191 research outputs found

    Novel support vector machines for diverse learning paradigms

    Get PDF
    This dissertation introduces novel support vector machines (SVM) for the following traditional and non-traditional learning paradigms: Online classification, Multi-Target Regression, Multiple-Instance classification, and Data Stream classification. Three multi-target support vector regression (SVR) models are first presented. The first involves building independent, single-target SVR models for each target. The second builds an ensemble of randomly chained models using the first single-target method as a base model. The third calculates the targets\u27 correlations and forms a maximum correlation chain, which is used to build a single chained SVR model, improving the model\u27s prediction performance, while reducing computational complexity. Under the multi-instance paradigm, a novel SVM multiple-instance formulation and an algorithm with a bag-representative selector, named Multi-Instance Representative SVM (MIRSVM), are presented. The contribution trains the SVM based on bag-level information and is able to identify instances that highly impact classification, i.e. bag-representatives, for both positive and negative bags, while finding the optimal class separation hyperplane. Unlike other multi-instance SVM methods, this approach eliminates possible class imbalance issues by allowing both positive and negative bags to have at most one representative, which constitute as the most contributing instances to the model. Due to the shortcomings of current popular SVM solvers, especially in the context of large-scale learning, the third contribution presents a novel stochastic, i.e. online, learning algorithm for solving the L1-SVM problem in the primal domain, dubbed OnLine Learning Algorithm using Worst-Violators (OLLAWV). This algorithm, unlike other stochastic methods, provides a novel stopping criteria and eliminates the need for using a regularization term. It instead uses early stopping. Because of these characteristics, OLLAWV was proven to efficiently produce sparse models, while maintaining a competitive accuracy. OLLAWV\u27s online nature and success for traditional classification inspired its implementation, as well as its predecessor named OnLine Learning Algorithm - List 2 (OLLA-L2), under the batch data stream classification setting. Unlike other existing methods, these two algorithms were chosen because their properties are a natural remedy for the time and memory constraints that arise from the data stream problem. OLLA-L2\u27s low spacial complexity deals with memory constraints imposed by the data stream setting, and OLLAWV\u27s fast run time, early self-stopping capability, as well as the ability to produce sparse models, agrees with both memory and time constraints. The preliminary results for OLLAWV showed a superior performance to its predecessor and was chosen to be used in the final set of experiments against current popular data stream methods. Rigorous experimental studies and statistical analyses over various metrics and datasets were conducted in order to comprehensively compare the proposed solutions against modern, widely-used methods from all paradigms. The experimental studies and analyses confirm that the proposals achieve better performances and more scalable solutions than the methods compared, making them competitive in their respected fields

    Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning

    Full text link
    Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks

    Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights into Two Challenging Real-World Production Settings

    Get PDF
    To build, run, and maintain reliable manufacturing machines, the condition of their components has to be continuously monitored. When following a fine-grained monitoring of these machines, challenges emerge pertaining to the (1) feeding procedure of large amounts of sensor data to downstream processing components and the (2) meaningful analysis of the produced data. Regarding the latter aspect, manifold purposes are addressed by practitioners and researchers. Two analyses of real-world datasets that were generated in production settings are discussed in this paper. More specifically, the analyses had the goals (1) to detect sensor data anomalies for further analyses of a pharma packaging scenario and (2) to predict unfavorable temperature values of a 3D printing machine environment. Based on the results of the analyses, it will be shown that a proper management of machines and their components in industrial manufacturing environments can be efficiently supported by the detection of anomalies. The latter shall help to support the technical evangelists of the production companies more properly

    Real-Time Machine Learning Models To Detect Cyber And Physical Anomalies In Power Systems

    Get PDF
    A Smart Grid is a cyber-physical system (CPS) that tightly integrates computation and networking with physical processes to provide reliable two-way communication between electricity companies and customers. However, the grid availability and integrity are constantly threatened by both physical faults and cyber-attacks which may have a detrimental socio-economic impact. The frequency of the faults and attacks is increasing every year due to the extreme weather events and strong reliance on the open internet architecture that is vulnerable to cyber-attacks. In May 2021, for instance, Colonial Pipeline, one of the largest pipeline operators in the U.S., transports refined gasoline and jet fuel from Texas up the East Coast to New York was forced to shut down after being attacked by ransomware, causing prices to rise at gasoline pumps across the country. Enhancing situational awareness within the grid can alleviate these risks and avoid their adverse consequences. As part of this process, the phasor measurement units (PMU) are among the suitable assets since they collect time-synchronized measurements of grid status (30-120 samples/s), enabling the operators to react rapidly to potential anomalies. However, it is still challenging to process and analyze the open-ended source of PMU data as there are more than 2500 PMU distributed across the U.S. and Canada, where each of which generates more than 1.5 TB/month of streamed data. Further, the offline machine learning algorithms cannot be used in this scenario, as they require loading and scanning the entire dataset before processing. The ultimate objective of this dissertation is to develop early detection of cyber and physical anomalies in a real-time streaming environment setting by mining multi-variate large-scale synchrophasor data. To accomplish this objective, we start by investigating the cyber and physical anomalies, analyzing their impact, and critically reviewing the current detection approaches. Then, multiple machine learning models were designed to identify physical and cyber anomalies; the first one is an artificial neural network-based approach for detecting the False Data Injection (FDI) attack. This attack was specifically selected as it poses a serious risk to the integrity and availability of the grid; Secondly, we extend this approach by developing a Random Forest Regressor-based model which not only detects anomalies, but also identifies their location and duration; Lastly, we develop a real-time hoeffding tree-based model for detecting anomalies in steaming networks, and explicitly handling concept drifts. These models have been tested and the experimental results confirmed their superiority over the state-of-the-art models in terms of detection accuracy, false-positive rate, and processing time, making them potential candidates for strengthening the grid\u27s security

    Improving decision tree and neural network learning for evolving data-streams

    Get PDF
    High-throughput real-time Big Data stream processing requires fast incremental algorithms that keep models consistent with most recent data. In this scenario, Hoeffding Trees are considered the state-of-the-art single classifier for processing data streams and they are widely used in ensemble combinations. This thesis is devoted to the improvement of the performance of algorithms for machine learning/artificial intelligence on evolving data streams. In particular, we focus on improving the Hoeffding Tree classifier and its ensemble combinations, in order to reduce its resource consumption and its response time latency, achieving better throughput when processing evolving data streams. First, this thesis presents a study on using Neural Networks (NN) as an alternative method for processing data streams. The use of random features for improving NNs training speed is proposed and important issues are highlighted about the use of NN on a data stream setup. These issues motivated this thesis to go in the direction of improving the current state-of-the-art methods: Hoeffding Trees and their ensemble combinations. Second, this thesis proposes the Echo State Hoeffding Tree (ESHT), as an extension of the Hoeffding Tree to model time-dependencies typically present in data streams. The capabilities of the new proposed architecture on both regression and classification problems are evaluated. Third, a new methodology to improve the Adaptive Random Forest (ARF) is developed. ARF has been introduced recently, and it is considered the state-of-the-art classifier in the MOA framework (a popular framework for processing evolving data streams). This thesis proposes the Elastic Swap Random Forest, an extension to ARF that reduces the number of base learners in the ensemble down to one third on average, while providing similar accuracy than the standard ARF with 100 trees. And finally, a last contribution on a multi-threaded high performance scalable ensemble design that is highly adaptable to a variety of hardware platforms, ranging from server-class to edge computing. The proposed design achieves throughput improvements of 85x (Intel i7), 143x (Intel Xeon parsing from memory), 10x (Jetson TX1, ARM) and 23x (X-Gene2, ARM) compared to single-threaded MOA on i7. In addition, the proposal achieves 75% parallel efficiency when using 24 cores on the Intel Xeon.Procesar grandes flujos de datos (Big Data Streams, BDS) en tiempo real requiere el uso de algoritmos incrementales rápidos que mantengan los modelos consistentes con los datos más recientes. En este escenario, los Hoeffding Trees (HT) se consideran el clasificador simple más avanzado para procesar BDS, razon por la cual son ampliamente usados como base a la hora de combinar clasificadores en Ensembles. Esta tesis está dedicada a la mejora del rendimiento de algoritmos para Machine Learning/Iteligencia Artificial en BDS que evolucionan con el tiempo (es decir, BDS cuya distribución estadística cambia con el tiempo). En particular, nuestro objetivo es mejorar el Hoeffding Tree y sus combinaciones en Ensembles, con el objetivo de reducir el consumo de recursos y la latencia en el tiempo de respuesta, logrando un mejor rendimiento al procesar BDS que evolucionan en el tiempo. Primero, se presenta un estudio sobre el uso de redes neuronales (NN) con parámetros aleatorios como un método alternativo para procesar BDS con el objetivo de mejorar la velocidad de entrenamiento de Nns. También se destacan problemas importantes derivados del uso de NN para BDS. Como consecuencia, esta tesis tomo la dirección de mejorar los métodos de vanguardia en BDS: Hoeffding Trees y sus combinaciones en Ensembles. Segundo, se propone el Echo State Hoeffding Tree (ESHT), como una extensión del HT para modelar las dependencias temporales típicamente presentes en BDS. La nueva arquitectura propuesta se evalúa tanto en problemas de regresión como de clasificación. Tercero, se propone una extensión para el Adaptive Random Forest (ARF), publicado recientemente y considerado como el clasificador mas potente implementado en MOA (un framework muy popular para procesar BDS). Proponemos el Elastic Swap Random Forest para reducir el número de clasificadores en el ensemble a un tercio en promedio, al tiempo se mantiene un accuracy similar a la de un ARF estándar con 100 árboles. Finalmente, la última contribución de esta tesis es una arquitectura de Ensembles multi hilo para procesar BDS. Nuestro diseño es altamente adaptable a una variedad de plataformas de hardware, que van desde servidores hasta pequeños dispositivos en el Edge Computing (pej, Internet de las Cosas). El diseño propuesto logra mejoras de rendimiento de 85x (Intel i7), 143x (análisis de Intel Xeon desde la memoria), 10x (Jetson TX1, ARM) y 23x (X-Gene2, ARM) en comparación con MOA (un solo proceso) en un Intel i7. Además, la propuesta logra una eficiencia paralela del 75 \% cuando se usan 24 núcleos en el Intel Xeon.Postprint (published version

    An ensemble based on neural networks with random weights for online data stream regression

    Get PDF
    Most information sources in the current technological world are generating data sequentially and rapidly, in the form of data streams. The evolving nature of processes may often cause changes in data distribution, also known as concept drift, which is difficult to detect and causes loss of accuracy in supervised learning algorithms. As a consequence, online machine learning algorithms that are able to update actively according to possible changes in the data distribution are required. Although many strategies have been developed to tackle this problem, most of them are designed for classification problems. Therefore, in the domain of regression problems, there is a need for the development of accurate algorithms with dynamic updating mechanisms that can operate in a computational time compatible with today’s demanding market. In this article, the authors propose a new bagging ensemble approach based on Neural Network with Random Weights for online data stream regression. The proposed method improves the data prediction accuracy as well as minimises the required computational time compared to a recent algorithm for online data stream regression from literature. The experiments are carried out using four synthetic datasets to evaluate the algorithm's response to concept drift, along with four benchmark datasets from different industries. The results indicate improvement in data prediction accuracy, effectiveness in handling concept drift and much faster updating times compared to the existing available approach. Additionally, the use of Design of Experiments as an effective tool for hyperparameter tuning is demonstrated

    Learning from Data Streams with Randomized Forests

    Get PDF
    Non-stationary streaming data poses a familiar challenge in machine learning: the need to obtain fast and accurate predictions. A data stream is a continuously generated sequence of data, with data typically arriving rapidly. They are often characterised by a non-stationary generative process, with concept drift occurring as the process changes. Such processes are commonly seen in the real world, such as in advertising, shopping trends, environmental conditions, electricity monitoring and traffic monitoring. Typical stationary algorithms are ill-suited for use with concept drifting data, thus necessitating more targeted methods. Tree-based methods are a popular approach to this problem, traditionally focussing on the use of the Hoeffding bound in order to guarantee performance relative to a stationary scenario. However, there are limited single learners available for regression scenarios, and those that do exist often struggle to choose between similarly discriminative splits, leading to longer training times and worse performance. This limited pool of single learners in turn hampers the performance of ensemble approaches in which they act as base learners. In this thesis we seek to remedy this gap in the literature, developing methods which focus on increasing randomization to both improve predictive performance and reduce the training times of tree-based ensemble methods. In particular, we have chosen to investigate the use of randomization as it is known to be able to improve generalization error in ensembles, and is also expected to lead to fast training times, thus being a natural method of handling the problems typically experienced by single learners. We begin in a regression scenario, introducing the Adaptive Trees for Streaming with Extreme Randomization (ATSER) algorithm; a partially randomized approach based on the concept of Extremely Randomized (extra) trees. The ATSER algorithm incrementally trains trees, using the Hoeffding bound to select the best of a random selection of splits. Simultaneously, the trees also detect and adapt to changes in the data stream. Unlike many traditional streaming algorithms ATSER trees can easily be extended to include nominal features. We find that compared to other contemporary methods ensembles of ATSER trees lead to improved predictive performance whilst also reducing run times. We then demonstrate the Adaptive Categorisation Trees for Streaming with Extreme Randomization (ACTSER) algorithm, an adaption of the ATSER algorithm to the more traditional categorization scenario, again showing improved predictive performance and reduced runtimes. The inclusion of nominal features is particularly novel in this setting since typical categorization approaches struggle to handle them. Finally we examine a completely randomized scenario, where an ensemble of trees is generated prior to having access to the data stream, while also considering multivariate splits in addition to the traditional axis-aligned approach. We find that through the combination of a forgetting mechanism in linear models and dynamic weighting for ensemble members, we are able to avoid explicitly testing for concept drift. This leads to fast ensembles with strong predictive performance, whilst also requiring fewer parameters than other contemporary methods. For each of the proposed methods in this thesis, we demonstrate empirically that they are effective over a variety of different non-stationary data streams, including on multiple types of concept drift. Furthermore, in comparison to other contemporary data streaming algorithms, we find the biggest improvements in performance are on noisy data streams.Engineers Gat

    A simulation data-driven design approach for rapid product optimization

    Get PDF
    Traditional design optimization is an iterative process of design, simulation, and redesign, which requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters manually and continually based on the simulation results until a satisfactory design is obtained. However, the expensive computational costs and large resource consumption of complex products hinder the wide application of simulation in industry. It is not an easy task to search the optimal design solution intelligently and efficiently. Therefore, a simulation data-driven design approach which combines dynamic simulation data mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation data mining algorithm—on-line sequential extreme learning machine with adaptive weights (WadaptiveOS-ELM)—is adopted to train the dynamic prediction model to effectively evaluate the merits of new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally by combining new “good” data set to reduce the modeling cost and improve the prediction accuracy. Furthermore, the improved heuristic optimization algorithm—adaptive and weighted center particle swarm optimization (AWCPSO)—is introduced to guide the design change direction intelligently to improve the search efficiency. In this way, the optimal design solution can be searched automatically with less actual simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach
    • …
    corecore