on a given day, where possible mixtures of elective and 

emergency patients require simultaneously various surgery teams and OR blocks. Since patient 

arrivals are realized under uncertain circumstances, random characteristics in term of arrival time 

will be observed in surgical demands of different specialties. We first develop a deterministic 

surgery capacity allocation problem through a linear mixed-integer programming (MIP) approach 

to allocate block times of operating room capacity to various specialties’ emergency and non-
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emergency surgeries. We then formulate a two-stage stochastic programming model for the 

surgery capacity allocation problem and demonstrate its advantages over the deterministic model. 

We finally use the RO transformation framework proposed in previous chapters to develop an 

alternative approach that can efficiently handle the trade-off associated with the expected cost and 

its variability in the objective function. The incompleteness of the elective surgery demand data 

and the randomness arises in the emergency surgery demand is incorporated in the model to 

develop robust allocation plans that efficiently utilize the resource capacities in order to maintain 

the required service level. The main contribution of our work in this chapter is the proposed RO 

transformation framework as a modelling tool for surgery block allocation problems. We also 

consider emergency surgeries in allocation of surgery capacities in addition to a single class of 

patient (i.e. elective patients), and introduce the patients length of stay (LOS) as a function of the 

surgery postponements to manage the service level in the hospitals. Three RO models with 

different variability measures are proposed: the RO model with solution robustness, the RO 

model with model robustness, and the RO model with trade-off between solution robustness and 

model robustness to evaluate the operational performance and to analyze the enhancement of the 

trade-off between efficiency and health service delivery. A real case healthcare system is used to 

illustrate the application of the model. The resulting combinatorial programming models are 

conducted on AMPL optimization software and solved by CPLEX 12 in a reasonable amount of 

time. A framework for analysis is also proposed to select among three RO models based on the 

risk aversion levels and feasibility consideration of decision makers for the robustness of 

postponed/unmet demand size (i.e. hospital’s service level) and the increased total cost. The 

results of the two-stage stochastic programming and the robust optimization models are evaluated 

to provide a comparison between the variability of output measures and infeasibility of the second 

stage constraints. Finally, a trade-off between the variability of the performance measures and the 

expected total costs is performed to acquire managerial insights on the optimal allocation plans.  
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1.2.3 Chapter 4: Robust integrated master surgery scheduling and surgical case assignment 

problem  

In chapter 4 we look at a different but related problem of integration of planning and 

scheduling level in health care system with a focus on patient service level. We investigate the 

integration between OR planning and advance scheduling in a robust optimization setting, present 

experimental findings on OR allocation that hospitals can offer to surgical specialties and surgery 

cases scheduling for patients on the waiting lists that increases patient service level as well as the 

hospital’s throughput. Since management and development of surgical activities at ORs can 

enormously impact the quality of surgery processes undergone by patients as well as patient 

waiting times, effective management efforts to increase performance are always needed. In 

particular, we investigate the commonly observed situation reported in the literature [27] where 

surgery durations were assumed a known parameter causing canceled surgery operations due to 

over scheduling of allotted OR block times by surgical specialties.  

The efficient allocation of OR capacities to surgical specialties is a persistent problem in 

hospitals, especially when flat rate payments for patients based on diagnosis-related groups 

(DRGs) are taken into account [38]. Under the flat rate payment system, hospitals will only be 

reimbursed based on a pre-defined model developed by the government to establish a formal link 

between healthcare providers and quality. Introduction of DRG in the Canadian healthcare system 

forced hospitals to allocate their resources more economically. 

Making plans for ORs is considered to be a very challenging task due to a number of 

different perspectives. The operating room department is a volatile environment where the 

uncertainty in emergency patient arrivals and surgery durations together with their impact on 

other departments in the hospital makes planning and scheduling a very complex decision [39]. 

According to a recent review made by [40] and [28] there are various conflicting objectives in OR 

planning and scheduling process due to different stakeholder criteria. The inherent variability in 
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various resources greatly impacts the trade-off between a hospital’s desirability to reduce cost 

against the quality of health services that coordinates to lower patients waiting time. Therefore, 

there is a strong need for developing an efficient model the allocation of surgical disciplines to 

available OR sessions and the assignment of surgical cases to the allocated operating room. We 

take a systematic look at this problem and provide an integrated model that concurrently 

solves the master surgery schedule problem (MSSP) and the surgical case assignment problem 

(SCAP) to acquire optimum allocation of surgical specialty (MSS) while the assignment of 

patients to the OR blocks (SCA) is optimized to identify and analyze a combined tactical and 

operational decision for the OR department with the aim of reducing costs associated with 

patients waiting time, surgeons over (under) time and ORs capacity disruption. The integration of 

planning and scheduling levels provide some stability, in terms of repeatability of personnel 

schedules and predictability of bed occupancy pattern in post anesthesia care units (PACU) as 

well as flexibility, in terms of adaptability of weekly plans to the changing waiting lists for the 

decision makers. We also seek the trade-off between higher capacity, which will reduce the 

waiting time as well as OR productivity due to under (over) utilization, and a lower capacity that 

result in postponement as well as ORs overtime. We consider two types of patients: elective cases 

with uncertain surgery durations and emergency patients with stochastic arrivals. 

We also consider a weighted multi-objective RO approach, which integrates optimization 

modules that take into account the number of surgeries scheduled, the waiting time and tardiness 

of each patient associated with patient urgency factors, and weighted resource utilization rates. 

The multi-criteria objective function is focused on conflicting resource perspective as well as 

patient perspective at the same time. A regulated waiting time target for elective cases derived 

from Ministry of Health and Long-Term Care in Ontario is utilized to manage patient admission 

that weighs the chronological waiting time with the urgency coefficient of the corresponding 

Urgency Related Group (URG) of each patient. The wait time targets are developed with the help 
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of clinical experts and serve as a method of accountability and provide a goal to achieve. These 

targets include urgency classifications and are incorporated in the regulated Wait Times 

Information System (WTIS). 

A mixed-integer linear programming model is first developed where the uncertainty 

considerations are excluded. The deterministic model is then transformed into a two stage 

stochastic programming model as well as a robust optimization (RO) model to incorporate the 

impact of uncertainty into the decision making process. A novel transformation framework, 

presented in Chapter 2, is utilized to develop the robust counter part of the deterministic model. 

The incompleteness of the random surgery durations and the randomness arising in the 

emergency arrivals are considered using a discrete set of scenarios. The proposed RO framework 

makes use of a linear programming model and does not require the specifications of the 

probability density functions of the uncertain parameters. All three models are then analyzed over 

a set of real life based instances to evaluate their behavior in terms of computational effort and 

solution quality. Moreover, assuming lognormal distributions for the emergency arrivals and 

surgery durations, a set of randomly generated scenarios is used in order to compare the proposed 

solutions in terms of OR utilization rate and number of postponed patients. The compromised 

allocation of OR blocks as well as the assignment of patients obtained from the RO framework is 

able to handle the variability within the uncertain parameters through generating optimal 

scenario-dependent solutions. The trade-off between the allocation plan’s robustness (i.e. 

postponed/cancelled surgery) and underutilization of OR blocks for different values of robustness 

is demonstrated that the proposed RO model is progressively less sensitive to the realization of 

the variable input parameters, while generating more feasible solutions as compared with the two-

stage stochastic recourse programming model. Moreover, the impact of introducing overtime in 

the model formulation is evaluated and a sensitivity analysis on the choice of the key parameters 

is performed. Our approach is demonstrated to improve patient satisfaction through reducing 
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prioritized weighted waiting times and improving health care efficiency by reducing overall 

operation costs, and hence has more societal benefits for the hospitals. 

1.3 Outline of the Thesis 

The rest of this thesis, as discussed in section 1.2, is organized as a series of chapters. At 

the beginning of each chapter, we outline the problem to be discussed, investigate the 

motivations, and illustrate the significance of examining the related work. We then provide our 

modelling approach followed by analysis of the results. We conclude each chapter with a 

summary of the main findings. In addition to the chapters discussed in Section 1.2, Chapter 5 

gives a summary of the thesis contributions and provides a brief discussion of future research 

directions. 
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Chapter 2 

A Transformation Framework for Robust 

Optimization1  

 

 

2.1 Introduction 

Facing noisy, inaccurate, or unspecific data is an inevitable part of dealing with real-

world optimization problems for decision makers in their attempts to reduce variability and to 

show the overemphasis of feasibility of optimization models. Assuming that all the parameters 

are known for certainty is a highly optimistic assumption in developing optimization models [1]. 

Failing to consider variable and uncertain data can seriously degrade a system’s performance in 

the real world situation, where various sources of uncertainty are present. Thus, presenting an 

effective approach to encompass all the uncertainty in the real world problems would be of great 

value. To handle the difficulty of such unreliable data, Mulvey and Vanderbei [2] and Mulvey 

and Ruszczynski [3] develop a general stochastic formulation framework, called Robust 

                                                           
1 A version of this chapter has been submitted for publication. Lalmazloumian M. , Baki F. and Ahmadi M. 

A novel robust optimization transformation framework to operating room capacity allocation problem 

under uncertainty at a publicly-funded hospital. 
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Optimization (RO). The authors construct their approach based on integration of goal 

programming formulation with a scenario-based description of a problem data to take the various 

decision makers’ risk aversion. They introduce RO methodology as a proactive approach to 

mathematical programming for producing solutions which are less sensitive to the input data. 

Hence, RO can be applied in the optimization areas where the optimal solutions obtained through 

using other optimization approaches are highly sensitive to small changes of the input parameters. 

In fact, their methodology is an alternative approach to the stochastic linear programming (SLP) 

which applies probabilistic input data. 

2.2 Robust Optimization 

RO is a relatively new approach to optimization under uncertainty when the uncertainty 

cannot be captured by specific probability distributions or that information on the underlying 

distribution is not available, which is often the case in real-world optimization problems. In RO, 

stochastic parameters are separated by a set of discrete scenarios. RO searches for solutions that 

are relatively immune to anticipated uncertainty in the problem parameters to produce less 

sensitive solutions to the realization of noisy data from each scenarios. Stochastic programming 

(SP) and RO are both scenario-based methods trying to proactively utilize information about 

uncertainty. RO uses the method of two-stage programming, in which the violation of inequality 

constraints will be penalized in the objective function. While both SP and RO emphasize the 

minimization of expected costs or maximization of expected profits, RO also focuses on reducing 

the variability of the expected cost. Furthermore, in RO, the number of variables approximately 

only doubles, whereas in SP it increases exponentially with the number of uncertain parameters. 

Using the scenario-based approach in which random variables take on specified values in 

each scenario, RO provides solutions which are progressively less sensitive, and more flexible to 

the realization of stochastic variables. Properties of the optimal solutions in RO are classified as 

“solution robust” and “model robust" to reduce variability of the objective value and also the 
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infeasibility of the solution for any realization of the stochastic parameters. An optimal solution 

to model is defined as solution robust if it remains ‘close’ to optimal for all input data scenarios, 

while the model is called robust if it remains ‘almost’ feasible for all data scenarios. 

The use of risk assessment and risk planning techniques clarifies the effects of 

uncertainty on planning performance. This in turn yields plans that remain valid for a longer time 

period, hence the term “robust planning”. In order to quantify this robustness, several approaches 

are possible. One approach tries to find the decision policy that yields the most stable outcome, 

i.e. with low variability of the key performance measures (such as service level or total 

underutilization) which is called “solution robust”. Another approach tries to find a policy that 

reduces the number of changes to the plan, while keeping the key performance measures fixed at 

their target level which is called “model robust”.  

Mulvey and Vanderbei [2] describe the notions of RO in a stochastic optimization model. 

Variables and constraints in RO include two distinct characters. Structural or design variables are 

those whose optimal values are not dependent upon the realization of uncertain input parameters. 

Furthermore, the design variables’ values cannot be adjusted once a realization of the uncertain 

data is known. On the other hand, the optimal values of control variables depend upon the 

realization of uncertain parameters, as well as the optimal values of the design variables. Like the 

variables, robust modeling contains two type of constraints which are structural constrains free of 

noise coefficients, and control constraints with noisy coefficients. According to Leung et al. [4], 

the structural constraints are linear constraints whose technology coefficients are affected by 

randomness and its input data are free of any noise, the control constraints contain data that can 

be uncertain. 

RO was developed to reduce variability and citing the overemphasis of feasibility in 

optimization models, [2] present the framework for the conventional RO model. Using a 
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scenario-based approach in which random variables take on specified values in each scenario, this 

technique seeks to measure the trade-off between solution robustness (i.e., a measure of 

optimality) and model robustness (i.e., a measure of feasibility). According to the authors, a 

robust solution is one that is almost optimal in all scenarios, while a robust model is one that 

remains almost feasible in all scenarios. Hence, RO extends SLP by including higher moments in 

the objective function (i.e., variance of total costs) and allowing for infeasibilities (i.e., model 

robustness). By incorporating risk into the objective function, robust optimization allows for a 

more passive management style than stochastic linear programming. Unlike its stochastic linear 

programming counterpart, a robust optimization model is not considered infeasible even when 

one or more infeasibilities occur. According to [5] the solutions developed by the RO model is 

progressively less sensitive to the realization of data in a scenario sets. However, the complexity 

of developing the robust counterpart of an integer linear programming model is deemed a huge 

barrier that restricts the implementation of the RO technique in healthcare optimizations [6]. 

Therefore, development of a standard framework that coordinates the transformation of 

deterministic models into the robust optimization forms is of a great value. 

As described above, transformation of a deterministic model into the RO form can be 

very complicated and at the same time lengthy process that is seen as a barrier to using RO as a 

progressive tool to tackle the uncertainty in solving optimization problems. The aim of this 

chapter is to provide a generalizable RO transformation framework for use as a tool in the context 

of operation research in order to generate the robust part of the deterministic models. Such a 

framework can assist decision makers in solving complex optimization problems through 

providing an instructional guideline that makes the transformation process more effective and at 

the same time easier to implement. The proposed framework also reduces the formulation burden 

which has always been an obstacle to application of RO in solving operation research problems 

[5]. 
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In light of the above discussion, the proposed novel transformation framework is 

constructed based on the RO model developed by [5]. A general two-stage stochastic recourse 

programming model is first developed to incorporate uncertainty in a developed formulation 

problem. Three different robust models are then projected using the proposed transformation 

framework to highlight the capability of the RO model in dealing with variability in stochastic 

environments. The proposed formulation can be generally used as a standard framework to 

transform any linear deterministic model into the stochastic robust form. The template 

transformation framework is then applied to a surgery planning and scheduling case of a 

healthcare problem in the following chapters to capture the randomness of the actual process in 

order to evaluate the effectiveness of the proposed framework on a realistic model and to 

demonstrate the applicability of the formulation. It is illustrated through the formulation that the 

proposed transformation framework is more practical to use than the method developed by [5]. 

Furthermore, the computational results confirm that the framework presented herein generates a 

robust allocation plan in a timely manner without requiring additional deviation variables. 

2.2.1 Conventional Robust Optimization Formulation 

To depict the robust optimization problem, it is assumed that 
1nRx  is the first stage i.e. 

design variable vector and 2nRy 
 is the second stage i.e. control variable vector. Then the 

basic linear programming (LP) model would be formed as follows. 

ydxcMin TT     
21, nn RyRx       (2.1) 

bAx            (2.2) 

eCyBx             (2.3) 

0, yx           (2.4) 
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Equation (2.2) is the structural constraint with fixed and free of noise coefficients, whilst 

equation (2.3) indicates the control constraint whose coefficient is under the influence of noisy 

data. Equation (2.4) guarantees non-negative vector of decision variables. To define the RO 

formulation, a set of scenarios   ...,,2,1  is introduced where under each scenario  , the 

control constraint coefficients are defined as   eCBd ,,,  with predetermined probability  , 

the occurrence probability of scenario , thus would be





 1 . In order to absorb the impact 

of having different values for the uncertain input data, a set of vectors containing the control 

variables, yyy ...,,, 21 ,is introduced. The optimal solution of the mathematical formulation (2.1) 

to (2.4) is considered robust when it remains ‘‘close’’ to optimality for any realization of the 

scenario  , and hence termed solution robust and if it remains ‘‘almost’’ feasible for any 

realization of  and thus termed model robust.  

In order to measure what close-to-optimality and almost-feasibility mean in robust 

optimization formulation, it is required to conduct a trade-off between solution and model 

robustness to acquire an optimal solution that remains both feasible and optimal for all scenarios. 

RO overcomes the challenge of finding a solution that remains both feasible and optimal to all 

input scenarios, by applying concepts in multi-criteria decision making (MCDM) as follows. 

     ...,,...,,, 11 yyxMin       (2.5) 

bAx            (2.6) 

  eyCxB           (2.7) 

0, yx           (2.8) 
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Where the set of   ...,,1  contains the error vectors that measure the permitted 

infeasibility in the control constraints (2.7) under scenario . The realizations of the coefficients 

of the control constraints for each scenario   comprises the set  eCBd ,,, . Furthermore, the 

previous objective function ydxc TT  , becomes a random variable of value  ydxc
TT   

with probability  . The next step would be to choose an appropriate function for  yyx ...,,, 1 . 

In stochastic linear programming, the function that is typically used is    


  . , which 

represents the mean or expected value of  ydxc
TT  over all the scenarios. The second term 

in the objective function of the above formulations represents an infeasibility penalty function. 

Using the values of the realized error vectors, this function penalizes violations of the control 

constraints under some of the scenarios. In other words, this term would allow the model to 

handle scenarios in which realizations of the uncertain parameters would otherwise not be 

allowed for a feasible solution, although with an associated penalty for each violation of the 

control constraint. Hence, the first term in the objective function, (2.5), provides a measure of 

solution robustness, which means remaining “close” to optimal for any realization of the scenario 

  , whereas the second term provides a measure of model robustness, that means remaining 

“almost” feasible for any realization of  . Furthermore, the parameter   is used as a weight 

to define the desired trade-off between solution and model robustness. It is obvious that assigning 

a value of zero to   may result in an infeasible solution, whereas assigning a sufficiently large 

value to   causes the infeasibility penalty function term to dominate the objective function, 

thereby resulting in a higher expected value for   yyx ...,,, 1 . 

In real-world optimization problems, a high level of risk might be associated with one or 

more of the uncertain input parameters (e.g., availability of surgeons or arrival of emergency 
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cases). However, when 
   


  .
is used as a cost term in the objective function of the 

proposed formulation (2.5-2.8) the model seeks only to minimize the expected value of the 

overall cost across all possible scenarios. In other words, the model does not account for the 

potential variability in cost (across scenarios) associated with the high risk parameter(s). Given 

this situation, [7] propose a mean-variance approach as one technique for mitigating the risk 

associated with one or more uncertain input parameters. Specifically, the revised cost function 

consists of the expected value of the random variable  ydxc
TT 

 plus a constant times the 

variance. In other words, the cost function portion of the objective function in the proposed 

formulation becomes as follows. 

   
 



















 





 

2

1 ...,,, yyx     ,  (2.9) 

 

Clearly, as the value of , which is a weighting factor to trade-off between risk and 

expected outcome for the solution robustness, is increased, the solution becomes less sensitive to 

changes in the input data as defined by the scenarios. Mulvey et al. [7] point out that this 

inclusion of the weighted variance term enables robust optimization to account for a decision 

maker’s preferences toward risk. Thus, robust optimization allows for a more passive 

management style, giving it a distinct advantage over stochastic linear programming. In other 

words, with variability under control, minimal adjustment to the control variables will be required 

when the weighted variance version of robust optimization is applied. While Equation 2.9 

accounts for both expected cost and cost variability, its quadratic terms introduce the undesirable 

characteristic of nonlinearity into the model. To address this drawback, Yu and Li [8] propose an 

alternate formulation for Equation 2.9 as follows. 
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   
 






 





  yyx ...,,, 1     ,  (2.10) 

 

However, despite eliminating the quadratic terms of  
 

 









 
 

2

from 

Equation 2.9, the formulation remains nonlinear. While a direct linearization of the absolute value 

term in Equation 2.10 is possible, the result is the introduction of several constraints and non-

negative deviational variables into the model. They present a robust formulation of a stochastic 

logistics problem that reduces computational burden by adding only half of the number of 

variables as in the model developed by [7]. In Yu and Li [8] authors illustrate the drawbacks of 

the approaches taken in [7] and incorporate a novel approach to linearizing the mean absolute 

deviation term in the objective function. Hence, the cost term to be used in formulation 2.5 to 2.8 

is transformed from a quadratic form to a much more tractable linear form. Finally, they propose 

an efficient methodology to minimize the objective function which is depicted in Equations 2.11 

to 2.13 where   shows deviations for violations of the mean. 

In objective function (2.10), 





   denotes the norm of 

2

















  , 

which can be chosen in an arbitrary way. However, its choice influences solution performance. If 

the norm is denoted by the variance, the quadratic terms contain numerous cross products among 

variables, which contribute a large computational burden. In [8] a robust model with absolute 

term for a logistic management Problem is proposed, and an effective method to transform the 

model into a linear programming model is introduced by utilizing additional deviation variables. 

In this study, we use the method proposed by in [8] to convert the model with the absolute term 

into a linear programming one. 
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 
 



 



































  2ZMin      (2.11) 

0


 



        ,   (2.12) 

0           (2.13) 

 

In Equation 2.11, it is notable that that if 0






   then finally the complete 

formulation of the robust objective function which includes both solution robustness and 

feasibility robustness is formulated as follow. 

 
 














































  2ZMin     (2.14) 

 

Because of the parameter uncertainty, the model maybe infeasible for some scenarios. 

Therefore,   presents the infeasibility of the model under scenario set . In other words,  is the 

amount by which the control constraints is being violated under each scenario. If the model is 

feasible,   will be equal to 0. Otherwise;   will be assigned a positive value according to 

equation (2.7). 

As can be seen, there is no standard framework to transform a deterministic model to the 

robust optimization form in the literature. This may have created a barrier on using RO as a 

progressive tool to tackle uncertainty in solving optimization problem in operation management 

content. The aim of this chapter is to provide a generalizable RO transformation formulation 

framework to solve operation research optimization problem. Herein, we develop a standard 

framework formulation to be used by decision makers as a tool to transform a deterministic 
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model into its robust counterpart. Such a framework can assist decision makers in solving 

complex optimization problem through providing an instructional guideline that makes the 

transformation process more effective and also easier to implement. The proposed framework 

also reduces the formulation burden which has always been an obstacle in application of RO in 

solving operation research problems 

Our standard transformation technique is developed based on the RO method proposed 

by [8], to be employed as a general framework in order to transform linear deterministic models 

into their robust optimization form. To demonstrate the applicability of our proposed approach, 

two different set of problems, including a healthcare capacity allocation problem in an operating 

room department and a hybrid master surgical schedule and surgery case assignment problem is 

solved to provide an insight into the structural transformation framework and also the complexity 

of the evolved solutions in Chapter 4 and 5, respectively. To the best of our knowledge, the 

proposed transformation approach has not been applied to any healthcare operations problem yet. 

Using data of a real case study from a local hospital we demonstrate that our RO transformation 

framework  is more efficient than the method presented in [8] as it works on a predefined 

framework that requires less information about the original deterministic problem while it can be 

solved in polynomial time. 

If 0 in the optimal solution then  
 



















 





 Z . Otherwise, 

if 0






  , then 



  


  in the optimal solution and

 
 





























 Z . As can be seen, the solution procedure of Equations 2.11 

to 2.13 is the same to Equation 2.10. 



  2. A TRANSFORMATION FRAMEWORK FOR ROBUST OPTIMIZATION 

36 
 

2.3 Robust Optimization vs Sensitivity Analysis and Stochastic Programming 

According to Mulvey and Vanderbei [2], RO technique has several advantages over its 

alternatives; however, it would be quite optimistic if we do not take its deficiency into account. 

Comparing sensitivity analysis (SA) with RO, it should be noted that SA, which is indeed 

a reactive approach to controlling uncertainty, is only influenced by the ranges of changing in 

input data when measuring the sensitivity of a solution and as a result cannot provide any 

mechanism to control the sensitivity. 

Stochastic linear programming (SLP) method, on the other hand, which is a constructive 

approach as RO, provided the opportunity for decision makers to exploit the flexibility of 

resource variables. However, the SLP model optimizes only the first moment of the distribution 

of the objective value
 . In fact, SLP ignores higher moments of the distribution, which is quite 

important for asymmetric distribution and risk adverse decision makers. Moreover, taking the aim 

of optimizing the expected value in SLP requires management to take active role since the 

expected value can be remained on optimal while the large changes in   among different 

scenarios might have been observed. But in RO model, both the higher moments and the variance 

of the distribution of  , for instance, would be minimized while the management can take a 

passive style. This, in turn, requires little or no adjustment of the control variables, since the value 

of   will not considerably differ among different scenarios. In this regard, RO can be viewed as 

an SLP, where the recourse decisions are completely restricted. 

To illustrate the distinction between RO and SLP in their application domain, Mulvey 

and Vanderbei [2] propose an example about personnel planning problem. The authors propose 

that SLP design a solution for workforce that can be adjusted (by hiring or layoffs) to meet 

demand at lowest possible cost; however, the model was not able to maintain the employment 

stability. The RO model, on the other hand, is able to maintain a stable workforce to cope with 
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diverse demand for all scenarios. Though, the cost of the solution is higher. In fact, RO directly 

control variability of the solution as opposed to just optimizing its first moment. 

Another main difference between RO and SLP is the handling of constraints. SLP models 

intend to find the design variable x so that for each scenario, a possible control variable setting 

y satisfies the constraints. Although, for scenarios that no feasible pair of  yx, is possible, the 

SLP model is declared infeasible. RO, however, completely takes this possibility into 

consideration. The RO model will find a solution that violates the constraints by least amount 

possible through the use of error terms  and penalty function  . . Other advantages of RO 

against SLP, mentioned by [2], are stability of the respective solutions, and solutions accuracy 

when the number of applied scenarios is limited. 

Although RO has obvious advantages over SA and SLP, it contains two main restrictions. 

First, RO models are parametric programs with a priori mechanism for identifying a "correct" 

choice for the parameter . This is, according to [8], a common problem in multi-criteria 

programming optimization. Second, the scenarios in  are just one possible set of realization of 

data for the problem and RO does not provide a means by which the scenarios can be specified. 

This problem is prevalent in SLP models as well. 

Even though RO model has some potential limitation, it still provides considerably 

improved solution framework, especially in the face of noisy data. 

2.4 Robust Optimization Transformation Framework 

With the aim of incorporating uncertainty into the model development process, this 

section describe the structure of the proposed RO transformation framework to transform the 

deterministic models into the robust form. 
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We first develop the formulation of a general two-stage stochastic recourse programming 

model to define uncertainty into the model and then three different robust optimization models 

are generated using our proposed framework. 

2.4.1 Two-stage stochastic recourse programming model 

A general two-stage stochastic recourse programming model can be formulated as 

follows: 

21
21 , nnTT RyRxycxcMin 



  (2.15) 

Subject to 

bAx            (2.16) 

  eyCxB    (2.17) 

  0, yx    (2.18) 

 

In the objective function (2.15), x denotes the vector of first stage (i.e. design) variables 

whose optimal value is determined before complete information of uncertain parameters is 

observed, while y denotes the second stage (i.e. control) variables corresponding to realization of 

the scenario  where the decisions are subject to adjustment when the realization of the stochastic 

parameters is observed. Therefore, the sum of the first stage costs and the second stage costs in 

the objective function represents the total expected costs of the stochastic recourse programing 

model. Under constraints, 
B and

e  represent random coefficient matrix and right-hand side 

vector, respectively. 
C and 

2c denote the recourse matrix and the penalty recourse cost vector 

corresponding to scenario  respectively. The equations (2.16) and (2.17) are categorized as the 

first stage constraints in the stochastic recourse model as the first stage constraints and the second 

stage constraints, respectively. The former only involves the first stage variables, while the latter 
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contains both first stage and second stage variables. It should be noted that in the objective 

function (2.15), the stochastic variable is indicated by “ ”, and  denotes the probability of 

the realization of the stochastic variables. The produced solution fails to find a trade-off between 

optimality and robustness of the optimum solutions. 

2.4.2 Robust optimization transformation framework for two-stage stochastic recourse program 

In order to incorporate the impact of having different values for the uncertain input 

parameters, RO model proposed by Mulvey et al. [7] is presented here to modify the objective in 

SP as follows. 

   





  ...,,...,,, 1121 yyxycxcMin TT
 

21, nn RyRx    (2.19) 

Subject to 

bAx            (2.20) 

  eyCxB           (2.21) 

0, yx           (2.22) 

 

The term  





  yyxycT ...,,, 12  in the objective function denotes the solution 

robustness measure, where yyy ...,,, 21  is introduced as a set of vectors containing the control 

variables and  is intended as a measurement of the variability of the objective function. The term

  ...,,1
is a feasibility penalty function which is used to measure the violation of the 

second stage constraints where is a penalty weight that is used to define the desired trade-off 

between solution and model robustness. The term   ...,,1 in the objective function contains the 

error vectors that measure the allowed infeasibility in the control constraints (2.21) under scenario

 . Using the value of the realized error vectors, the feasibility penalty function penalizes 
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violations of the control constraints under some of the scenarios. Equation (2.20) is the structural 

constraints with fixed and free of noise coefficients, whilst equation (2.21) indicates the control 

constraints of which the coefficients are under the influence of noisy data. The realizations of the 

coefficients of the control constraints for each scenario comprises of a set of  eCBc ,,,2 . 

Equation (2.22) guarantees non-negative vector of the decision variables. It should be noted that 

the RO overcomes the challenge of finding a solution that remains both feasible and optimal to all 

input scenarios through a trade-off between model robustness and solution robustness by applying 

the concept of multi-criteria decision making procedure. 

The framework proposed in this work takes into account the uncertainty of incorporating 

unknown parameters into the model. Here we define the term


to measure the mean value of the 

objective function under uncertainty which also provides an expected second stage cost.  In order 

to incorporate risk aversion capability into the RO model, we penalize the deviation for violation 

of the mean expected cost, both above and below the expected recourse cost through a deviation 

function represented by
d . Since variance is a systematic risk measure, penalizing the deviation 

from the mean provides more flexibility for decision makers regarding the degree of risk aversion 

that they prefer to take for a given situation. The actual deviation from the mean is penalized via 

the weight
 . We employ a mean absolute deviation approach to make sure the impact of 

deviation from the mean is incorporated into the model (refer to Section 2.2.1). 

The next terminology we use herein is represented by
f , where it denotes an equation of 

the control constraints. In the proposed framework, 
f represent the amount by which the model 

allows for infeasibility to incorporate variability of the input parameters and hence maintain 

model robustness feature in the framework. This equation provides some flexibility for the 

decision makers to appropriately measure the permitted infeasibility in the control constraints. 

The control constraints enable the model to adjust to the impact of changes in variable input data 
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under different scenarios if it violates the condition of the constraints through a penalty function,


, in order to penalize the incurred infeasibility. The function 

f  penalizes violations of the 

control constraints under some of the scenario sets. In other words, the term
f allows the model 

to handle scenarios in which realizations of the uncertain parameters would otherwise not be 

allowed for a feasible solution, although with an associated penalty weight for the violation of 

the control constraints. 

Considering the assumptions of the defined standard transformation framework, robust 

optimization model can be reformulated using our proposed transformation framework to 

measure the decision maker’s risk preferences through the expected variability of the objective 

function and also provides a degree of trade-off between that risk and the cost of infeasibility of 

the second stage constraints. 

2.4.3 Proposed transformation framework for the RO model with solution robustness 

In realistic optimization problems, a high level of risk might be associated with one or 

more of the uncertain input parameters (e.g., operating rooms availability, surgery demand 

variability, or unpredictability of surgery duration). However, when   





 ycT

2. is used as a 

second stage cost in the objective function of the robust formulation (2.19-2.22), the model only 

seeks to minimize the expected value of the overall cost across all possible scenarios. In other 

words, the potential variability in the cost functions associated with the high risk parameters 

across different scenarios is not taken into account. In fact, the variability that exists in the input 

parameters makes the transformation procedure more complicated. To provide an objective 

function with solution robustness that generates the optimal solutions that are less variable and 

are not altered substantially across different scenarios, we utilize the mean-variance approach 

proposed by Mulvey et al. [7] as a technique to mitigate the risk associated with the uncertain 

input parameters. Hence, the revised cost function consists of the expected value of the random 
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variable plus a constant multiplying the variance. We define to represent  yxf , , which is a 

cost function, and as a result,   yxf ,  for scenario . The variable,
d , is defined to 

capture the variance of the expected cost functions of the original RO model. Therefore, the new 

cost function portion of the objective function that manages the risks and variability of solutions 

among different scenarios is formulated as follows. 







           (2.23) 

 
 d           (2.24) 

  






  dxcyyx T...,,, 1       (2.25) 

 

 is the weighting factor between zero and one that represents the trade-off between risk 

and expected outcome for the solution robustness. Clearly, as the value of  is increased the 

solution becomes less sensitive to changes in the input data as defined by the scenarios. If a 

solution is resulted in too many infeasible constraints, any small change in the value of uncertain 

parameters can cause a huge difference in the value of the measured function. It is noted that this 

inclusion of the weighted variance term enables RO to account for the decision maker’s 

preferences towards risk. Thus, proposed RO model allows for a more passive management style, 

giving it a distinct advantage over the stochastic recourse programming. In other words, with 

variability under control, minimal adjustment to the control variables will be required when the 

weighted variance version of RO is applied. While Equation (2.25) accounts for both expected 

cost and cost variability, the absolute term introduces the undesirable characteristics of 

nonlinearity into the model and also contributes to a large computational burden. To address this 

drawback, we utilize the linearization method proposed by [5] and recently demonstrated by [9] 
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and [10] to transform the absolute term into a linear form. In the following,  represents the 

deviation for violations of the mean in the robust optimization model with solution robustness. 

 








  2dxcZMin T
       (2.26) 

Subject to (2.16) to (2.18) 

0 
 d           (2.27) 

0            (2.28) 

 

In the objective function (2.26), the second term represents the mean expected cost 

(i.e. second stage cost), while the third term  









  2d  defines the expected variability 

cost, where  determines the severity of the variability of the objective function. Therefore, 

assuming no variability (i.e. 0 ) in the objective function implies that the RO model is 

transformed into the two-stage stochastic recourse programming model. 

In Equation (2.26), it can be seen that if 0d  then 0 in the optimal solution, 

and thus, the objective function 











  dxcZ T
. Otherwise, if 0d , then 



 d in the optimal solution, and hence, the objective function

 










  dxcZ T
. As can be seen, the solution procedure of Equations 

2.26 to 2.28 is the same as to Equation 2.25. 

2.4.4 Proposed transformation framework for RO model with model robustness 

RO can also measure the model robustness with respect to infeasibility associated with 

the second stage constraints. Under this situation, the violation of the second stage constrains is 
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allowed; however a penalty rate of is applied. In order to manage the infeasibility that results 

from the unknown input parameters under different scenarios, the variable
f

is defined to capture 

the violation of the second stage constraints under each scenario in the proposed transformation 

framework. Therefore, 
f

 represents the infeasibility of the control constraints as a result of the 

realization of uncertain input parameters among various scenarios. In the following, the 

framework for robust optimization model with model robustness is structured where the violation 

of the control constraints is penalized through the penalty function in the objective function. It 

should be noted that under feasibility condition the value of 
f

will be equal to zero, whereas, 

under infeasibility 
f

is assumed a positive value. 





 fxcZMin T 


        (2.29) 

Subject to (2.16) 




 efyCxB           (2.30) 

0,, yx           (2.31) 

 

In the objective function (2.29), the third term



 f



represents the expected 

infeasibility cost, where is defined as a parameter to measure the penalty cost for violation of 

the second stage constraints. The term




 f


measures the expected infeasibility of the 

control constraints, thus setting the value of 0 implies no penalty cost for not satisfying the 

second stage constraints resulting in transforming the model into the two-stage stochastic 

recourse programming model. Therefore, to obtain the optimal solution in the objective function, 

the control constraints can be violated for as much as is required. On the contrary, setting a very 
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large positive value for enforces all the second stage constraints to be satisfied due to a large 

penalty cost. Therefore, the RO model with a very large   will be converted to the two-stage 

stochastic recourse programming model. It should be noted that assigning a sufficiently large 

value to causes the infeasibility penalty function term to dominate the objective function, 

thereby resulting in a higher expected value for the first stage and the second stage cost. 

As noted before, we employ the linearization method developed by [5] in order to 

transform the absolute term in the objective function (2.29) into a linear form. A deviational 

variable
 is introduced and the RO model with model robustness is reformulated as follows. 

 



  2 


fxcZMin T

      (2.32) 

Subject to (2.16), (2.18), (2.30), and (2.31) 

0  f           (2.33) 

0           (2.34) 

 

2.4.5 Proposed transformation framework for RO model with the trade-off between solution 

and model robustness 

The RO model can coordinate the variability and feasibility at the same time through a 

trade-off between solution and model robustness. The complete formulation of the robust 

objective function using our proposed transformation framework that includes both solution 

robustness and model robustness is as follows. 










  fdxcZMin T 



      (2.35) 

 

In the objective function (2.35), the first term is the first stage cost, the second term is the 

second stage cost, the third term is the expected variability cost, and the forth term is the expected 
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infeasibility cost. Note that the sum of the first stage cost and the second stage cost comprises the 

model expected cost in stochastic recourse programming model, while the total cost consists of 

the sum of all the cost terms. Given the absolute term formulation to transform the objective 

function into the LP model, the linear RO transformation framework with the trade-off between 

solution and model robustness is formulated as follows. 

   










  22  


fdxcZMin T
    (2.36) 

Subject to 

bAx            (2.37) 




 efyCxB            (2.38) 

0 
 d            (2.39) 

0  f            (2.40) 

0,,,,, 
 yx           (2.41) 

 

To demonstrate the applicability of the proposed formulation and to provide insight into 

the structure of the proposed transformation framework, a surgical block allocation problem and 

an integrated master surgery schedule with surgical case assignment problem of a real-life 

healthcare delivery system is solved in chapter 4 and 5, respectively. To the best of our 

knowledge, this is the first time that our proposed RO approach is applied in the context of the 

healthcare planning and scheduling problems. Through the case study, we demonstrate that our 

approach outweighs the SP method. It is also shown that the proposed RO framework works more 

effective than the RO model presented by Yu and Li [5] due to requiring less information about 

the original deterministic problem while at the same time provides more flexibility for the 

decision makers in utilizing the formulation.
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Chapter 3 

A Novel Robust Optimization Transformation 

Framework to Operating Room Case Mix and 

Capacity Planning under Uncertainty at a 

Publicly-Funded Hospital1

  

 

3.1 Introduction 

Operation management at healthcare facilities is a wide area of knowledge in which conflicting 

objectives such as cost reduction and capacity expansion are normally against enhancing service 

levels and patients’ satisfaction. Effective management of surgical resources, which is referred to 

as operating room planning (ORP), draws considerable attention from the healthcare community 

to reduce costs and increase revenues [1]. The ORP is a well-established literature in which 

different aspects of the healthcare decision makers’ perspective have been studied [2]. Surgery 

                                                           
1 A version of this chapter has been submitted for publication. Lalmazloumian M. , Baki F. and Ahmadi M. 

A novel robust optimization transformation framework to operating room capacity allocation problem 

under uncertainty at a publicly-funded hospital. 
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capacity allocation problem is amongst the most challenging decision within the ORP that 

directly impacts the structural planning of patients’ demand at the strategic level. In most medium 

to large-scale healthcare systems, surgery capacity allocation decisions are planned without 

considering the variability in patient arrivals. Failing to consider variable and uncertain surgery 

demands can rigorously degrade the hospital’s performance in the real-life situation and causing 

extra operational costs. This study is concentrated with operating room (OR) allocation planning 

for multiple surgical specialties of a healthcare system on a given day, where possible mixtures of 

elective and emergency patients require simultaneously various surgery teams and OR blocks. 

Since patient arrivals are realized under uncertain circumstances, random characteristics in terms 

of arrival time will be observed in surgical demands of different specialties. In the OR block 

allocation problems, we look for the optimal combination of OR blocks from each type as well as 

surgical specialties that best meet unknown surgery demands. Inefficient block allocation plans 

could cause rescheduling of elective patients which increases patient anxiety or prolongs a 

patient’s length of stay (LOS) before a surgery is operated. Rescheduling could also impose extra 

costs to the healthcare systems. Surgeries that cannot be operated as planned due to clinical 

resource constraints and/or the uncertain patient arrivals are either postponed to the next available 

time within the planning period by incurring a non-reimbursable postponement cost or become 

unmet and hence incur huge penalty costs. The surgery allocation is subject to the availability of 

alternative operating rooms in which the surgical procedures can be carried out as well as the 

size, fixtures, and personal requirements. The uncertainty in the decision variables of the block 

allocation problems is realized through the postponed demand, rescheduled surgery, and 

underutilized OR blocks. The objective is to minimize the initial cost of block allocation schedule 

and also the costs incurred by postponed/unmet surgery demands and underutilization costs of 

idleness of operating room hours regarding fulfillment of elective and emergency surgery 

demands that alter on a discrete set of scenarios. Consequently, incorporating the uncertain 

surgery demands into the OR block allocation problem has a significant benefit in obtaining a 
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robust allocation plan that minimizes operating costs and reduces service level variability as the 

ultimate goal of the hospital managements. 

We address the allocation of ORs’ capacity to surgical specialties over a finite planning 

horizon. We focus on two major arrival channels, namely elective and emergency patients, to 

allocate ORs to the specialties. While surgery operations are usually planned early in advance for 

the former class, treatments are carried out within an urgent situation and consequently 

emergency for the latter case. The allocation plan of OR block times turn out to be more complex 

when variety of surgical specialties and the combination of both scheduled, i.e. elective and 

unscheduled, i.e. emergency procedures are taken into account [3]. 

Surgery block allocation problems can be seen as a combination of several typical 

surgery planning and scheduling problems where different modeling approaches have been 

adapted in the literature to incorporate decision making into the modeling framework. A classical 

surgery planning is formulated by a deterministic mixed-integer programming (MIP) model to 

allocate block times of operating room capacity to various specialties’ emergency and non-

emergency surgery [1], [4], [5]. Blake et al. [6] proposed a cyclic timetable to control the shortage 

of OR capacity in a surgical unit through a MIP model. Santibanez et al. [3] provided a MIP 

model for the allocation of surgical blocks of elective patients under deterministic demands to 

determine the assignment of operating theater blocks to surgical specialties. Emergency demands 

are assumed to be served after the completion of elective cases through a dedicated operating 

room. Jebali et al. [7] developed a two-step MIP model to solve the assignment and sequencing 

problem of surgical operations for elective cases. Doulabi et al. [8] applied a constructive 

heuristic algorithm to develop an integrated operating room planning and scheduling framework 

to synchronize the assignment and scheduling of the surgeons. Patient arrivals were realized 

through a single channel of elective patients. Cardoen et al. [9] considered scheduling of 

prioritized patients through a multi-objective healthcare decision making process using the 
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branch-and-price approach. Various restricting criteria such as ORs, medical instruments, and 

recovering areas availability have been taken into account in their study. Fei et al. [10] and Fei et 

al. [11] addressed surgical case assignment problems of operating rooms using mathematical 

models while they proposed the use of different heuristic approaches as solution methods. An 

open scheduling strategy is incorporated where surgical operations are scheduled to the ORs in 

any available workday over the planning horizon. Despite the significant applications of 

mathematical models in capacity allocation problems, there would be a high risk of unsatisfied 

surgery demands and/or underutilized operating room hours for the hospitals when capacity 

decisions are being made under the deterministic environment. That arises from the inability of 

deterministic models to deal with variable input data. Therefore, deterministic models could result 

in an increased non-reimbursable costs and degraded service level due to the incurred 

postponed/rescheduled surgery demands. 

Another stream to which the surgical block allocation problems is expanded in the 

literature is concentrated on the stochastic planning and scheduling models using the stochastic 

programming (SP) approaches [12]–[15]. A set of explicit probability distributions is constructed 

in this method to take the stochastic characteristics of unknown parameters  into account, 

however, some unrealistic assumptions are assumed in the literature related to the delayed 

incorporation of the emergency admissions to the limited ORs in addressing emergency patients 

[12]; reserved resource capacities exclusively utilized by emergency surgeries [14], [16]; delayed 

positioning of high variance surgical operations in the schedule while patient arrivals are known 

[13]; assumed single class of patients in allocation of uncertain surgical block capacity [15]; and 

dedicated OR blocks to allocate to the surgical specialties [17] that makes the optimal solutions of 

most of the SP optimization problems not capable to solve the real-life healthcare issues. 

Belien et al. [18] developed an integrated cyclic master surgery schedule (MSS) to model 

a leveled bed post-surgical schedule with the combination of MIP heuristic and metaheuristics to 
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control the variance of bed shortage in each day under uncertainty of both surgical durations and 

patient lengths of stay. However, they only focus on elective patient demands. [14] developed a 

SP model to study the influence of uncertain emergency surgery in surgical scheduling problem 

when OR capacity is shared between two competing patient classes comprised of emergency and 

elective patients to minimize both patient costs and overtime costs. A Monte Carlo simulation 

method is proposed to capture the uncertainty of emergency demand. In their work, the definition 

of patient costs is only limited to the surgery durations. A MIP model is developed by Min and 

Yih [15] that generates cyclic MSS to obtain the optimal surgery plans where both surgery 

durations and availability of downstream resources are uncertain parameters. A sample average 

approximation (SAA) algorithm is used that minimizes both patient and overtime costs, however, 

elective demand is the only uncertain factor considered in the problem. Denton et al. [19] 

proposed a two-stage stochastic MIP model for a surgery sequencing problem under uncertain 

surgery durations. An L-shape method and SAA algorithm are utilized to trade-off the impact of 

scheduling start times and waiting time of the surgical cases within a planning horizon. Erdem et 

al. [20] studied the impact of the uncertain emergency patient arrivals on the scheduling of 

elective cases to reduce the disruption costs incurred due to the adoption of elective surgeries 

using a genetic algorithm. The inter-arrival times are assumed to be fixed. Erdogan and Denton 

[21] formulated a stochastic dynamic programming model to solve an appointment scheduling 

problem of healthcare systems under stochastic service durations and the number of patients. 

Several decomposition algorithms are adapted to solve the formulated multistage stochastic linear 

program. 

Indeed, SP is a major stream to address uncertainty associated with surgical treatment 

demands and surgery durations through the years. Typically, the goal in the stochastic 

programming approaches is to optimize the expected objective function over a range of possible 

scenarios for the random parameters. However, several shortcomings for such an approach exist: 
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(1) the method assumes that exact distributions of the uncertain data are available, however, this 

assumption is rarely met in practical situations of healthcare systems. (2) the behavior of the 

systems at some particular realization of scenarios such as the worst case scenario is ignored in 

SP approach. More specifically, for some scenarios unrealizable postponed demand or idleness of 

OR capacity might be observed by implementing the solution developed by the stochastic models, 

and (3) the size of the resulting optimization model extensively increases as a function of the 

number of scenarios which leads to the substantial computational difficulties [22]. Despite 

considering the stochastic characteristics of input parameters in the above research work, 

literature is still limited owing to the unavailability of dedicated OR blocks in the midsize 

healthcare systems and unrealistic assumption of devoting the OR capacity to a single class of 

patients. Moreover, assuming elective surgeries as the only source of demand uncertainty and 

surgery costs as a function of surgery duration is quite unrealistic in real healthcare systems. 

Furthermore, the delay in positioning of the highly variable demands can negatively impact the 

postponement and rescheduling of surgery cases in the hospitals. Finally, the variability of the 

expected cost in the objective function is not incorporated into the SP method. Robust 

optimization has the benefit of limiting the shortcoming of the SP method. 

Robust optimization (RO) is an alternative approach to stochastic linear programming 

methods which applies probabilistic input data. Using a scenario-based approach in which 

random variables take on specified values in each scenario, the RO solution is progressively less 

sensitive and more flexible approach to the realization of stochastic variables. However, the 

application of RO in solving surgical planning and scheduling problems is very limited [23]. 

Denton et al. [13] presented a RO model to solve OR capacity allocation problems that minimize 

the maximum cost associated with an uncertain set of surgery durations. It is demonstrated that 

RO outperforms the SP approach in finding the optimal allocation of surgery block times. In 

Addis et al.  [24] a surgical assignment problem of a set of elective patients to the operating room 
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blocks is addressed with the random surgery durations that minimize weighted costs of patients 

waiting time. Mannino et al. [25] solved a MSS problem that finds a robust solution approach for 

the allocation of surgical resources to a set of surgical groups in order to find a leveled patients 

queue lengths among different specialties that minimize total overtime costs. Holte and Mannino 

[26] a RO model is developed to address a combined surgery block allocation and a MSS 

problem of a real-life example from a large hospital that minimizes the patients waiting time 

where a single channel of elective surgery is the only source of uncertainty. Tang and Wang [27] 

proposed an adjustable RO model to address the surgery capacity allocation problems with 

demand uncertainty where the OR capacity is shared between integrated subspecialties. The 

uncertain emergency arrivals are allocated into the reserved OR capacities in order to minimize 

the revenue loss resulted from the lack of resources. Although several authors have contributed 

on the OR management literature using RO approach, most existing works focus on specific 

aspects of the OR planning and scheduling problem that consider certain constraints and or 

assumptions in order to reduce the complexity of the problem, such as devoting the OR capacity 

to a single class of patients. In Yu and Li [28] the solutions developed by the RO model are 

progressively less sensitive to the realization of data in a scenario sets. However, the complexity 

of developing the robust counterpart of an integer linear programming model is deemed a huge 

barrier that restricts the implementation of the RO technique in healthcare optimizations [27]. 

Therefore, development of a standard framework that coordinates the transformation of 

deterministic models into the robust optimization forms is of a great value. 

In Table 3.1 we have classified the most recent contributions on OR planning and 

scheduling and have characterized for all these contributions the type of criteria that is taken into 

account, various aspect of surgery demand, as well as the modelling approach, decision types, 

objective functions, and solution approach in order to position our work in the growing OR 
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planning literature. It also provides a means to position our method in the huge state of the art of 

the existing models.  

Table 3.1: Summary of the main literature on OR planning and scheduling 

 
Type of 

problem  
Criteria 

Stochastic 

aspects 

Optimization 

Technique R-l 

Paper Pln Sch Co Cap S A Ov Or U Pos Un S El Em MIP Sim Mth RO Hu 

Addis et al. (2015) √     √        √ √   

Beliën and 

Demeulemeester (2007) 
 √  √      √  √    √  

Cardoen et al. (2009)  √ √ √  √      √  √  √ √ 

Cardoen et al. (2009b)  √ √ √  √      √  √  √ √ 

Choi and Wilhelm 

(2014) 
√  √ √   √  √   √  √    

Denton et al. (2007)  √ √   √ √     √ √   √ √ 

Erdem et al. (2012)  √  √ √ √  √ √  √ √    √  

Fei et al. (2008) √  √ √  √        √  √ √ 

Fei et al. (2009) √  √ √  √ √       √  √  

Jebali et al. (2006) √ √ √ √ √ √        √    

Lamiri et al. (2008) √  √ √  √ √    √ √ √     

Min and Yih (2010)  √ √ √  √   √   √ √   √  

Persson and Persson 

(2010) 
√  √   √   √ √  √ √    √ 

Santibáñez et al. (2007)  √  √ √       √     √ 

Tang and Wang (2015)  √ √ √      √ √    √  √ 

Testi and Tànfani (2009) √ √    √   √    √ √   √ 

Zhang et al. (2009) √  √ √ √  √ √ √   √ √    √ 

Our research √  √ √ √ √ √ √ √ √ √ √   √  √ 

Constraints typically modelled in the literature: Pln - planning; Sch - scheduling; Co - cost; 

Cap - capacity; S A - surgeon’s availability; Ov - overtime; Or U - OR utilization; Pos - surgery 

postponement; Un S - unmet surgery; El - elective demand; Em - emergency demand; MIP - mixed 

integer programming; Sim - simulation; Mth - mathematical programming; RO - robust 

optimization; Hu - Heuristics; R-l - real-life case 

 

Similar to Zhang et al. [4], Erdem et al. [20] and Tang and Wang [27] our work also 

focuses on allocating surgical resource capacities to the specialties in order to address the surgery 

needs of both elective and emergency patients. Characteristics of this problem are comprehensive 

to the existing methods in order to bridge the gap in various aspects of surgery demand as well as 

modelling and solution approaches. We develop a two-stage stochastic recourse programming 
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model as well as a robust optimization model that solve the stochastic surgery capacity allocation 

problems while considering random characteristics of patient arrivals to the hospitals. The main 

differences between our work and the previous works on surgery allocation with RO are as 

follows. (1) In addition to a single class of patient, the demand allocation plan is considered for 

both elective and emergency surgeries. (2) The quality of service for elective patients is 

introduced as a function of the surgery postponements to manage the service level in the 

hospitals. The random demands are modeled as scenarios with a set of discrete probability 

distributions along the planning horizon. The surgery operating costs are defined non-

reimbursable if a proportion of surgery demand of a surgical specialty cannot be fulfilled on time. 

Therefore, depending on the way a surgery demand is accommodated in hospitals, the 

postponement or rescheduling costs is incurred. The underutilization cost, on the other hand, is 

incurred if the under-usage of OR capacity is realized in the hospitals. Thus, the service level is 

evaluated through measuring the random postponed/rescheduled demand as well as the 

underutilized OR capacity. Therefore, the importance of robustness is mainly recognized in terms 

of determining a robust surgery allocation plan by minimizing the variability in the amount of 

postponed/rescheduled demand sizes and the underutilized OR capacities over different scenarios 

for random elective and emergency surgery demands. The robustness in the developed allocation 

surgery plans directly reflects the risk aversion levels of the decision makers about the variability 

of random yields and the total costs. A real case healthcare system is used to apply the proposed 

RO model. The resulted combinatorial programming models are conducted on AMPL 

optimization software and solved by CPLEX 12 in a reasonable amount of time. The results of 

the two-stage stochastic programming and the robust optimization models are evaluated to 

provide a comparison between the variability of output measures and infeasibility of the second 

stage constraints. Finally, a trade-off between the variability of the performance measures and the 

expected total costs is performed to acquire managerial insights on the optimal allocation plans. 
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The main contributions of this paper can be summarized as follows. First, we propose a 

novel standard formulation framework to transform a deterministic capacity allocation models 

into the stochastic robust optimization model for the case when random variables are represented 

by a discrete set of independent scenarios. We improve the efficiency of the RO model by adding 

dominance rules to decrease the size of the problem. Our results demonstrate that the proposed 

RO framework significantly outperform the conventional RO model, obtaining the average 

optimality gap of 1.50%. We also compare our approach with a state-of-the-art stochastic 

recourse programming model for a novel surgery capacity allocation problem. Second, we 

employ RO approach as a modeling tool for a surgery block allocation problem. The robust 

model we develop represents considerations of the healthcare environments that have not yet 

been fully studied related to the uncertain parameters and the objective function. Moreover, it is 

shown that the problem of surgery capacity allocation is essentially a two-stage stochastic 

recourse problem. Consequently, it is suggested to solve the problem using the proposed 

framework to compare the performance of different robust models in controlling the variability 

and infeasibility of allocation plans with the stochastic recourse model. We also propose a trade-

off function that balances the risk aversion levels of the decision makers about service level 

robustness and the total expected costs of the plans. Finally, we apply our framework to solve 

real-life instances provided by the Windsor Regional Hospital (WRH), a major hospital in 

Southwestern Ontario and present insight into the optimal OR capacity allocation policies in the 

presence of uncertain elective and emergency surgery demands. 

The remainder of this chapter is structured as follows. In section 3.2, the surgery capacity 

allocation problem is described and its specific characteristics are introduced to build a general 

model aiming at minimizing the total loss resulting from the shortage of allocated resources. In 

section 3.3, a standard transformation framework for the RO models is proposed and the 

structural details of different robust models are elaborated. In section 3.4, the RO formulation for 
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the random surgery block allocation problems is presented using the proposed standard 

transformation framework. In Section 3.5, the computational results of implementing the 

presented RO models for a local healthcare system are provided. Moreover, a numerical analysis 

is conducted to evaluate the significance of the proposed robust models compared with the 

corresponding two-stage stochastic recourse programming model. Lastly, concluding remarks 

together with some outlines for future research are described in section 3.6. 

3.2 Surgery capacity allocation process and specific characteristics 

Surgery departments are amongst the most cost driven bottleneck in the healthcare 

systems while at the same time they contribute to the significant portion of the hospital total 

revenues [7], [13], [15], [19], [31]. The primary goal of the OR capacity allocation models is to 

minimize the total fixed and variable costs associated with the overall daily assignment while 

maintaining the required service level at the health systems. Effective OR management helps 

improve resource efficiency and increase the number of patients served by specialties which 

results in reduced postponement and patients waiting times, minimized surgery cancelations, and 

enhanced OR utilizations and thus the overall performance of the healthcare providers. Therefore, 

an efficient OR management is an inevitable key to success of hospital operations. 

In most healthcare systems in North America, surgery planning and scheduling is carried 

out through a dedicated unit in the hospitals that builds the OR allocation templates for the 

operating rooms called block time schedule, where each block contains one day of staffed hours 

of an operating room [4]. The allocated OR capacity is then shared between various 

subspecialties of a surgical specialty in the hospitals. Surgeons within each specialty then 

determine the admission order of elective patients to their corresponding ORs. Due to the critical 

condition of emergency cases, emergency patients are operated as soon as their demand arises in 

the hospitals. Emergency cases are normally allocated to the dedicated emergency rooms, 

however, in case of unavailability of a dedicated OR the emergency patients are sent to the non-
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emergency rooms that have already been assigned to a particular specialty which could result in 

some scheduled elective surgeries to be postponed to a later date or be rescheduled. Due to the 

resource shortages, the serviceability of the healthcare units cannot fulfil the uncertain demand 

arises from different surgery channels. Therefore, when the available OR capacity is saturated, 

surgical departments have to first postpone and then reschedule those patients that cannot be 

admitted into another local hospital, which leads to a revenue loss due to a non-reimbursable 

service cost. The goal of this model is to bridge the gap between the number of admitted and 

scheduled patients on each working days over the planning horizon. 

In Litvak and Long [32], hospital managers normally face two different types of 

variations in hospitals, including natural variability which is inherent to the uncertainties 

associated with surgical durations, patients mix and arrivals, length of stay, and other factors, and 

artificial variability that originates from poor scheduling policy which leads to a longer waiting 

time and a lower service level. Following Tang and Wang [27], we assume that uncertain surgery 

demands for specialties are represented as random sets with unknown distributions for both 

elective and emergency surgeries that remain stationary over the planning horizon. The empirical 

upper bound and lower bound for the elective and emergency demand of each specialty is given 

based on the available historical data. 

The surgery theater is assumed to comprise of multiple identical ORs that are shared 

between surgical specialties to perform surgeries. There exists a subset of ORs with exceptional 

equipment in the hospitals to cover the need of specialties that require special type of medical 

resources. The cost parameters related to running each subset of OR may vary from those 

associated with others due to the variability of the installed equipment. The available OR hours 

are influenced by the variability involved in the number of staffed OR and/or availability of 

surgeons. Hospitals are obliged to follow a governmental protocol that determines the maximum 

allowed waiting times for a surgery in order to be reimbursed for the operated services. The 
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availability of the operating rooms directly affects the number of patients receiving surgical 

services in the hospitals and as a result can directly impact the patient waiting times. The desired 

service level for the healthcare providers is also influenced by that waiting factor, and hence, is 

incorporated in our decision making framework. It is assumed that multiple ORs can be allocated 

to each specialty on a given day in order to accommodate the volatile demands and reduce the 

patient waiting list. 

As the OR capacity allocation process is strongly characterized by unknown input 

parameters, we incorporate the impact of uncertain surgery demands into the model. Due to the 

urgent nature of the emergency cases, we assume a dedicated OR initially fulfills the emergency 

patient needs on each day of the planning horizon. If the emergency demand of a surgical 

specialty exceeds its reserved OR time, that specialty will be given a priority to be allocated to a 

non-emergency OR. Therefore, we consider a hybrid allocation policy in this study to 

accommodate the need of emergency surgeries where emergency cases are first allocated to the 

emergency room and then assigned to the non-emergency ORs that are shared with the elective 

patients. Although the real-time adjustment of the allocated operating room plans is possible, it 

may cause confusion among surgeons of different specialties when conflicting requirements for 

medical equipment or prior preparations exist. The effectiveness of any block allocation template 

is crucial to the robustness of the operational performance measures. Therefore, an effective 

robust OR capacity allocation plan is developed that efficiently allocates operating room 

capacities to various medical specialties where stochastic elective and emergency surgery 

demands are fulfilled with the aim of reducing expected loss incurred to the hospital due to the 

increased length of stay, rescheduled patients, and underutilized OR resources. 

3.3. Proposed standard transformation framework for the robust optimization models 

In recent years, the critical role of a decision maker in dealing with the real-world 

problems is heavily integrated with the way the marketing requirement is forecasted. The optimal 
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solution of most of the optimization problems is not capable to solve the real-life problems if it is 

obtained under the noisy information environments. Although LP has been widely applied to 

many optimization problems as an easy-to-implement tool, its unrealistic deterministic 

assumptions contradict with the real-world data, and hence, creates a huge barrier in dealing with 

uncertain and incomplete information of today’s problems. 

RO was initially developed by Mulvey et al. [33] as a proactive means of dealing with 

probabilistic information and in response to the limitation of LP models to absorb the effect of 

uncertainties in real-life optimization problems. In RO, new terminologies are defined to classify 

the desirable properties of the optimal solutions to the model as “solution robustness” and “model 

robustness" to not only reduce the variability of the objective value but to diminish the 

infeasibility of the formulation for any realization of the stochastic parameters. A solution to an 

optimal model is defined as solution robust if it remains ‘close’ to optimal for all input data 

scenarios, while the model is called robust if it remains ‘almost’ feasible for all data scenarios. A 

detailed explanations on the conceptual meanings and advantages of the robust planning is 

provided in Van Lendeghem and Vanmaele [34]. 

RO developed by Mulvey et al. [33] and Mulvey and Ruszczynski [35] is a fairly new 

concept that handles the trade-off associated with the expected cost and its variability in SPs. It is 

constructed based on the integration of goal programming formulation with the scenario-based 

description of problem data to take the various decision makers’ risk aversions into account. RO 

is a proactive approach to mathematical programming that produces allocation plans which are 

less sensitive to the variability of unknown data. RO can enhance the agility of the healthcare 

systems to respond to the variability in demand when the decisions that must be made before the 

realization of the incomplete data is known. Therefore, RO helps to hedge the risk variability 

while maintaining the service level through providing a direct trade-off between the risks and the 

total costs in the healthcare systems. In RO approach a two-stage programming method is 
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employed in which the violation of control constraints is penalized in the objective function 

through a defined penalty function. Therefore, RO seeks to balance between solution and model 

robustness, and hence extends the stochastic linear programming by including higher moments of 

variability in the objective function and allowing for infeasibilities. 

As elaborately described in section 3.2, transformation of a deterministic model into the 

RO form can be very complicated and at the same time lengthy process that is seen as a barrier to 

using RO as a progressive tool to tackle with uncertainty in solving optimization problems. The 

apparent lack of a transformation framework to formulate the robust model from its deterministic 

counterpart is seen a limitation in the operation research literature. The aim of this study is to 

provide a generalizable RO transformation framework for use as a tool in the context of operation 

research in order to generate the robust part of the deterministic models. Such a framework can 

assist decision makers in solving complex optimization problem through providing an 

instructional guideline that makes the transformation process more effective and at the same time 

easier to implement. The proposed framework also reduces the formulation burden which has 

always been an obstacle to application of RO in solving operation research problems [28]. 

In light of the above discussion, the proposed novel transformation framework is 

constructed based on the RO model developed by Mulvey and Vanderbei [36]. The proposed RO 

framework outperform the conventional RO model through enhanced computational efficiency 

(i.e. lower CPU time) as well as the utilized linearization approach (i.e. simplified model 

development). It also addresses the drawback of their model owing to its difficulty in obtaining 

information regarding numerous control variables and constraints. A general two-stage stochastic 

recourse programming model is first developed to incorporate demand uncertainty in the capacity 

allocation planning problem. Three different robust models are then projected using the proposed 

transformation framework to highlight the capability of the RO model in dealing with variability 

in stochastic environments. The proposed formulation enables adjusting the model in response to 
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changes in input data through incorporation of the variability of the objective function into the 

formulation. It can be generally used as a standard framework to transform any linear 

deterministic model into the stochastic robust form. The template transformation framework is 

then fed into a surgery capacity allocation case of a healthcare problem that captures the 

randomness of the actual process in order to evaluate the effectiveness of the proposed framework 

on a realistic model and to demonstrate the applicability of the formulation. It is illustrated 

through the formulation that the proposed transformation framework is more practical to use than 

the method developed by Mulvey and Vanderbei [36]. Furthermore, the computational results 

confirm that the framework presented herein generates a robust allocation plan in a timely manner 

without requiring addition of any additional deviation variables. 

3.3.1 Two-stage stochastic recourse programming model 

A general two-stage stochastic recourse programming model can be formulated as 

follows: 







 ycxcMin TT

21     
21, nn RyRx     (3.1) 

Subject to 
bAx            (3.2) 

 eyCxB           (3.3) 

0, yx           (3.4) 

 

In the objective function (3.1), x denotes the vector of first stage (i.e. design) variables 

whose optimal value is determined before complete information of uncertain parameters is 

observed, while y denotes the second stage (i.e. control) variables corresponding to realization of 

the scenario where the decisions are subject to adjustment when the realization of the stochastic 

parameters is observed. Therefore, the sum of the first stage costs and the second stage costs in 

the objective function represents the total expected costs of the stochastic recourse programing 

model. Under constraints, B and e represent random coefficient matrix and right-hand side 

vector, respectively. C and 2c denote the recourse matrix and the penalty recourse cost vector 
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corresponding to scenario , respectively. The equations (3.2) and (3.3) are categorized the 

constraints in the stochastic recourse model as the first stage constraints and the second stage 

constraints, respectively, where the former only involves the first stage variables, while the latter 

contains both first stage and second stage variables. It should be noted that in the objective 

function (3.1), the stochastic entity of the stochastic variables is indicated by “  ”, and  denotes 

the probability of the realization of the stochastic variables. The optimal solution of the model 

(3.1) to (3.4) is feasible for all data that belong to a convex set of scenario . Therefore, the 

produced solution fails to find a trade-off between optimality and robustness of the optimum 

solutions. 

3.3.2 Robust optimization transformation framework for two-stage stochastic recourse program 

In order to absorb the impact of having different values for the uncertain input 

parameters, RO model proposed by [33] is presented here to modify the objective in SP as 

follows. 

    21

1121 ,...,,...,,, nnTT RyRxyyxycxcMin 


   (3.5) 

Subject to 

bAx            (3.6) 

   eyCxB   (3.7) 

0, yx           (3.8) 

 

The term  





  yyxycT ...,,, 12  in the objective function denotes the solution 

robustness measure, where yyy ...,,, 21
 is introduced as a set of vectors containing the 

control variables and  is intended as a measurement of the variability of the objective function. 

The term   ...,,1
is a feasibility penalty function which is used to measure the violation 

of the second stage constraints where is a penalty weight that is used to define the desired 

trade-off between solution and model robustness. The term
  ...,,1 in the objective function 
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contains the error vectors that measure the allowed infeasibility in the control constraints (3.7) 

under scenario . Using the value of the realized error vectors, the feasibility penalty function 

penalizes violations of the control constraints under some of the scenarios. Equation (3.6) is the 

structural constraints with fixed and free of noise coefficients, whilst equation (3.7) indicates the 

control constraints of which the coefficients are under the influence of noisy data. The 

realizations of the coefficients of the control constraints for each scenario  comprises of a set of

  eCBc ,,,2 . Equation (3.8) guarantees non-negative vector of the decision variables. It 

should be noted that the RO overcomes the challenge of finding a solution that remains both 

feasible and optimal to all input scenarios through a trade-off between model robustness and 

solution robustness by applying the concept of multi-criteria decision making procedure. 

The framework proposed in this work takes into account the uncertainty of incorporating 

unknown parameters into the model. Here we define the term


to measure the mean value of the 

objective function under uncertainty which also provides an expected second stage cost.  In order 

to incorporate risk aversion capability into the RO model, we penalize the deviation for violation 

of the mean expected cost, both above and below the expected recourse cost through a deviation 

function represented by
d . Since variance is a systematic risk measure, penalizing the deviation 

from the mean provides more flexibility for decision makers regarding the degree of risk aversion 

that they prefer to take for a given situation. The actual deviation from the mean is penalized via 

the weight
 . We employ a mean absolute deviation approach to make sure the impact of 

deviation from the mean is incorporated into the model. The next terminology we use herein is 

represented by
f , where it denotes an equation of the control constraints. This equation provides 

some flexibility for the decision makers to appropriately measure the permitted infeasibility in the 

control constraints. The control constraint enables the model capable to adjust the impact of 

changes in variable input data under different scenarios if it violates the condition of the 
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constraints through a penalty function,
 , in order to penalize the incurred infeasibility. Using 

the values of the realized error vectors, this function penalizes violations of the control constraints 

under some of the scenarios. In other words, the term
f allows the model to handle scenarios in 

which realizations of the uncertain parameters would otherwise not be allowed for a feasible 

solution, although with an associated penalty weight for the violation of the control constraints. 

Considering the assumptions of the defined standard transformation framework, robust 

optimization model can be reformulated using our proposed transformation framework to 

measure the decision maker’s risk preferences through the expected variability of the objective 

function and also provides a degree of trade-off between that risk and the cost of infeasibility of 

the second stage constraints. 

3.3.2.1 Proposed transformation framework for the RO model with solution robustness 

In realistic optimization problem, a high level of risk might be associated with one or 

more of the uncertain input parameters (e.g., operating rooms availability, surgery demand 

variability, or unpredictability of surgery duration). However, when 

  





 ycT

2.

is used as 

a second stage cost in the objective function of the robust formulation (3.5-3.8), the model only 

seeks to minimize the expected value of the overall cost across all possible scenarios. In other 

words, the potential variability in the cost functions associated with the high risk parameters 

across different scenarios is not taken into account. In fact, the variability that exists in the input 

parameters makes the transformation procedure more complicated. To provide an objective 

function with solution robustness that generates the optimal solutions that are less variable and 

are not altering substantially across different scenarios, we utilize the mean-variance approach 

proposed by [33] as a technique to mitigate the risk associated with the uncertain input 

parameters. Hence, the revised cost function consists of the expected value of the random variable 

plus a constant multiplying the variance. We define


to represent  yxf , , which is a cost 
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function, and as a result,   yxf ,  for scenario . The variable,
d , is defined to capture the 

variance of the expected cost functions to the original RO model. Therefore, the new cost 

function portion of the objective function that manages the risks and variability of solutions 

among different scenarios is formulated as follows. 







   (3.9)

  
d   (3.10) 

  






  dxcyyx T...,,, 1

       (3.11) 

 

Clearly, as the value of , which is a weighting factor to trade-off between risk and 

expected outcome for the solution robustness, is increased the solution becomes less sensitive to 

the changes in the input data as defined by the scenarios. If a solution is a high risk decision, any 

small change in the value of uncertain parameters can cause a huge difference in the value of the 

measure function. It is noted that this inclusion of the weighted variance term enables RO to 

account for the decision maker’s preferences towards risk. Thus, proposed RO model allows for a 

more passive management style, giving it a distinct advantage over the stochastic recourse 

programming. In other words, with variability under control, minimal adjustment to the control 

variables will be required when the weighted variance version of RO is applied. While Equation 

(3.11) accounts for both expected cost and cost variability, the absolute term introduces the 

undesirable characteristics of nonlinearity into the model and also contributes to a large 

computational burden. To address this drawback, we utilize the linearization method proposed by 

[28] and recently demonstrated by [37] and [38] to transform the absolute term into a linear form. 

In the following,  represents the deviation for violations of the mean in the robust optimization 

model with solution robustness. 

 








  2dxcZMin T        (3.12) 

Subject to (3.2) to (3.4) 
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 
 0d   (3.13) 

  0   (3.14) 

 

In the objective function (3.12), the second term


represents the mean expected cost (i.e. 

second stage cost), while the third term  









  2d  defines the expected variability cost, 

where  determines the severity of the variability of the objective function. Therefore, assuming 

no variability (i.e. 0 ) in the objective function implies that the RO model is transformed into 

the two-stage stochastic recourse programming model. 

In Equation (3.12), it is notable that that if 0d  then 0 in the optimal solution, 

and thus, the objective function 











  dxcZ T
. Otherwise, if 0d , then 


 d in the optimal solution, and hence, the objective function

 











  dxcZ T
. As can be seen, the solution procedure of Equations 3.12 to 

3.14 is the same as to Equation 3.11. 

3.3.2.2 Proposed transformation framework for RO model with model robustness 

RO can also measure the model robustness with respect to infeasibility associated with 

the second stage constraints. Under this situation, the violation of the second stage constrains is 

allowed; however at a penalty rate of . In order to manage the infeasibility resulted from the 

unknown input parameters under different scenarios, the variable
f
is defined to capture the 

violation of the second stage constraints under each scenario in the proposed transformation 

framework. Therefore, 
f
 represents the infeasibility of the control constraints as a result of the 

realization of uncertain input parameters among various scenarios. In the following, the 

framework for robust optimization model with model robustness is structured where the violation 

of the control constraints is penalized through the penalty function in the objective function. It 
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should be noted that under feasibility condition the value of 
f
will be equal to zero, whereas, 

under infeasibility 
f
is incurred a positive value. 





 fxcZMin T 


        (3.15) 

Subject to (3.2) 

 


 efyCxB   (3.16) 

  0,, yx   (3.17) 

 

In the objective function (3.15), the third term




 f


represents the expected 

infeasibility cost, where is defined as a parameter to measure the penalty cost for violation of 

the second stage constraints. The term




 f


measures the expected infeasibility of the 

control constraints, thus setting up the value of 0 implies no penalty cost for not satisfying 

the second stage constraints resulting in transforming the model into the two-stage stochastic 

recourse programming model. Therefore, to obtain the optimal solution in the objective function, 

the control constraints can be violated for as much as it requires. On the contrary, setting up a 

very large positive value for enforces all the second stage constraints to be satisfied due to a 

large penalty cost. Therefore, the RO model with  will be converted to the two-stage 

stochastic recourse programming model. It should be noted that assigning a sufficiently large 

value to causes the infeasibility penalty function term to dominate the objective function, 

thereby resulting in a higher expected value for the first stage and the second stage cost. 

As noted before, we employ the linearization method developed by [28] in order to 

transform the absolute term in the objective function (3.15) into a linear form. A deviational 

variable
 is introduced and the RO model with model robustness is reformulated as follows. 
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 



  2 


fxcZMin T
       (3.18) 

Subject to (3.2), (3.4), (3.16), and (3.17) 

   0f   (3.19) 

   0   (3.20) 

 

3.3.2.3 Proposed transformation framework for RO model with the trade-off between 

solution robustness and model robustness 

The RO model can coordinate the variability and feasibility at the same time through a 

trade-off between solution and model robustness. The complete formulation of the robust 

objective function using our proposed transformation framework that includes both solution 

robustness and model robustness is as follows. 










  fdxcZMin T 



       (3.21) 

 

In the objective function (3.21), the first term is the first stage cost, the second term is the 

second stage cost, the third term is the expected variability cost, and the forth term is the expected 

infeasibility cost. Note that the sum of the first stage cost and the second stage cost comprises the 

model expected cost in stochastic recourse programming model, while the total cost consists of 

the sum of all the cost terms. Given the absolute term formulation to transform the objective 

function into the LP model, the linear RO transformation framework with the trade-off between 

solution and model robustness is formulated as follows. 

   










  22  


fdxcZMin T
    (3.22) 

Subject to    

bAx            (3.23) 

 


 efyCxB   (3.24) 

 
 0d   (3.25) 

   0f   (3.26) 

  
 0,,,,, yx   (3.27) 
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To demonstrate the applicability of the proposed formulation and to provide an insight 

into the structure of the proposed transformation framework, a surgical block allocation problem 

of a real-life healthcare delivery system is solved. To the best of our knowledge, this is the first 

time that our proposed RO approach is applied in the context of the healthcare capacity allocation 

problems. Through a case study, we demonstrate that our approach outweighs the SP method 

while it works as effective as the robust model presented by [28] where the predefined framework 

requires less information about the original deterministic problem while at the same time provides 

more flexibility for the decision makers in utilizing the formulation. 

3.4 RO model for the surgery capacity allocation problems 

To illustrate the applicability of our proposed standard transformation framework, we 

employ a surgery block allocation problem of a healthcare delivery system to provide valuable 

insights into a number of aspects of the presented framework and also the characteristics of the 

proposed formulation. The most important challenge of surgery capacity allocation planning is 

not only how to deal with the randomness of the stochastic processes, but to cope with data 

incompleteness and operational inefficiency of the healthcare systems as the common 

phenomena. Considering a surgery block allocation problem, we utilize our novel standard 

framework to transform a deterministic model into the RO formulation. 

The total amount of available OR hours is known as a constant in this work. The goal is 

to provide a planning program for healthcare decision makers to develop a surgical block 

allocation plan for the specialties so that the total operating costs, which comprises postponement 

costs, rescheduling costs, and underutilization costs, are minimized. The availability of the OR 

blocks is under the influence of staffing availability and budget constraint. The developed 

decision tool can help hospital managers to allocate OR blocks to the surgical specialties in 

response to unknown elective and emergency surgery demands to determine the assignment of 

individual specialties in each OR block. 
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In modelling of OR allocation problems in previous work, surgery cost was defined as a 

function of surgery duration. This assumption, however, is quite unrealistic in OR planning of 

hospitals working under common wealth system as non-profit organizations. Under the publically 

funded system, the operating budget of a healthcare system is allocated through the governmental 

fund and hence public hospitals provides healthcare services (e.g. surgery operations) for their 

patients where the cost of surgery is not related to the length of operation, but to the duration of 

time between a patient is admitted to a hospital and the time when the required surgery operation 

is performed. This time frame plays very crucial role for the hospital managers in their attempt to 

control the budget through minimizing the non-reimbursable costs associated with the postponed 

surgery operations. 

In this work, both elective and emergency surgery demands are assumed unknown 

parameters. The uncertainty in surgery demand stems from the uncertain reservation planning of 

elective surgery demand as well as incorporating the emergency cases into the model while 

planning for OR block allocation decisions. To capture the whole aspect of the real-world 

healthcare problems and to have a realistic model when OR blocks are allocated, emergency 

patients have to be dealt with concurrent with elective cases. Therefore, we develop an effective 

optimization tool through our proposed RO framework to provide flexibility for the decision 

makers to capture the uncertainty in their allocation plans. 

In the following, we concentrate our analysis on the so called surgical capacity allocation 

problem. The problem comprises determining the optimum number of OR blocks X  assigned to a 

set of surgical specialty S  over a planning horizonT while the target number of surgical demand 

of each specialty is met. In reality hospitals deal with no-show cases as well as patients not 

arriving on schedule, the aim is to minimize; (1) the cost associated with the surgical 

postponement (i.e. waiting time) of admitted patients, (2) the penalty associated with the 

rescheduled surgery operations that will be met either outside of the normal staffed hours through 
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overtime or another hospitals, and (3) the loss incurred due to underutilization of the ORs. A 

block-booking scheduling approach is assumed for a multi-surgical specialty problem where each 

block is characterized by an OR on a day in which block type i is available. The length of 

available hours in each OR blocks is represented by h  which explicitly represents the available 

capacity of OR blocks on a given day after taking the turnaround times into consideration. 

To incorporate the impact of variable demand into the model, the elective and emergency 

surgery demand of each surgical specialty is considered as random variables where the realization 

of the surgical demands is determined on a discrete event scenario basis. The daily surgery 

demand varies between the time intervals obtained from the historical data of the hospital. The 

problem amounts to determining the number of OR block hours to assign to surgical specialties 

over a considered planning horizon aiming at maximizing the utilization of the available OR 

blocks while the cost of postponed demand and unmet elective surgery demand is minimized. The 

main trade-off in the proposed robust surgery capacity allocation model is between reducing 

surgery postponements and cancellations while maximizing the operating theater utilization 

influenced by demand variability. 

A Surgery postponement cost is incurred if a scheduled surgery is postponed to a later 

date. Here
2
tzC

represent the cost of postponement of elective surgery demand from day t  to day z

in the planning horizon. The cost element is a known parameter and representing the loss incurred 

due to an unnecessary LOS of elective demands at the hospitals. Public hospitals are not able to 

bill the health coverage providers for the unnecessary postponement of elective surgery demands 

caused by the inefficient allocation plans. Therefore, a large portion of healthcare expenditures 

for a hospital would not be reimbursed if unnecessary postponement happen which could 

eventually impact the surgery service levels. The developed cost structures presented in this work 
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is a general cost function comprising block allocation cost [13], [15], hospitalization costs [7], 

and surgeon costs [31]. 

Note that if a surgery is carried out on a day it is requested, no extra cost will be 

associated to the hospital. Hence, a patient with a longer surgery duration would not be more 

costly for the hospital. However, a penalty cost will be incurred on delayed surgeries to penalize 

the postponed surgery demand hours resulted from the limited resources. To incur the penalty 

cost on the postponed demand volume we propose a linear cost function that considers the 

penalty cost for the LOS of admitted elective patients that are waiting for their surgery in the 

hospital. The cost function is obtained by considering a cyclic planning horizon where the penalty 

cost,
2
tzC

, would incur the value of tz  if a surgery is postponed to a future 
thz weekday from the 

same week as a day t . If a surgery is required to be postponed from a day t  to the following 

week in either the same weekday or a day which is smaller than what it is postponed from then 

the penalty cost would obtain through the value of D or ztD  , respectively, where D

represents the total number of days in the planning horizon including the weekends. For instance, 

if a surgery is postponed from Wednesday (i.e., day 3) to Tuesday (i.e., day 2) from the next week 

in the planning horizon, the penalty cost 
ztDCtz 2

 which in this case is 6 days is incurred. It 

should be noted that the proposed linear penalty function would consider the cost of patients stay 

in the hospital over the weekends, even though the surgical operations are only performed during 

the weekdays. Therefore, the maximum postponement days allowed in this model would be seven 

days, considering the cyclic capacity pattern within the weekly planning horizon. 

In this work, the priority is given to the emergency patients’ demand in accessing to the 

non-emergency ORs in the hospital when the capacity of dedicated emergency rooms is saturated. 

Our model is the first one addressing the surgical block allocation problems of elective and 
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emergency demands that considers minimizing the patients’ LOS waiting for surgery as an 

objective under the stochastic environment when a hybrid OR allocation plan is implemented. 

3.4.1 Notations 

In the following, we set the notations and provide the model formulations for the surgery 

capacity allocation problems. 

3.4.1.1 Index sets 

i  For operating room type  Oi ...,,1   

s  For surgical specialty  Ss ...,,1   

zt,  For planning horizon    TzTt ...,,1,...,,1    

  For Scenarios   ...,1  

3.4.1.2 Deterministic parameters 

h  Planned available operating rooms hours per day for surgery operation 

ia  Number of operating room of type i available in each day 

stk  Maximum capacity (i.e. number of surgeons) available for surgical specialty s  on day t  

1

isc  Cost associated with allocating OR block times of type i to specialty s  

2

tzc  Cost of postponement of elective surgery demand from day t  to day z   

3c  Penalty rate associated with the unmet elective surgery demand  
4c  Cost of underutilization of operating room hours  

  Weighting penalty to measure trade-off between risk and expected outcome 

  Weighting penalty for the infeasibility of the random elective demand constraint 

3.4.1.3 Stochastic parameters 


ste  Random parameter representing elective surgery demand for specialty s  on day t under 

scenario  


stg  Random parameter representing emergency surgery demand for specialty s  on day t  

under scenario  

  Probability of occurrence of scenario   

3.4.1.4 First stage decision variables 

istX  Number of operating rooms of type i  allocated to specialty s on day t  

stU  Amount of emergency surgery demand of specialty s  met in a dedicated emergency room 

on day t  

3.4.1.5 Second stage decision variables 


stzY  Amount of elective surgery demand hours of specialty s  postponed from day t  to day z  

under scenario  
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 st  Elective surgery demand of specialty s  on day t  under scenario  that is rescheduled to 

be met outside the normal shift operation through overtime and/or moving to another local 

hospital 
 st  Undersupply of operating room hours allocated to specialty s  on day t  under scenario  

relative to its desired level 

  Expected value of the second stage cost being made after realization of the random variable 

is observed 

d  Variability cost of deviation from the mean expected value of the objective function in each 

scenario    

  Deviational variable for violation of the mean objective function in each scenario    


stf  Deviation variable by which the random elective demand constraints of specialty s  on day 

t  can be violated under scenario  
 st  Deviational variable for infeasibility of the random elective demand constraints of specialty 

s  on day t  under scenario    

 

3.4.2 Formulation of the surgery block allocation problems using proposed standard 

transformation framework 

We begin by first formulating the deterministic model for the surgery capacity allocation 

problem in a multi-OR context. Next, we extend the basic deterministic model to a two-stage 

stochastic recourse programming model. Finally, a robust optimization model is developed using 

our proposed standard transformation framework that incorporates surgery demand uncertainty 

into the model where the request for the elective and emergency surgery operations is realized 

over the set of random discrete scenarios. 

3.4.2.1 Formulation of the deterministic surgery capacity allocation problems 

Our model formulation represents issues pertain to allocation of surgical specialties to the 

operating rooms in a concise manner. The objective is to minimize the cost associated with the 

total loss of reimbursement at the hospital as well as the penalty incurred to the unmet surgical 

demands and the cost of idleness of OR capacity. 

   



























s t

st

s t

st

t z s

stztz

i s t

istis ccYcXhcMin  4321   (3.28) 

Subject to 
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tiaX i

s

ist ,     (3.29) 

thU
s

st      (3.30) 

tskX st

i

ist ,     (3.31) 

tsgU stst ,     (3.32) 

tseY
z

ststz ,     (3.33) 

tsestst ,     (3.34) 

tsYUgXh
z

sztstst

i

ist ,      (3.35) 

tseYYUgXh
z

ststststz

z

sztstst
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ist ,       (3.36) 

ztsiYX stzist ,,,int,     (3.37) 

ztsiUYX ststststzist ,,,0,,,,     (3.38) 

 

It should be noted that in the above formulation, the constraints that only involve the first 

stage decision variables are referred as the first stage constraints (i.e. constraints (3.29) to (3.31)). 

Under the first stage decision, the accurate surgery demand information of the surgical specialties 

is not available. Constraint (3.29) represents the operating room assignment constraints, where 

the number of OR blocks from each type that allocate to surgical specialties cannot exceed the 

total number of available OR blocks of that type. It is proven to be beneficial to the decision 

makers not to assign partial blocks to the surgical specialties on a given day [6]. Therefore a 

simple block scheduling is provided where allocated OR blocks on a given day are not allowed to 

be shared between surgeons from different surgical specialties. 

Constraint (3.30) guarantees the availability of an emergency surgery room in a hospital 

to meet emergency surgery demand. It is assumed that all the emergency surgery demand has to 

be met on the day it arises. Therefore, accommodation of emergency patients to the non-

emergency operating rooms is permitted, however, the reverse is not allowed. Constraint (3.31) 

states the total number of ORs assigned to a surgical specialty on a given day cannot exceed the 

available capacity of that specialty in the hospital. Here the capacity implies the number of 
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available surgeons and other staff resources that are available for each specialty on a daily basis. 

Constraint (3.32) ensures the allocated capacity from the dedicated emergency room to each 

specialty cannot exceed the realized emergency demands of that specialty. 

Constraint (3.33) ensures the sum of all postponed elective surgery demand for each 

specialty is at most equal to the realized surgery demands on that day. Equation (3.34) limits the 

amount of unmet surgery demand to a desired level provided by the managements. Thus, the 

amount of unmet demands of a specialty that is rescheduled to be met outside of the routine shift 

operation cannot exceed the demand for that specialty. Constraint (3.35) is a mass balance 

constraint. It ensures adequate OR blocks is allocated to each specialty to meet the emergency 

and postponed demand in each day. 

Constraint (3.36) is demand satisfaction constraint. It states that the total daily elective 

surgery demand of each specialty has to be met on that day, or to be postponed to a working day 

within the planning horizon. Here, the specialty’s throughput is maximized through defining a 

variable surgical performance that is imposed by the target number of patient demands. A trade-

off is also achieved via penalizing the unmet demand of elective patients against the cost of idle 

operating room hours in the healthcare systems. Constraint (3.37) and (3.38) specify the 

integrality of the allocation variables as well as non-negativity for all variables. 

Considering the stochasticity of surgery demands, in the following the capacity allocation 

model is developed under the stochastic surgery demand. 

3.4.2.2Formulation of the two-stage stochastic recourse programming model for 

uncertain capacity allocation problems 

Based on the analysis in section (3.1), the following two-stage stochastic recourse 

programming formulation for the proposed capacity allocation problems with the uncertain 

elective and emergency demands is presented. 
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Subject to the first stage constraints: (3.29) _ (3.31) 

 ,, tsgU stst     (3.40) 
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 ,,,,int, ztsiYX stzist     (3.45) 

  ,,,,0,,,, ztsiUYX ststststzist     (3.46) 

 

It should be noted that in the above formulation, the constraints that only involve the first 

stage decision variables are referred as the first stage constraints (i.e. constraints (3.29) to (3.31)). 

Under the first stage decision, the accurate surgery demand information of the surgical specialties 

is not available. In the objective function, the first term represents the first stage (FS) cost
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


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


i s t

istis XhcFS 1
 and is free of noise. The second term, however, determines how the 

hospital makes responses to the case where the stochasticity of the unknown parameters is 

realized for various scenarios, and hence is the second stage (SC) cost
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t z s

stztz ccYc 432 . The summation of the first stage cost and 

the second stage cost in (3.39) is outlined as the expected cost of the two-stage stochastic 

recourse programming model. The constraints that consist of both first stage variables and second 

stage variables are defined as the second stage constraints, i.e. constraints (3.40) to (3.44) in the 

two-stage stochastic recourse programming model. 
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3.4.2.3 The proposed formulation of the RO model with solution robustness (ROM-SR) 

for uncertain capacity allocation problems 

We employ our novel transformation framework to develop the RO model with solution 

robustness for the OR blocks allocation problems of the healthcare systems under a set of surgical 

resource constraints. Based on the analysis in section 3.2.1,


represents the mean objective 

function or the second stage cost. The deviation from the mean is captured through the term
d . 

Therefore,     









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






  

s t

stst

t z s

stztz ccYcd 432 represents the type of variability 

measure that is used in our proposed transformation framework to define the RO cost variability. 

In the ROM-SR model,
d it is defined as the difference between the cost of postponements, 

rescheduling, and underutilizations under each realization of scenario sets and the total expected 

cost of the two-stage stochastic recourse model. The ROM-SR model is formulated as follows. 

 






  2dFCMin        (3.47) 

Subject to 

The first stage constraints: (3.29) _ (3.31) 

The second stage constraints: (3.40) _ (3.44) 

The integrality and non-negativity constraints: (3.45) _ (3.46) 

   0d     (3.48) 

   0     (3.49) 
 

The final term in the objective function (3.47) is the expected variability cost for the 

postponed surgery demands, rescheduled surgery demands, and the underutilized OR capacities. 

The term
 represents a deviational variable to linearize the objective function and capture the 

negativity of the variance from the mean as elaborated in section 3.2.1. 

3.4.2.4 The proposed formulation of the RO model with model robustness (ROM-MR) 

for uncertain capacity allocation problems 

We employ our novel transformation framework to develop the RO model with model 

robustness for the proposed OR block allocation problems. Based on the analysis in section 3.2.2, 
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the infeasibility of the second stage constraints is captured through the term


stf
. Therefore, 

  stst
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stz
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sztstst

i

iststst YYUgXhef    denotes the random demand 

constraints in equation (3.44) can be violated over some set of scenarios at the amount


stf
, where


stf

 represents a deviational variable that denotes the difference between allocated OR capacities 

in terms of OR block times and the amount of surgery requests upon realization of uncertain 

surgery demands. The impact of allowing for the infeasibility of the demand constraints will be 

taken into account in the objective function as follows. 

  
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s t
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Subject to 

The first stage constraints: (3.29) _ (3.31) 

The second stage constraints: (3.40) _ (3.44) 

The integrality and non-negativity constraints: (3.45) _ (3.46) 

  ,,0 tsf stst     (3.51) 

  ,,0 tsst      (3.52) 

 

In the objective function (3.50), represents the unit penalty for the violation of the 

random surgery demand constraints. The term
 st  represents a deviational variable to linearize the 

objective function and capture the negativity of the infeasibility function as elaborated in section 

3.2.2. The term
 st also captures the amount by which the demand constraints are violated. In the 

objective function (3.50), when the unit weighting parameter increases, the penalty cost for the 

infeasibility of the random demand constraints also escalades. That means failure to allocate 

surgical demands into their required OR blocks would result in a higher cost of managing the 

healthcare systems through the penalty incurs as a result of growing unmet demands. Note that 

the number of OR allocated to surgical specialties does not contain index  as it is scenario 
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independent variable, while the postponement of elective surgical demands, the quantity of 

rescheduled demands, and the undersupply of OR block times contain the index  to reflect the 

fact that the actual value of these variables only captures after the realization of scenarios. 

3.4.2.5 The proposed formulation of the RO model with the trade-off between solution 

robustness and model robustness (ROM-T) for uncertain capacity allocation problems 

RO also provides a degree of flexibility for the decision makers by considering a trade-

off between optimality and feasibility. Through this analysis, managers can explicitly realize the 

possible trade-off associated with the variability of different service levels and the expected cost. 

Therefore, the results obtained from the trade-off analysis are aligned with the level of risk that 

managers are willing to take. Solving for variability and the infeasibility together, the proposed 

RO model in this section is formulated to address the capacity allocation problems under the 

stochastic healthcare environment. 
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
 

s t

ststfdFCMin 22     (3.53) 

Subject to 

The first stage constraints: (3.29) _ (3.31) 

The second stage constraints: (3.40) _ (3.44) 

The integrality and non-negativity constraints: (3.45) _ (3.46) 

The solution robustness constraints: (3.48) _ (3.49) 

The model robustness constraints: (3.51) _ (3.52) 

 

The essential parts of the objective function (3.53), the third term is incorporated to 

accommodate the mean-variance trade-off over scenarios, and hence the variability cost. The 

variability is measured in terms of fluctuations of postponed surgery demands, rescheduled hours 

of patient demands, and idleness of OR capacities from their total expected value. The deviation 

from the elective demands is expressed in the fourth term and is permitted at a penalty cost (i.e. 

infeasibility cost). The goal of the objective function (3.53) is to reach to a balance between 

solution and model robustness. 
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3.5 Numerical example and computational analysis 

3.5.1 Case description 

In order to illustrate the effectiveness of the proposed standard transformation framework 

for solving the uncertain OR block allocation problems with stochastic surgery demands, we 

employ the data obtained from WRH a local hospital sited in Windsor. WRH is a multi-faceted 

healthcare organization operating from two main campuses at Southwestern Ontario in Canada to 

provide advance care in specialized areas that include complex trauma, cardiac care, neurosurgery 

to mention a few supporting over 400,000 people in the community. WRH is budgeted to staff 

45-bed inpatient surgical units functioning in 10 operating room theaters and two diagnostic 

rooms located in two different sites across the County. There are also two emergency departments 

to provide a range of services to meet the unscheduled and emergency healthcare needs for 

clients. 

Based on the information from the OR surgery department, WRH provides services in 

specialties including General Surgery, Urology, Gynecology, Orthopedics, Ear, Nose, and Throat, 

Dental / Oral Maxillofacial, Plastics and Burns, Ophthalmology, Cardiovascular, and Surgical 

Oncology. According to its 2014-2015 annual report, WRH is one of the busiest public hospitals 

in the Southwestern Ontario with a record of 314,469 outpatient visits, 44,418 day surgeries, 

28,898 inpatient discharges, and 128,357 emergency department visits in a year. The report 

shows the number of elective patients visit has increased by over 25% during the past five years 

while more than 65% of the admitted patients have occupied recovery beds in the hospital 

through the emergency department [40]. 

As a public healthcare provider, the hospital’s budget is mostly funded by provincial 

programs, and hence, patients are admitted regardless of their financial status. Once a patient is 

discharged, the hospital is reimbursed based on a predetermined funding model that reflects the 

need of the patient served by the hospital. This funding model determines the amount of 
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compensation for the healthcare systems based on the services delivered and also the quality of 

services to the patient populations they serve. It is quite obvious that the hospital would not be 

compensated for the time that patients admitted to the hospitals and are waiting for a surgery or 

clinical services to be provided. So, the longer the waiting time for patients to receive services, 

the larger would be the profit loss for the hospital. Therefore, it is crucial from the hospital 

management point of view to reduce, if not completely eliminate the amount of unnecessary LOS 

in order to decrease costs and increase the throughputs. 

At the time of this study, WRH uses 9 ORs between 8 am and 5 pm with 6 specialties and 

one emergency room located in its Metropolitan Campus. The six specialties are General surgery, 

Urology, Gynecology, Orthopedics, ENT, and Cardiovascular. We use the capacity and demand 

data of the 2015’s fiscal year to feed the proposed standard RO framework, where both elective 

and emergency surgery demands are modeled as uncertain parameters to capture the stochastic 

nature of the healthcare environments. We have analyzed the archived data on the arrival number 

of elective and emergency cases to obtain the required data for input parameters. Based on the 

historical data in WRH, the upper bound and lower bound of surgery demand hours can be 

obtained. The daily emergency demand for the six specialties varies between the interval [180, 

360], [90, 330], [115, 270], [45, 395], [105, 300], and [40, 390] minutes, respectively. The daily 

elective demand for the six specialties are within the intervals [305, 955], [280, 855], [150, 615], 

[210,965], [265, 1380] and [125, 1010] minutes, respectively; and the total daily OR capacity is 

4800 minutes. For the sake of consistency with what is performed in practice, all times are 

rounded to multiples of five minutes. We assume the demand interval for each specialty is 

constant during a day, as the historical data is not indicated otherwise. 

The hospital will look at a 1-week planning horizon, where no surgery is operated during 

the weekends. We assume the eight-hour operating shift, without any possible overtime. We 

generate random instances to evaluate the performance of the proposed RO model over various 
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probability of occurrences. It is assumed that uncertainty is represented by a set of possible 

demand situations. On the basis of historical records on surgical demands of the OR department, 

it can be assumed that future surgery demand scenarios will fit into one of the four possible 

scenarios, namely fair, good boom, and poor with associated probabilities  of 75, 10, 7.5 and 

7.5 percent, respectively. These scenarios are used to consider different range of uncertainties in 

the surgery demand data. 

It should be noted that an in-hospital cost is incurred by measuring the delay in meeting 

the elective surgery demands. This cost is a function of the number of postponed surgeries by the 

number of days a surgery is delayed. Therefore, when a surgery demand for an elective patient 

arises, it can either be postponed to a working day which is no more than seven days after the 

demand is raised or become unmet. Emergency cases are allowed to go ahead in a non-emergency 

OR upon availability of resources, however, the surgery has to be completed within the normal 

shift operation of eight staff hours for each OR. So, no overtime work is allowed in this model. 

The amount of elective surgery demand that turns out to be rescheduled outside of the normal 

shift operations (i.e. unmet demand) will be penalized using the penalty rate
3c , which is the 

largest among all the penalty rates. We assume a cyclic weekly demand pattern in our model, 

therefore, the unmet demand for elective patients has to be met either in overtime hours or be 

rescheduled to another local hospital, which in either case will be penalized. 

The AMPL software is used as a solution platform due to its well-known high-level 

modeling system for solving complex mathematical programming problems. We use CPLEX 

12.6.3 with default setting to solve the proposed RO model. The problems are executed on a 

Pentium IV 2.66GHz CPU with 4GB RAM. The computational results of the proposed RO model 

are shown in the following contents. To obtain the trade-off between solution robustness and 
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model robustness in the RO model, the value of  and   have been chosen to be set to 0.1 and 

75, respectively as elaborated in section 5.5.2. 

3.5.2.The first stage decisions 

Before realization of the accurate surgery demand for elective and emergency patients, 

the hospital managers have to allocate available OR blocks to the surgical specialties. The 

decisions that are determined before the accurate information is observed are called the first stage 

decisions. The result of the weekly OR capacity allocations determined by the robust mixed 

integer programming model is shown in Table 3.2, where block allocation plans generated by the 

deterministic model, two-stage stochastic recourse model, and the proposed RO transformation 

framework are compared. It is observed that the CPU time taken for the optimal solutions to 

converge is averaged around 45 seconds, 256 seconds, and 320 seconds for each model, 

respectively. 

Table 3.2: OR capacity (hours) allocated to each specialty over the planning horizon 

Surgical specialty Deterministic model 
Two-stage stochastic 

recourse model 

Robust optimization 

model 

General surgery 72 64 64 

Urology 64 56 56 

Gynecology 40 48 48 

Orthopedics 56 72 64 

ENT 72 80 80 

Cardiovascular 56 40 48 

 

3.5.3 The second stage decisions 

The second stage decision is referred to the stage where the determination of the variables 

can be postponed until the realization of the stochastic parameters. At this stage, the uncertain 

parameters are known to the hospital managers, and hence, the decisions on the amount of 

postponement, rescheduled surgery demands, and idleness of OR capacity can be made which are 

shown in Table 3.3. The probability of occurrence for uncertain surgery demand parameters 

under a fair surgery demand scenario is 75%. Since the amount of surgery demand that has to be 
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rescheduled comprises almost 2.5% of total demand, it is very likely that the hospital manager 

will take the second stage decisions by accruing the overtime hours to compensate for the lost 

surgery demands and keep them from being rescheduled into other local hospitals if this scenario 

is observed. 

From the results, it is obvious that all the surgery demands under the poor demand 

scenario will be satisfied, and hence, no unmet demand is occurred during that scenario. 

However, the underutilization cost for the under-usage of OR capacity is increased for all 

specialties under this scenario. There is no postponed demand suggested in the optimal results for 

the case where variability is increased. Therefore, unsatisfied demand of the cardiovascular 

specialty has to be realized through rescheduling in another hospitals. 

Table 3.3: Postponed / unmet surgery demands and idleness of ORs capacity per week (hours) 
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Fair       

Good       

Poor 34.5 32.5 26 45.8 54.5 45.4 

Boom       

 

The poor demand scenario is realized with the probability of occurrence of 7.5%. In the 

poor scenario, all random demand constraints are satisfied. At the same time, all the elective and 

surgery demands are satisfied through the first stage block allocation decision in the poor 

scenario. Therefore, the hospital will not incur any penalty cost due to the unmet surgery 
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demands. However, some OR times allocated to specialties in the first stage are remained idle, as 

shown in table 3.3, which results in a significant underutilization cost for the hospital. 

The surgery demand in boom scenario is realized with the probability of occurrence of 

7.5%. If the boom scenario happens, the hospital will take the second stage postponement/unmet 

demand and underutilization decisions as shown in table 3.3. Since all of the OR capacities are 

allocated to meet the surgery demands in the first stage block allocation decision, there is no 

underutilization costs involved in this scenario. It should be noted that the random demand 

constraints in the boom scenario are satisfied with a substantial penalty costs that is incurred due 

to the postponed demand and/or unmet surgeries that is rescheduled outside of the normal 

operating shift. Obviously, there is no cost associated with idleness of OR capacity under boom 

scenario, as the initial allocated OR hours is not enough to meet the higher surgery demands 

when this scenario is observed. Therefore, it is required to add unplanned overtime or reschedule 

the excessive patients to other local hospitals if the trend of surgery demand tends to be realized 

in boom scenario. 

3.5.4 Robust optimization vs. stochastic recourse programming 

The performance of the proposed models in terms of quality of the solutions and CPU 

time required is evaluated by generating an extensive set of instances based on scenario sets 

encountered in the model. The properties of the objective value functions are summarized in 

Table 3.4, where both models are truncated after 1800 sec of computation time. 

Table 3.5 provides a computational comparison in the results of the RO and the two-stage 

stochastic recourse programming models. Based on the analysis provided in section 3.1, the 

expected variability cost of the second stage decision variables is not taken into account in the 

two-stage stochastic recourse programing model. This is a direct result of assuming 0 in 

equation (3.47) of the robust objective function.  
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Table 3.4: Model size and computation characteristics 

 No. of variable Constraint   

Model type Binary Integer Linear 
Equality & 

non equality 
Nonzero 

CPU time 

(sec) 
Gap% 

Two-stage 

stochastic 
40 12 1247 601 9141 1800 s 0.23% 

Robust 

optimization 
40 12 2310 1821 10,388 1800 s 0.54% 

 

The expected costs provided by the robust model is 0.7% more than the stochastic two-

stage recourse model, however, the robust model is progressively less sensitive to the variability 

of the uncertain parameters as it incorporates the cost of variability into the model. The expected 

variability in the robust model considerably decreases by almost 79%, which resulted in 

generating more reliable OR block allocation plans for the hospital managers. The infeasibility 

cost involved in the robust model offsets the cost of not satisfying all surgery demands as it is 

realized over the scenario sets. When is set large enough, the second stage constraints in the 

robust model allows compensating for discrepancies in the surgery demand constraints by 

incurring a penalty cost per unit of infeasibility of the realized surgery demand. It is noted that 

increasing the penalty cost to a large number (i.e. 100  in the last row of table 3.5), will 

convert the robust model to a two-stage stochastic recourse programming model, and thus 

prevents the violation of the random demand constraints. Comparing this with the recourse 

model, the variability remains almost the same while the total cost has slightly increased by 3.8%. 

It means the block allocation planning proposed by the robust framework mitigates the risk of 

unmet surgery demands at a lower cost for the hospital when a proper value for the penalty cost is 

chosen. The results shown in Table 3.5 demonstrate the effectiveness and applicability of the 

proposed RO framework. 

Table 3.5: Comparison between the results of robust model and stochastic recourse model 
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recours

e cost 

cost (

 )  

variabi

lity 

infeasi

bility 

variabi

lity  

bility 

cost 

Stochastic 

recourse model 
11608 7920 3688 4046 0 0 0 11608 

         
Robust optimization 

model 
 75,1.0    

9481 7920 1561 855 28 85 2127 11693 

         
Robust optimization 

model 
 100,1.0    

11651 7920 3731 4045 0 404 0 12056 

 

3.5.5Analysis of the results 

In this section, we conduct four different tests on the robust surgery capacity allocation 

model with arbitrarily chosen probability of occurrences for uncertain surgery demand scenarios. 

All other parameters are assumed constant across the four tests. The characteristic of the tests is 

shown in Table 3.6. Under each test condition, it is assumed that one future situation dominates 

the other possibilities and hence the realization of the surgery demand derives based on that 

scenario. 

Table 3.6: Test characteristics 

Test 1  
2  

3  
4  

Test I 0.75 0.10 0.075 0.075 

Test II 0.10 0.75 0.075 0.075 

Test III 0.10 0.075 0.75 0.075 

Test IV 0.10 0.075 0.075 0.75 

 

3.5.5.1 Analysis of the results for ROM-SR 

In order to determine the sensitivity of the projected results of the robust optimization 

model with solution robustness to the variability of the input parameters we perform four tests in 

which different value is assigned to the robustness parameter, , to generate a range of robust 

optimal solutions. 
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It should be noted that under each test, reveals the hospital manager level of concern 

with respect to surpassing the prospective cost of postponed surgery demand, unscheduled 

surgery demand, and underutilized OR capacity for all scenarios. Under each test, the first row 

(where 0 ) represents the results of the two-stage stochastic recourse programming model. 

As the value of  increases, the recourse model transforms into the RO model in which 

variability is taken into account. Therefore, increasing  reduces the variance from the mean 

postponed and unmet demands as well as the mean idleness of OR capacity in the hospital, 

although at an increased variability cost. 

As shown in table 3.7, the expected recourse variability for the two-stage recourse model 

is always greater than that of the RO model under each test results, which directly implies the 

higher risk associated with the stochastic recourse model. On all the tests, the first stage cost is 

remained unchanged over different value of , with an exception of Test IV, which means the 

first stage decision is not affected by the decision makers’ risk behavior. The second stage costs 

increases throughout the tests as the value of  is growing which implies the correlation between 

the second stage cost and the cost of postponed demands, rescheduled surgeries, and 

underutilized OR blocks. 

In the RO model with solution robustness, as can be observed from Table 3.7 the 

expected recourse variability decreases significantly as increases, although the mean expected 

cost is augmented. Compared with the recourse model, increasing the value of  from zero to 0.9 

reduces the expected variability by 2.2% in Test I, 0.65% in Test II, 15.2% in Test III, and more 

than 98% in Test IV. This implies the significance of the RO model in reducing variabilities as 

the variance of input data increases. The impact of variability becomes more severe when a 

sudden increase in surgery demand is observed. Test IV represents the situation where the highest 

surgery demand is possibly realized. Although the total cost of the robust model increased by 
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around 15%, the variability has greatly reduced by more than 98% which means the recourse 

model is way too risky to be implemented under this situation. Therefore, the obtained results 

demonstrate the effectiveness of the robust model in mitigating the risk arises from the variability 

of input parameters. 

Table 3.7: Variability analysis of the objective function in ROM-SR 

Test   
Recourse 

variability 
First stage cost 

Second stage 

cost ( ) 
Expected 

variability cost  
Total cost 

Test I 0 4046 7920 3688 0 11608 

 0.1 4045 7920 3688 404 12013 

 0.5 4000 7940 3673 2000 13613 

 0.9 3957 7940 3561 3561 15197 

Test II 0 2336 7760 7465 0 15225 

 0.1 2333 7760 7466 233 15459 

 0.5 2322 7760 7470 1161 16391 

 0.9 2321 7760 7471 2089 17320 

Test III 0 2710 7620 8340 0 15960 

 0.1 2708 7620 8340 271 16231 

 0.5 2306 7620 8362 1153 17235 

 0.9 2297 7620 8469 2067 18156 

Test IV 0 6335 7760 18013 0 25772 

 0.1 6183 7660 18115 618 26393 

 0.5 5411 7420 18645 2706 28769 

 0.9 103 7400 22219 93 29712 

 

It can be concluded from the above discussion that to obtain a robust allocation plan for 

the OR blocks the hospital managers should select an appropriate value for that reflects the 

degree of risk aversion which is appropriate to react to the cost variability of the postponed/unmet 

demands and the underutilization of OR capacities. 

3.5.5.2 Analysis of the results for ROM-MR 

Table 3.8 shows the computational analysis of the RO model with model robustness over 

the predefined set of tests. We perform four tests in which the infeasibility penalty function, , is 

assigned different values to analyze the performance of the second stage demand constraints over 
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different penalty cost in the proposed robust model. As it can be observed from the results 

presented in Table 3.8, when penalty cost for the violation of the random demand constraints is 

ignored, the expected infeasibility is very high: 193 in Test I, 219 in Test II, 235 in Test III, and 

325 in Test IV (see the first row in each test). In Test I and II, where the surgery demand has less 

variation, if  gradually increases to 10, the expected infeasibility reduces significantly by 64% 

and 45%, while the total cost has only increased by almost 17% and 21%, respectively. Thus, a 

globally feasible service level can be achieved at a lower cost. When variability becomes more 

predominant, (i.e. Test III and Test IV), a small increase in the penalty cost to 10 cannot impact 

the infeasibility as such, although the total cost goes up significantly by 28% and 38%, 

respectively. This implies the significance of choosing the right amount for the penalty cost. 

 

Table 3.8: Infeasibility analysis of the objective function in ROM-MR 

Test   
Recourse 

infeasibility 
First stage cost 

Second stage 

cost ( ) 
Expected 

infeasibility cost 
Total cost 

Test I 0 193 7280 0 0 7280 

 10 69 7760 92 695 8547 

 75 28 7920 1561 2127 11693 

 100 0 7920 3688 0 11608 

Test II 0 219 7280 0 0 7280 

 10 121 7560 44 1210 8817 

 75 38 7760 4634 2831 15279 

 100 0 7760 7465 0 15225 

Test III 0 235 7280 0 0 7280 

 10 206 7280 19 2056 9356 

 75 21 7620 6729 1611 16009 

 100 0 7620 8340 0 15960 

Test IV 0 325 7280 0 0 7280 

 10 266 7360 24 2664 10049 

 75 230 7660 708 17305 25792 

 100 0 7760 18013 0 25772 
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Results in Test III represents a situation where available capacity of OR blocks outweigh 

the required surgery demands. Therefore the expected infeasibility implies the OR capacities that 

have been allocated to the specialties but remained unused (i.e. underutilized) due to the 

incomplete demand data. The expected infeasibility under Test IV, however, states the situation 

where elective surgeries have to be rescheduled to be met either through assigning the overtime 

hours or moving to another local hospital. Under this situation the demand for surgery is greater 

than the available OR blocks. The hospital managers might be interested to find a penalty cost 

that absorbs most of the infeasibility at a reasonable cost. The third row in each test shows a point 

where maximum reduction in infeasibility can be achieved. An increase to the penalty cost to 75 

can reduces the infeasibility by 85%, 83%, 91%, and 29% in Test I to Test IV, respectively, 

which is also suggested as optimum penalty rate for this analysis. 

In general, when  increases by enough amount, both total costs and the expected 

infeasibility go up. One interesting result obtained from the analysis performed in section 5.5.1 

and 5.5.2 is shown in the final row of each test in Table 3.8. It is noted that maximizing the 

penalty cost enforces all random constraints in the second stage to be satisfied resulting in the 

expected infeasibility to be eliminated, and hence the ROM-MR model transforms into the two-

stage stochastic recourse model. Therefore, the first row of each test in Table 3.7 (i.e. 0 ) 

contains the same results as the final row of each test in Table 3.8 (i.e.  ), as both 

represent the case where RO model is transformed into the two-stage stochastic recourse model. 

Consequently, the results obtained from this analysis can provide a holistic managerial insights to 

the decision makers to take appropriate actions to the realization of the surgery demands towards 

the achievement of a higher service level while the OR utilization rate is also maximized which in 

turn can lead to the lower operational costs as well as controlled risk for the healthcare system. 
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3.5.5.3 Analysis of the results for the robust optimization model with trade-off between 

solution and model robustness (ROM-T) 

To obtain the optimum value of the objective functions and to provide an insight into the 

characteristics of the output data, the optimal value of and has to be determined as a 

measure of trade-off between solution robustness and model robustness in the proposed RO 

framework. As seen before, when 0 the random demand constraints become infeasible in the 

objective function without a penalty cost, and hence the service level deteriorates due to the 

largest postponed and unmet surgery demands as well as the highest underutilized OR blocks 

incurred in the hospital. Under this situation, the resulted allocation plan is obviously not desired 

by the hospital managers. A very large penalty weight, on the other hand, could result in the 

penalty function to dominate the objective function and causes higher operational costs. 

Consequently, the robust model has to be solved several times each time with a different value of 

ω to obtain the minimum loss incur in the OR block allocation plan to find a solution that is close 

to an optimal solution (i.e. solution robustness) while it is almost feasible for all scenarios (i.e. 

model robustness). This trade-off analysis allows decision makers to acquire an optimal solution 

based upon an acceptable range of expected postponed/unsatisfied surgery demand, and total 

costs. When varies, the amount of infeasibility of the random demand constraints is also 

altered. Therefore, examining the proposed robust optimization model with various would 

provide a sense of trade-off between the risk and cost.  

We analyze the proposed robust model with respect to different value of while is 

assumed constant to obtain the optimal block allocation plan that captures the trade-off between 

risk and cost. We analyze the variability, infeasibility, and the total costs trade-off in the proposed 

RO model over different sets of . Figures 3.1 to 3.3 show the computational results for Test I in 

terms of the total loss due to the postponement of surgery demands, the unmet demands, and the 

underutilized OR blocks. Figure 3.1 depicts the impact of changing  on the expected variability 
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when  is kept constant. When the lowest risk aversion policy is chosen (i.e. 1.0 ) a small 

increase in results in a steep hike in the variability from 76 to 4045. However, the trend 

remains steady after reaches to 100. When the risk of variability becomes more costly for the 

decision makers (i.e. 5.0 or 9.0 ), increasing has a lower effect on the variability 

change as variability will be the factor that is limiting the rate of changes. Therefore, the 

variability cost absorbs the impact of penalty weight, and hence predominantly controls the 

objective function. 

Figure 3.1: Variability analysis over constant   

Figure 3.2: Infeasibility analysis over constant   
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Figure 3.3: Total cost analysis over constant   

Figure 3.2 shows the trend of infeasibility for different value of over 1.0 , 5.0 , 
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25 , 44% for 40 , 80% for 55 , 75% for 75 , 32% for 100 , and 37% for 

150 , which illustrates the impact of risk preference level adopted by the decision makers on 

the total cost variability. 

Figure 3.5 depicts the trend of infeasibility changes over different value of  for 15

, 25 , 40 ,55 , 75 ,100 , and150 . It is clear that the higher the value of  is set, the lower would 

be the infeasibility of the control constraints. Figure 3.5 also shows the sensitivity of the expected 

infeasibility over different value of .So, when  increases from 0.1 to 0.9 the infeasibility 

increases by 37% for 15 , 26% for 25 , 27% for 40 , 29% for 55 , 39% for 

75 , and remain unchanged for 100 and 150 . Therefore, setting a large value for

 offset the impact of increased risk aversion policy and reduces the variability in the objective 

function. 

Figure 3.4: Variability analysis over constant   
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Figure 3.5: Infeasibility analysis over constant   

Figure 3.6: Total cost analysis over constant   
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Figure 3.6 shows the trend of total cost over different value of  for 15 , 25 , 40 , 

55 , 75 , 100 , and 150 . The development in the total cost also increases by 8% when 15 , 

1% for 25 , 1.5% for 40 , 3% for 55 , 4% for 75 , 9% for 100 , and 27% 

for 150  as the intended variability of  increases from 0.1 to 0.9. It is noted that the rate of 

growth in the total cost of the objective function is significantly smaller than changes in the 

variability and the infeasibility depicted in figures 3.4 and 3.5. This implies the capability of the 

proposed robust model in providing an affordable optimal solutions with a lower risk for the 

capacity allocation problems of the hospital. 

Figure 3.7 gives the trade-off between the penalty weight changes and the total expected 

cost. The process of making the trade-off between solution robustness and model robustness is 

conceptually based on the RO methodology that allows for infeasibility in the second stage 

constraints by means of penalty as explained in section 3.2.3. When 0 , the violation of the 

random demand constraints is allowed. Under this circumstance, an unrealistic allocation of OR 

blocks is advised in the optimal plan which results in maximum infeasibility, which indeed is not 

an adoptable plan [39]. In Figure 3.7, as the expected infeasibility that represents model 

robustness decreases, the expected total cost which represents solution robustness goes up. The 

infeasibility cost of the second stage constraints drops until it becomes zero as the penalty for the 

violation of the random demand constraints increases. However, the total costs remain steady 

when the penalty function reaches to a very large value. This in fact indicates the feasibility of the 

optimal solution for larger values of under any realization of the scenario data, although at the 

expense of a higher total costs. 

It should be noted that upon reaching to the steady state situation for the infeasibility of 

the variable demand (i.e. 75 ), the impact of penalty function dominates the total objective 

function, and hence no significant reduction would occur in the expected infeasibility. Adopting 
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the best value of 75 in the proposed robust model, we finally obtain the optimal solution 

with the total annual OR operation costs of $608,000 CAD that allows for considerable cost 

savings for the hospital budget. Although the total cost obtained by the proposed RO model 

increases by 0.7% as compared with the two-stage stochastic recourse programming model, the 

expected variability decreases significantly by 78.8%. Therefore, it is demonstrated that RO 

outperforms the stochastic recourse programming on controlling the risks by generating less 

sensitive capacity allocation plans. As the WRH has experienced a 2.3% deficit in its 2015 annual 

operational budgets, the proposed robust model is of quite benefits to the hospital managers to 

control the budget while maintaining the service level. 

 
Figure 3.7: Trade-off between solution robustness and model robustness 
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two models, including a two-stage stochastic recourse programming model and a robust 

optimization (RO) model that aims at advancing both resource efficiency and the health service 

levels. To tackle with the complexity of developing the robust counterpart of the mixed-integer 

linear programming models a novel transformation framework is proposed to transform a 

deterministic manner surgery block allocation problem into the RO form and absorb the effect of 

existing variability within the elective and emergency surgery demands. Three RO models with 

different variability measures are proposed: the RO model with solution robustness, the RO 

model with model robustness, and the RO model with trade-off between solution robustness and 

model robustness to evaluate the operational performance and to analyze the enhancement of the 

trade-off between efficiency and health service delivery. The computational results of addressing 

a capacity allocation problem of a real case situation in a Canadian hospital in which the 

variability of the patient arrivals is included instead of considering a known demand illustrate the 

advantage of the proposed RO approach over the stochastic recourse programming method in 

generating more robust block allocation plans and increasing the resource utilization rate while 

reducing the cost associated with surgery operations for the hospital. An analysis framework is 

also proposed to select among three RO models based on the risk aversion levels and feasibility 

consideration of decision makers for the robustness of postponed/unmet demand size (i.e. 

hospital’s service level) and the increased total cost. Furthermore, the analysis of the variability 

and infeasibility is performed between the proposed RO model and the stochastic recourse 

programming model for different values of robustness term to compare the performance of those 

models in controlling the postponement and unmet demand size. The trade-off between the 

allocation plan’s robustness (i.e. postponed surgery and unmet demand variability) and 

underutilization of OR blocks for different values of robustness is demonstrated that the proposed 

RO model is progressively less sensitive to the realization of the variable demand, while 

generating more feasible solutions as compared with the two-stage stochastic recourse 

programming model. 
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It should be noted that the approach proposed in this study can be applied on OR 

planning and scheduling problems in other healthcare systems where the random input parameters 

are deemed to be a barrier to yield the solid results. Further research will incorporate random 

surgeon availability as well as the integration of various decision levels to account for more 

realistic healthcare problems. 
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Chapter 4 

A Novel Robust Optimization Transformation 

Framework for Multi-Objective Integrated 

Master Surgery Schedule and Surgical Case 

Assignment Problems at a Publicly-Funded 

Hospital1

 

 

4.1 Introduction 

Operating theatres (OTs) are among the most expensive resources in hospitals. OT 

management typically needs to take into account numerous factors (e.g., personnel availability, 

surgical instruments, intensive care units (ICU) availability and ward bed capacity, etc.) and 

involves the actions of different players, such as surgeons, nurses and patients. Within the 

operating theatres, managing surgical activities at operating rooms (ORs) can enormously impact 

the quality of surgery processes undergone by patients as well as the waiting time for patients. 

                                                           
1 A version of this chapter will be submitted for publication. Lalmazloumian M. , Baki F. and Ahmadi M. A 

novel robust optimization for multi-objective integrated master surgery schedule and surgical case 

assignment problem at a publicly-funded hospital. 



  4. A ROBUST OPTIMIZATION FOR MULTI-OBJECTIVE INTEGRATED MSS AND SCA PROBLEMS 

108 
 

Due to having highly skilled personal, planning surgical activities also involves a noticeable 

operational as well as managerial costs that play a great role in the success of a healthcare system. 

Therefore, effective management efforts to increase performance of the OR departments are 

always needed. 

Making plans for ORs is considered to be a very challenging task due to a number of 

different perspectives. The operating room department is a quite volatile environment where the 

uncertainty in patient arrival and surgery duration together with its interactions with other 

departments in the hospital makes the planning and scheduling a very complex decision [1]. The 

management of OR departments have been a challenging research topic that draws considerable 

attention over the last decades. The literature reports on exhaustive reviews [2–8] on operating 

room planning and scheduling problems which analyze the performance of OT and classifies the 

different problem versions by using multiple approaches and optimization techniques. According 

to [9], managing OR departments under the block booking policy can be viewed over three 

different phases corresponding to three decision making levels as follows: 

 Strategic level Dividing overall operating room capacity among surgical 

specialties, which is known as case mix planning, with the aim of minimizing the 

deviation from target allocation or optimizing the benefits of the scheduled plans. 

 Tactical level Assigning surgical disciplines to operating room sessions, referred 

to as the Master Surgical Schedule Problem (MSSP) over a medium-term 

planning horizon. 

 Operational level Specifies the daily scheduling for each case, referred to as 

Elective Case Scheduling (ECS). It is divided into two steps as follows; 
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o Advance scheduling: Assigning each elective surgery to operating room 

sessions in the planning horizon. This is called Surgical Case 

Assignment Problem (SCAP). 

o Allocation scheduling: Determining the sequence of surgeries assigned 

to specific time intervals for each OR block 

The problem in the first stage is a strategic level problem, and it is often referred to as the 

case mix planning problem (CMPP) [10] with the output being the consumed resources plan for 

the hospital. The problem in the second stage is a tactical level problem, and it is often referred to 

as the master surgical schedule problem (MSSP) [5] with the output being a cyclic timetable that 

determines the specialty associated with each OR session. The third stage problem is an 

operational problem and determines the assignment of surgical cases within the OR blocks [11], 

and is therefore denoted as surgical case assignment problem (SCAP). Given the patients’ waiting 

lists and various information on operating room characteristics and status, these problems aim at 

optimizing several performance measures, including OR utilization, throughput, surgeons’ 

overtime, patient tardiness etc. 

The efficient allocation of OR capacities to surgical specialties is a persistent problem in 

hospitals, especially when flat rate payments for patients based on diagnosis-related groups 

(DRGs) are taken into account [12]. Under the flat rate payment system, hospitals will only be 

reimbursed based on a pre-defined model developed by the government to establish a formal link 

between healthcare providers and quality. Introduction of DRG in the Canadian healthcare system 

forced hospitals to allocate their resources more economically. It has been emphasized in most of 

the previously mentioned studies that effective planning and scheduling of the OR department 

requires an integrated approach that concurrently considers both planning and scheduling 

problems of a health care system at the same time in order to acquire a combined tactical and 
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operational levels decision. This integration of different decision levels has been overlooked in 

previous literatures which we believe is one of the main problems in healthcare environment. 

Integrated operating room planning and scheduling, however, has received little attention 

in the literature due to its intrinsic complexity. Planning and scheduling problems have been 

typically solved sequentially that can lead to local optimal solutions. According to a recent review 

made by Ferrand [2] and Van Riet and Demeulemeester [7], there are various and yet conflicting 

objectives involved in the OR planning and scheduling process resulted from different 

stakeholder criteria. The tactical and operational problems in OR planning and scheduling context 

has either been addressed separately in sequence [13], or the focus has been devoted to a single 

problem of a tactical [11,14–16] or an operational [17–20] level decision. Besides, the inherent 

variability in various resources impacts the trade-off between hospitals desirability to reduce cost 

and increase quality of health service to lower the patients waiting time. Therefore, developing an 

efficient model for simultaneously allocating surgical disciplines to available OR sessions and 

assigning surgical cases to the allocated operating room is needed. 

We exploit an integrated approach to concurrently solve MSS and SCA problem to 

acquire optimum allocation of surgical specialty (MSS) while the assignment of patients to the 

OR blocks (SCA) is optimized in order to eliminate the need for changing the OR plan once 

developed and to obtain the optimal solution for the simultaneous planning and scheduling 

problem of the OR department. The main contribution of this research is to overcome the 

challenges rendered by inefficient plans for hospitals and unreasonable service levels for patients 

through a robust optimization method that address uncertainty exist in the integrated MSS and 

SCA problems. 

4.2 Literature Review 

OR planning and scheduling processes is under the influence of numerous conflicting yet 

interrelated factors, such as number of surgeons, availability of ORs and variety of surgery 
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operations, that can impact productivity and quality of service in a hospital due to the competing 

objectives each player will have within the system. It has received considerable attention that 

resulted in a wide range of research in this context due to its publicity in solving hospital 

management problems. Literature on both decision levels is wide and growing. Studies about the 

midterm tactical OR planning and control problems have thoroughly been addressed by 

[11,15,21–24] while the short term operational OR scheduling problems have also been well 

taken care of by [18,25–34] using various techniques and the objectives. Beliën and 

Demeulemeester [35] develop a cyclic master surgery scheduling policy using a mixed integer 

programming based heuristic approach with the aim of minimizing the total expected bed 

shortage. Although the inherent uncertainty in surgery demand and patient length of stay has been 

incorporated, reserved OR capacity was assumed for emergency patients. Denton et al. [53] 

formulate a stochastic optimization model for allocation of surgeries to OR blocks by minimizing 

the maximum cost associated with uncertain surgery durations. Tànfani and Testi [11] study the 

assignment problems of surgical wards to a given set of OR blocks on a planning horizon, taking 

into account both the urgency and waiting time for scheduled and not scheduled patients. A 

deterministic binary programming model with heuristic solution approach is developed aiming at 

minimizing weighted overall hospitalization costs under various resource constraints when the 

assignment of surgical cases depends on the corresponding expected length of stay of each 

patient. 

There are only a few papers that focus on operational level and simultaneously solve 

operating room planning and scheduling problems in the literature. Agnetis et al. [51] provide an 

efficient decomposition approach to address MSS and SCA problem separately. Their model 

allocates patients to available OR blocks in combination with MSS creation taking into account 

surgical durations, waiting time, and priority level. Testi and Tanfani [52] develop an integrated 

MSS and SCA problem through a binary linear programming model where some OR are 
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dedicated to emergency patients with the aim of maximizing patient throughput taking into 

account clinical priority of patients. Agnetis et al. [9] develop an integrated integer linear 

programming model which concurrently solves the MSS and SCA problems to illustrate the 

effect of allowing flexibility in the model in order to account for the variability in elective 

surgical demands and priority of patients. They develop a long-term planning model that 

considers both the quality of solution and the organizational issues within the hospital 

management. Aringhieri et al. [64] study the allocation problem of OR blocks to surgical 

specialties together with the assignment of a subset of patients within each time block using a 

deterministic binary linear programming model. They consider dedicated ORs to cope with the 

uncertainty resulting from emergency patient arrivals.  

Uncertainty is an inevitable part of operational decision in advance scheduling, and hence 

it impacts the effectiveness of the scheduling mechanism developed for the SCA problems [8]. 

Landa et al. [65] consider the allocation planning problem of elective surgery combined with 

sequencing of the assigned cases in each OR block when surgery durations are assumed 

stochastic with known distributions under a block booking system. Bruni et al. [75] a stochastic 

recourse programming model is developed to handle the inherent uncertainty characterized by 

emergency arrivals and surgery durations to adopt optimal scheduling policy of a set of elective 

patients with priority. A heuristic approach presents to solve the recourse problems aimed at 

maximizing the hospital revenues. M’Hallah and Roomi [38] develop a stochastic planning and 

scheduling model for elective surgeries under random surgical times with the aim of enhancing 

OR utilization rates. They investigate different management strategies through online 

rescheduling policies to optimize the flow of surgical cases using simulation models. Lamiri et al. 

[59] develop a stochastic programming model for advance scheduling problem where available 

OR capacity is shared between elective and emergency patients. They use Monte-Carlo 
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simulation method to absorb the effect of uncertain emergency demand in order to minimize the 

cost associated with scheduled elective cases. 

As for the techniques, among a wide range of methodologies introduced from the domain 

of industrial operations research, mathematical programming models and discrete-event 

simulation tool are the two most commonly used techniques. While the former is utilized in 

allocating surgical specialties to the ORs over a planning horizon [11,15,21,22,35] as well as 

assignment of surgical cases to the allocated OR blocks [18,25–34], the latter is generally used to 

analyze the impact of changes in a resource capacity with the aim of improving existing policies 

[1,14,36–44]. Some approaches have been designed to treat the surgery scheduling problem as the 

workshop scheduling problems and hence meta-heuristics are adapted to solve the problems in 

the healthcare system [27,28,45–51]. With regards to the objective function, most of the studies in 

the literature attempt to optimize a single objective, such as maximization of operating room 

utilizations and minimization of the operational costs [1,13,22,24,52–57], while some other 

researchers consider multiple performance criteria in their study [16,26,32,47,48,54,58–60]. 

Some studies evaluate procedures based on the RO approach, which is a measure to 

incorporate variability into account [21,48,78,79]. Addis et al. [79] address a surgical case 

assignment problem of a set of elective cases with regard to the variability of patients’ surgery 

durations through a cardinality constraint robust optimization approach based on Bertsimas and 

Sim [80]. They evaluate different level of robustness for the robust model without generating 

scenarios with the aim of minimizing a penalty associated with the quality of service provided to 

the patients. Addis et al. [78] elective patients from a set of surgery waiting list are assigned to the 

OR blocks under uncertain surgery durations using RO approach. The aim is to minimize the 

penalty associated with patients waiting time and tardiness in a planning horizon. Addis et al. [21] 

extend their previous work in [78,79] to the rolling horizon approach with the aim of minimizing 

the overall penalty rendered delay in patient service level. Hans et al. [48] address the problem of 
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assigning surgical case to the OR blocks to balance the trade-off between maximum OR 

utilizations and minimum OR overtime. Addis et al. [81] use the cardinality-constrained approach 

on RO method to determine the optimal assignment of surgery cases to the OR blocks that 

explicitly take the uncertainty of surgery durations into account where a detailed description of 

uncertain data is not required. 

Nevertheless, studies about the integration of planning and scheduling problems to 

develop a hybrid tactical and operational model that address combined planning and scheduling 

problems of health care systems at the same time have just been emerged in the literature and are 

quite scarce [47,51,52,61–65]. Among all those studies, two major classes of patients that 

contributes to the complexity of the process are identified as elective and emergency patients. 

While the surgery dates for the former class is planned well in advance, those of the latter case 

are needed to be treated urgently, and hence unexpected demand come into play. Considering that 

emergency cases are among the most important sources of uncertainty that impose extensive 

variability to the OR department, in this study, we extend the focus to the construction of an 

effective combined surgery planning and scheduling policy where both elective and emergency 

categories are involved. The aim of this study is to develop a combined master surgical schedule 

with a surgical case assignment plan for a healthcare system with the intent of both minimizing 

patient waiting time and surgeons overtime while the operating room utilization is maximized 

under uncertain surgery arrivals and durations. 

Despite the approach that has been undertaken in previously outlined researches where 

the MSSP and SCAP was divided into separate stages [13,33,58,66], we consider an integrated 

planning and scheduling decision where a weekly surgery planning problem is solved by 

concurrently assigning an OR block to each surgical discipline and the list of surgical cases 

associated with that specialty to be performed during each OR block in the planning horizon. 

Comparing with the approaches provided in the literature that simultaneously deal with more than 
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one planning level, our approach is different from Tànfani and Testi [11] and Agnetis et al. [51] 

in term of the structure of their single objective function where the focus is either on the cost of 

patient admission or the score of selected surgery cases in the planning horizon without 

considering the impact of emergency cases. Our work is also different from the one in Doulabi et 

al. [62], where it reflects an open scheduling policy, such that operating rooms can be shared 

between surgery disciplines. This study also contributes to the stochastic MSS and SCA problems 

in the literature in terms of modeling criteria, so despite Heydari and Soudi [63] we consider 

patients in the surgery waiting list that require different specialties in a non-identical operating 

rooms. The main limitation of the above mentioned approaches is that the inherent hierarchy 

between the decision levels is not considered nor any trade-off between the expected variability 

and feasibility of the objective function is investigated. Our aim is to extend the current literature 

in order to generalize existing approaches to obtain a more effective solution methodology to 

address joint MSS and SCA problem. The contribution of this paper is twofold. The former, more 

methodological, is to provide an efficient algorithmic framework to solve the joint operating 

room planning and advance scheduling problem. Our approach accounts for the stochastic nature 

of the surgical processes, such as the inherent uncertainty of surgery durations and emergency 

arrivals. The latter, more practical, is to provide a tool to develop robust OR schedules which 

consider the trade-off between reducing surgery cancellations and postponements while 

maximizing the operating theater utilization. The approach for generation of integrated MSS and 

SCA is tested with data from a local hospital in Windsor, which is one of the largest hospitals in 

southeast Ontario. 

4.2.1 Master Surgery Schedule 

Operating room planning is under the influence of numerous conflicting yet interrelated 

factors such as number of surgeons, availability of ORs and variety of surgeries. All those criteria 

can impact productivity and quality of service in a hospital due to the competing objectives each 

player can have within the system. While maximizing the utilization of available resources would 
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be desirable for the hospital managers, surgeons tend to plan surgical procedures relative to their 

own availability. The complication of those conflicting objectives coupled with the stochastic 

nature of the OR planning process that exist in surgery durations and demands, surgeon 

availabilities, and emergency surgical procedure results in the unproductive utilization of 

subsequent hospital resources and unbalanced planning for the OR department which can cause to 

cancelation of surgical procedures. The presence of unbalanced OR scheduling can cause 

fluctuations in the demand for succeeding departments such as intensive care units (ICUs). 

Therefore, we incorporate the limitation of ICU units in the decision making process to acquire 

applicable results that suit available constraints of the hospitals. 

Master surgery schedule (MSS) refers to an operational planning technique assuming a 

block scheduling that assigns surgical procedures to ORs over the planning horizon. In other 

words, in MSS each specialty receives a number of OR blocks (often with a half a day or full day 

length) in which it schedules its surgical cases [24]. In healthcare environments, MSS generates a 

cyclic scheduling approach to deal with difficulties of complex planning processes of surgical 

procedures caused by those competing criteria that leads to a surgical timetable for the hospital 

that reduces demand fluctuations while increases capacity utilization rates. An MSS develop a 

cyclic surgical schedule of recurring surgical procedures that have to be performed in each OR in 

a day, which is referred to OR block in this research. An efficient MSS maximize OR utilization 

through providing a balanced workload for surgeons as well as the succeeding departments in the 

hospital such as ICU and surgical wards that results in optimized patient waiting time and 

throughput, surgeon overtime, as well as cancellations. 

Van Oostrum et al. [22] develop a two-phase decomposition approach containing 

probabilistic constraints to define the mix of elective surgery procedures to be performed and 

schedule the surgery types under stochastic surgery durations. They employ a column generation 

approach as a solution method aimed at minimizing required OR capacity and leveling of hospital 
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bed requirements. They further investigate the effectiveness of the MSS approach in solving OR 

planning and scheduling problems in Van Oostrum et al. [24] and demonstrate its applicability is 

solving hospital problems aiming at single or multiple patient groups. 

Santibáñez et al [67] discuss various trade-offs in allocation of the operating room to 

surgical specialties using a deterministic mixed integer programming model considering the 

availability of ORs and post-surgical resource constraints. They introduce planned buffers to 

absorb the effect of inherent uncertainty aiming at comparing different objectives including 

minimizing variation in OR utilization rates, maximizing throughput of patients or leveling the 

bed occupancy of downstream units. Fei et al. [16] use a column-generation heuristic approach to 

solve operating room planning problem under an open scheduling policy where surgeons are 

assigned to the available operating rooms based on a first-come-first-serve (FCFS) basis in order 

to maximize the OR efficiency. They compare multiple criteria such as overtime, cost and OR 

utilization with the aim of minimizing total cost of operations. 

Beliën et al. [68] expand their previous study in Beliën et al. [35] and develop a decision 

support system for a deterministic MSS of a set of elective patients using a mixed integer 

programming and a simulated annealing approach. The focus of their work is devoted to 

developing a weighted multi-objective function in which weights can be adapted based on the 

importance of each criteria by the management in order to balance the bed occupancy in 

downstream units. Expanding previous research, Fügener et al. [15] consider an MSS problem 

that employs a stochastic heuristic approach that includes multiple downstream resources 

containing patient occupancy distributions in the surgical wards and the intensive care units 

(ICU) into the model with the aim of minimizing total costs. 

Denton et al. [53] formulate a stochastic optimization model for allocation of surgeries to 

OR blocks by minimizing the maximum cost associated with uncertain surgery durations. They 
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compare the results of two-stage stochastic recourse programs and a robust optimization model 

with a heuristic model where emergency arrivals are treated through a reserved capacity upon 

their realization. Tànfani and Testi [11] study the assignment problems of surgical wards to a 

given set of OR blocks on a planning horizon, taking into account both the urgency and waiting 

time for scheduled and not scheduled patients. A deterministic binary programming model with 

heuristic solution approach is developed aiming at minimizing weighted overall hospitalization 

costs under various resource constraints when the assignment of surgical cases depends on the 

corresponding expected length of stay of each patient.  

Mannino et al. [69] formulate a pattern based mixed-integer programming model to 

develop a robust cyclic master surgery schedule under demand uncertainty. They propose a model 

that focuses on minimizing patient queue lengths among surgical specialties as well as the use of 

overtime under a finite number of resources. Banditori et al [37] consider a mix of patients on the 

waiting list with the homogeneous surgery resource requirement to develop the MSS plan aimed 

at minimizing under and over utilization of resources. They employ a simulation optimization 

model to evaluate the robustness of the planed MSS against the variability of both surgery 

duration and patient length of stay to manage the trade-off between robustness in planning 

surgeries and efficiency of the actual surgery mix. Investigating the value of efficiency, 

balancing, and robustness by implementing alternative scheduling policies, Cappanera et al. [14] 

utilize a combined optimization-simulation approach through a mixed-integer linear 

programming and a discrete-event simulation model to address the problem of allocating surgical 

specialties to the OR blocks. They employ probability distribution to model the stochasticity of 

surgery durations and patients' length of stay.  

Holte and Mannino [70] develop an adjustable robust scheduling model to handle the 

uncertainty of the patient demands in a cyclic surgery allocation problem. They build a robust 

MSS that accounts for various scarce medical resources aiming at minimizing the queue length of 
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patients where a column generation algorithm is utilized as a solution approach to solve the 

model.   

There are only a few papers that focus on operational level and simultaneously solve 

operating room planning and scheduling problems in the literature. Agnetis et al. [51] provide an 

efficient decomposition approach to address MSS and SCA problem separately. Their model 

allocates patients to available OR blocks in combination with master surgery schedule creation 

taking into account surgical durations, waiting time, and priority level. They compare the solution 

provided for the two problems in sequence with those obtained by an exact integrated approach.  

Testi and Tanfani [52] determine the allocation of OR block times to surgical specialties, 

and the assignment of elective patients in each block time. They develop an integrated MSS and 

SCA problem through a binary linear programming model where some OR are dedicated to 

emergency patients with the aim of maximizing patient throughput taking into account clinical 

priority of patients. Discuss a setting, applying the dedicated ORs to non-elective patients, 

Agnetis et al. [9] develop an integrated integer linear programming model which concurrently 

solves the MSS and SCA problems to illustrate the effect of allowing flexibility in the model in 

order to account for the variability in elective surgical demands and priority of patients. They 

develop a long-term planning model that considers both the quality of solution and the 

organizational issues within the hospital management. Aringhieri et al. [64] study the allocation 

problem of OR blocks to surgical specialties together with the assignment of a subset of patients 

within each time block using a deterministic binary linear programming model. Like previous 

studies, they consider dedicated ORs to cope with the uncertainty resulting from emergency 

patient arrivals and propose a metaheuristic algorithm solution approach with the aim of 

minimizing the costs associated with waiting time and weekend stay beds required by surgery 

planning. 
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4.2.2 Advance Scheduling 

Advance scheduling is about methods to schedule patients on a surgery waiting list in 

advance and is referred to the decision of operating room planning problems at an operational 

level that consists of the assignment of a surgery date and OR block to a set of patients in a 

surgery waiting list to be operated over a planning horizon [65]. Since advance scheduling is 

decomposed into the assignment problem of surgery cases into the OR blocks, it is usually 

referred to as a surgical case assignment problem (SCAP). Depending on the complexity of 

methods developed in advance scheduling, the assignment of patients could generally be under 

multiple resource constraints, including available OR times, surgery teams, and equipment. Block 

booking, which entails reserving blocks of OR time for individual surgical specialties, has 

evolved in the literature as an effective mean to address SCA problems when various resource 

constraints are involved [5]. 

Fei et al. [16] formulate a deterministic column-generation-based heuristic approach to 

address the assignment problem of elective surgery cases in the OR blocks. The integer 

programming model developed under operating room and surgeon availability constraints with 

the aim of minimizing the costs involved in under (over) utilization of OR blocks.  

Molina et al. [61] model their optimization problem as integrated advanced scheduling 

with the determination of the sequence of surgeries for each OR block when surgery duration is a 

function of the surgeon’s level of experience under an open scheduling policy taking into account 

resource availability constraints. They propose a weighted multi-objective which maximize the 

number of scheduled surgical cases and their idle time. Marques et al. [71] consider a joint 

advance scheduling problem with a surgical case, sequencing for elective patients through an 

integer linear programming (ILP) model to maximize the OR utilizations. They develop a 

heuristic approach to improve the quality of the optimal results in order to compare them with the 

actual scheduling performance policies. Wang et al. [18] do a cross-comparison through 
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developing mixed-integer linear programing and constraint programming models to solve a 

surgical case scheduling problem. They take into account the applicability of each model in 

coping with various human and resource constraints.  

Ferrand et al. [72] optimal OR blocks are allocated to elective and emergency cases 

through investigating different policies for dedicated and flexible resources in order to obtain a 

trade-off between productivity of OR resources and patient waiting times. They develop various 

simulation models to evaluate various resource allocation configurations that result in improved 

patient service level and enhanced efficiency. 

In some studies, assignment of surgical cases to operating rooms present similar to the 

job shop makespan problems [58,73]. Jebali et al. [58] tackle both advance scheduling and 

sequencing of individual cases for elective patients through a hierarchical two step problem. 

Assuming patents in the waiting list with equal priority, they develop a mixed integer linear 

programing model with the aim of developing a surgical plan that maximizes the operating room 

utilization rates. Pham and Klinkert [73] address scheduling problem of elective cases through a 

job shop approach. A mixed integer linear programming model is developed to determine optimal 

scheduling plans a set of surgical cases that maximize resource utilization. 

Molina et al. [74] multiple heuristics is presented to solve assignment problem of 

prioritized surgical cases on a waiting list to the OR blocks. They focus on reducing the effect of 

surgery postponement and to provide effective tools for the management to perform what-if 

analysis for determining the optimal strategy. 

Uncertainty is an inevitable part of operational decision in advance scheduling, and hence 

it impacts the effectiveness of the scheduling mechanism developed for the SCA problems [8]. 

Therefore, the method that is being used to capture the existing variability in unexpected 

emergency arrivals and/or surgery durations is of paramount importance in the optimum results 
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achieved from the scheduling systems. We utilize RO approach to tackle the uncertainty at the 

operational levels due to its advantage in considering the higher moment of the expected optimal 

values when variability is involved.  

Landa et al. [65] consider the allocation planning problem of elective surgery combined 

with sequencing of the assigned cases in each OR block when surgery durations are assumed 

stochastic with known distributions under a block booking system. Introducing different 

scenarios, they use Monte-Carlo simulation to capture the variability of the uncertain surgery 

duration with the aim of maximizing OR utilization rate. Bruni et al. [75] develop a stochastic 

recourse programming model to handle the inherent uncertainty characterized by emergency 

arrivals and surgery durations to adopt optimal scheduling policy of a set of elective patients with 

priority. A heuristic approach presents to solve the recourse problems aimed at maximizing the 

hospital revenues.  

Min and Yih [76] address surgery scheduling problems of elective patients under surgical 

facility constraints and uncertain surgery demands. A stochastic dynamic programming model is 

developed to demonstrate the impact of patients’ priority on the scheduling policy. The authors 

then extend their work in Min and Yih [25] to incorporate the uncertainty in surgery durations 

and availability of downstream resources in the model. They develop a stochastic mixed integer 

linear programming model where the capacity used by non-elective cases are considered a 

random variable to schedule multiple surgery cases with various priorities on a given planning 

horizon. A similar exercise for scheduling emergency cases is described by Rachuba and Werners 

[26]. They integrate the uncertainty of surgery durations and emergency arrivals into a scenario-

based mixed-integer optimization model to develop a robust surgery scheduling with the aim of 

minimizing patient waiting time and the number of referrals. 
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M’Hallah and Roomi [38] develop a stochastic planning and scheduling model for 

elective surgeries under random surgical times with the aim of enhancing OR utilization rates. 

They investigate different management strategies through online rescheduling policies to 

optimize the flow of surgical cases using simulation models. 

The impact of combination of uncertainty in surgery durations and patient length of stay 

in downstream resources on surgery scheduling is investigated by Niu et al. [34]. They propose a 

two stage stochastic programming model where the assignment of patients to operating room 

blocks is realized as first stage decision variables, while overtime and undertime of each 

operating room and the utilization of ICU and ward beds are the second stage decision. A sample 

average approximation is employed to solve the planning problem aimed at minimizing patient-

related costs and expected resource utilization costs. Duma and Aringhieri [77] address an online 

surgery process scheduling problem where both elective and emergency patients are considered 

using a hybrid heuristic simulation optimization method. The main trade-off in their work in 

between the number of cancellations and OR utilizations while the patient quality of service is 

maximized. 

Lamiri et al. [59] develop a stochastic programming model for advance scheduling 

problem where available OR capacity is shared between elective and emergency patients. They 

use Monte-Carlo simulation method to absorb the effect of uncertain emergency demand in order 

to minimize the cost associated with scheduled elective cases. Some studies evaluate procedures 

based on the RO approach, which is a measure to incorporate variability into account 

[21,48,78,79].  

The rest of this paper is organized as follows. In section 3, we describe the problem of 

designing an integrated OR planning and scheduling under uncertainty. We propose a 0-1 

programming model for the weekly operating room planning and advance scheduling problem in 
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section 4. After that, a two-stage stochastic programming model is then derived to perform the 

computational experiment. Then, a novel robust optimization framework is utilized to transform 

the deterministic model into the robust counterpart for the hybrid MSS and SCA problem and 

solve by robust optimization technique to determine the final allocation of OR block times 

together with the assignment of the surgical cases that have been assigned to a day in the planning 

horizon. Section 5 is devoted to the discussion and analysis of extensive numerical results 

collected from Windsor Regional Hospital, a local hospital in Windsor Ontario, to evaluate the 

performance of the proposed algorithm and demonstrate the capability of the utilized method. The 

paper is completed with some conclusions and future directions in section 6. 

4.3 Problem Statement 

Operating room planning problems are generally implied dealing with strategic, tactical, 

and operational decisions [82]. We focus on an integrated tactical and operational decision where 

the ORs capacity has already been fixed. The problem herein addressed is that of determining 

master surgery schedule (MSS) which is about the development of a cyclic timetable that 

determine the surgical units associated with each OR block of time (i.e. session), while 

addressing the surgical case assignment (SCA) problem which is described as a general 

assignment problem aimed at reducing costs associated with patients waiting time, surgeons over 

(under) time and OR capacity disruption [11]. 

We develop a model that simultaneously considers both midterm cyclic timetable of OR 

planning and short-term assignment of patient scheduling decision instead of taking them into 

account in successive phases. The integration of planning and scheduling levels provide some 

stability, in terms of repeatability of personnel schedules and predictability of bed occupancy 

pattern in post anesthesia care units (PACU) as well as flexibility, in terms of adaptability of 

weekly plans to the changing waiting lists for the decision makers. In this context, the operational 

decision herein addressed is about allocating a set of OR block times, available in a given 
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planning horizon, to a set of surgical specialties (i.e. the MSSP), together with scheduling a 

number of patients belonging to a waiting list to each allocated OR block time (i.e. the SCAP). 

We seek the trade-off between higher service capacity, which will reduce the waiting time as well 

as OR productivity due to under (over) utilization, and a lower capacity that result in 

postponement as well as ORs overtime. Our approach is demonstrated to improve patient 

satisfaction through reducing prioritized weighted waiting times and also improving health care 

efficiency by reducing overall operation costs, and hence has more societal benefits for the 

hospitals.  

Although our proposed model considerably increases the quality of resulting plans, it will 

indeed be used at the expense of greater complexity in the solution methodology. However, that 

difficulty is reduced adopting the inherent hierarchy between the two decision levels, such that 

the allocation of OR block times to the specialties has direct influence on the assignment of 

patients to the OR sessions, but not the contrary. We also adopt the idea proposed by Tànfani and 

Testi [11] of utilizing societal expenses in the objective function yet stretching out with a multi-

objective that incorporates both the cost associated with weighted waiting time and postponement 

of patients as well any deviation from surgeons’ utilizations. Finding an optimal integrated MSS 

and SCA plan for the hospital cannot be compatible with management criteria if the uncertainty 

inherent in that environment is not taken into account. A 0-1 integer linear programming model is 

formulated to develop the stated hierarchy between decision levels. We develop a novel robust 

optimization (RO) framework [88] to deal with the complexity of the challenging problem and 

absorb the effect of inherent uncertainties. We demonstrate through extensive numerical 

experiment carried out on a large set of instances based on real data that the proposed RO 

framework can generate an effective surgical plan and analyze the impact of alternative 

management policies on the optimal solutions through the incorporation of risk aversion level 

undertaken by the management into the system. Our RO model can also be used as a tool for 
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analysis of different scenarios realized by the decision makers. We will show that the proposed 

RO approach produces near optimal solutions in a limited computer time, which is of great 

concerns when the problem of medium-to large OR departments is considered.  

Given a set of surgical specialties, a list of patients waiting to be operated on for each 

specialty and a number of available OR time blocks to be assigned to each specialty, we address 

the problem of determining for a given planning horizon of one week: (1) the cyclic timetable that 

gives for each day of the planning horizon the assignment of specific OR time blocks to 

specialties, referred to as MSSP; together with (2) the surgery date and operating room assigned 

to each patient selected to be operated on, referred as SCAP. The available OR block times imply 

an OR that filled with complete personnel resources such as surgeon, nurses, anesthesiologists, 

etc., and equipped with all necessary devices. We consider two types of patients, including 

elective and emergency patients. While surgery time is scheduled in advance for the former group 

and hence can be postponed to a later period, the surgery for the latter group is realized without 

any plan and thus emergent. Since there exists sufficient resource in the recovery ward, the 

recovery rooms are not considered a bottleneck in this research work. 

Two methods have been discussed in the literature as effective ways to cope with the 

inherent uncertainty of emergency arrivals [63]. While the first approach dedicates some ORs to 

the emergency cases [83], the second method offers shared ORs between elective and emergency 

patients to better utilize the resources [84]. Unlike the dedicated strategy, sharing OR capacity in 

the block booking policy might increase the flexibility for dealing with unexpected long surgery 

durations and emergency arrivals through adopting of the overflow principle. In this work, the 

given OR block times are devoted to both elective and emergency surgeries, while priority is 

given to the latter group due to the urgent nature of non-elective cases. 
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This research also considers a weighted multi-objective RO approach, which integrates 

optimization modules that take into account the number of scheduled surgeries, the waiting time, 

and tardiness of each patient associated with patient urgency factors, and weighted resource 

utilization rates. The multi-criteria objective function is focused on conflicting resource 

perspectives as well as patient perspectives at the same time. While the former is accounted for 

matching OR session capacity and surgical demands and hence enhance the utilization, the latter 

is related to having the surgery cases done within the respective due dates and thus increase the 

quality of service. Therefore, the objective function of the overall problem is intended to 

minimize the number of postponed surgeries among patients within the planning horizon to 

incorporate the multi-criteria nature of the advance scheduling problems into consideration. One 

novelty of the objective function here introduced is using a provincial guideline based on the 

regulated wait time target prescribed by Ministry of Health and Long-Term Care in Ontario. It 

has mandated the maximum length of time within which a patient should be treated in order to 

manage patient admission that weights the chronological waiting time with the urgency 

coefficient of the corresponding Urgency Related Group (URG) of each patient [89]. The wait 

time targets are developed with the help of clinical experts and serve as a method of 

accountability and provide a goal to achieve. These targets include urgency classifications and are 

incorporated in the regulated Wait Times Information System (WTIS). Unlike the previous 

researches where the number of treated patients is the main criteria, the importance of our 

approach is on reducing the amount of welfare loss caused by clinical deterioration or other 

negative consequences related to excessive waiting time within the planning horizon.  

On the waiting list, patients are ranked according to their urgency coefficient factor. 

According to the provincial guideline, there are six different urgency group defined as L1 to L6 

for which there exists a maximum time before treatment regulated by the Ontario government as 

1 week, 2 weeks, 4 weeks, 6 weeks, 12 weeks, and 26 weeks, respectively. The urgency 
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coefficient of the patient is then defined to correspond to that factor as 26, 13, 6.5, 4.3, 2.2, and 1, 

respectively for each category. Some disciplines have a set of non-availability ORs. For instance, 

general surgery cannot be performed in OR r = 5, and orthopedic surgeries have to be performed 

either in room r = 3, 4, or 5. Nevertheless, these ORs are not exclusively assigned to these 

disciplines. There are a total number of 10 operating rooms available in the hospital under current 

setting. All the ORs are assumed to be identical.  

Waiting time of patients on the waiting list are recorded at admission time to measure the 

time they spend before the required surgeries is received. The objective function in the model is 

derived from the performance indicator employed by the Windsor Regional Hospital (WRH) in 

Ontario (Canada), and it is intended to minimize a societal impact of the clinical weight related to 

the urgency factor of surgery operations on the hospital setting systems and reducing the 

deviation from optimal utilization of resources. The clinical weight depends on the linear 

combination of the priority of the surgery and the number of days per patient spent on the waiting 

list at the time. 

The planning decision is subject to many resource constraints related to OR session 

length, available surgeons within each surgical specialty, the maximum overtime session allowed 

by the current collective labor agreement and hospital budget constraints, OR hours reserved for 

emergency cases, number of ICU beds, and available OR equipment. We assume all patients on 

the waiting list will be operated on the planning horizon. Therefore, we are concerned with the 

problem of selecting the subset of patients to be operated on each OR session such that the cost 

associated with patient waiting time is minimized. Moreover, we assume following restrictive 

assumptions in order for the solutions to be attainable and realizable in a realistic environment. In 

what follows, we assume that: (i) in each planning horizon there are same number of ORs and the 

number and length of OR sessions available for elective surgery are constant; (ii) OR sessions 

cannot be shared among surgical specialties; (iii) a block scheduling approach is followed; (iv) 
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emergency arrivals are handled along with elective cases through reserved OR sessions within the 

planning horizon; (v) uncertainty is considered in emergency arrivals and surgery durations 

within the planning horizon. 

Both expected surgery durations and emergency arrivals are forecasted based on 

historical data and patient characteristics. A mixed-integer linear programming model is first 

developed where the uncertainty considerations are excluded. The deterministic model is then 

transformed into a two stage stochastic recourse programming model as well as a robust 

optimization (RO) model to incorporate the impact of uncertainty into the decision making 

process. A novel RO framework allows to exploit the potentialities of a linear programming 

model without requiring to know the probability density functions of the uncertain parameters. It 

requires only limited information and few general assumptions which is a realistic limitation in 

many real-based application [80]. We propose the details of the deterministic and robust 

formulation of the problem and afterwards the models are analyzed over a set of real life based 

instances to evaluate their behavior in terms of computational effort and solution quality. The 

solution quality is also reflected in the total weighted waiting time of the operated patients and the 

number of postponed cases. Moreover, assuming lognormal distributions for the surgery 

durations and a Poisson process for emergency arrivals, a set of randomly generated scenarios is 

used in order to compare the proposed solutions in terms of OR utilization rate and number of 

postponed patients. The impact of introducing overtime in the model formulation is evaluated and 

a sensitivity analysis on the choice of the key parameters is performed. 

The contribution of this research is twofold. The former, more methodological, is to 

provide an efficient robust optimization (RO) framework to solve the joint MSS (i.e. planning) 

and SCA (i.e. scheduling) problem taking into account the inherent uncertainty of surgery 

durations and emergency arrivals. The latter, more practical, is to provide a tool for decision 
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maker to develop a robust offline OR schedules which consider the trade-off between reducing 

surgery cancellations and/or postponements and maximizing the operating theater utilization. 

4.4 RO Model for Integrated MSS and SCA Problem 

In order to develop an initial schedule that explicitly considers the preferences of 

different interest groups we propose a basic multi-criteria optimization model. This MC-MILP is 

extended to a scenario-based approach in Section 5. Basically, there are three essential types of 

constraints that ensure (1) capacity utilization, (2) emergency reservation and (3) feasible days for 

surgeries. Minimizing each goal separately obviously leads to three different schedules. We study 

the impact of these individual schedules in a multi-criteria context aiming at finding a balanced 

solution that is good with respect to every goal. The patient’s waiting time decreases with a 

higher workload of staff which results in a higher overtime. If overtime is increased, this also 

leads to a lower number of deferrals. Reducing deferrals avoid scheduling patients on the last day 

of the planning horizon, whereas reducing waiting time implies scheduling patients as early as 

possible. The overall goal of our approach is to level the utilization of the different objectives at a 

high level and thus close to their individually optimal solutions. 

4.4.1 Notations 

Parameters associated with the problem size and data are firstly defined as follows. 

4.4.1.1 Index sets 

r  Set of operating room type  Rr ...,,1   

i  Set of patient  Ii ...,,1   

s  Set of surgical specialty  Ss ...,,1   

t  Set of planning horizon  1...,,1  Tt   

  Set of objective function   ...,,1   

  Set of Scenarios   ...,1  

4.4.1.2 Deterministic parameters 

id  Elapsed days since referral of patient i for surgery 

i  Urgency coefficient of patient i  in days 

sB  Subset of patient belong to specialty s  
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so  Number of surgeon available for specialty s in the planning horizon 

rtk  Available capacity (hours) for surgery in OR r on day t  

rt  Maximum available capacity (hours) for surgery in OR r on day t  
maxV  Maximum daily number of operating rooms that can reserve OR hours for emergency cases 

t  Number of available ICU beds on day t  

N  Subset of OR blocks not available for specialty s if   Nrs ,  

i  1 if patient i is expected to need ICU bed after operation; 0 otherwise 

rt  1 if OR r is not available on day t ; 0 otherwise 

w  Weights of the objective function given by the decision makers  

 /  Weighting factor for over (under) time of specialty  
 /  Weighting factor for over (under) utilization of OR capacity  

  Weighting scale to measure the trade-off between risk and expected outcome 

21,  Weighting penalty to trade-off solution for model robustness  

4.4.1.3 Stochastic parameters 

ip  Stochastic elective surgery duration of patient i  under scenario  


tu  Stochastic emergency arrival time on day t under scenario  

4.4.1.4 First stage decision variables 









Otherwise
tdayonrORtoassignedisipatientIf

xirt 0
1

 


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Otherwise
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
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Otherwise
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rg  Operating room hours reserved for emergency surgery in OR r on day t  under scenario  

4.4.1.5 Second stage decision variables 
 srt  Surgery demand of specialty s that cannot be met in OR r on day t  under scenario  

srt  Undersupply of OR block times allocated to specialty s  in OR r  on day t  under scenario  

relative to its desired level 


 rt  Over-utilization hours of overall capacity of OR r on day t under scenario  



 rt  Under-utilization hours of overall capacity of OR r on day t under scenario  

  Expected value of the second stage cost being made after realization of the random variable 

is observed 

d  Variability cost of deviation from the mean expected value of the objective function in each 

scenario  
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  Deviational variable for violation of the mean objective function in each scenario
 

1

srtf  Deviation variable by which the allocated OR block to specialty s in room r on day t  can 

be violated under scenario  
2

rtf  Deviation variable by which the OR capacity utilization in room r on day t  can be violated 

under scenario  

 srt  Deviational variable for infeasibility of the random allocated OR block constraint of 

specialty s in room r on day t  under scenario  

 rt  Deviational variable for infeasibility of the random OR capacity utilization constraint in 

room r on day t  under scenario  

 

4.5 Formulation of Integrated MSS and SCA problems using proposed standard 

transformation framework 

4.5.1 Formulation of the deterministic Integrated MSS and SCA problems 
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The objective function in (4.1) minimizes total patients’ waiting time as the sum of 

urgency coefficient of each patient at the time of planning multiplied by the elapsed days of that 

patient since its referral date. The second goal (i.e. 4.2) ensures surgical postponement is 

minimized to achieve a high level of OR utilization and service level. The third objective (i.e. 4.3) 

minimizes the loss incurred due to utilization disruptions and the amount of over (under) time for 

the planning horizon in order to provide a balance in surgeons’ workload and to comply with their 

collective agreement.  

Constraints (4.4) states that each patient can be admitted at most once. Constraints (4.5) 

ensures a patient of a surgical specialty can only be assigned to a compatible OR time block 

subject to allocation of adequate OR sessions to that specialty in the planning horizon. Note that 

M represents a large integer value that suitably defined to make the constraint non-binding 

whenever 1srty . It can be set to the maximum number of surgeries that could be performed in 

the longest OR time block across all specialties and all day of the planning horizon. For example, 

in a context where the shortest surgery would be 30 min and the longest time block 11 hours so 

660 minutes, a suitable value would be 22M . 
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Constraints (4.6) guarantee that OR sessions are not split among surgical specialties, i.e. 

there are no two surgical specialties assigned to the same OR on a given day. It also prevents the 

OR block times to be shared among surgical specialties. Constraints (4.7) limit the number of OR 

sessions allocated to a specialty to the surgical teams available for that specialty per day. That 

typically maintain a balance between the number of parallel OR sessions a specialty can take and 

the number of available surgery team of that specialty.  

Constraints (4.8) limit the number of assigned patients that require ICU beds to the 

capacity of available ICU beds on a given day. Constraints (4.9) restrict the assignment of 

patients to the OR blocks during the weekends. Constraints (4.10) restrict certain surgeries to be 

performed in a certain set of OR blocks, due to size and/or equipment constraints. This constraint 

is actually a symmetry-breaking constraint to speed up the computations.  

Constraints (4.11) and (4.12) limit the number of OR blocks to which emergency 

reservations can be deducted. Since the amount of reserved emergency hours in the OR blocks is 

defined as an integer variable, constraints (4.13) bound the number of operating rooms that 

emergency reservations can be spread out per day to avoid the assignment of fraction of times to 

all of the active operating rooms in order to lower the undesirable overtime hours. Constraints 

(4.14) reserve emergency times for particular rooms to ensure emergency cases are properly 

being taken care of on a given day.  

Constraints (4.15) calculate the deviations from the allocated OR blocks of a given 

surgical specialty in an aggregated level based on the time for elective patients scheduled in those 

blocks. It also restricts the usage of OR blocks by specialties to develop a feasible and thus 

executable plan. This establishes an upper bound for the duration of surgical cases that can be 

assigned to the same sessions to maintain a balanced workload in the health care system. The 

aggregated level provided through the equations ensures the block time can only be utilized by 
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patients belonging to a particular surgical specialty. Constraints (4.16) ensure capacity utilization 

of surgical OR blocks. Treatment of emergency cases is considered separately through 

reservation of OR block times to deal with randomly occurring emergencies and to reduce the 

allocated block time. A limited amount of over utilized hours is permitted to handle variation in 

emergency hours and surgery durations. 

Constraints (4.17) limit the deviation from the surgery block allocation plan to a 

maximum level. The positive deviations from the daily capacity utilization, i.e. overtime, is 

limited to a maximum allowable amount through constraints (4.18). Constraints (4.19) and (4.20) 

ensure the binary property of the decision variables. Constraints (4.21) and (4.22) ensure the non-

negativity of the deviations from allocated OR block times as well as the overall daily capacity of 

operating rooms, respectively. Finally, with constraints (4.23) the reservation time for emergency 

treatments is an integer. 

As can be seen from these formulations, there exists a clear hierarchy between decision 

levels and therefore between model variables: variable y (which determine the allocation of OR 

block times to surgical specialties) have a strong impact on variable x (which assign individual 

patients to a particular OR block time) but not the reverse. Considering the stochasticity of the 

surgery durations and emergency arrivals, in the following an integrated MSS & SCA model is 

developed under both deterministic as well as the stochastic environment. 

4.5.2 Formulation of the two-stage stochastic recourse programming model for Integrated 

MSS and SCA problems 

As can be seen in the previous section, the third objective function is under the influence 

of uncertain variables, and hence needs to be reformulated to capture the impact of stochastic 

input parameters as follows. 
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Subject to 

Subject to the first stage constraints: (4.4) _ (4.13) 
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 1,0, srtirt yx       tsri ,,,    (4.31) 
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  ,,,0, trssrtsrt     (4.33) 

  ,,0, trrtrt 
   (4.34) 

Ttrgrt ..1,  
   (4.35) 

 

It should be noted that in the above formulation, the constraints that only involve the first 

stage decision variables are referred to as the first stage constraints (i.e. constraints (4.4) to 

(4.13)). Under the first stage decision, the accurate information for the surgery duration and 

emergency arrivals is not available. In the objective function, 1Z and 2Z remain unchanged as they 

are free of noise. In the third objective function, 3Z , the term 
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   represents the expected 

cost of the two-stage stochastic programming model and determines how well the operating 

rooms in a hospital are being utilized when the stochasticity of the unknown parameters is 

realized for various scenarios and hence is the second stage cost,

   









 
r

T

t

rtrt

s r

T

t

srtsrt

1

1

1

1










  . The constraints that 



  4. A ROBUST OPTIMIZATION FOR MULTI-OBJECTIVE INTEGRATED MSS AND SCA PROBLEMS 

137 
 

consist of both first stage variables and second stage variables are defined as the second stage 

constraints, i.e. constraints (4.25) to (4.30) in the two-stage stochastic programming model.  

4.5.3 The proposed formulation of the RO model with solution robustness (ROM-SR) for 

uncertain Integrated MSS and SCA problems 

As elaborately discussed in [88], we employ our novel transformation framework to 

develop the RO model with solution robustness for the integrated MSS & SCA problems of the 

healthcare systems under a set of surgical resource constraints. To capture the deviation from the 

mean in the RO transformation framework, we define 
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to assess the difference between sum of utilization disruptions of each OR block and the amount 

of under (over) time associated with each specialty under realization of the scenario sets and their 

expected value in the two-stage stochastic recourse model (see [88] for further discussion about 

this). Therefore, the ROM-SR for the proposed integrated model is formulated as follows. 

 







  2dMin         (4.36) 

Subject to 

The first stage constraints: (4.4) _ (4.13) 

The second stage constraints: (4.25) _ (4.30) 

The integrality, binary, and non-negativity constraints: (4.31) _ (4.35) 

0  d            (4.37) 

0            (4.38) 

 

The second term in the objective function (4.36) is the expected variability costs for 

utilization disruptions of the OR blocks and the amount of under (over) times associated with 

specialties. The term
 represents a deviational variable to linearize the objective function and 

capture the negativity of the variance from the mean as elaborated in [88]. 
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4.5.4 The proposed formulation of the RO model with model robustness (ROM-MR) for 

uncertain Integrated MSS and SCA problems 

Using the standard RO framework developed in [88],

1
srtf

is defined to capture the 

infeasibility of the control constraints in equation (4.27) and

2

rtf
 is defined to capture the 

infeasibility of the control constraints in equation (4.28). Therefore, 
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 denotes the random capacity constraints can be 

violated over some set of scenarios at the amount
1

srtf , where
1

srtf represents a deviational 

variable that denotes the difference between allocated OR block times to a surgical specialty and 

its surgery demand upon realization of uncertain surgery durations. Under operational level, 





  


  rtrtrt

s Bi

irtirtrtrt gxpkf
s

)1(2
denotes the random utilization constraints can 

be violated if the difference between surgery durations of patients associated with an operating 

room and the available OR hours cannot be fulfilled by under (over) utilization hours. The impact 

of allowing for the infeasibility of the random constraints will be taken into account in the third 

objective function that contains uncertain parameters as follows. 
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Subject to 

The first stage constraints: (4.4) _ (4.13) 

The second stage constraints: (4.25) _ (4.30) 

The integrality, binary, and non-negativity constraints: (4.31) _ (4.35) 
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In the objective function (4.39),
1 and 

2 represent the unit penalty for the violation of 

the random capacity constraints and random utilization constraints, respectively. The term
 srt

and
 rt capture the amount by which the control variables are violated and that is to represent a 

deviational variable which linearizes the objective function and capture the negativity of the 

infeasibility function as elaborated in [88]. In the objective function (4.39), when the unit 

weighting parameters increase, the penalty cost associated with infeasibility of the second stage 

constraints also goes up. Therefore, any deviation from the assigned capacity to surgical 

specialties or the OR block time utilization rates would result in a higher societal loss for the 

health care system which leads to the penalty incurs as a result of growing patients waiting time 

as well as OR overtime. Note that the assignment of specialties and patients to the OR blocks are 

scenario independent variables and hence do not contain the index , however, the index  is 

reflected in the allocation of surgical specialties to the OR blocks and utilization of on hand 

capacity to emphasize the fact that the actual value of these variables only captures after the 

realization of scenarios in the ROM-MR model. 

4.5.5 The proposed formulation of the RO model with the trade-off between solution and model 

robustness (ROM-T) for uncertain Integrated MSS and SCA problems 

RO also provides a degree of flexibility for the decision makers by considering a trade-

off between optimality and feasibility. Through this analysis, managers can explicitly realize the 

possible trade-off associated with the variability of different service levels and the associated 

expected loss. Therefore, the results obtained from the trade-off analysis align with the level of 

risk that managers are willing to take. Solving for variability and the infeasibility together, the 

proposed RO model in this section is formulated to address the hybrid MSS & SCA problems 

under the stochastic healthcare environment. 
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(4.43) 

Subject to 

The first stage constraints: (4.4) _ (4.13) 

The second stage constraints: (4.25) _ (4.30) 

The integrality, binary, and non-negativity constraints: (4.31) _ (4.35) 

The solution robustness constraints: (4.37) _ (4.38) 

The model robustness constraints: (4.40) _ (4.42) 

 

The essential parts of the objective function (4.43), the second term is incorporated to 

accommodate the mean-variance trade-off over scenarios, and hence the variability cost. The 

variability is measured in terms of fluctuations in utilization disruptions of the OR blocks and the 

amount of under (over) times associated with specialties from their total expected values. The 

deviation from the assignment of surgical specialties and resource utilizations is expressed in the 

third and fourth term, respectively, and is permitted at a penalty cost (i.e. infeasibility cost). The 

goal of the objective function (4.43) is to reach to a balance between solution and model 

robustness. 

Since the first two objective functions are free of noise, they are constructed using known 

parameters and design variables, and hence those are excluded from the robust transformation 

process. To sum up, it should be noted that the final proposed robust model for the integrated 

MSS and SCA problems consists of Equations (4.1), (4.2), and (4.43) as the multi-objective 

functions and Equations (4.4)–(4.13), (4.25)–(4.35), (4.37)–(4.38) and (4.41)–(4.42) as the 

constraints. 
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4.6 Solution Procedure 

Conventional deterministic optimization approaches for health care planning and 

scheduling problems are unable to capture the true dynamic behaviors of the real health care 

systems. Our novel solution approach eliminates that drawback by using a novel RO framework 

which provides the health care manager with a tool to handle the inherent uncertainty of the 

hospital environment in a more practical manner. RO is more beneficial than standard 

probabilistic methods which are mostly hard to implement due to the lack of historical data. 

Another advantage of our solution procedure is the applicability and effectiveness of the final 

solutions. While in deterministic approaches one optimal solution is offered for each variable, our 

proposed RO model generates a near optimal and yet robust plan that remains feasible over a 

practical range of input values at a predictable but slightly higher cost.  

The solution procedure of the proposed multi-objective robust model for the integrated 

MSS & SCA problems is described as follows. 

 In order to cope with the complexity of the conflicting objectives in our proposed 

robust model, the problem is separated into three individual models such that each 

includes a single objective function with all of the associated constraints. 

 The first model aims to minimize the total loss incurred due to the patients waiting 

time consisting of Equation (4.1) as the objective function and Equations (4.4)–(4.13) 

and (4.25)–(4.35) as the constraints.  

 The second model aiming at minimizing total unmet demand within the planning 

horizon includes Equation (4.2) as the objective function and Equations (4.4)–(4.13) 

and (4.25)–(4.35) as the constraints. 

 The third model aims to minimize the total societal loss associated with the OR 

utilizations. The optimal solution of the third models is to obtain through a trade-off 
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analysis between expected total costs and expected utilization disruptions of the OR 

blocks as well as the under (over) time hours of OR associated with specialties. The 

robust model consists of Equation (4.43) as the objective function and Equations 

(4.4)–(4.13), (4.25)–(4.35), (4.37)–(4.38), and (4.41)–(4.42) as the constraints. Using 

the real case study data of a hospital presented in the following section, we discuss 

the trade-off along with the optimal solutions for the model. 

 In the final step, the Lp-Metric methodology is applied. Assuming that
*

1Z ,
*

2Z , and
*

3Z

are the optimum solution values for the first, second, and a third model, respectively, 

then MetricLpZ  is defined as the final integrated objective function as follows. 
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

w           (4.45) 

  10 w     (4.46) 

It is worth mentioning that the main advantage of the Lp-Metric methodology is in its 

flexibility to investigate various weights for each objective function in order to allow the decision 

makers to fine tune the projected optimal solutions. 

4.7 Numerical example and computational analysis 

In this section the proposed algorithms for MSS and SCA problems have been tested and 

analyzed to obtain computational results from deterministic model, two-stage stochastic 

programming model, and robust optimization model. Data is provided by a local hospital and 

represented one year’s worth of surgeries. From this data set, we are able to determine the 

distribution of surgery durations and the emergency arrival rates for each surgical specialty. We 

have carried out a series of computational experiments to evaluate the impact of the main 

parameters and components of the algorithms and to verify the computational consistency of the 
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model. Note that due to the bin packing property imposed by constraints 4.5, the problem being 

addressed is NP-hard [85]. However, despite the model complexity all the test problems 

presented in this section have been solved using CPLEX 12.6.3 with the default setting which is 

executed on a PC Pentium IV 2.66GHz CPU with 4GB RAM with a time limit of 600 s and 

average optimality gap of around 0.64%. 

4.7.1 Case description 

To illustrate the effectiveness of the proposed integrated MSS and SCA algorithm for 

solving a hybrid operating room planning and advance scheduling problem with stochastic 

surgery durations and emergency arrivals, we have employed data obtained from the Windsor 

Regional Hospital (WRH) a local hospital sited in Windsor. WRH is a multi-faceted healthcare 

organization operating from two main campuses in Southwestern Ontario in Canada to provide 

advanced care in specialized areas that include complex trauma, cardiac care, neurosurgery few to 

mention supporting over 400,000 people in the community. WRH is budgeted to staff 45-bed 

inpatient surgical units functioning in 10 operating room theaters and two diagnostic rooms 

located in two different sites across the County. There are also two emergency departments to 

provide a range of services to meet the unscheduled and emergency health care needs for clients. 

Based on the information from the OR surgery department, WRH provides services in 

specialties including General Surgery, Urology, Gynecology, Orthopedics, Ear, Nose, and Throat, 

Dental / Oral Maxillofacial, Plastics and Burns, Ophthalmology, Cardiovascular, and Surgical 

Oncology. According to its 2014-2015 annual report, WRH is one of the busiest public hospitals 

in the Southwestern Ontario with the record of 314,469 outpatient visits, 44,418 day surgeries, 

28,898 inpatient discharges, and 128,357 emergency department visits per year. The report shows 

the number of elective patients visit has increased by over 25% during the past five years while 

the emergency admissions through the emergency department has gone up by more than 65% in 
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the hospital through the emergency department (Source: http: // www.wrh.on.ca/Site_Published 

/wrh_internet/Document.aspx?Body.Id=65301). 

As a public healthcare provider, the hospital’s budget is mostly funded by the provincial 

programs, and hence, patients are admitted regardless of their financial status. Once a patient is 

discharged, the hospital is reimbursed based on a predetermined funding model that reflects the 

need of the patient served by the hospital. This funding model determines the amount of 

compensation for the healthcare systems based on the services delivered and also the quality of 

services to the patient populations they serve. It is quite obvious that the hospital would not be 

compensated for the time that patients are admitted to the hospitals, but waiting for their surgery 

or clinical services to be provided to them, which is normally referred to as postponement. 

Therefore, it is crucial from the hospital management point of view to reduce, if not completely 

eliminate the amount of postponing surgeries in order to decrease costs and increase the 

throughputs. It is also crucial from the patient point of view to consider the overall patient welfare 

loss caused by clinical deterioration resulted from excessive waiting. So, the longer the waiting 

time for patients receiving services, the larger would be the welfare loss for the hospital.  

At the time of this study, WRH uses 10 ORs, which are regularly open for 7.33 hours 

with 7 specialties located in its Metropolitan Campus. The seven specialties are General surgery, 

Urology, Gynaecology, Orthopaedics, ENT, Dental (OMF), and Plastic surgery, which shares 733 

hours of overall OR capacity a week with ICU availability consists of six beds. We use the 

capacity and demand data of the 2016’s fiscal year as our input to the proposed standard RO 

framework, where both elective surgery durations and emergency arrivals are modeled as 

uncertain parameters to capture the stochastic nature of the healthcare environments. We have 

analyzed the archived data on both stochastic surgery durations and emergency arrivals to obtain 

the required data for input parameters. All input data related to patients’ characteristics have been 

collected from the OR booking department (i.e. electronic surgery durations and emergency 

http://http:%20/%20www.wrh.on.ca/Site_Published%20/wrh_internet/Document.aspx?Body.Id=65301
http://http:%20/%20www.wrh.on.ca/Site_Published%20/wrh_internet/Document.aspx?Body.Id=65301
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arrivals) on January 2017. In particular, the characteristic of 200 patients on the waiting list is 

described in Table 4.1, where the first two columns give the number of patients to be operated on 

by each surgical specialty, while the following columns describe the distribution of patients 

corresponding to the regulated urgency related group (URG) and expected surgery durations 

(ESD) for elective cases. These characteristics are obtained from the submitted waiting list at the 

time of referral. The average distribution of surgery durations of the patients belonging to 

specialties waiting list is reported in Figure 4.1 where surgery durations are reported in hours. 

Based on the historical data on the duration of more than 13,840 consecutive surgical 

cases performed at the WRH over the year of 2016, We have concluded that the natural 

logarithms of the surgery durations are normally distributed with a mean of 4.25 and standard 

deviation of 1.65 hours to model the surgery durations as suggested in [26,86]. That is, the 

surgery durations are log-normally distributed. The cases represented the elective surgeries and 

the average duration are taken from the empirical data to create the Log-Normal distribution 

models for each random variable and then regression model are used to get a standard deviation 

and generate scenarios from those Log-normal distributions. We also assume the emergency 

demand interval for each specialty is Poisson distributed between 0 and 4 hours per day 

[26,40,87], as the historical data is not indicated otherwise. 
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Figure 4.1: Average distribution of patient surgery durations in case study 

 

The hospital will look at a 1-week planning horizon, where no surgery is operated during 

the weekends. We assume the 7.33 hour operating shift, with possible overtime of up to three 

hours. We generate random instances to evaluate the performance of the proposed RO model over 

various probabilities of occurrences. It is assumed that uncertainty is represented by a set of 

possible surgery duration and emergency arrival situations over Fair, High or Low scenarios. The 

Low scenario signifies the most optimistic future surgery durations and emergency arrivals and in 

contrast, the High scenario represents the extremely pessimistic case. The Fair scenario is, in fact, 

the most expected scenarios where surgery demand and emergency arrivals are realized as 

planned. According to the principles of robust optimization, the most optimistic and most 

pessimistic situations should be considered in addition to the fair situation in order to capture the 

impact of uncertainty. Following the interview with OR manager and on the basis of historical 

records on these stochastic parameters of the OR department, these scenarios are derived to 

appropriately cover different situations that happen in reality as a result of the stochastic 

parameters. In this study, the scenarios, indexed by 3,..,1 , include most expected (Fair), 

extremely pessimistic (High), and extremely optimistic (Low) with associated probability,  of 

0.6, 0.1 and 0.3, respectively, such that the sum of all four probabilities is equal to 1. Numerous 

meetings were held with the senior OR analysts of WRH and based on their consensual 

estimation and prediction of the future surgery durations and emergency arrivals outlook of the 

hospital, these three scenarios and their occurrence probabilities were established. These 

scenarios are used to consider a different range of uncertainties in the stochastic data. The 

characteristics of the models in terms of number of variables, the number of constraints, solution 

time as well as the optimality tolerance can be seen in Table 4.2. 

Table 4.1: Characteristics of the 200 patients waiting for surgery in elective surgery department 
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Surgical specialty # patient  URG # patient  ESD (hours) # patient Patient ID 
Urgency 

level 

General surgery 76  L1 13  < 0.5 1 1-11, 13, 20 L1 

Urology 35  L2 21  0.5 – 1.0 31 
15-17, 21-22, 24, 26-

35, 48-49, 57, 80, 87 
L2 

Gynecology 16  L3 62  1.0 – 1.5 47 

18-19, 36-45, 12, 14, 

23, 25, 47, 93, 103, 

123, 134 

L3 

Orthopedics 22  L4 41  1.5 – 2.0 47 
50-56, 58-79, 81-86, 

88-91, 137-138 
L3 

ENT 20  L5 34  2.0 – 2.5 20 

44, 94-95, 124, 125, 

133, 97-102, 135-

136, 139, 

L4 

Plastic 10  L6 29  2.5 – 3.0 17 
104-112, 149, 153, 

114-122, 127-131 
L4 

Dental 21     3.0 – 3.5 11 
96, 113, 126, 132, 

182, 
L5 

      3.5 – 4.0 11 
141-148, 150-152, 

155-170, 172-173 
L5 

      4.0 – 4.5 2 140, 154, 171 L6 

      > 4.5 13 174-181, 183-200 L6 

 

It should be noted that more scenarios would provide more comprehensive results, but 

given the limitations in accessing the data of the case study, three scenarios would be accurate 

enough for robust optimization. These scenarios are independent as each of them comprises a 

different set of data and they are representatives of quite different future outcomes. All the 

required data were obtained from historical records of the WRH. 

Table 4.2: Model size and computation characteristics 

  No. of variable Constraint  

Model type 
Objective 

function 
Binary Integer Linear 

Equality & 

non equality 
Nonzero 

CPU time 

(sec) 
Gap% 

Deterministic 
Min Deter-Lp 

Metric 
11,299 46 870 1637 48,322 600 s 0.31% 

Two-stage 

stochastic 

Min  Stoch-Lp 

Metric 
11,299 46 2610 3265 95,989 600 s 0.65% 

Robust 

optimization 

Min Robust-Lp 

Metric 
11,299 46 5628 4835 108,609 600 s 0.94% 
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A prioritization algorithm based on clinical need of surgery cases is being used to 

calculate the welfare loss. It should be noted that welfare loss is incurred by measuring the 

clinical deterioration or delay in meeting the elective surgeries as they arise due to excessive 

waiting in a unit of prioritized wait time related loss (PWTRL). The total cost is a function of 

weighted patient urgency related factor, postponed surgeries and OR utilization. Therefore, 

patients on the waiting list of surgical specialties are assigned to the OR blocks according to their 

urgency score achieved relative to their priority which is obtained based on the waited time 

computed on referral day and the urgency coefficient. Surgery cases can either be operated within 

the planning horizon or be postponed to the next planning horizon. The importance of 

incorporating priority variable in the model functioning is not just because of its impact on 

measuring welfare loss that changes overtime at various speed related to urgency groups, but its 

influence on patient admission as a scheduling tool. 

Emergency cases are allowed to go ahead in a non-emergency OR upon availability of 

resources, however, the surgery has to be completed within the regular shift operating hours for 

each OR.  The amount of under (over) utilized ORs will be penalized using a penalty rate which 

is the largest among all the penalty rates. We assume a cyclic weekly demand pattern in our 

model, therefore, the unscheduled surgeries for elective patients has to be operated either in 

overtime hours or be rescheduled to another local hospital, which in either case will be penalized. 

The AMPL software is used as a solution platform due to its well-known high-level 

modeling system for solving complex integer programming problems. The computational results 

of the integrated MSS and SCA algorithm of the proposed deterministic model, two-stage 

stochastic programming model, and RO model are shown in the following contents. It should be 

noted that throughout this study the decision variables with an optimal value of zero are not 

shown for the sake of making the tables clearer. To obtain the trade-off between solution 



  4. A ROBUST OPTIMIZATION FOR MULTI-OBJECTIVE INTEGRATED MSS AND SCA PROBLEMS 

149 
 

robustness and model robustness in the RO model, value of , 1 and 2 is figured to be set 

to 0.5, 100 and 150, respectively as elaborated in section 4.5.5. 

4.7.2 Deterministic integrated MSS and SCA solution   

A deterministic integer linear programming model has been used to solve the integrated 

MSS and SCA problem under study to generate test instances for the OR department at WRH. In 

particular, for each setting an optimal schedule according to every stakeholder’s objective has 

been calculated to obtain the total welfare losses, postponed patients, and operating room capacity 

disruptions over the planning horizon. Then, a well-established multi-objective decision making 

(MODM) method (i.e. LP-Metric methodology) is applied, as elaborated in section 4.6, that 

aggregates multiple objective function into one dimension decision. 

4.7.2.1 Deterministic results for minimizing total welfare loss 

The minimum welfare loss (
*

1Z
) under deterministic operative scenario is of 29,600 

PWTRLs which can be seen as the price paid by the society for elective surgery in a week due to 

delayed treatment. Surgical activities are then planned according to the given resources to meet 

patients need on the waiting list as described in Table 4.3. The total cost of disruption due to 

under (over) time in the surgical specialties schedule and under (over) utilization of OR block 

capacities would be 20,888 unit. 

As it was the aim of the model, the solution provides an integrated plan for the allocation 

of OR to surgical specialties (S) along with the number of patients from the corresponding 

waiting lists assigned to each OR block. For each operating room, the first row in Table 4.3 

shows the surgical specialty assigned to the OR block. Within the waiting list, patients are being 

identified by patient ID from 1 to 200 while the urgency related characteristic corresponding to 

each patient is reported in Table 4.1. Note that the sequence of surgeries within each allocated 

block is determined by the surgeons based on the operational online planning in combination with 

idle time, waiting time and overtime. 
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Table 4.3: Integrated MSS and SCA solution for deterministic model 

 Monday Tuesday Wednesday Thursday Friday T+1 

OR 1 S3 
8, 42, 44, 45, 

50, 51, 150 

S1 
25, 60, 65, 99, 100, 

105 

S1 
111, 114, 156, 162 

S3 
43, 47, 148 

 
 

OR 2 S2 
5, 6, 7, 27, 29, 

30 

S2 
31, 77, 79, 135, 136, 

137 

S7 
83, 87, 125 

S1 
61, 98 

S6 
117, 118, 

119, 121, 

122 

 

OR 3 S5 
33, 35, 36, 37, 

38, 39, 172 

S1 
52, 54, 64, 70, 101 

S5 
32, 40, 173 

S7 
86, 128 

S2 
144  

OR 4 S4 
10, 12, 13, 16, 

91, 93, 176 

S2 
28, 76, 80, 133, 138, 

146 

S4 
92, 94, 96, 178 

S4 
14, 95, 180 

S5 
171, 174  

OR 5  S7 
17, 18, 81, 84, 89, 

126, 127 

S2 
78, 132, 134, 142, 

147, 198 

S1 
108, 155, 160, 

189 

S2 
141, 199, 

200 

 

OR 6 S1 
3, 4, 23, 53, 75, 

106, 107 

S7 
82, 85, 88, 90, 131 

S1 
103, 104, 113, 153 

S2 
139, 143, 195, 

196, 197 

S4 
179, 181  

OR 7 S1 
24, 26, 55, 58, 

63, 66, 69, 72, 

102, 152 

S3 
9 

S7 
123, 124, 129, 130 

S4 
97, 182 

S1 
116, 157, 

187, 193 
 

OR 8 S1 
1, 56, 57, 59, 

68, 73, 110, 112 

S5 
34, 41, 165, 169 

S4 
15 

 S1 
159, 188, 

190, 191 

 

OR 9 S1 
2, 62, 67, 71, 

74, 109 

S3 
46, 48, 49, 149, 151 

S1 
115, 158, 161, 185, 

194 

S1 
154, 163, 184, 

192 

S2 
140, 145  

OR 

10 
S6 

19, 20, 21, 22, 

120 

 S5 
166, 167, 168, 170 

S1 
164, 183, 186 

S4 
11, 175, 

177 

 

 

Table 4.3 also depicts the MSS for the surgery department and shows 15, 8, 4, 7, 5, 2, and 

5 OR blocks allocated to surgical specialty 1, 2, 3, 4, 5, 6, and 7, respectively over the planning 

horizon. As compared to other specialties, surgical specialty 1 obtains more OR block than any 

other specialty due to its lengthy waiting list, whereas only 2 OR block times is assigned to 

specialty 6 over the week. However, no postponement is suggested by the model as surgery 

duration and emergency arrivals are assumed constant over the planning horizon. Therefore, there 

is no postponement reported under the column T+1.  
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4.7.2.2 Deterministic results for minimizing under (over) utilization of OR capacity 

Next, the efficiency model for the overall utilization of OR block is solved according to 

the related procedure explained in Section 4.3.1 and the optimal solution of 20,888 for surgical 

specialties under (over) time hours as well as OR utilization’s disruption is obtained. Table 4.4 

shows the amount of deviation from optimal assignment of surgery operations to surgical 

specialties over the planning horizon in terms of under (over) time hours. Table 4.5 shows the 

amount of utilization disruptions for operating room over the planning horizon. As can be seen in 

the tables, the results are recommending no undertime for surgical specialties nor any 

underutilization of OR capacity is suggested by the results over the planning horizon.   

Table 4.4: Deterministic under (over) time of surgery hours to specialty (hours)* 

 Monday Tuesday Wednesday Thursday Friday 

S 1 (14.41) (6.73) (2.14) (0.74) (0.22) 

S 2 (3.56) (6.90) (3.58) (3.63) (4.07) 

S 3 (2.50) (5.80) 0.00  (2.51)  

S 4 (3.57) 0.00  (5.96) (2.10) (2.43) 

S 5 (2.97) (3.62) (0.45)  (1.88) 

S 6 (0.05)    (1.10) 

S 7  (4.78) (3.63) (1.58)  

*: Numbers in bracket represent overtime 

Table 4.5: Deterministic under (over) utilization of OR capacity (hours) * 

 Monday Tuesday Wednesday Thursday Friday 

OR 1 (3.50) (3.30) (0.90) (2.51)  

OR 2 (3.56) (3.29) (3.36) (0.43) (1.10) 

OR 3 (2.97) (3.43) (3.21) (1.58) (1.00) 

OR 4 (3.57) (3.61) (3.08) (1.47) (1.88) 

OR 5  (3.16) (3.58) (2.06) (0.79) 

OR 6 (3.58) (3.62) (0.25) (3.63) (2.30) 

OR 7 (3.55) (3.09) (0.27) (0.63) (3.67) 

OR 8 (3.61) (3.62) (2.88)  (0.55) 

OR 9 (3.67) (2.71) (0.99)  (2.27) 

OR 10   (0.24)   

*: Numbers in bracket represent overutilization 

4.7.2.3 Deterministic results for aggregated LP metric model  

This part of the analysis utilizes the optimal solution obtained from all three objective 

functions (see section 4.4) in order to develop one integrated objective function using the LP-

Metric methodology. Therefore, we apply Z to represent the optimal value of each objective 
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function after solving the integrated model. In addition, the parameter w  is considered to be 0.6, 

0.1, and 0.3 for 3...,,1 , respectively, to emphasize the importance of each objective function as 

per the hospital manager point of view. Using the above setting, the proposed deterministic 

algorithm for the integrated MSS and SCA problem is solved, resulting in the objective function 

of 0.8402. Since the objective function is minimized both the total welfare loss as well as 

utilization disruptions, a value for the Lp-Metric objective function close to zero would be more 

desirable 

4.7.3 Stochastic integrated MSS and SCA solution   

A two-stage stochastic programming model has been used to solve the integrated MSS 

and SCA problem under study to generate test instances for the OR department at WRH. The 

minimum welfare loss (
*

1Z
) under stochastic operative scenario is of 30,215 PWTRLs which 

accounts for around 2% increase as compared with the situation where all parameters are known. 

As depicted in Table 4.6, the surgery operation for the total of 10 patients is postponed to the next 

planning horizon. Each optimal setting is evaluated individually to obtain the total welfare losses, 

postponed patients, and operating room capacity disruptions over the planning horizon according 

to table 4.6_4.8. The final optimum solution for the aggregated multiple objective is obtained 

through the LP-Metric methodology as we explained earlier.  

Table 4.6: Integrated MSS and SCA solution for stochastic model 

 Monday Tuesday Wednesday Thursday Friday T+1 

OR 1 
S7 

17, 81, 84, 88, 90, 

126 

S7 
18, 82, 85, 89 

S3 
42, 44, 48 

S4 
95, 97 

 S2 
141 

OR 2 
S6 

20, 21, 22, 119, 

122 

S5 
33, 37, 38, 39, 

172 

S1 
58, 60, 71, 74, 113 

S7 
83, 127, 129 

S4 
178, 182 

S5 
174 

OR 3 
S1 

3, 4, 63, 67, 68, 

110 

S1 
66, 105, 107, 

112, 152, 191 

S1 
59, 70, 101, 108 

S1 
61, 64, 72, 104 

S5 
168, 169, 

171 

S4 
15 

OR 4 
S5 

34, 35, 36, 40 
S1 

25, 62, 100, 106, 

162 

S5 
32, 167, 170, 173 

S1 
116, 157, 160, 

189 

S3 
46, 49, 148, 

149 

S2 
140 
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OR 5 

 S4 
11, 16, 91, 93, 

180 

S2 
134, 142, 143, 147, 

200 

S1 
154, 163, 185, 

193 

S4 
175, 177, 

179 

S4 
181 

OR 6 
S2 

5, 27, 29, 77, 133, 

137 

S6 
19, 117, 118, 

120, 121 

S2 
80, 132, 138, 139, 

197, 199 

S1 
103, 115 

S1 
183, 184, 

188 

S3 
47 

OR 7 
S2 

6, 7, 30, 76 
S4 

10, 12, 13 
S4 

14, 94, 176 
S4 

92, 96 
S5 

41, 165, 166 
S2 
144 

OR 8 
S1 

1, 23, 24, 26, 55 
S1 

56, 69, 73, 75, 

102, 109 

S7 
87, 123, 130, 131 

 S2 
31, 145, 198 

S7 
128 

OR 9 

S3 
8, 43, 45, 50, 51, 

150, 151 

S2 
28, 78, 195 

S1 
53, 65, 111, 153 

S1 
52, 99, 156, 

158, 161 

S1 
54, 155, 

190, 192, 

194 

S3 
9 

OR 

10 

S2 
79, 135, 136, 146, 

196 

 S7 
86, 124, 125 

S1 
98, 114, 187 

S1 
57, 159, 

164, 186 

S1 
2 

 

4.7.3.1 Stochastic results for minimizing total welfare loss 

The scheduling plan for surgical activities resulted in a welfare loss of 29,775 PWTRLs 

which can be seen as the price paid by the society for elective surgery in a week. Surgical 

activities are then planned according to the given resources to meet patients need on the waiting 

list as described in Table 4.6. The proposed MSS for the surgery department also provides the 

assignment of OR blocks to the specialties as 18, 10, 5, 8, 6, 2, and 6 OR blocks allocated to 

surgical specialty 1, 2, 3, 4, 5, 6, and 7, respectively over the planning horizon. As compared to 

deterministic model, surgical specialty 1 and 2 are allocated 20 and 25 percent more OR blocks 

due to a higher variability of surgery durations, whereas, the allocation of OR blocks for the sixth 

specialty remained unchanged. The results also offer promising insights into resource 

optimization. Although the surgery operation of 5% of the patients on the waiting list is suggested 

to be postponed to the next planning horizon to incorporate the stochastic nature of surgery 

durations and emergency arrivals into the model, the total cost of disruption due to under (over) 

time in the surgical specialties schedule as well as under (over) utilization of OR block capacities 

dramatically decreased by almost 49% to 10,695 units. 
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4.7.3.2 Stochastic results for minimizing under (over) utilization of OR capacity 

Table 4.7 shows the amount of deviation from optimal assignment of surgery operations 

to surgical specialties over the planning horizon in terms of under (over) time hours. Next, the 

efficiency model for the overall utilization of OR block is solved according to the related 

procedure explained in Section 4.3.1. Table 4.8 shows the amount of utilization disruptions for 

OR capacity over the planning horizon. 

Table 4.7: Stochastic under (over) time of surgery hours to specialty (hours)* 

 Monday Tuesday Wednesday Thursday Friday 

S 1 (0.92) (1.60)  (2.81) (1.77) 

S 2 (5.31) (1.17) (3.33)  (1.73) 

S 3 (0.42)  (0.67)   

S 4  (0.32) (0.24) (0.30) 1.41 

S 5 (1.57) (0.94) (0.37)  (1.86) 

S 6 (1.18) (0.37)    

S 7 (1.54) (0.42) (1.67) (1.06)  

*: Numbers in bracket represent overtime 

Table 4.8: Stochastic under (over) utilization of OR capacity (hours)* 

 Monday Tuesday Wednesday Thursday Friday 

OR 1 (1.54) (0.42) (0.67) (1.10)  

OR 2 (1.18) (0.94) (2.52) (1.06) (1.97) 

OR 3 (0.27) (0.51) (0.25) (0.79) (0.81) 

OR 4 (1.57) (0.23) (0.37) (0.30)  

OR 5  (0.43) (1.66) (0.43) (0.62) 

OR 6 (2.07) (2.37) (1.68) (0.57) (0.80) 

OR 7 (1.39)  (0.24) (1.20) (1.05) 

OR 8 (0.65) (0.85) (1.48)  (1.73) 

OR 9 (2.42) (1.17) (0.27)  (0.76) 

OR 10 (1.85)  (0.20) (0.60) (0.21) 

*: Numbers in bracket represent over utilization 

4.7.3.3 Stochastic results for aggregated LP metric model  

The optimal solution of every stakeholder’s objective is utilized in this part to develop 

one aggregated objective function using the LP-Metric methodology as explained in section 

4.5.1.3. The parameter w  is considered to be 0.6, 0.1, and 0.3 for 3...,,1 , respectively, to 

emphasize the importance of each objective function as per the hospital manager point of view. 

Using the above setting, the proposed stochastic algorithm for the integrated MSS and 

SCA problem is solved, resulting in the objective function of 0.1067. Since the objective function 
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is minimized both the total welfare loss as well as utilization disruptions, a value for the Lp-

Metric objective function close to zero would be more desirable. Table 4.8 shows the amount of 

deviation from optimal assignment of surgery operations to surgical specialties over the planning 

horizon in terms of under (over) time hours. 

4.7.4 Robust optimization integrated MSS and SCA solution   

We utilize a standard robust optimization transformation framework developed by [88] to 

solve the integrated MSS and SCA problem under uncertainty to generate test instances for the 

OR department at WRH. Each optimal setting is evaluated individually to obtain the total welfare 

losses, postponed patients, and operating room capacity disruptions over the planning horizon. 

The minimum welfare loss (
*

1Z
) under robust operative scenario is about 30,058 PWTRLs which 

accounts for around 1.5% increase as compared with the situation where all parameters are 

known, which is slightly better than the result suggested by two-stage stochastic programming. 

The final optimum solution for the aggregated multiple objective is obtained through the LP-

Metric methodology as we explained earlier. As depicted in Table 4.6, the surgery operation for 

the total of 9 patients is postponed to the next planning horizon which demonstrates 10% lower 

postponement as compared to the stochastic model. Each optimal setting is evaluated individually 

to obtain the total welfare losses, postponed patients, and operating room capacity disruptions 

over the planning horizon according to table 4.9_4.11. 

Table 4.9: Integrated MSS and SCA solution for robust optimization model 

 Monday Tuesday Wednesday Thursday Friday T+1 

OR 1 
S2 

6, 27, 132, 136 
S2 

77, 79, 80, 

137 

S3 
42, 49, 148, 

150 

S1 
65, 113, 161, 

185, 189, 190 

 S2 
144 

OR 2 
S1 

3, 4, 26, 55, 63, 

67, 107 

S1 
53, 59, 66, 75, 

99, 110 

S1 
54, 70, 102, 

111, 112 

S1 
108, 153, 156, 

163, 184 

S5 
165, 168, 

171 

S4 
15 

OR 3 
S3 

8, 43, 44, 45, 50, 

51 

S2 
76, 138, 142, 

143 

S3 
46, 48, 149, 

151 

S1 
115, 154, 158, 

194 

S2 
139, 140, 

199 
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OR 4 
S7 

17, 18, 88, 90, 

130 

S4 
11, 93, 94, 

176 

S6 
117, 118, 119, 

120, 122 

S2 
78, 146, 147, 

197 

S2 
195, 196, 

198 

S3 
9 

OR 5 

 S7 
86, 89, 124, 

131 

S5 
166, 167, 169, 

170, 173 

S4 
91, 96, 97 

S2 
135, 145, 

200 

S7 
128 

OR 6 
S6 

19, 20, 21, 22, 

121 

S1 
25, 57, 62, 64, 

71, 106 

S7 
87, 125, 129 

S4 
95, 177, 178 

S4 
179, 182 

S1 
2 

OR 7 
S5 

33, 35, 36, 37, 

39, 172 

S7 
81, 84, 85, 

126, 127 

S1 
103, 114, 152 

S7 
82, 83, 123 

S1 
104, 155, 

186, 191 

S2 
141 

OR 8 
S2 

5, 7, 28, 30 
S1 

52, 56, 58, 69, 

73, 109 

S2 
29, 31, 133, 

134 

 S1 
98, 157, 193 

S5 
174 

OR 9 
S1 

1, 23, 24, 68, 72, 

74 

S5 
32, 34, 38 

S1 
60, 100, 101, 

105 

S1 
61, 116, 162 

S1 
160, 188, 

192 

S4 
181 

OR 10 
S4 

10, 12, 13, 16, 

180 

 S4 
14, 92, 175 

S5 
40, 41 

S1 
159, 164, 

183, 187 

S3 
47 

 

4.7.4.1 Robust optimization results for minimizing total welfare loss 

The scheduling plan for surgical activities resulted in a welfare loss of 30,058 PWTRLs 

which can be seen as the price paid by the society for elective surgery in a week. Surgical 

activities are then planned according to the given resources to meet patients need on waiting lists 

as described in Table 4.9. The proposed MSS for the surgery department also provides the 

assignment of OR blocks to the specialties as 17, 11, 5, 8, 6, 2, and 6 OR blocks allocated to 

surgical specialty 1, 2, 3, 4, 5, 6, and 7, respectively over the planning horizon. As compared to 

the stochastic model, the welfare loss generated by the RO model is slightly lower. Surgical 

specialty 1 is allocated over 5% less OR block than stochastic model due to incorporation of 

variability in the robust model, whereas, the allocation of OR blocks to the second specialty has 

increased by 10% which demonstrates the advantage of the RO model to cope with the volatile 

surgery durations. The results also offer promising insights into resource utilization as only 4% of 

the surgery operations are postponed to the next planning horizon to incorporate the stochastic 

nature of surgery durations and emergency arrivals into the model. 
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4.7.4.2 Robust optimization results for minimizing under (over) utilization  

Next, the efficiency model for the overall utilization of OR block is solved according to 

the related procedure explained in Section 4.3.1 and the optimal solution of 3410 for operating 

room utilization disruption is obtained. Although the loss incurred due to under (over) time in the 

surgical specialties schedule as well as under (over) utilization of OR block capacities has 

increased in robust model by almost 15% (i.e. 12280) as compared with the two-stage stochastic 

recourse model, the mean objective function variability in the former model is significantly lower 

than the former model which justify the increased amount of loss. Table 4.11 shows the amount 

of deviation from optimal assignment of surgery operations to surgical specialties over the 

planning horizon in terms of under (over) time hours. Table 4.10 shows the amount of utilization 

disruptions for operating room over the planning horizon.  

 

Table 4.10: Robust optimization under (over) time of surgery hours to specialty (hours)* 

 Monday Tuesday Wednesday Thursday Friday 

S 1 (1.46) (1.39) (0.77) (1.53) (0.28) 

S 2   0.23  0.37  0.53  

S 3      

S 4 (0.85) (0.70) (0.24) (0.73) (0.47) 

S 5 (0.76) (0.70)  (0.32) (0.20) 

S 6 (0.20)  (0.30)   

S 7 (0.50) (0.55) (0.40) (0.37)  

*: Numbers in bracket represent overtime 

Table 4.11: Robust optimization under (over) utilization of OR capacity (hours)* 

 Monday Tuesday Wednesday Thursday Friday 

OR 1 (0.20) (0.29) (0.32) (2.30)  

OR 2 (1.56) (2.26) (1.32) (1.26) (0.70) 

OR 3 (2.43) (0.34) (3.20) (1.14)  

OR 4 (1.13) (1.41) (0.84)  (0.31) 

OR 5  (1.24) (0.27) (1.58) (0.20) 

OR 6 (0.71) (1.39) (0.99) (0.29) (1.09) 

OR 7 (1.50) (0.39) (0.68) (0.95) (0.78) 

OR 8 (0.73) (1.59)   (0.39) 

OR 9 (1.35) (1.41) (0.35) (1.17) (3.56) 

OR 10 (1.63)  (0.77) (0.88) (0.72) 

*: Numbers in bracket represent over utilization 
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4.7.4.3 Robust optimization results for aggregated LP metric model  

Similar to section 4.5.2.3, we utilize Lp-Metric methodology to develop one aggregated 

objective function in order to find the optimal solution of every stakeholder’s objective. The 

parameter w  is considered to be 0.6, 0.1, and 0.3 for 3...,,1 , respectively, to emphasize the 

importance of each objective function as per the hospital manager point of view. 

Using the above setting, the proposed robust optimization algorithm for the integrated 

MSS and SCA problem is solved resulting in the objective function of 0.0923. Since the objective 

function is minimized both the total welfare loss as well as utilization disruptions, a value for the 

Lp-Metric objective function close to zero would be more desirable. 

4.8 Discussion of the results and evaluations 

In this section, we provide insights into the results of deterministic, two-stage stochastic, 

and robust optimization model. The effectiveness of the proposed robust model is demonstrated 

through evaluation of different performance measures as compared with other developed models. 

The output solution obtained from different results can be used to assist hospital decision makers 

in evaluating the performance of the OR department as well as analyzing alternative situations 

based on the degree of decision makers’ risk behavior. 

First, we analyze the schedules of different models in order to calculate the resulting 

overtime/idle time of each specialty over the entire planning horizon. In particular, for each 

setting an optimal schedule according to the Lp-Metric objective has been calculated to identify 

the disruption of surgical team schedule from their allocated plan. Showing the amount of 

overtime in positive and undertime in negative values, Figure 4.2 points out that the deterministic 

model generates the highest planning disruption for surgical specialties followed by two-stage 

stochastic programming model. It is initially observed from the deterministic results that 

Specialties that generally have long surgeries (such as General surgery and Urology) incur more 

overtime, because they lack short surgeries to better utilize the available OR hours. The proposed 
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robust model, however, could fairly handle the over (under) time, which causes lower patients’ 

related cost and most feasible plan for the system through allowing the hospital to stay within the 

current collective labor agreement and legislations. Compared with the deterministic model, the 

amount of overtime suggested for Dental surgery has dramatically reduced by around 82% in 

robust model while no overtime hours are reported for Orthopaedics. The results also shows 61 

and 67% reduction in overtime hours of the robust model as compared with the stochastic 

programming model for ENT and Plastic surgery, respectively, which leads to reduced cost 

associated with overtime staffing and the tardiness of patients. 

 

Figure 4.2: Comparison Over (under) time hours of surgical specialty in different models 
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the resulting suboptimal utilization rates of each OR block that leads to postponement of surgical 

procedures as well as cancellations over the entire planning horizon. In particular, for each setting 

an optimal schedule according to the Lp-Metric objective has been calculated to identify the 

disruption of OR capacity from their utilized plan. Showing the amount of over utilization (as 

none of the models suggest any under-utilizations), Figure 4.3 points out that the deterministic 

model generates the highest planning disruption for OR utilizations. Due to the impact of 

variability within the uncertain input parameter, the proposed robust model recommended lower 

disruption in OR utilization in a robust optimization model which typically resulted from a degree 

of risk aversion policy associated with cost variability of OR overutilization in the robust model. 

As compared with deterministic model, the proposed robust model improves the utilization rate 

for OR blocks by over 54%, however robust model suggest 10% lower OR utilization rate 

compared with two-stage stochastic programing model. This is the direct result of variability that 

has not been incorporated into the stochastic programming model which results in more over 

utilization of OR blocks for the robust model. 

 

Figure 4.3: Comparison of overutilization of OR capacity in different models (hours) 
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As the aim of the developed models is to minimize the welfare loss due to 

postponed/cancelled patients while the disruption in surgical specialty hours and OR capacity 

utilization is minimized, it is demonstrated through the proposed robust model that this can be 

achieved at the cost of overutilization of OR blocks on the one hand, but less overtime for the 

surgery teams on the other hand. Therefore, from the above discussion, it is concluded that while 

the deterministic model generates schedule for surgical cases that go past the desired end time 

while at the same time the OR utilization rate during those hours is less than desired, the proposed 

robust optimization model better handle the suboptimal surgical specialties’ hours at an 

affordable and yet optimal OR capacity utilization rate for the planning horizon. 

To obtain the optimum value of the objective functions and to provide an insight into the 

characteristics of the output data, we conduct a trade-off between solution robustness and model 

robustness in the proposed robust optimization model. As seen in section 4.5.5, if 01  and 

02  the second stage constraints in the robust formulation become infeasible in the objective 

function without a penalty cost, and hence the welfare loss increases due to the largest postponed 

and unscheduled patients as well as the highest disruption in surgical hour and OR utilization in 

the hospital. Under this circumstance, the resulted OR allocation plan for specialties and patient 

scheduling is not desired by the hospital managers. Therefore, the optimal value of , 1 and 

2 has to be determined as a measure of trade-off between solution robustness and model 

robustness in the proposed RO framework. A very large penalty weight, on the other hand, could 

result in the penalty function to dominate the objective function and causes higher welfare loss 

due to an increased variability in the objective function. Consequently, the robust model has to be 

solved several times, each time with a different value of 1 and 2 to obtain the minimum loss 

incur in the integrated MSS and SCA problem in order to find a solution that is close to an 

optimal solution (i.e. solution robustness) while it is almost feasible for all scenarios (i.e. model 
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robustness). This trade-off analysis allows decision makers to acquire an optimal solution based 

upon an acceptable range of expected postponed patients from waiting lists at a minimized but 

affordable welfare loss. When 1 and 2 varies, the amount of infeasibility of the random 

constraints is also altered. Therefore, examining the proposed robust optimization model with 

various penalty costs would provide a sense of trade-off between the risk and welfare loss.  

Figure 4.4 gives the trade-off between the penalty weight changes and the total expected 

welfare loss. The process of making the trade-off between solution robustness and model 

robustness is conceptually based on the RO methodology that allows for infeasibility in the 

second stage constraints by means of penalty as explained in section 4.5.5. When 1 and 2 are 

zero, the violation of the random constraints for disruption of both surgical specialty throughputs 

and OR capacity utilizations is allowed. Under this circumstance, an unrealistic allocation of OR 

blocks as well as an infeasible assignment of patients is advised in the optimal plan which results 

in maximum infeasibility, which indeed is not an adaptable plan. In Figure 4.4, as the expected 

infeasibility that represents model robustness declines, the expected total welfare loss which 

represents solution robustness goes up. The infeasibility cost of the second stage constraints drops 

until it becomes zero as the penalty for the violation of the second stage constraints is maximized. 

However, the total welfare loss remains steady when the penalty function reaches to a very large 

value. This in fact indicates the feasibility of the optimal solution for larger values of 1 and 2

under any realization of the scenario data, although at the expense of a higher welfare loss. 

It should be noted that upon reaching the steady state situation for the infeasibility of the 

control constraints (i.e. 1001  and 1502  ), the impact of penalty function dominates the 

total objective functions, and hence no significant reduction would occur in the expected 

infeasibility. Adopting the best value of penalty costs in the proposed robust model, we finally 

obtain the optimal solution to the total welfare loss of 30,058 PWTRLs per week that allows for 
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considerable cost savings for the hospital budget. Although the total loss obtained by the 

proposed RO model increases by almost 1.0% as compared with the two-stage stochastic recourse 

programming model, the expected variability decreases significantly by more than 83%. 

Therefore, it is demonstrated that RO outperforms the stochastic recourse programming on 

controlling the risks by generating less sensitive allocation plan for specialties and more feasible 

assignment plan for patients. As the WRH has experienced a 2.3% deficit in its 2015 annual 

operating budgets, the proposed robust model is of quite benefits to the hospital managers to 

control the budget while maintaining the service level. 

Figure 4.4: Trade-off between solution robustness and model robustness 

Finally, the impact of selecting different values for weighting factor ( w ) by decision 

makers in Lp-Metric methodology is investigated. Here, a trade-off is actually conducted between 
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proposed robust model is solved several times when the value of w is changed between zero and 

one. Table 4.12 illustrate the range of objective functions over different values of w . For 

instance, when 11 w , 02 w , and 03 w ,  the cost associated with the utilization disruptions 

would be at the highest level ($165,290) which represents the worst situation. However, the 

welfare loss would be on its minimum value of (28618 PWTRL) while the postponement rate is 

set at zero due to a null weighting factor assumed by the decision makers. On the contrary, when

01 w , 40.02 w , and 60.03 w , the worst situation happens at welfare loss function and it 

increases by almost 9%.  

Table 4.12: Trade-off between Lp-Metric objectives of postponement, utilization, and 

waiting time 

1w  1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0 

2w  0 0 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

3w  0 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 

Welfare loss 

(PWTRL) 
28618 29983 30133 30049 30114 30024 29905 29871 29721 29689 31184 

Postponement 

(# of patient) 
0 20 23 10 10 7 5 4 1 0 0 

Utilization 

disruption ($) 
165290 9870 9778 11546 11266 14427 16686 18203 22676 24240 24234 

 
Figure 4.5: Trade-off between Lp-Metric objectives (welfare loss, postponement, 

utilization disruptions) 
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The postponement rate becomes zero as its weight has been maximized. The number 

postponed patients first increased to 23 and then it substantially decreased as the weighting factor 

grows. While the cost associated with utilization disruptions significantly drops by 94% as the 

weighting factor slightly increases to 0.1, the welfare loss related to the waiting time would reach 

to a maximum of 31184 PWTRL as its weighting factor becomes zero. In general, the amount of 

waiting time loss of the proposed robust model would gradually increase as the value of 1w

decreases, whereas the number of postponement and the cost of utilization disruption would 

increases. 

As depicted in Figure 4.5, it would not be beneficial to the decision makers to lower the 

waiting time loss by far beyond 60.01 w due to its negative impact on resource utilization rate. 

Moreover, the cost of utilization disruptions cannot justify the loss incurred as a result of 

postponement beyond the 3.03 w . Therefore, the main focus of the decision maker should be 

devoted to minimization of welfare loss resulted from waiting time than the cost of resource 

utilization. Our analysis suggest that with a controlled waiting time loss of (30114 PWTRL), a 

reasonable level of patients postponement of 5% can be achieved at a weekly cost of $11266. 

4.9 Conclusions 

In this thesis, we address the operating room (OR) planning problem at an integrated 

tactical and operational planning level. The novelty herein puts forward is twofold: first, we 

model the problem of OR planning and advance scheduling in order to support integrated master 

surgery scheduling (MSS) and surgical case assignment (SCA) problem in the presence of 

multiple objectives and stochastic surgery durations and emergency arrivals. Second, we utilized 

a novel transformation framework in order to transform a deterministic hybrid MSS and SCA that 

explicitly model the conflicting goals of patients’ service level through clinical prioritization 

weighting factor and hospital management in terms of surgical throughputs and operating room 

utilizations. The incompleteness of the random surgery durations and the randomness arises in the 
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emergency arrivals are considered using a discrete set of scenarios. We present an extensive 

solution approach to integrated hospital MSS and SCA problem on the basis of two models, 

including a two-stage stochastic recourse programming model and a robust optimization (RO) 

model that aims at advancing both OR utilization and the health service levels. To tackle with the 

complexity of developing the robust counterpart of the mixed-integer linear programming models 

a novel transformation framework is proposed to transform a deterministic manner integrated 

MSS and SCA problem into the RO form and absorb the effect of existing variability within the 

stochastic parameters. The compromised allocation of OR blocks as well as the assignment of 

patients obtained from the RO framework was capable to handle the variability within the 

uncertain parameters through generating optimal scenario-dependent solutions. Three RO models 

with different variability measures are proposed: the RO model with solution robustness, the RO 

model with model robustness, and the RO model with trade-offs between solution robustness and 

model robustness to evaluate the operational performance and to analyze the enhancement of the 

trade-off between efficiency and health service delivery. The computational results of addressing 

integrated MSS and SCA problem of a real case situation illustrate the advantage of the proposed 

RO approach over the stochastic recourse programming model. The proposed model creates a 

robust integrated scheduling plan for specialties and assignment plan for surgical cases while 

reducing the loss associated with prioritized waiting time for the hospital. 

An analysis of the results is performed to demonstrate the benefit of RO model in 

increasing the OR utilization level and throughput of the system. The trade-off between the 

allocation plan’s robustness (i.e. postponed/cancelled surgery) and underutilization of OR blocks 

for different values of robustness is demonstrated that the proposed RO model is progressively 

less sensitive to the realization of the variable input parameters, while generating more feasible 

solutions as compared with the two-stage stochastic recourse programming model. 
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Future research on integrated MSS and SCA problem can go in two directions. First, the 

proposed RO framework presented in this study can be applied on OR planning and scheduling 

problems in other healthcare systems where the random input parameters are deemed to be a 

barrier to yield the solid results, such as random surgeon availability and downstream resource 

availability. Second, an extension of the model in which detailed surgeons’ timetables and bed 

occupancy is considered on an open-scheduling strategy to develop a mechanism that meet the 

overall objective to reduce surgical waiting times.
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Chapter 5 

Conclusion and Future Work  

 

 

5.1 Concluding remarks 

In this dissertation, we have performed a comprehensive study on operating room 

planning and scheduling problem [1–3]. In Chapter 2, we have developed a novel robust 

optimization (RO) transformation framework based on the RO model developed by [4] that 

outperforms the conventional RO approach by enhancing the computational efficiency through a 

linearization approach adopted from [5]. To the best of our knowledge this is the first standard 

transformation algorithm for the robust optimization method. The developed RO transformation 

framework addresses the drawback of the Mulvey’s model owing to its difficulty in obtaining 

information associated with the numerous control variables and constraints by incorporating the 

expected variability and infeasibility functions into the conventional model. Three different 

robust models are then projected using the proposed transformation framework to highlight the 

capability of the developed model in dealing with variability of the stochastic parameters as well 

as the infeasibility of the control constraints in an uncertain environment. Both variability and 

infeasibility functions are penalized through the weighting penalty factors to trade-off between 

risk and expected outcome for the solution robustness and model robustness. We also 
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demonstrate that increasing the penalty factors would result in the solution to become less 

sensitive to the changes in the input data as defined by a set of different scenarios which in turn 

enables the proposed RO framework to account for the decision maker’s preferences towards risk. 

Therefore, the proposed RO framework allows for a more passive management style, giving it a 

distinct advantage over the stochastic recourse programming. In other words, with variability 

under control, minimal adjustment to the control variables will be required when the weighted 

variance version of RO is applied. The proposed formulation also enables adjusting of the model 

in response to changes in input data through incorporation of the variability of the objective 

function into the formulation. It can be generally used as a standard framework to transform any 

linear deterministic model into the stochastic robust form. After developing our RO 

transformation framework and outlining that we can transform deterministic models into the 

robust form through our framework to find an optimal solution for the stochastic problems in 

polynomial time, we have focused on practical implementation issues in Chapter 3. We have 

developed three models to solve surgery capacity allocation problem of a healthcare system using 

mathematical programming, two-stage stochastic programming, and robust optimization model 

[6–8]. The standard transformation framework is then fed into a surgery capacity allocation 

problem of a healthcare delivery system to capture the randomness of the actual process in order 

to evaluate the effectiveness of the proposed framework on a realistic model and to demonstrate 

the applicability of the formulations. To the best of our knowledge, this is the first time that our 

proposed RO approach is applied in the context of the healthcare capacity allocation problems. 

We have provided valuable insights into many aspects of the presented framework and 

also the characteristics of the proposed formulation. We have focused on data incompleteness as 

well as operational inefficiency of the healthcare systems as the most important challenges of the 

healthcare planning process to provide a decision making tool for the hospital managers to 

allocate OR block times to the surgical specialties in response to unknown elective and 
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emergency surgery demands with the aim of minimizing the cost associated with postponement 

and or rescheduling of patients as well as underutilization of OR blocks. We have considered a 

publically funded hospital where the surgery cost are determined based on the duration of time 

between patients are admitted to a hospital and the time when their required surgery operation is 

performed and not as a function of surgery duration. We define a set of discrete random scenarios 

to represent uncertain elective and emergency surgery demands. This incorporation has important 

practical implications, as the true demand distributions are often not known and only their past 

realizations or some samples are available. It is illustrated through the formulation that the 

proposed transformation framework is more practical to use than the method developed by [4]. 

Furthermore, the computational results confirm that the framework presented herein generates a 

robust allocation plan in a timely manner without requiring addition of any additional deviation 

variables.  

Again motivated by operating room planning and scheduling, in Chapter 4 we have 

developed an integrated operating room planning and advance scheduling in a surgery theater 

comprising several specialties that share a fixed number of operating rooms and post-surgery 

beds [9–11]. We have jointly considered the allocation of surgical specialties to OR blocks 

together with the assignment of the subsets of patients from each specialty’s waiting list to the 

OR blocks over a one-week planning horizon. We have also incorporated multiple criteria while 

evaluating the performance of the hybrid planning and scheduling, including OR utilization, 

surgeons’ overtime, and patient prioritized waiting time. We have extended the stability of the 

scheduling process resulted from tackling simultaneously both the master surgery schedule 

(MSS) problems with the surgical case assignment (SCA) problems by considering both uncertain 

surgery duration and emergency arrivals to increases the chance of successful implementation. 

We have utilized the novel RO transformation framework, presented in Chapter 2, in order to 

transform a deterministic hybrid MSS and SCA model to a robust form that explicitly captures 
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the conflicting goals of patients’ service level through clinical prioritization weighting factor and 

hospital management in terms of surgical throughputs and operating room utilizations. We 

considers a weighted multi-objective RO approach that focuses conflicting resource perspective 

as well as patient perspective at the same time, which take the number of scheduled surgeries, 

waiting time and tardiness of each patient associated with patient urgency factors, and weighted 

resource utilization rates into account. The integration of planning and scheduling levels provide 

some stability, in terms of repeatability of personnel schedules and predictability of bed 

occupancy pattern in post anesthesia care units (PACU) as well as flexibility, in terms of 

adaptability of weekly plans to the changing waiting lists for the decision makers. Our RO model 

seeks for the trade-off between higher capacity, which will reduce the waiting time as well as OR 

productivity due to under (over) utilization, and a lower capacity that result in postponement as 

well as ORs overtime. The compromised allocation of OR blocks as well as the assignment of 

patients obtained from the RO framework was capable to handle the variability within the 

uncertain parameters through generating optimal scenario-dependent solutions. Three RO models 

with different variability measures are proposed: the RO model with solution robustness, the RO 

model with model robustness, and the RO model with trade-offs between solution robustness and 

model robustness to evaluate the operational performance and to analyze the enhancement of the 

trade-off between efficiency and health service delivery. 

The computational results of addressing integrated MSS and SCA problem of a real case 

from Windsor Regional Hospital demonstrate to improve patient satisfaction through reducing 

prioritized weighted waiting times and also improving health care efficiency by reducing overall 

operation costs, and hence has more societal benefits for the hospitals. The resulting plans 

provide a decision tool for the OR managers to exploit a trade-off between risk aversion level 

associated with the robustness of patient service level and the expected cost of surgery 

deferments. The key managerial insights that the proposed models provide to the planner is the 
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ease of dealing with uncertain data which creates an integrated MSS and SCA plan for different 

surgical specialties that leads to a lower surgery postponement, a higher resource utilization, and 

a levelled workload for surgeons. The proposed robust models could successfully absorb the 

variability exists in surgery durations and emergency arrivals and enables management to allocate 

OR blocks more accurately while limiting the negative impact of surgery overtime. It also has to 

be noted that the time the decision makers are required to allocate operating room capacities is 

reduced by the use of this method. Therefore, managerial attention can be paid to implementation 

of the proposed robust optimization framework to reduce the operational burden of surgery 

departments. 

5.2 Future directions 

There are exciting future directions and improvement possibilities for this research. First, 

the proposed RO framework presented in this study can be applied on OR planning and 

scheduling problems in other healthcare systems where the random input parameters are deemed 

to be a barrier to yield the solid results, such as random surgeon availability and downstream 

resource availability. Second, a non-parametric sample average approximation (SAA) approach 

can be used to form an empirical distribution of uncertain parameters obtained from random 

samples. Further research will also incorporate using simulation models for replicating and 

predicting surgery durations as well as using fast heuristic approaches in order to reduce the 

solving time and/or improve the feasibility of solutions. 

One other research avenue that we consider is an extension of the model in which 

detailed surgeons’ timetables and bed occupancy is considered on an open-scheduling strategy to 

develop a mechanism that meet the overall objective to reduce surgical waiting times. 
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