60,991 research outputs found

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use

    Managing stimulation of regional innovation subjects’ interaction in the digital economy

    Get PDF
    The reported study was funded by RFBR according to the research project No. 18-01000204_a, No. 16-07-00031_a, No. 18-07-00975_a.Purpose: The article is devoted to solving fundamental scientific problems in the scope of the development of forecasting modeling methods and evaluation of regional company’s innovative development parameters, synthesizing new methods of big data processing and intelligent analysis, as well as methods of knowledge eliciting and forecasting the dynamics of regional innovation developments through benchmarking. Design/Methodology/Approach: For regional economic development, it is required to identify the mechanisms that contribute to (or impede) the innovative economic development of the regions. The synergetic approach to management is based on the fact that there are multiple paths of IS development (scenarios with different probabilities), although it is necessary to reach the required attractor by meeting the management goals. Findings: The present research is focused on obtainment of new knowledge in creating a technique of multi-agent search, collection and processing of data on company’s innovative development indicators, models and methods of intelligent analysis of the collected data. Practical Implications: The author developed recommendations before starting the process of institutional changes in a specific regional innovation system. The article formulates recommendations on the implementation of institutional changes in the region taking into account the sociocultural characteristics of the region’s population. Originality/Value: It is the first time, when a complex of models and methods is based on the use of a convergent model of large data volumes processing is presented.peer-reviewe

    Optimal clustering of frequency-constrained maintenance jobs with shared set-ups

    Get PDF
    Since maintenance jobs often require one or more set-up activities, joint execution or clustering of maintenance jobs is a powerful instrument to reduce shut-down costs. We consider a clustering problem for frequency-constrained maintenance jobs, i.e. maintenance jobs that must be carried out with a prescribed (or higher) frequency. For the clustering of maintenance jobs with identical, so-called common set-ups, several strong dominance rules are provided. These dominance rules are used in an efficient dynamic programming algorithm which solves the problem in polynomial time. For the clustering of maintenance jobs with partially identical, so-called shared set-ups, similar but less strong dominance rules are available. Nevertheless, a surprisingly well-performing greedy heuristic and a branch and bound procedure have been developed to solve this problem. For randomly generated test problems with 10 set-ups and 30 maintenance jobs, the heuristic was optimal in 47 out of 100 test problems, with an average deviation of 0.24% from the optimal solution. In addition, the branch and bound method found an optimal solution in only a few seconds computation time on average

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Data mining based cyber-attack detection

    Get PDF

    A computational framework to emulate the human perspective in flow cytometric data analysis

    Get PDF
    Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation. <p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods. <p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    • 

    corecore