
IMPROVING DECISION TREE AND
NEURAL NETWORK LEARNING FOR

EVOLVING DATA-STREAMS

by

DIEGO MARRÓN VIDA

Advisors:
Eduard Ayguadé

José Ramón Herrero
Albert Bifet

DISSERTATION
Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy
in the Department of Computer Architecture

Universitat Politècnica de Catalunya
2019

Barcelona, Spain

Abstract

High-throughput real-time Big Data stream processing requires fast
incremental algorithms that keep models consistent with most recent
data. In this scenario, Hoeffding Trees are considered the state-of-the-
art single classifier for processing data streams and they are widely used
in ensemble combinations.

This thesis is devoted to the improvement of the performance of
algorithms for machine learning/artificial intelligence on evolving data
streams. In particular, we focus on improving the Hoeffding Tree clas-
sifier and its ensemble combinations, in order to reduce its resource
consumption and its response time latency, achieving better throughput
when processing evolving data streams.

First, this thesis presents a study on using Neural Networks (NN) as
an alternative method for processing data streams. The use of random
features for improving NNs training speed is proposed and important is-
sues are highlighted about the use of NN on a data stream setup. These
issues motivated this thesis to go in the direction of improving the cur-
rent state-of-the-art methods: Hoeffding Trees and their ensemble com-
binations.

Second, this thesis proposes the Echo State Hoeffding Tree (ESHT),
as an extension of the Hoeffding Tree to model time-dependencies typ-
ically present in data streams. The capabilities of the new proposed ar-
chitecture on both regression and classification problems are evaluated.

Third, a new methodology to improve the Adaptive Random Forest
(ARF) is developed. ARF has been introduced recently, and it is con-
sidered the state-of-the-art classifier in the MOA framework (a popular
framework for processing evolving data streams). This thesis proposes
the Elastic Swap Random Forest, an extension to ARF that reduces the
number of base learners in the ensemble down to one third on average,
while providing accuracy similar to that of the standard ARF with 100
trees.

And finally, a last contribution on a multi-threaded high performance
scalable ensemble design that is highly adaptable to a variety of hard-
ware platforms, ranging from server-class to edge computing. The pro-
posed design achieves throughput improvements of 85x (Intel i7), 143x
(Intel Xeon parsing from memory), 10x (Jetson TX1, ARM) and 23x (X-
Gene2, ARM) compared to single-threaded MOA on i7. In addition, the
proposal achieves 75% parallel efficiency when using 24 cores on the
Intel Xeon.

i

ACKNOWLEDGEMENTS

This dissertation would not be possible without guidance and continuous
support of my advisors, Eduard Ayguadé, José Ramón Herrrero, and Albert
Bifet. Special mention to Nacho Navarro, for taking me as his PhD student,
and giving full resources and freedom to pursue my research; I know how
happy and proud he would be to see this work completed. You all have been
great role models as researchers, mentors and friends.

I would like to thank to my colleagues at Barcelona Supercomputing Cen-
ter, Toni Navarro, Miquel Vidal, Marc Jordà, Kevin Sala and Pau Farré. For
your patience and the insane funny moments and crazy moments during this
journey. I would like to mention my earlier colleagues at BSC, Lluis Vilanova
and Javier Cabezas for their mentorship and help at the beginning of this PhD.

Last, but certainly not least, I am extremely grateful to Judit, Valeria and
Hugo for your incredible patience, unconditional support and for inspiring
me to pursue my dreams; half of this is your merit. I am also deeply grateful
to my Parents, sister and bother in-law for your patience and support dur-
ing these years, and most important for teaching me to never give up even
when circumstances are not favourable. All of you always believed in me and
wanted the best for me. Certainly, without you, none of this would have been
possible.

Thank you.

iii

Table of Contents

Page

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Supervised Machine Learning 1
1.2 Processing Data Streams in Real Time 2
1.3 Decision Trees and Ensembles for Mining Big Data Streams . . . 3
1.4 Neural Networks . 4
1.5 Contributions of this Thesis . 5

1.5.1 Neural Networks and data streams 5
1.5.2 Echo State Hoeffding Tree learning 5
1.5.3 Resource-aware Elastic Swap Random Forest 6
1.5.4 Ultra-low latency Random Forest 6

1.6 Organization . 7
1.7 Publications . 8

2 Preliminaries and Related Work 11
2.1 Concept Drifting . 13

2.1.1 ADWIN Drift Detector 14
2.2 Incremental Decision and Regression Trees 15

2.2.1 Hoeffding Tree . 16
2.2.2 FIMT-DD . 19
2.2.3 Performance Extensions 20

2.3 Ensemble Learning . 21
2.3.1 Online Bagging . 22
2.3.2 Leveraging Bagging . 22
2.3.3 Adaptive Random Forest 23

2.4 Neural Networks for Data Streams 23
2.4.1 Reservoir Computing: The Echo State Network 24

2.5 Taxonomy . 26

3 Methodology 29

v

TABLE OF CONTENTS TABLE OF CONTENTS

3.1 MOA . 30
3.2 Datasets . 30

3.2.1 Synthetic datasets . 31
3.2.2 Real World Datasets . 34
3.2.3 Datasets Summary . 35

3.3 Evaluation Setup . 35
3.3.1 Metrics . 35
3.3.2 Evaluation Schemes . 37

4 Data Stream Classification using Random Features 39
4.1 Random Projection Layer for Data Streams 40

4.1.1 Gradient Descent with momentum 40
4.1.2 Activation Functions . 42

4.2 Evaluation . 45
4.2.1 Activation functions . 45
4.2.2 RPL comparison with other data streams methods 49
4.2.3 Batch vs Incremental . 50

4.3 Summary . 51

5 Echo State
Hoeffding Tree Learning 53
5.1 The Echo State Hoeffding Tree 53
5.2 Evaluation . 54

5.2.1 Regression evaluation methodology: learning functions . 55
5.2.2 Regression evaluation 56
5.2.3 Classification evaluation methodology and real-world

datasets . 64
5.2.4 Classification evaluation 64

5.3 Summary . 66

6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams 69
6.1 Preliminaries . 70
6.2 ELASTIC SWAP RANDOM FOREST 72
6.3 Experimental Evaluation . 76

6.3.1 SWAP RANDOM FOREST 77
6.3.2 ELASTIC SWAP RANDOM FOREST 78
6.3.3 ELASTIC RANDOM FOREST 83

6.4 Summary . 87

7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big
Data Streams 89
7.1 LMHT Design Overview . 90

7.1.1 Tree Structure . 90

vi

TABLE OF CONTENTS TABLE OF CONTENTS

7.1.2 Leaves and Counters . 92
7.2 Multithreaded Ensemble Learning 93

7.2.1 Instance Buffer . 94
7.2.2 Random Forest Workers and Learners 94

7.3 Implementation Notes . 95
7.4 Experimental Evaluation . 95

7.4.1 Hoeffding Tree Accuracy 96
7.4.2 Hoeffding Tree Throughput Evaluation 97
7.4.3 Random Forest Accuracy and Throughput 99
7.4.4 Random Forest Scalability 103

7.5 Summary . 104

8 Conclusions 109
8.1 Summary of Results . 109
8.2 Future Work . 111

Bibliography 113

vii

List of Tables

TABLE Page

3.2.1Synthetic (top) and real-world (bottom) datasets used for perfor-
mance evaluation and comparison. 36

4.2.1Random numbers initialization strategy for the different activation
functions . 45

4.2.2ELEC dataset best results obtained by RPL with different activation
functions . 46

4.2.3COVT Evaluation . 47
4.2.4SUSY Evaluation . 48
4.2.5RPL accuracy (%) comparison against other popular data streams

methods. 50
4.2.6SGD Batch vs Incremental . 50

5.2.1Map from ASCII domain to 4-symbols 63
5.2.2Email address detector results . 63
5.2.3ESHT performance comparison against a single HT, and the best

results obtained on each dataset. 66
5.2.4Comparing ESHT execution time against other data-streams meth-

ods. 66

6.1.1Difference in accuracy for difference ARF sizes with respect the best
one. A negative result means worse then the best. 71

6.1.2Average number of background learners for ARF with 100 and 50
learners. Note that RTG dataset has no drift, thus, ARF needed 0
background learners . 72

6.3.1Synthetic (top) and real-world (bottom) datasets used for perfor-
mance evaluation and comparison. Synthetic datasets drift type:
A (abrupt), G (gradual) I.F (incremental fast), I.M (incremental
moderate), N (None) . 76

6.3.2Accuracy comparison between ARF100 and SRF with |FS| = 35
and |FS| = 50 . 78

6.3.3ESRF comparison with ARF100. Resource-constrained scenario:
Tg = 0.01 and Ts = 0.001 . 83

ix

List of Tables List of Tables

6.3.4ESRF comparison with ARF100. Ts = Tg = 0.001 83
6.3.5ESRF resize factor r = 5 comparison with ARF100. Tg = 0.01 and

Ts = 0.5 . 87
6.3.6ERF comparison with ARF100. Resource-constrained scenario: Tg =

0.01 and Ts = 0.001 . 87
6.3.7ERF comparison with ARF100. Resource-constrained scenario: Tg =

0.1 and Ts = 0.1 . 88

7.4.1Datasets used in the experimental evaluation, including both real
world and synthetic datasets . 96

7.4.2Platforms used in the experimental evaluation 97
7.4.3Single Hoeffding Tree accuracy comparison 97
7.4.4Single Hoeffding Tree throughput (instances per ms) on Intel (top)

and ARM (bottom) compared to MOA. ↓ indicates speed-down
(MOA is faster) . 98

7.4.5Comparing LMHT parser overhead (instances per ms). Parser in-
cludes time to parse and process input data; No Parser means data
is already parsed in memory. 99

7.4.6Random Forest Accuraccy . 100
7.4.7Random Forest throughput comparison (instances/ms) 103

x

List of Figures

FIGURE Page

2.2.1Decition tree example. Square nodes represent internal test/split
nodes, circle nodes represent leaf nodes. 15

2.4.1Echo State Network: Echo State Layer and Single Layer Feed for-
ward Network . 25

2.4.2Echo State Layer . 25
2.5.1Taxonomy for data streams methods used in this dissertation. Clas-

sification methods: Hoeffding Tree[30], SAMKNN [95], SVM [24],
Leveraging Bagging [13] and Adaptive Random Forest [44]. Re-
gression methods: FIMT-DD [62], SVM [46], Adaptive Random
Forest regression [42] . 27

3.1.1MOA’s workflow . 30

4.1.1RPL Architecture. The trained layer uses sigmoid function and
MSE as the objective function, while Echo State layer (Random
Projection) activation function can vary. 41

4.1.2Sigmoid activation function . 42
4.1.3ReLU activation function . 43
4.1.4RBF activation function using a Gaussian distance. 44
4.2.1ELEC Dataset accuracy evolution for the different random layer

sizes. This plot used µ = 0.3 and η = 0.11 47
4.2.2COVT Normalized Dataset . 48
4.2.3SUSY Dataset . 49

5.1.1Echo State Hoeffding Tree design for regression (top blue box) and
classification (bottom blue box) . 54

5.2.1Module internal design: label generator and ESHT 55
5.2.2Counter generator functions . 57
5.2.3Cumulative loss (up) and accuracy (bottom) on the Counter stream. 58
5.2.4Influence of parameters α and density on the Counter stream. In

each figure, the box plot shows the influence of the other parameter. 59
5.2.5lastIndexOf generation function . 60

xi

List of Figures List of Figures

5.2.6Accuracy for the lastIndexOf function for alphabets with 2, 3 and 4
symbols. 60

5.2.7Encoding x symbol as a vector . 61
5.2.8Effect on the accuracy of coding the input to lastIndexOf as a scalar

or a vector of features (density=0.4) 61
5.2.9Effect of alpha and density on the accuracy for lastIndexOf 62
5.2.10Cumulative loss (top) and accuracy (bottom) evolution for emailFilter 65
5.2.11Influence of α on the ESHT accuracy; Fixed density=1.0 and 10

neurons in the ESL . 66

6.1.1ARF accuracy evolution with ensemble size. 70
6.3.1SRF accuracy evolution as the ensemble size increases 77
6.3.2Influence of using a resize factor r = 1 in the accuracy distance

w.r.t. ARF100 of the grow and shrink thresholds on the synthetic
datasets. Negative numbers means ARF100 is better. 81

6.3.3Influence of using a resize factor r = 1 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the real-world
datasets. Negative numbers means ARF100 is better. 82

6.3.4Influence of using a resize factor r = 5 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the synthetic
datasets. Negative numbers means ARF100 is better. 85

6.3.5Influence of using a resize factor r = 5 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the real-world
datasets. Negative numbers means ARF100 is better. 86

7.1.1Splitting a binary tree into smaller binary trees that fit in cache lines 90
7.1.2Sub-tree L1 cache line layout . 91
7.1.3L1 cache line tree encoding . 91
7.2.1Multithreaded ensemble design . 93
7.2.2Instance buffer design . 94
7.4.1LMHT and StreamDM speedup over MOA using a single HT (Intel

i7). Down bars mean speed-down (slower than MOA) 100
7.4.2LMHT, StreamDM and MOA single HT throughput comparison (in-

stances/ms) . 101
7.4.3Random Forest learning curve: COVT (top) and ELEC (bottom) . . 102
7.4.4Random Forest relative speedup on Intel i7 104
7.4.5Random Forest relative speedup on Jetson TX1 105
7.4.6Random Forest speedup on X-Gene2 105
7.4.7Intel Xeon Platinum 8160 scalability, with the parser thread stream-

ing from storage (top) and memory (bottom). 106

xii

1
Introduction

Machine learning (ML) is an important branch of Artificial Intelligence (AI)
that focuses on building and designing algorithms to make decisions or pre-
dictions about present or future events, based on learning from past events.
These algorithms extract patterns and structures from examples of data in or-
der to learn specific tasks without any human interaction or programming.
The success of this learning process is heavily influenced by the amount,
scope, and quality of input data.

Nowadays, a wide spectrum of technical and scientific areas use ML as
part of its core development strategies: healthcare, manufacturing, travel,
financial services, dynamic pricing, autonomous vehicles, fraud detection, fast
adaptation to new user behavior, among many others. Its broad adoption in
the industry is sparking new research opportunities, making ML one of the
most active and prolific fields in computer science research today.

1.1 Supervised Machine Learning

This dissertation is focused on Supervised Machine Learning, a machine learn-
ing task that based on training dataset, builds a model capable of making
predictions of new un-seen instances. The training dataset contains a set of
labeled instances representing the specific task to learn. An instance is defined

Chapter 1 Introduction

by the values of attributes (or features) that describe essential characteristics
of the task. For example, a labeled instance can be a raw image, labeled with
a yes if the image contains a cat, or a no otherwise.

The primary goal of a supervised algorithm is to infer a function that gen-
eralizes the task to learn. This supervised algorithm processes the training
dataset in order to refine the inferred function, also called model. At the out-
put level, a function quantifies the current model performance by examining
the model’s output for an instance (predicted label) and its correct answer
(target label), and updates the model accordingly. This step is known as the
induction process. A model produced by an inducer algorithm is called regres-
sor if the output label belongs to the real-valued domain. When the output is
a set of pre-defined (discretized) values, the model is called a classifier. Tra-
ditionally, an inducer algorithm builds the model by iterating over the dataset
several times until the desired error is achieved, or after a maximum number
of iterations. In this dissertation, we refer to this learning strategy as batch
learning or offline learning.

Batch learning is a challenging process that can last for hours, days or
weeks, depending on the dataset. During the learning process, algorithms
typically need to deal with the following challenges: noise in data, unbal-
anced classes, or instances with missing values for some of the features among
others. In the case of Big Data, when the dataset does not fit in memory, out-
of-core or distributed learning is required, potentially affecting the final model
accuracy.

In addition, offline learning works well for static problems that do not
change over time. However, data generated by many of today’s application
can change as time passes presenting non-stationary distributions, a fact that
most batch learners do not consider. For example, TCP/IP packet monitoring
[21] or credit card fraud detection [98], are situations that requires fast adap-
tation and reaction to attackers’ new techniques in order to keep them away.
The usual approach in these situations is to process data on–the–fly in real
time.

1.2 Processing Data Streams in Real Time

Recent advances in both hardware and software fuelled ubiquitous sources
generating Big Data streams in a distributed way (Volume), at high speed (Ve-
locity) with new data rapidly superseding old data (Volatility). For example,
the Internet of Things (IoT) is the largest network of sensors and actuators
connected by networks to computing systems. This includes sensors across a
huge range of settings, for industrial process control, finance, health analyt-
ics, home automation, and autonomous cars, and often interconnected across
domains, monitoring and functioning in people, objects and machines in real
time. In these situations, storing data that is generated at an increasing vol-

2

Chapter 1 Introduction

ume and velocity for processing it offline can quickly become a bottleneck as
time passes. Also, the uncertainty of when data will be superseded increases
considerably the complexity of managing the stored data: once data is super-
seded a new model is required, and methods need to discriminate at which
point data became irrelevant so it should not be used for building the new
model. Thus, processing this type of data requires a different approach than
the traditional batch learning setup: data should be processed as a continuous
stream in real time.

Extracting knowledge from data streams in real time requires fast incre-
mental algorithms that are able to deal with potentially infinite streams. In
addition to the challenges already present in batch learning (see Section 1.1)
processing data streams in real time imposes the following challenges:

• Deal with potentially infinite data streams: data is not stored, and used
exactly once (no iteration over the dataset).

• Models must be ready to predict at any moment.

• Use limited resources (CPU time and memory) with a response time
in the range of few seconds (high latency) or few milliseconds (low
latency).

• Algorithms should be adaptive to the evolution of data distributions over
time, since changes in them, can cause predictions to become less accu-
rate with time (Concept Drift).

The preferred choice for processing data streams in a variety of applica-
tions is the use of incremental algorithms that can incorporate new informa-
tion to the model without rebuilding it. In particular, incremental decision
trees and their ensemble combinations are the preferred choices when pro-
cessing Big Data streams, and are the focus of this dissertation.

1.3 Decision Trees and Ensembles for Mining Big
Data Streams

In this dissertation, we focus on the usage of the Hoeffding Tree (HT) [30],
an incremental decision tree that is able to learn very efficiently and with
high accuracy from data streams. Usually, single learners such as the HT are
combined in ensemble methods to improve their prediction performance.

The HT is considered the state-of-the-art single classifier for processing
data streams. It is based on the idea that only examining a small subset of the
data is enough for deciding how to grow the model. Deciding the exact size of
each subset is a difficult task, which is tackled in the HT by using the Hoeffding
probability bound. The main advantage of the HT is that with high probability

3

Chapter 1 Introduction

the model produced will be similar to the one produced by an equivalent
batch inducer. In this dissertation, we also use the Fast Incremental Model
Trees with Drift Detection (FIMT-DD) [62], an incremental regressor tree that
is also based on the Hoeffding probability bound. Both HT and FIMT-DD are
further described in chapter 2.

Ensemble learners are the preferred method for processing data streams
due to their better predictive performance over single models. Ensemble
methods build a set of base models which are used in combination for obtain-
ing the final label. Models built by an ensemble can use the same induction
algorithm for building all models or use different inductors. In this disserta-
tion, we only consider ensembles of homogeneous learners, and in particular,
the Leveraging Bagging (LB) [13] and the Adaptive Random Forest (ARF)
[44], two very popular methods for building ensembles of HT. Again, these
two ensembles are further described in detail in chapter 2.

1.4 Neural Networks

Neural Networks (NN) are very popular nowadays, due to the large number of
success stories when using Deep Learning (DL) methods in both the academic
and industrial world. DL methods are even outperforming humans in complex
tasks such as Image recognition [50], or playing Go [101], becoming the new
state-of-the-art methods in Machine Learning.

Deep Learning aims for a better data representation at multiple layers of
abstraction. In each layer, the network needs to be fine tuned. In classifica-
tion, a common algorithm to fine tune the network is the Stochastic Gradient
Descent (SGD) which minimizes the error at the output layer using an ob-
jective function, such as the mean square error. A gradient vector is used to
back-propagate the error to previous layers. The gradient nature of the al-
gorithm makes it suitable to be trained incrementally in batches of size one,
similar to how standard incremental training is done.

Although deep NN can learn incrementally, they have so far proved to be
too sensitive to their hyper-parameters and initial conditions; for this reason
NN are not considered as an effective off–the–shelf solution to process data
streams [80]. Observe that the ideal NN for data streams should have similar
characteristics to the ones already mentioned in Section 1.2:

1. Work out-of-the-box.

2. Trained incrementally visiting each example exactly once.

3. Ready to be used at any moment.

4. Fast response time in the order of few milliseconds or few seconds.

5. React to concept drifting.

4

Chapter 1 Introduction

Recurrent Neural Networks (RNN) are a type of NN with an internal mem-
ory that allow them to capture temporal dependencies. Training a RNN is
challenging and requires a large amount of time, making them not viable for
real-time learning [113, 81]. In recent years, Reservoir Computing (RC) has
emerged as an alternative to RNN, aiming for a simpler and faster training
[78, 64]. Reservoir Computing can be seen as an standard NN that learns
from what is called a ”reservoir” unit, which is responsible for capturing the
temporal dependencies of the input data stream. Although conceptually sim-
pler than most RNN, computationally cheap, and easier to implement, RC still
have high sensitivity to hyper-parameter configurations (i.e. small changes to
any of them affect the accuracy in a non-predictable way [75]).

1.5 Contributions of this Thesis

The main goals of this thesis are to improve the Hoeffding Tree and its ensem-
ble combinations from both algorithmic and implementation point of view, in
order to be able to provide higher throughput and to reduce the consumption
of resources while providing similar or better accuracy.

1.5.1 Neural Networks and data streams

The first contribution of this dissertation is to study the use of Neural Networks
(NN) as an alternative method for processing data streams. How to use them
to process data streams is not straightforward due to: 1) the fact that the NN
convergence is slow, requiring large amounts of data; and 2) NN are highly
sensitive to hyper-parameter configurations such as the depth or the number
of neurons, which complicates their deployment in production environments.

In this first contribution, we propose the use of random features in the
form of a random projection layer in order to mitigate NN deployment and
latency issues. We test the proposal on top of a single layer feed-forward NN,
trained with SGD.

We show that NN can achieve good results on data streams classification
problems; however they still require some more work to become a feasible
method for processing data in real time. We also show that the HT is an
easy-to-deploy method, for fast and accurate learning from data streams.

1.5.2 Echo State Hoeffding Tree learning

In this second contribution, we extend two popular incremental tree-based
models for data streams, the Hoeffding Tree (HT) and the Fast Incremental
Model Trees with Drift Detection (FIMT-DD), in order to capture temporal
behaviour. We reuse some of the insights obtained from the first contribution
in this dissertation, and propose the use of a reservoir memory that makes
use of random features as a recurrent layer that enables capturing temporal

5

Chapter 1 Introduction

patterns. The reservoir’s output is then used as the input to a HT or a FIMT-
DD. We call this combination Echo State Hoeffding Tree (ESHT).

The ESHT regression capabilities are tested on learning some typical string-
based functions with strong temporal dependences. We show how the new
architecture is able to incrementally learn these functions in real time with
fast adaptation to unknown sequences, and we analyse the influence of the
reduced number of hyper-parameters in the behaviour of the proposed solu-
tion.

On classification problems, we tested our proposed architecture to learn
three well-known data streams datasets. We show that our architecture can in
fact improve a single HT. However, our design requires tuning of additional
hyper-parameters which makes the proposal not very suitable for production
environments, as opposed to other well established methods based on the use
of ensembles, such as the Adaptive Random Forest (ARF).

1.5.3 Resource-aware Elastic Swap Random Forest

In this third contribution, we present an extension to ARF for processing evolv-
ing data streams: Elastic Swap Random Forest (ESRF). ESRF aims at reducing
the number of trees required by the state-of-the-art ARF ensemble while pro-
viding similar accuracy. ESRF extends ARF with two orthogonal components:
1) a swap component that splits learners into two sets based on their accuracy
(only classifiers with the highest accuracy are used to make predictions; the
rest are trained as candidates and may be swapped with the others if their
accuracy is higher); and 2) an elastic component for dynamically increasing
or decreasing the number of classifiers in the ensemble.

The experimental evaluation of ESRF and its comparison with the original
ARF shows how these two new components effectively contribute to reduce
the number of classifiers up to one third while providing almost the same
accuracy. This reduction results in speed-ups, in terms of per-sample execu-
tion time, close to 3x. In addition, we perform a sensitivity analysis of the
two thresholds determining the elastic nature of the ensemble, establishing
a trade–off in terms of resources (memory and computational requirements)
and accuracy (which in all cases is comparable to the accuracy achieved by
ARF using a fix number of 100 trees).

1.5.4 Ultra-low latency Random Forest

This final contribution presents a high-performance, scalable architecture for
designing decision trees and ensemble combinations to tackle today’s applica-
tion domains. The proposed architecture offers ultra-low latency (few mi-
croseconds) and good scalability with the number of cores on commodity
hardware when compared to other state-of-the-art implementations.

6

Chapter 1 Introduction

The evaluations show that on an Intel i7-based system, processing a single
decision tree is 6x faster than MOA (Java), and 7x faster than StreamDM
(C++), two well-known reference implementations. On the same system,
the use of six cores (and 12 hardware threads) available allow processing
an ensemble of 100 learners 85x faster that MOA while providing the same
accuracy.

Furthermore, the proposed implementation is highly scalable: on an Intel
Xeon socket with large core counts, the proposed ensemble design achieves up
to 16x speed-up when employing 24 cores with respect to a single-threaded
execution.

Finally, our design is highly adaptive to different hardware platforms in-
cluding constrained hardware platforms such as the Raspberry Pi3, where our
proposed design achieves similar performance than MOA on an Intel i7-based
machine.

1.6 Organization

The rest of this dissertation is organized as follows:
Chapter 2 provides the context of the work presented in this dissertation

and the fundamentals for understanding the challenges in learning from data
streams. The necessary technical details are also reviewed in this chapter,
alongside with a brief overview of other research works related to this disser-
tation.

Chapter 3 describes the workloads used in the evaluations and provides
the information on framework that has been used to evaluate the proposals in
this dissertation.

Chapter 4 presents the first contribution of this dissertation, Neural net-
works and data streams. This chapter details the study of neural networks as
an alternative method for processing data streams in real time.

Chapter 5 details and evaluates the second contribution of this disserta-
tion, the Echo State Hoeffding Tree,s an architecture for real-time classification
based on the combination of a Reservoir and a HT decision tree.

Chapter 6 discusses the Resource-Aware Elastic Swap Random Forest con-
tribution. We propose and evaluate two methods for reducing the resources
needed on ensemble learning: Swap Random Forest (SRF) and Elastic Swap
Random Forest (ESRF).

Chapter 7 discusses and evaluates the last contribution of this dissertation:
Ultra-low latency Random Forest, a high-performance scalable design for deci-
sion trees and ensemble combinations that make use of the vector SIMD and
multicore capabilities available in modern processors to provide the required
throughput and accuracy (in the order of microseconds).

Finally, chapter 8 concludes this dissertation, summarizing its key contri-
butions and results. Also, it presents potential future work and open research

7

Chapter 1 Introduction

lines.

1.7 Publications

The following publications contain the contributions in this dissertation as
presented in journals and conferences.

Journal Publications

• Data Stream Classification Using Random Feature Functions and
Novel Method Combinations
Journal of Systems and Software, 2016
Diego Marrón, Jesse Read, Albert Bifet, Nacho Navarro

Conference Publications

• Echo State Hoeffding Tree Learning
The 8th Asian Conference on Machine Learning, 2016, Hamilton, New
Zeland
Diego Marrón, Jesse Read, Albert Bifet, Talel Abdessalem, Eduard Ayguadé,
José R. Herrero

• Low-latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams
IEEE International Conference on Big Data 2017, Boston, MA, USA
Diego Marrón, Eduard Ayguadé, José R. Herrero, Jesse Read, Albert
Bifet

• Elastic Swap Random Forest (Submitted)
International Joint Conference on Artificial Intelligence (IJCAI) 2019,
China
Diego Marrón, Eduard Ayguadé, José R. Herrero, Jesse Read, Albert
Bifet

Poster Session

• Random Projection Layer for Neural Networks
PhD Poster Session at The Fourteenth International Symposium on In-
telligent Data Analysis, 2015
Diego Marrón, Jesse Read, Albert Bifet, Nacho Navarro

8

Chapter 1 Introduction

Video Contest

• Random Projection Layer for Neural Networks
The Fourteenth International Symposium on Intelligent Data Analysis,
2015
https://www.youtube.com/watch?v=ySoaG-rqbr0
Diego Marrón, Jesse Read, Albert Bifet, Nacho Navarro

9

2
Preliminaries and Related
Work

Learning from data streams can be considered as an infinite dynamic process
that encapsulates on a single cycle, the collection of the data, the learning pro-
cess, and the validation of the learned model. It mainly differs from the tradi-
tional supervised machine learning by the fact that instances are not available
as a large static dataset. Instead, instances are provided one by one from a
continuous data stream that can last potentially forever.

Extracting useful knowledge from a potentially infinite amount of data im-
poses serious challenges. First, given the vast amount of data arriving, storing
it before the processing step is not feasible. Second, when collecting data
for long enough periods the relations or patterns learned from data are likely
to change as time passes, making old instances to become irrelevant for the
current learned model. For example, trends in social networks continuously
change due to different reasons. And third, data streams algorithms require
sophisticated mechanisms for dealing with noise and contradictory informa-
tion as they arrive, which adds another dimension to the already complicated
task of providing theoretical guarantees on the performance of online learning
algorithms.

The stream data mining community has approached the problem from a
more practical perspective: algorithms must be designed to satisfy a list of
requirements in order to efficiently process data streams. In [58, 14], authors

Chapter 2 Preliminaries and Related Work

identified the ideal features a data stream algorithm should possess:

1. Should make a single-pass over the data.

2. The model should incrementally incorporate new information without
rebuilding the entire model.

3. High speed of convergence.

4. Time for processing each instance is limited.

5. Ideally, CPU and memory consumption must be constant and indepen-
dent of the number of samples processed.

6. Should react/adapt to changes while they are occurring.

Features 1-5 can in fact be met by variety of learning schemes, including
batch learners where batches are constantly gathered over time, and newer
models replace older ones as memory fills up [92, 20, 34, 89]. Nevertheless,
incremental methods remain strongly preferred in the data streams literature
[9, 11, 74] since they usually produce better results [93]. Among them, incre-
mental decision trees are one of the well established methods for processing
data streams, being the building block for more powerful methods such as
ensemble combinations. Decision trees and their ensemble combinations are
the focus of this dissertation. Another popular choice is the k-nearest neigh-
bors (kNN) [100, 5, 73, 65] method, which uses the distance as the metric
to find the k-nearest neighbors from the training dataset to a target data
point. The original method internally stores instances in order to find the
closest neighbors of each input instance which is not feasible in a real time
streams setup. Extensions to the original kNN have been proposed for dealing
with the inherent performance limitations over a potentially infinite stream
[66, 116, 72, 103].

Last feature, feature 6, refers to a change in the function generating the
stream. When a persistent change occurs, old instances may become irrele-
vant or even harmful to the current learned model, degrading its performance
or invalidating it. This change is referred to as concept drifting, and data
streams which present concept drift are conventionally known as evolving
data streams.

This chapter is organized as follows. In Section 2.1, we give the necessary
background for understanding concept drifting and the challenges it presents
in a data streams setup. Incremental decision and regression trees are intro-
duced in Section 2.2, giving details about the Hoeffding Tree and FIMT-DD,
the two methods used in the contributions of this dissertation. Section 2.3 in-
troduces ensemble learning, and give relevant details for the ensemble meth-
ods that are also used in this dissertation. Finally, Section 2.4 reviews the
current status of Neural Networks applied to data streams, as an alternative
methodology to decision trees and ensemble methods.

12

Chapter 2 Preliminaries and Related Work

2.1 Concept Drifting

Learning from data streams is challenging since conventional machine learn-
ing methods assume that the data is static (i.e., the data distribution is sta-
tionary), while many situations in the real world tend to be dynamic (i.e.,
non-stationary data distribution). For example, trending topics in social
networks or people’s opinion about a celebrity/politician change frequently,
frauds evolve constantly. These situations imply a change in the target con-
cept (e.g., what was interesting in the past it is not interesting anymore) po-
tentially invalidating old patterns previously learned before the change. This
highlights another important aspect when processing data streams: the strong
temporal dependence of data, in the sense that only recent data is relevant for
the current concept.

A concept drift is a persistent change in the underlying probability distri-
bution generating the data stream, and it should not be confused with outliers
(which are transient). Different reasons can cause a change in the concept;
however, in practice, the focus of attention is the speed of the change. De-
pending on that, drifts can be of any of the following types [112]:

• Abrupt/Sudden: the concept (data distribution) changes abruptly from
one time instance (t) and the next one (t + 1). All instances ∈ [0, t] are
generated using concept C1, and starting from t+ 1 samples are drawn
from concept C2.

• Gradual: the change to the new concept takes a while to complete.
While the change is active, the probability of seing samples from C2

increases while the probability of seing samples from C1 decreases. This
transition is usually monotonic, but not necessarily.

• Incremental: change also takes a while to complete, but unlike in grad-
ual drifts, concepts are blended while drift is active. This type of drift
is difficult to detect since it can be easily confused with a series of short
abrupt drifts. If this drift is active during a short period of time, it is
called incremental fast drift; otherwise, it is known as an incremental
moderate.

• Recurrent: When a previous concept re-appears over time. Note that a
previous concept can re-appear suddenly, incrementally or gradually.

The presence of a concept drifting is usually reflected in the model perfor-
mance: the number of errors gradually or abruptly increase due to the incon-
sistency between the induced model and newly arriving instances. Therefore,
to ensure a proper model adaptation to the current concept, appropriate mon-
itoring of the learning process is necessary.

13

Chapter 2 Preliminaries and Related Work

There are several strategies for dealing with concept drifting [112, 37].
In this dissertation, we use the ADWIN [10] drift detector which provides
theoretical guarantees about false positives and negatives.

2.1.1 ADWIN Drift Detector

The Adaptive Windowing (ADWIN) [10] is a concept drift detector that uses
an adaptive size sliding window algorithm for detecting changes in data
streams. Its main features are: 1) the sliding window is automatically resized
depending on the stream characteristic, 2) it provides theoretical guarantees
on the ratio of false positives and false negatives when detecting drifts, and
3) it makes no assumptions about the data.

The ADWIN algorithm keeps a sliding window W , with the last n recently
received values. Input values can be a binary stream representing errors in
classification or a stream of real values representing the loss. The algorithm
repeatedly split W into two sub-windows w0 and w1 at different points in
the window W . For each split point, it computes µ̂w0 and µ̂w1 corresponding
to the average of the values in sub-windows w0 and w1, respectively. If the
difference in the averages is above a threshold εcut (i.e., | µ̂w0 - µ̂w1 |> εcut)
this indicates a significant drop in performance caused by a change in the error
distribution, and a change in the stream is signaled. When a drift is detected,
older elements in W are dropped until | µ̂w0 - µ̂w1 | is below the threshold
εcut; this causes W to shrink.

The threshold εcut is computed as shown in equation 2.1, where W is the
current length of W , and m is the harmonic mean of the two sub-windows
averages µ̂w0 and µ̂w1 (as shown in equation 2.2). Observe that the only
parameter required to configure the ADWIN is δ ∈ (0, 1) representing the
confidence in applying the cut-off εcut.

(2.1) εcut =

√
1

2m
ln

4W

δ

(2.2) m =
1

1
µ̂w1

+ 1
µ̂w1

ADWIN does not explicitly store all elements in W . Instead, it compresses
values using a variation of the exponential histogram [26] requiring only
O(logW) memory for storing values, where W is the length of the window.
This way, instead of testing W split points for dividing W into w0 and w1,
ADWIN only needs to test O(logW) split points.

14

Chapter 2 Preliminaries and Related Work

2.2 Incremental Decision and Regression Trees

Decision and regression trees use tree-based data structures for modelling
complex decision making. They consist of nodes, branches and leaves as
shown in Figure 2.2.1. Each internal node (blue squares) tests on a sin-
gle attribute (e.g., outlook attribute) in order to chose the appropriate path.
Branches are the paths connecting two nodes from two subsequent levels in
the tree structure; a node has as many branches as values it can take. Leaf
nodes (yellow circles) is where the actual label prediction is done; however,
they also contain the necessary information for choosing the next split at-
tribute when necessary. In that case, the leaf node is substituted by an internal
node representing the attribute to test on.

Figure 2.2.1: Decition tree example. Square nodes represent internal test/s-
plit nodes, circle nodes represent leaf nodes.

Outlook

Humidity Wind
Yes

No Yes No Yes

Sunny
Overcast

Rain

NormalHigh Strong Weak

Decision trees are built using a divide-and-conquer strategy for partition-
ing the data into smaller subsets. This partitioning works at attribute (or
feature) space, which is recursively partitioned into smaller subsets until a
stopping criterion is met. For example, in Figure Figure 2.2.1, the Humid-
ity represents the data partition using all instances that has Outlook=Sunny,
and similarly on the rest of nodes. How an attribute is selected for splitting
the attribute space is algorithm-dependent, but in general, it is an expensive
operation in term of memory and CPU time.

Incremental tree-based models have been proposed in the literature for
classification [108, 109] and for regression [110]. Among incremental mod-
els, the Hoeffding Tree (HT) [30] is considered the state-of-the-art single clas-
sifier for data streams classification, being widely used in this dissertation. In
Chapter 5, we also use the FIMT-DD [62], an incremental regressor tree based
on the same principles than the HT. Both are further detailed in the next two

15

Chapter 2 Preliminaries and Related Work

subsections.

2.2.1 Hoeffding Tree

The Hoeffding Tree (HT) [30] is an incrementally induced decision tree, and
it is considered the state-of-the-art learner for data streams classification. It
provides theoretical guarantees that the induced tree is asymptotically close
to a tree that would be produced by a batch learner when the number of
instances is large enough.

The induction of the HT mainly differs from the induction of batch decision
trees in that it processes each instance only once, at the time of arrival (instead
of iterating over the entire dataset). Instead of considering the entire training
data for choosing the best attribute to split on, the HT states that it may
be sufficient only to consider a small subset of the data seen at a leaf node.
The Hoeffding Bound (HB) [54] is used to decide the minimum number of
instances required with theoretical guarantees. It states that the deviation
of an arbitrarily chosen hypotheses with respect the best one is no higher
than ε with probability 1 − δ (where δ is the confidence level). The very nice
property of this test is that it works independently of the data distribution, at
expenses of requiring more instances to reach the same level of error than the
equivalent distribution-specific tests.

Algorithm 1 shows the HT induction algorithm. The starting point is an HT
with a single node (the root). Then, for each arriving instanceX the induction
algorithm is invoked, which routes through HT the instance X to leaf l (line
1). For each attribute Xi in X with value j and label k, the algorithm updates
the statistics in leaf l (line 2) and the number of instances nl seen at leaf l
(line 3).

Splitting a leaf is considered every certain number of instances (grace pa-
rameter in line 4, since it is unlikely that an split is needed for every new
instance) and only if the instances observed at that leaf belong to different
labels (line 4). In order to make the decision on which attribute to split, the
algorithm evaluates the split criterion function G for each attribute (line 5).
Usually this function is based on the computation of the Information Gain,
which is defined as:

(2.3) G(Xi) =

L∑
j

Vi∑
k

aijk
Tij

log(
aijk
Tij

) ∀ i ∈ N

being N the number of attributes, L the number of labels and Vi the number
of different values that attribute i can take. In this expression Tij is the total
number of values observed for attribute i with label j, and aijk is the number
of observed values for which attribute i with label j has value k. The Informa-
tion Gain is based on the computation of the entropy which is the sum of the

16

Chapter 2 Preliminaries and Related Work

probabilities of each label times the logarithmic probability of that same la-
bel. All the information required to compute the Information Gain is obtained
from the counters at the HT leaves.

The algorithm computes G for each attribute Xi in leaf l independently
and chooses the two best attributes Xa and Xb (lines 6–7). The Hoeffding
Bound is used for testing the hypotheses that G(Xa) and G(Xb) deviate from
each other. Therefore, an split on attribute Xa occurs only if Xa and Xb are
not equal, and G(Xa) − G(Xb) > ε, where ε is the Hoeffding bound which is
computed (line 8) as:

(2.4) ε =

√
R2ln(1δ)

2nl

being R = log(L) and δ the confidence that Xa is the best attribute to split
with probability 1 − δ. Since the value of ε decays monotonically with the
number of instances seen, a leaf node only needs to accumulate examples
until ε becomes smaller than G(Xa) −G(Xb) for choosing Xa as the splitting
attribute. If the two best attributes are very similar (i.e. Xa −Xb tends to 0)
then the algorithm uses a tie threshold (τ) to decide splitting (line 9).

Once splitting is decided, the leaf is converted to an internal node testing
on Xa and a new leaf is created for each possible value Xa can take; each
leaf is initialised using the class distribution observed at attribute Xa counters
(lines 11–13).

Leaf Classifiers

Although it is not part of the induction algorithm shown in Algorithm 1, pre-
dictions are made at the leaves using leaf classifiers built using the statistics
collected in them. Each classifier is trained using only the instances seen at
its leaf node, and usually, reuses the same statistics collected for deciding the
split attribute.

The Majority Class Classifier (MCC) is the simplest classifier used in the
HT, which simply tags the arriving instance with the most frequent label seen
in that leaf. It requires no extra statistics other than those already being col-
lected at leaf nodes, and its computational cost is almost negligible.

Another very common classifier is Naive Bayes (NB) [38]. It is a relatively
simple method that can reuse the statistics already collected at each leaf node.
An advantage of this classifier is that it only requires a small number of train-
ing data to estimate the parameters necessary for classification. By making
the naive assumption that all attributes are independent, the joint probabili-
ties can be expressed as shown in Equation 2.5.

(2.5) p(Ck | x) = p(Ck)
n∏
i=1

p(Xi|Ck)

17

Chapter 2 Preliminaries and Related Work

Algorithm 1 Hoeffding Tree Induction

Require:
X: labeled training instance
DT: current decision tree
G(.): splitting criterion function
τ : tie threshold
grace : splitting-check frequency (defaults to 200)
ε : Hoeffding Bound

1: Sort X to a leaf l using HT
2: Update attribute counters in l based on X
3: Update number of instances nl seen at l
4: if (nl mod grace=0) and (instances seen at l belong to more than 1 dif-

ferent classes) then
5: For each attribute Xi in l compute G(Xi)
6: Let Xa be the attribute with highest G in l
7: Let Xb be the attribute with second highest G in l
8: Compute Hoeffding Bound ε
9: if Xa 6= Xb and Gl(Xa)−Gl(Xb) > ε or ε < τ then

10: Replace l with an internal node testing on Xa

11: for each possible value of Xa do
12: Add new leaf with derived statistics from Xa

13: end for
14: end if
15: end if

It is not not clear which classifier among MCC or NB is the best option. In
some situations, NB can initially outperform the MCC, but, as time passes NB
can be eventually overtaken by MCC. To address this situation, the Adaptive
Naive Bayes HT was proposed [55] which only uses NB classifier when it
outperforms MC.

Hoeffding Tree and Concept Drift

Concept drift detection and adaptation requires the use of extra modules (drift
detectors), which are not included in the original HT algorithm presented in
[30]. HT can adapt to a concept drift by either adapting the tree structure, or
by starting a new empty tree.

Adapting the tree structure is done by identifying which sub-tree is af-
fected by the drift. Since a drift in an attribute may invalidate its entire
sub-tree, per-attributes drift detectors are used for determining the drifting
attribute (the root node of the affected sub-tree). A common approach in
data streams is the use of option trees where a new candidate sub-tree is
started on the drifting attribute. Both candidate and original sub-trees are

18

Chapter 2 Preliminaries and Related Work

trained in parallel until enough evidence is collected for dropping one of then
by either confirming the drifting or a false positive. Extensions to the original
HT have been proposed using this strategy, such as the Concept-adapting Very
Fast Decision Trees CVFDT [59] and the Hoeffding Adaptive Tree (HAT) [11].

Dropping a tree and starting a new empty tree seems to be the simplest
strategy: when a drift is detected the entire tree is substituted by a new empty
one. This strategy only requires one drift detector monitoring the overall
tree performance, which consumes considerably less memory and CPU-time.
The drawback is that the there is a lag in time while the tree achieves good
performance again. Ensemble combinations used in this dissertation prefer
this strategy (as shown in the next section) due to its simplicity and the fact
that in ensembles this drawback can be hidden by the rest of the trees.

2.2.2 FIMT-DD

The Fast Incremental Model Trees with Drift Detection (FIMT-DD)[62] is an
incrementally induced regression tree which is also based on use of the Ho-
effding Bound for growing the tree structure. In the FIMT-DD, the tree struc-
ture is a binary tree, i.e. each internal node has two branches.

FIMT-DD uses the same induction strategy as in the HT with proper adap-
tations for regression, as shown in Algorithm 2. The major difference with
respect the HT is that the FIMT-DD incorporates a mechanism for adapting the
tree structure in the presence of a concept drift is detected (lines 4–6). The
other differences are the necessary changes for enabling the induction process
to work in regression problems: 1) how leaf nodes select next attribute to split
on (lines 10–14); and 2) predictions are made using a regressor instead of a
classifier (not shown in Algorithm 2).

The algorithm computes Standard Deviation Reduction for each attribute
in a leaf mode. Let A be the attribute with highest SDR, andB the second one.
The ratio r between SDRA and SDRB is computed as shown in equation 2.6.
The attribute is chosen as for splitting if r > ε, where ε is the Hoeffding bound
already seen in equation 2.4.

(2.6) r =
SDRB
SDRA

Prediction at leaf nodes is done using a perceptron with linear output.
For each arriving instance an incremental Stochastic Gradient Descent is used
for training the perceptron, using all numeric attributes (including those used
during the tree traversal).

As mentioned above, in the presence of a concept drift the FIMT-DD starts
a new sub-tree for the region where drift is detected (line 5). Both, new and
old, sub-trees are grown in parallel until one of them is discarded. The drift
detector used in FIMT-DD is the Page-Hinckley [85].

19

Chapter 2 Preliminaries and Related Work

Algorithm 2 FIMT-DD Induction

Require:
X: labeled training instance
DT: current decision tree structure
G(.): splitting criterion function
grace : splitting-check frequency (defaults to 200)
ε : Hoeffding Bound

1: for each example in the stream do
2: Sort X to a leaf l using DT
3: Update change detection tests on the path
4: if Change is detected then
5: Adapt the model tree
6: else
7: Update statistic in l based on X
8: Update number of instances nl seen at l
9: if (nl mod grace=0) then

10: Find two best split attributes (Xa and Xb)
11: if Gl(Xa)−Gl(Xb) > ε then
12: Replace l with an internal node testing on Xa

13: Make two new branches leading to empty leaves
14: end if
15: end if
16: end if
17: end for

2.2.3 Performance Extensions

The unfeasibility to store potentially infinite data streams has led to the pro-
posal of classifiers able to adapt to concept drifting only with a single pass
through the data. Although the throughput of these proposals is clearly lim-
ited by the processing capacity of a single core, little work has been conducted
to scale current data streams classification methods.

For example Vertical Hoeffding Trees (VHDT [69]) parallelize the induc-
tion of a single HT by partitioning the attributes in the input stream instances
over a number of processors, being its scalability limited by the number of
attributes. A new algorithm for building decision trees is presented in SPDT
[6] based on Parallel binning instead of the Hoeffding Bound used by HTs.
[104] propose MC-NN, based on the combination of Micro Clusters (MC) and
nearest neighbour (NN), with less scalability than the design proposed in this
paper.

Related to the parallelization of ensembles for real-time classification, [79]
has been the only work proposing the porting of the entire Random Forest
algorithm to the GPU, although limited to binary attributes.

20

Chapter 2 Preliminaries and Related Work

2.3 Ensemble Learning

Instead of focusing on building the most accurate model, ensemble methods
[22, 111, 68] combine a set of weak models (base models) for achieving bet-
ter predictive performance than single models [36, 29]. The main belief in
literature is that combining weak models allow wider exploration of different
representations or search strategies if there is enough diversity among base
learners [88, 94, 83, 84, 49]. Although there is no accepted definition for
diversity, the consensus is that ensembles should ”spread” the error equally
among all learners in the ensemble, so incorrect predictions can be corrected
by the majority of the learners in the combination step [70].

Diversity in data streams is usually achieved by introducing a random com-
ponent during the building of the model, since exhaustive exploration of all
possible combinations can quickly become a heavy or an impossible task. Ran-
domization in ensembles can be at different levels:

• Input: by creating random subsets from the input data. A well-known al-
gorithm for manipulating the input is the Bagging algorithm [17], which
creates a different sub-set for each learner by sampling from the original
dataset allowing repetitions

• Learner: randomness is introduced in order to improve the exploration
of different strategies (sub-sets in this case). For example, Random
Forests (RF) [18] use a variation of decision trees that only considers
a random subset of the features in the leaf nodes.

The other important ensemble component, as mentioned in [88], is
learner’s output combination to form the final prediction. A detailed study
of different combination methods is presented in [107]. The implicit voting
schemes used in the methods we use are the Majority Vote (MV), and the
Weighted Majority Vote (WMV) scheme which are very similar: both schemes
combine outputs using a fixed simple function (such as aggregation), and then
the most voted label is select as the final prediction. The only difference is that
MV assume all learners are equally important, while in WMV, a weight decides
each learner importance when combining the outputs.

The way predictions can be combined is a direct consequence of how learn-
ers interact with each other. According to [43], ensembles can be categorized
in the following types depending on their architecture:

• Flat: Learners are trained independently on the input data, then their
predictions are combined using a simple function (voting scheme). This
architecture is the most common architecture used by ensemble meth-
ods. Examples of ensembles using this architecture are Online Bagging
[86], Leveraging Bagging [13] and Adaptive Random Forest [44].

21

Chapter 2 Preliminaries and Related Work

• Meta-Learner: In this category, a meta-dataset substitutes the original
input data, and it is used for training meta-learners. The meta-dataset
can be created from the output of other learners, such as in Restricted
Hoeffding Tree [9], or from data describing the learning problem.

• Hierarchical: Members are combined in a tree-like structure, including
the cascading or daisy chain. The most notable method for data streams
in this category is the HSMiner [16], which breaks the classification
problem into tiers in order to prune irrelevant features.

• Network: The ensemble is viewed as a graph, which vertices represent
learners and the edged represent how learners are connected according
to a specific criterion. New connections and vertices can be added at any
moment, resembling more to a computer network than to a static graph.
For example, SFNC [4] uses a Scale-Free Network model to generate the
connections (edges).

The focus of this thesis is in flat ensemble methods, due to their simpler
architecture, and the fact that they usually make fewer assumptions about the
data distribution. The specific methods used in this dissertation are Leverag-
ing Bagging (LB) and the Adaptive Random Forest (ARF), which are described
in the following subsections. Previous to describing LB and ARF, we describe
the Online Bagging (OB) method since it is the base for both LB and ARF.

2.3.1 Online Bagging

The Online Bagging (OB) [86] is a flat ensemble method that enforces diver-
sity by introducing randomization at input data, and uses the majority voting
scheme for combining learners predictions. OB is the streaming adaptation of
the well-known Bagging method introduced in [17].

In the original algorithm, each learner in the ensemble is trained using a
subset of the original dataset which is created using the so-called sampling
with repetition, i.e., each instance from the original dataset can appear 0, 1,
or more in a subset. However, sampling requires storing all instances which is
not feasible in the data streams setup.

The OB simulates the sampling with repetition by weighting each input
instance instead of storing it. Weights are sampled from a Poisson distribution
probability with λ = 1, and are expected to be 0,1, or > 1 in frequencies 37%,
37%, 26% respectively. Observe that an instance with weight w = 0 means
the instance is not present in the subset, while w > 1 implies that the instance
appears more than once.

2.3.2 Leveraging Bagging

Leveraging Bagging (LB) [13] is an extension of the OB ensemble method,
that uses a HT as the base learner and includes a drift detection method.

22

Chapter 2 Preliminaries and Related Work

This method leverages the use of the Poisson distribution by using a λ = 6,
altering the output values distribution such as: 0.25% values equal to zero,
45% values lower than six, 16% of values equal to 6, and 39% values greater
than 6. By using λ = 6, the ensemble is using more instances for training,
which improves the learning of the ensemble.

LB is an adaptive ensemble method, i.e., it can detect and react to concept
drifting. As soon as drifting is detected in any of the learners, LB starts a new
empty tree in order to replace the one with higher error. LB by design uses
the ADWIN drift detector.

2.3.3 Adaptive Random Forest

The Adaptive Random Forest (ARF) [44] was introduced recently as a stream-
ing adaptation of one of the most used machine learning algorithms in the
literature, the Random Forest (RF) [18]. ARF has become a popular ensemble
method in data streams due to its simplicity in combining leveraging bagging
with fast random Hoeffding Trees, a randomized variation of the HT that adds
diversity at the learner level.

The Random Hoeffding Tree splits the input data by only considering a
small subset of the attributes at each leaf node when growing the tree. When
a leaf node is created, b

√
Nc attributes are randomly selected from the N

original attributes, and used to decide the next attribute to split on.
At input level, ARF enforces diversity by sampling with repetition using a

Poisson(λ = 6), as in LB. At the output level, ARF uses the Weighted Majority
Voting scheme in which each classifier is weighted using its accuracy.

To cope with evolving data streams, ARF uses a drift detection method
based on a two threshold scheme: 1) a permissive threshold triggers a drift
warning, which starts a local background learner; and 2) a second threshold
confirms the drift, in which case the background learner substitutes the origi-
nal learner. Although ARF is not tailored to any specific detector, the preferred
(default) option is ADWIN.

2.4 Neural Networks for Data Streams

Most Neural Networks (NN) applications assume stationary data distribution
where the training is done in a batch setup using a fixed network architecture
(number of layers, neurons per layer). The training step is computationally
very costly, which depending on the task to learn, it can take days or even
weeks to reach the desired error level.

The Back Propagation (BP) [51, 96] algorithm is widely used for training
neural networks in conjunction with the Stochastic Gradient Descent (SGD)
[23, 47] for minimizing the error at the output layer. Although SGD can be
trained incrementally and has strong convergence guarantees, its main issue
is that its convergence is slow, which in the data stream setting contradicts

23

Chapter 2 Preliminaries and Related Work

feature 4, that time for processing each instance is limited, mentioned at the
beginning of this Chapter.

In the Deep Learning literature, extensions for accelerating the SGD con-
vergence have been proposed, such as AdaGrad [32], RMSProp [106] and
Adam [67]. AdaGrad uses a per-element (in the gradient vector) learning
rate which automatically increases or decreases depending if an element is
sparse or dense respectively. The learning rate is adapted based on the sum
of squared gradients in each dimension. RMSProp and Adam use a moving
average of the squared gradients for updating a per-element learning rate.

The depth of the network (number of layers) also influences the SGD con-
vergence: shallow networks converge faster than deeper ones. In 2018, an
Online Deep Learning framework was proposed [97] that dynamically increas-
es/decreases the number of layers using a shallow to depth approach, using
the Hedge algorithm [35] in conjunction with BP in the training process.

Recurrent Neural Networks [53, 41, 52, 28] have a natural ability for cap-
turing temporal dependencies, a desirable feature for processing data streams
since they typically present strong temporal dependence. At the moment of
starting this dissertation the most interesting RNN for data streams was the
so-called Reservoir Computing [99, 76, 77], and in particular the Echo State
Network (ESN) [64]: a shallow RNN that aims for a simpler and faster train-
ing [78, 64]. As detailed in the next subsection (2.4.1), despite ESNs being
more straightforward than other RNNs, they are computationally very cheap
and very easy to implement being able to model non-linear patterns [87].

With the recent advances in Deep Learning and Neural Networks, some
works have been proposed in the context of online learning and data streams,
most of them after the work in this dissertation was started. Generative Adver-
sarial Networks (GANs) [45] were introduced in 2014 and recently become
very popular due to their ability to learn data representations and generate
synthetic samples that are almost indistinguishable from the original data. In
2017 GANs were proposed in the context of online learning [7] where au-
thors use GANs for storing historical training data instead of explicitly store
the data, this way only the model is propagated instead of the actual data.
Also, their proposed design can adapt to new classes online by resizing the
output layer. However, it is not tested with concept drifting nor any typical
data streams dataset. Other works include the use of forgetting mechanisms
[39], or are based on Randomized Neural Networks [115] such as [90].

2.4.1 Reservoir Computing: The Echo State Network

The Echo State Network (ESN) uses a resevoir unit (Echo State Layer in Figure
2.4.1) which is responsible for capturing the temporal dependencies of the
input data stream, allowing the ESN to act as dynamic short-term memory.
The ESL is connected to a Single Layer Feed-Forward Network (SLFN), that

24

Chapter 2 Preliminaries and Related Work

is trained using the standard Stochastic Gradient Descent (SGD) with Back
Propagation.

Figure 2.4.1: Echo State Network: Echo State Layer and Single Layer Feed
forward Network

Figure 2.4.2 details the ESL. It is a fixed single-layer RNN that transforms
time-varying input U(n) to a spatio-temporal pattern of activations on the
output O(n). The input U(n) ∈ RK is connected to the echo state X(n) ∈ RN
through a weight matrix W in

N,K . The echo state is connected to itself through
a sparse weight matrix W res

N,N .

Figure 2.4.2: Echo State Layer

Status update in the ESL involves no derivatives and no error back prop-
agation typically required for training other RNNs. The update is a simple
forward step combined with a vector addition, as shown in equations 2.7-
2.9. The reduced number of computations needed by the update combined
with the ability of modeling temporal dependencies (typically present in data
streams), makes the ESL very attractive for real-time analysis.

(2.7) w̃(n) = tanh(W inU(n) +W resX(n− 1))

(2.8) X(n) = (1− α)X(n− 1) + αw̃(n),

25

Chapter 2 Preliminaries and Related Work

(2.9) O(n) = X(n)

The hyper-parameter α is used during the echo state X(n) update, and con-
trols how the echo state is biased towards new states or past ones, i.e., controls
how sensible the X(n) is to outliers. This resembles the update formula for
the momentum explained in Section 4.1.1, where defining (X) = ∇Ct−2 as
the ”new concept to incorporate”, and wt = X(n) as the average, we obtain an
almost identical formula; the ESL is also behaving as an exponentially moving
average.

Optionally, the input U(n) can be connected to the output O(n) ∈ RN
using a weight matrix W out

N,K . In this work, however, we do not use W out
N,K (see

Eq. 2.9) since it requires the calculation of correlation matrices or pseudo-
inverses which are computationally costly.

The ESL uses random matrices (W in and W res) that, once initialized, are
kept fixed (as in the RPL in Chapter 4.1). The echo state X(n) is initialized
to zero, and it is the only part that is updated during the execution. Note that
the echo state X(n) only depends on the input to change its state. As shown
in equation 2.8, calculating X(n) is computationally inexpensive since it only
computes a weighted vector addition; the update cost is almost negligible
when compared to other RNNs training algorithms.

The ESL needs to satisfy the so-called Echo State Property (ESP): for a long
enough input U(n) the echo state X(n) has to wash out any information from
the initial conditions asymptotically. The ESP is usually guaranteed for any
input if the spectral radius of the ESL Weight Matrix is smaller than unit but is
not limited to it: under some conditions the larger the amplitude of the input
the further above the unit the spectral radius may be while still obtaining the
ESP [114].

Although conceptually simpler than most RNN, computationally cheap,
and easier to implement, the ESN still have high sensitivity to hyper-parameter
configurations (i.e., small changes to any of them affect the accuracy in a non-
predictable way). In order to reduce the number of hyper-parameters, and
to accelerate the convergence of the model we propose to replace the SLFN
originally included in the ESN with an incremental decision tree, in particular
a Hoeffding Tree.

2.5 Taxonomy

Figure 2.5.1 presents a taxonomy for the data streams methods used in this
dissertation. Those methods that we specifically extend in our contributions
are marked with a yellow box. Regression methods marked with a dashed
box are shown for completeness (they are not used in this dissertation). To
the best of our knowledge we could not find any nearest neighbor proposal

26

Chapter 2 Preliminaries and Related Work

Machine
Learning

Unsupervised

Classification

Semi-Supervised

Decision Trees

Nearest
Neighbors

Gradient Descent

Ensembles

Regression

Regression Trees

Nearest
Neighbors

Gradient Descent

Ensembles

Supervised

Hoeffding Tree

SAMKNN

SVM

Leveraging
Bagging

FIMT-DD

-

SVM

Adaptive Random
Forest Regression

Adaptive Random
Forest

Figure 2.5.1: Taxonomy for data streams methods used in this dissertation.
Classification methods: Hoeffding Tree[30], SAMKNN [95], SVM [24], Leve-
raging Bagging [13] and Adaptive Random Forest [44]. Regression methods:
FIMT-DD [62], SVM [46], Adaptive Random Forest regression [42]

for data streams regression. We also show other machine learning areas (grey
boxes) for a better perspective of the scope of this dissertation.

27

3
Methodology

In order to evaluate some of the proposals in this dissertation, we made ex-
tensive use of the MOA (Massive Online Analysis) framework [12], a software
environment for implementing algorithms and running experiments for on-
line learning from data streams in Java. MOA implements a large number of
modern methods for classification and regression tasks, including Hoeffding
Tree, K-Nearest Neighbors, Leveraging Bagging and Adaptive Random For-
est, among others. Various combinations of these methods were used in the
evaluations as a baseline comparison for our proposals.

This chapter also details the datasets used in the evaluations, which com-
prises real-world and synthetic ones (generated using the synthetic stream
generators included in MOA). For each generator, its main characteristics are
further detailed in this chapter alongside with the configuration used in MOA
for generating each dataset.

This chapter is organized as follows. Section 3.1 describes the MOA frame-
work. Real-world and synthetic datasets used in the evaluations are described
in Section 3.2. A table that summarizes all datasets (real-world and synthetic)
can be found in Section 3.2.3. Finally, Section 3.3 details the metrics and
schemes used to evaluate learning performance.

Chapter 3 Methodology

Data
Feed/Generator

Learning
algorithm

Evaluation
method Results

EXTENSION POINTS

Figure 3.1.1: MOA’s workflow

3.1 MOA

Massive Online Analysis (MOA) is the most popular open-source framework
for implementing algorithms and running experiments for processing evolving
data streams. It is developed at the University of Waikato (New Zealand), and
it has a modular architecture that makes it easy to implement new methods
and to extend existing ones.

MOA includes an extensive set of algorithms for different types of prob-
lems such as classification, regression, clustering or concept drift detection
among others. These methods can be directly executed from the Command
Line Interface (CLI) or via its Graphical User Interface (GUI). The GUI pro-
vides a simple way for configuring each step in the MOA’s workflow (detailed
in Figure 3.1.1), requiring only to choose the input data, the algorithm, and
the evaluation scheme.

An interesting feature in MOA is that it includes several data stream gener-
ators that can generate synthetic data on-the-fly. This way, large datasets can
be generated with an arbitrary number of instances, features, or labels; the
type of concept drifting is also a parameter that can be configured in MOA.
The generated data stream can be stored on disk for reuse, or directly used by
a learner in which case data is discarded when the execution is completed.

3.2 Datasets

In order to validate the proposed contributions, we make use of different
datasets, which were synthetically created or obtained from the real-world.
Ten large synthetic datasets have been generated using some of the avail-
able synthetic stream generators in MOA; synthetic datasets include abrupt,
gradual, incremental drifts and one stationary data stream. Besides, five real-
world datasets that have been widely used in several papers on data stream
classification are used to conduct the evaluation in this dissertation.

30

Chapter 3 Methodology

3.2.1 Synthetic datasets

Ten synthetic datasets were generated using known data generators: Agrawal
(AGR) [1], LED [19], SEA [102], Radial Basis Function (RBF) [60], Rotating
Hyperplane (HYPER) [31] and Random Tree Generator (RTG) [2]. The result-
ing datasets include different types of concept drift. Gradual and abrupt drift
were simulated when using the AGR, LED, and SEA generators. Incremen-
tal drift was simulated in the datasets created with the RBF and Hyperplane
generators. Finally, when using the RTG generator, no concept drifting was
simulated. Next, we detail each generator characteristics, and the CLI config-
uration we used in MOA to create each synthetic dataset.

Agrawal Synthetic Data Generator

AGR simulates the problem of determining whether a loan should be given to
a bank customer or not. Data is generated using one of the ten predefined
loan functions, each of which uses a different subset of the features available.
Each loan function maps instances to two possible classes.

The data streams generated in this dissertation contain six nominal and
three continuous attributes, mapped in two labels, and a 10% of noise (per-
turbation factor). Concept drift is simulated per each attribute by adding a
deviation to its original perturbation factor; deviation is sampled from a ran-
dom uniform distribution. Two datasets were generated using AGR, each sim-
ulating three drifts. This way, ARG a contains three abrupt drifts, and AGR g
contains three gradual drifts. Configurations used in MOA for generating each
dataset are:

ARG a

WriteStreamToARFFFile -f AGR_a.arff -m 1000000 -s

(ConceptDriftStream -s (generators.AgrawalGenerator -f 1)

-d (ConceptDriftStream -s (generators.AgrawalGenerator -f

2) -d (ConceptDriftStream -s (generators.AgrawalGenerator)

-d (generators.AgrawalGenerator -f 4) -w 50 -p 250000)

-w 50 -p 250000) -w 50 -p 250000)

ARG g

WriteStreamToARFFFile -f AGR_g.arff -m 1000000 -s

(ConceptDriftStream -s (generators.AgrawalGenerator -f 1)

-d (ConceptDriftStream -s (generators.AgrawalGenerator -f

2) -d (ConceptDriftStream -s (generators.AgrawalGenerator)

-d (generators.AgrawalGenerator -f 4) -w 50000 -p 250000)

-w 50000 -p 250000) -w 50000 -p 250000)

31

Chapter 3 Methodology

LED Synthetic Data Generator

The LED generator simulates the problem of predicting the digit displayed on
a 7-segment LED display. Each feature represents one segment of the display,
with a 10% probability of being inverted.

The resulting datasets used in this dissertation contain 24 boolean at-
tributes, where only 7 of them correspond to a segment of the seven-segment
LED display (the remaining 17 attributes are irrelevant). Concept drifting is
simulated by swapping relevant features with irrelevant ones.

Two datasets were generated using this generator, being the only differ-
ence between them in the type of drift simulated. Abrupt concept drift is
simulated in LED a, while LED g includes gradual concept drifting. Datasets
were created using the following MOA configurations:

LED a

WriteStreamToARFFFile -f LED_a.arff -m 1000000 -s

(ConceptDriftStream -s (generators.LEDGeneratorDrift -d 1)

-d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d

3) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift

-d 5) -d (generators.LEDGeneratorDrift -d 7) -w 50 -p

250000) -w 50 -p 250000) -w 50 -p 250000)

LED g

WriteStreamToARFFFile -f LED_g.arff -m 1000000 -s

(ConceptDriftStream -s (generators.LEDGeneratorDrift -d 1)

-d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d

3) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift

-d 5) -d (generators.LEDGeneratorDrift -d 7) -w 50000 -p

250000) -w 50000 -p 250000) -w 50000 -p 250000)

SEA Synthetic Data Generator

The default SEA generator uses three features, where one out of the three
features is irrelevant. The two relevant features (f1, f2) form a 2D space that
is divided into four blocks, each representing a concept for simulating concept
drifting. New instances are obtained through randomly setting a point in
a two-dimensional space, and the label is assigned such that f1 + f2 ≤ θ.
An instance belongs to class label 1 if the former condition is true, and 0
otherwise. The typical values used for θ are 8 (block 1), 9 (block 2), 7 (block
3) and 9.5 (block 4), and for each block, there is a 10% of class noise.

Two datasets were generated using the SEA generator, one simulating
three abrupt drifting (SEA a), and a second one that simulates three grad-
ual drifting (SEA g). The following configurations in MOA were used for
generating each dataset:

32

Chapter 3 Methodology

SEA a

WriteStreamToARFFFile -f SEA_a.arff -m 1000000 -s

(ConceptDriftStream -s (generators.SEAGenerator -f 1) -d

(ConceptDriftStream -s (generators.SEAGenerator -f 2) -d

(ConceptDriftStream -s (generators.SEAGenerator) -d

(generators.SEAGenerator -f 4) -w 50 -p 250000) -w 50 -p

250000) -w 50 -p 250000)

SEA g

WriteStreamToARFFFile -f SEA_g.arff -m 1000000 -s

(ConceptDriftStream -s (generators.SEAGenerator -f 1) -d

(ConceptDriftStream -s (generators.SEAGenerator -f 2) -d

(ConceptDriftStream -s (generators.SEAGenerator) -d

(generators.SEAGenerator -f 4) -w 50000 -p 250000) -w

50000 -p 250000) -w 50000 -p 250000)

Radial Basis Function Synthetic Data Generator

The Radial Basis Function (RBF) was devised as an alternative generator for
producing complex concept types that are not straightforward to approximate
with a decision tree model. It creates a normally distributed hypersphere of
examples surrounding random centroid where each centroid has associated a
position, a standard deviation, and a class label.

The datasets generated with the RBF simulate incremental concept drifting
by moving centroids at a continuous rate, causing instances to potentially
belong to a different centroid (thus, different label). RBF f simulates a fast
incremental drift (speed of change set to 0.001), while RBF m simulates a
moderate drift which is ten times slower by using a speed of change of 0.0001.
The following configurations in MOA were used to generate each dataset:

RBF f

WriteStreamToARFFFile -f RBF_f.arff -m 1000000 -s

(generators.RandomRBFGeneratorDrift -c 5 -s .001)

RBF m

WriteStreamToARFFFile -f RBF_m.arff -m 1000000 -s

(generators.RandomRBFGeneratorDrift -c 5 -s .0001)

Rotating Hyperplane Synthetic Data Generator

The Rotating Hyperplane generator (HYPER) uses hyperplanes to generate
data streams that already contain concept drifting. Incremental concept drift-
ing is simulated by smoothly rotating and moving the hyperplane.

33

Chapter 3 Methodology

Only one dataset was generated using the HYPER generator. The result-
ing dataset contains ten attributes and two labels. It contains fast incremen-
tal drift, which was achieved by setting the magnitude of change parameter
to 0.001. The following configuration in MOA was used for generating this
dataset:

HYPER

WriteStreamToARFFFile -f HYPER.arff -m 1000000 -s

(generators.HyperplaneGenerator -k 10 -t .001)

Random Tree Synthetic Data Generator

The Random Tree Synthetic Data Generator (RTG) randomly creates an in-
stance which is labeled using a decision tree. The decision tree is completely
random: the growing process randomly selects internal nodes and random
labels are assigned to leaf nodes.

The dataset generated with this generator contains ten attributes with only
two possible labels. Note that the dataset generated with RTG is the only one
among the synthetic ones that have no concept drifting. The following MOA
configuration was used for generating it:

RTG

WriteStreamToARFFFile -f RTG.arff -m 1000000 -s

(generators.RandomTreeGenerator -o 5 -u 5 -c 2 -d 5 -i 1 -r

1)

3.2.2 Real World Datasets

This subsection describes the five real-world datasets also used in the eval-
uations: Electricity (ELEC) [48], Forest Covertype (COVT) [15], SUSY [3],
Airlines (AIRL) [61], and Give Me Some Credit (GMSC) [25] .

Electricity (ELEC)

This dataset describes electricity demand. It is a dataset for classification
which comprises 45,312 instances each of which containing 8 features de-
scribing the changes in the price relative to a moving average of the last 24
hours. Each instance is labeled according to the direction of the price change:
up or down.

Forest Covertype (COVT)

This dataset describes the forest cover type (the predominant kind of tree
cover) for 30x30 meter cells obtained from the US Forest Service of strictly

34

Chapter 3 Methodology

cartographic data. It comprises 581,012 instances, each with 54 attributes.
Each of the 7 possible labels corresponds to a different cover type.

SUSY

This dataset has features that are kinematic properties measured by particle
detectors in an accelerator. The binary class distinguishes between a signal
process, which produces supersymmetric particles, and a background process
otherwise. It is one of the largest datasets in the UCI repository that we could
find, comprising 5 million instances each with 8 attributes. Instances with two
possible labels: 1 for a signal and 0 for a background.

Airlines (AIRL)

This dataset describes the task of predicting whether a given flight will be
delayed by looking at the information on the scheduled departure. It is a
binary dataset which contains 539,383 instances, each with seven attributes
(3 numeric and four nominal).

Give Me Some Credit (GMSC)

GMSC is a credit scoring data set where the objective is to decide whether a
loan should be allowed or not, avoiding costly lawsuits. this binary dataset
contains 150,000 borrowers, each described by eleven attributes.

3.2.3 Datasets Summary

Table 3.2.1 presents a summary of all datasets used in this dissertation, de-
tailing relevant features of each dataset: the number of samples, attributes
per sample, and the number of class labels. For the synthetic datasets, it also
details the data generator and the type of drift it contains.

3.3 Evaluation Setup

3.3.1 Metrics

The most common performance metric is the accuracy, which is computed as
the ratio of correctly classified instances divided by the total instances seen
which also serves for comparing methods since faster learners will obtain
a higher ratio. The drawback of this evaluation is that it tends to be pes-
simistic since early errors of the untrained model count as errors forever. A
workaround to this situation is the use of a decaying factor or a sliding win-
dow for fading out old predictions.

On classification problems, we use the accuracy for comparing the perfor-
mance between the extended methods against their original version. When

35

Chapter 3 Methodology

Table 3.2.1: Synthetic (top) and real-world (bottom) datasets used for perfor-
mance evaluation and comparison.

Dataset Samples Attributes Labels Generator/DataSet Drift type
AGR a 1,000,000 9 2 Agrawal Abrupt
AGR g 1,000,000 9 2 Agrawal Gradual
HYPER 1,000,000 10 2 Hyperplane Incremental Fast
LED a 1,000,000 24 10 LED Drift Abrupt
LED g 1,000,000 24 10 LED Drift Gradual
RBF m 1,000,000 10 5 Radial Basis Function Incremental Moderate
RBF f 1,000,000 10 5 Radial Basis Function Incremental Fast
RTG 1,000,000 10 2 RandomTree None
SEA a 1,000,000 3 2 SEA Abrupt
SEA g 1,000,000 3 2 SEA Gradual
AIRL 539,383 7 2 Airlines -
COVT 581,012 54 7 Forest Covertype -
ELEC 45,312 8 2 Electricity -
GMSC 150,000 11 2 Give Me Some Credit -
SUSY 5,000,000 8 2 SUSY -

evaluating contributions where we are not modifying the underlying method,
accuracy should provide enough evidence that both methods are performing
similarly if not identical. Also, faster learners should obtain a higher ratio of
correctly classified instances, thus, higher accuracy.

Other common metrics used on binary classification problems are preci-
sion, recall or F1 score. Precision metric computes from those instances la-
belled as A, how many were actually label A. Recall is the ratio between the
number of A-labelled instances over the total number of A-typed instances
in the dataset. F1 score is a combination of precision and recall. Although
initially designed for binary classification problems, these metrics can be ex-
tended to be used on non-binary data by using the overall combined true/false
positive/negatives ratios. We decided to use accuracy for comparing algo-
rithms performance since it’s the most used measure in papers on data mining
for data streams.

Regression problems often use the loss for measuring the error in predic-
tions. The loss is computed per instance as the difference between the pre-
dicted label (ŷ) and the correct label (y), i.e., ŷ − y. For the entire dataset,
the cumulative loss can be used, which is computed as the summation of all
instances loss. In the regression evaluations in Chapter 5, we also use the
accuracy, considering an error in classification if the absolute value of the dis-
tance is larger than 0.5, i.e., |ŷ − y| > 0.5. We use a distance of 0.5 since all
labels are integer numbers.

Time is an essential metric when evaluating data streams due to response
time constrains. We use time as the basic metric in all our experiments for
measuring the total CPU time needed to process a dataset. Another time-

36

Chapter 3 Methodology

related measure used in this dissertation is latency, which measures for each
arriving instance the time needed to compute its prediction. In Chapter 7, we
use the throughput of an algorithm (the inverse of latency) for measuring the
number of instances processed per millisecond.

The scalability of our proposed multithreaded ensemble is measured using
the relative speed up of increasing the number of threads. This metric is
computed as the ratio between the single-threaded execution time divided by
the execution time when using more than one threads.

3.3.2 Evaluation Schemes

Evaluation schemes for evolving data streams must consider the strong tem-
poral dependency of data in the sense that only recent data are relevant to the
current concept. Consequently, common strategies that split the dataset into
test and validation datasets may lose relevant data for the current concept.

The prequential [27] or interleaved test-then-train evaluation was pro-
posed to fully exploit all data available, using the entire dataset for both test-
ing and training. In order to always test the model on unseen data, each ar-
riving instance is first used for testing (prediction) and then for training. This
scheme allows to update the model performance for each arriving instance
and obtain the evolution of model performance with time (learning curve).

The prequential cross-validation [8] (prequential CV) is an extension to the
prequential evaluation which splits test and train data by running multiple ex-
periments; by default, it runs ten experiments in parallel (e.g., ten ensembles
in the context of this dissertation). Each arriving instance is used for testing
in one run and for training in all the others. This approach maximizes the use
of the available data at the cost of redundant work.

In this dissertation, randomization is used at different levels which can
influence the final results. In order to minimize the effects of randomiza-
tion, all experiments are run ten times, and the results are averaged using the
arithmetic mean. Observe that the Prequential CV evaluation scheme already
includes ten runs.

37

4
Data Stream Classification
using Random Features

In Big Data streams classification, incremental models are strongly preferred
since they provide a good balance between accuracy and low response time
that is typically required for reacting/adapting to dynamically occurring real-
time events. On the other hand, Neural Networks (NNs), are very popular
nowadays being widely used in many machine learning areas except for pro-
cessing data streams, where tree-based models remain the popular choice. In
this first contribution, we give a new opportunity to the use of NNs as an
alternative method for data stream classification.

NN aim for a better data representation at multiple layers of abstraction,
requiring fine tuning for each one of the layers. The typical algorithm used to
fine tune the network is the Stochastic Gradient Descent (SGD), which tries
to minimize the error at the output layer using an objective function (such
as the Mean Squared Error). The error is then back-propagated to previous
layers using a gradient vector through the Back Propagation (BP) algorithm.
This gradient nature of the BP algorithm makes it suitable to be trained incre-
mentally in batches of size one, similar to the incremental training in online
learning.

However, the major impediment for using NN on data streams is related
to the fact that they are sensitive to configuration of hyper-parameters such as
learning rate (η), momentum (µ), number of neurons per layer, or the number
of layers. It is then not straightforward to provide an off-the-shelf NN-based
method for data streams.

Furthermore, when collecting real-world data for long enough periods the

Chapter 4 Data Stream Classification using Random Features

probability of a change in the underlying concept generating the stream in-
creases with time, degrading the predictive performance of a model; this is
known as concept drifting. Typical ways to deal with concept drifting are
whether to reset the model or to prune it. Reseting the NN may be worse than
ignoring the concept drift due to the slow convergence of SGD-based meth-
ods. Alternatively, pruning the network requires to analyse which neurons are
redundant or not contributing at all, which is computationally expensive.

This chapter details the first contribution of this dissertation. It high-
lights the issues of using NN for real-time processing of Big Data streams.
We propose the use of random features based on Extreme Learning Machines
(ELMs)[56], a recently proposed framework that uses a randomized hidden
layer, combined with a fast training algorithm. This way, our design consists
on a Single hidden Layer Feedforward Network (SLFN), that uses fixed ran-
dom weights for connecting the input layer to the hidden layer, while the out-
put layer is the only layer that is trained using the Gradient Descent method.
Although the ELM training algorithm is a fast option for training the network
it assumes offline training, requiring the computation of the least-squares of
a general linear system, which in most cases also implies the computation of
the weight matrix pseudo-inverse; it is not clear how to apply the ELM train-
ing algorithm for incrementally building the network. Regarding the concept
drift, our initial approach is to use a fading factor for previously seen data.

4.1 Random Projection Layer for Data Streams

Inspired in the ELM architecture , this section presents the Random Projec-
tion Layer (RPL) for processing data streams (Figure 4.1.1). Our objective
was to explore the use of different activation functions, and gradient descent
with momentum as an alternative to the originally proposed ELM training
algorithm.

The training only updates the weights in the RPL output layer. The in-
put layer uses random weights that, once initialized are never updated, thus
avoiding the extra latencies of back-propagating the error across many layers.

Our design can use different activation functions in the input layer, while
in the output layer we only use the sigmoid function. The error at the output
layer is measured using the Mean Squared Error (MSE), which in time is used
by the SGD for updating the network weights.

4.1.1 Gradient Descent with momentum

In the original Stochastic Gradient Descent (SGD) update formula only the
gradient vector ∇Ct is weighted using the learning rate η:

wt = wt−1 + η∇Ct

40

Chapter 4 Data Stream Classification using Random Features

Figure 4.1.1: RPL Architecture. The trained layer uses sigmoid function and
MSE as the objective function, while Echo State layer (Random Projection)
activation function can vary.

X1Input1

X2Input2

XmInputm

...

Z1

Z2

Zp

Y1

Y2

Yo

...Z3

Random
Projection

Trained
Layer

Output1

Output2

Outputo...

The momentum [91] was proposed for improving the SGD convergence
time by adding a weighting factor µ to the standard SGD update formula:

(4.1) wt = µwt−1 + (1− µ)∇Ct

This simple modification to the SGD accelerates the direction and the
speed of the gradient vector ∇C, thus, leading to faster convergence. Com-
pared to the standard SGD update formula, the momentum introduces an
opposite relation between past events wt−1 and the gradient vector ∇Ct. In
other words, defining η = 1 − µ shows the relationship between both terms,
therefore, allowing to control the importance of wt−1 and ∇Ct; placing more
importance in one term reduces the importance of the other one. This is
actually behaving like an exponentially moving average, and can be better
appreciated expanding the momentum formula through time:

wt = µwt−1 + (1− µ)∇Ct
wt−1 = µwt−2 + (1− µ)∇Ct−1
wt−2 = µwt−3 + (1− µ)∇Ct−2

Higher values of µ reduces the importance of ∇Ct since it is equivalent to
average over a more significant number of instances. Lower values of µ have
the opposite effect, making the sequence closer to ∇Ct, causing fluctuations
to the sequence in the presence of noisy derivatives.

41

Chapter 4 Data Stream Classification using Random Features

Noisy derivatives are the result of rough estimations of the loss function
using small batches rather than computing the exact derivative, and some-
times, this estimation makes the gradient vector point in the wrong direc-
tion. Thus, momentum (µ) allows controlling the effects of noisy derivatives.
When dealing with non-stationary distributions, it may be desirable to control
the inertia of past events independently from the gradient vector, thus, using
independent µ and η, as denoted in the following expression:

(4.2) wt = µwt−1 + η∇Ct

Both, µ and η are independent hyper-parameters ∈ R in the range [0, 1].
Later in this chapter, we provide evidence that this may be a better strategy
than using coupled values (η = 1−µ). Using decoupled values allows µ to be
used as a simple forgetting/fading factor independently of the learning rate.
Note that momentum is no longer acting as an exponentially moving average
while still allowing the fading out of old values.

4.1.2 Activation Functions

This subsection details the activation functions used in the evaluations: sig-
moid, Radial Basis Function, ReLU, and ReLU-inc. As mentioned above, while
the random layer can use different activation functions, the last layer always
uses the sigmoid function.

Sigmoid function

The sigmoid activation function is defined in equation 4.3, where ak = WkX is
the k-th activation function, Wk is the weight h× d matrix (h output features,

Figure 4.1.2: Sigmoid activation function

42

Chapter 4 Data Stream Classification using Random Features

d input attributes) including the bias vector, and X is the input to that layer.

(4.3) σ(ak) =
1

1 + e−ak

The sigmoid activation function produces a dense representation since al-
most all neurons fire in an analog way. This can be costly since all activations
will be processed to describe the output.

As can be appreciated in Figure 4.1.2, when ak → ±∞ (x-axis), changes
in y-axis (σ(ak)) rapidly tend to zero. This means that the gradient vector ∇
tends to zero when ak > 2 or ak < −2; at this point the network stops learning
(∇ = 0) or it learns significantly slower (∇ ' 0). This is called the gradient
vanishing problem.

ReLU and incremental ReLU functions

The ReLU activation function is defined in equation 4.4, with ak defined as
above. ReLU allows the network to easily obtain sparse representations; it is
expected that 50% of a ReLU output to be zero after a uniform initialization.

(4.4) zk = f(ak) = max(0, ak)

The implementation of ReLU is very efficient since only a comparison is
required (in contrast to the sigmoid function). Figure 4.1.3 shows the ReLU
function plot; for negative values of ak the gradient is zero making neurons
stop responding to variations in errors or inputs.

Feature distributions may change with time (due to a concept drifting),
and consequently, triggering dense activations. In order to prevent this, ReLU-
incremental was introduced [80], a modification to the ReLU that uses the

Figure 4.1.3: ReLU activation function

43

Chapter 4 Data Stream Classification using Random Features

current mean value of the feature as the threshold in the max function. This
mean value is updated for each input instance in order to make it reflect
the current feature center, which in time, causes sparse activations. ReLU-
incremental is defined as:

f(ak) = max(āk, ak)

Radial Basis Function

The Radial Basis Function (RBF) was proposed in the original ELM paper [57]
as a possible activation function for ELM. In this chapter we use an RBF with
Gaussian function defined as follows:

(4.5) φ(x) = e−
(x−ci)

2

2σ2

where x is an input instance attribute value, σ2 is a free parameter, and ci is
a random point. RBF computes the Gaussian distance between the input and
the the random point which decays exponentially (Figure 4.1.4).

The notation of equation 4.5 can be simplified by defining a paramater γ
as shown in equations 4.6 and 4.7; this notation is the one used later in the
evaluation section in this chapter.

(4.6) γ =
1

2σ2

(4.7) φ(x) = e−γ(x−ci)
2

Figure 4.1.4: RBF activation function using a Gaussian distance.

44

Chapter 4 Data Stream Classification using Random Features

4.2 Evaluation

This section evaluates the proposed RPL and highlights important issues while
using NNs for real-time data stream processing. First, RPL is tested with a
variety of activation functions, and different hyper-parameters configurations.
Later, we compare RPL with several tree-based and gradient descent based
methods. Finally, we compare RPL against a batch version of the SGD method.

The RPL is built processing one instance at a time, using the so-called pre-
quential learning. This is in contrast to typical NNs training, where instances
are loaded in batches and the algorithm iterates over them a given number of
times until an stop criterion is reached.

Table 4.2.1 summarizes the initialization strategies for the activation func-
tions used in the evaluations (we only show the strategies that achieved best
results). Most of the weight matrices are initialized using random numbers
with mean µ=0 and standard deviation σ = 1.0, except for the sigmoid ac-
tivation function. The bias vector purpose and usage is activation function
dependent.

4.2.1 Activation functions

This subsection evaluates the RPL accuracy when using the activation func-
tions presented in Section 4.1.2. In order to test both strategies for momen-
tum (µ) and learning rate (η) mentioned in Section 4.1.1, we tested all pos-
sible combinations for both parameters, each in the range [0.1, 1.0] with an
increment of 0.1. Regarding the hidden layer, the following sizes were used:

• From 10 to 100 neurons with an increment of 10.

• From 100 to 1,000 neurons with an increment of 100.

• Two additional sizes: 1,500 and 2,000.

Table 4.2.1: Random numbers initialization strategy for the different activa-
tion functions

Weight Matrix Bias Vector
Activation Mean Std Mean Std

Sigmoid 0.0 0.9 0.0 0.2
ReLU 0.0 1.0 0.0 0.1

ReLU-inc 0.0 1.0 0
RBF 0.0 1.0 γ

45

Chapter 4 Data Stream Classification using Random Features

Electricity dataset

Table 4.2.2 shows the best accuracy obtained for the ELEC dataset for each ac-
tivation function and its hyper-parameters configurations. The sigmoid func-
tion obtained the best accuracy (85.34%) using only 100 neurons; ReLU and
ReLU-inc difference is marginal, performing not significantly worse than the
sigmoid (within 1 percentage point range). The RBF function obtained its best
results using the same hyper-parameters configuration, independently of the γ
value. When compared to the rest of the activation functions, RBF performed
significantly worse.

Figure 4.2.1 shows the accuracy evolution with the RPL size for each acti-
vation function. The curve uses the µ and η for which the best accuracy was
obtained. The best curve is obtained with the sigmoid activation function.
With 50 neurons the accuracy obtained is very close to the best one. Relu and
ReLu-inc take longer to achieve an accuracy very close to the best (85.34),
while RBF is almost a flat line that slowly benefits from larger RPL sizes.

CoverType dataset

In the COVT dataset evaluation, again, the RBF activation function performed
significantly worse than the rest, and it seems that the γ values are not influ-
encing the accuracy. The other three activation functions obtained their best
accuracy when using a low learning rate, mid momentum, and ten times more
neurons than in the ELEC evaluation. This time the best result was obtained
with the ReLU activation function, with marginal difference over the sigmoid
(0.06)

Figure 4.2.2 shows the COVT accuracy evolution. The sigmoid achieves
90% of the accuracy with 60 neurons, and very close to the maximum (94.59)
with 200. ReLU and ReLU-inc with less than 100 neurons performed worse
than the RBF, and required ≥ 800 to achieve an accuracy close to the maxi-

Table 4.2.2: ELEC dataset best results obtained by RPL with different activa-
tion functions

Activation Random Neurons µ η Accuracy(%)
Sigmoid 100 0.3 0.11 85.33

ReLU 400 0.3 0.01 84.95
ReLU-inc 200 0.3 0.01 84.97

RBF γ=0.001 2000 0.7 1.01 72.13
RBF γ=0.01 2000 0.7 1.01 72.13
RBF γ=0.1 2000 0.7 1.01 72.13
RBF γ=1.0 2000 0.7 1.01 72.13

RBF γ=10.0 2000 0.7 1.01 72.13

46

Chapter 4 Data Stream Classification using Random Features

Figure 4.2.1: ELEC Dataset accuracy evolution for the different random layer
sizes. This plot used µ = 0.3 and η = 0.11

10 20 30 40 50 60 70 80 90 100
200
300
400
500
600
700
800
900
100

0
150

0
200

0

0

20

40

60

80

100

(85.34)

Random Layer Size

A
cc
u
ra
cy

(%
)

Sigmoid

ReLU

ReLU-inc

RBF

Table 4.2.3: COVT Evaluation

Activation Random Neurons µ η Accuracy(%)
Sigmoid 1000 0.4 0.11 94.45

ReLU 2000 0.4 0.01 94.59
ReLU-inc 2000 0.4 0.01 94.58

RBF γ=0.001 90 0.9 1.01 73.18
RBF γ=0.01 90 0.9 1.01 73.18
RBF γ=0.1 90 0.5 1.01 73.18
RBF γ=1.0 90 0.8 1.01 73.18
RBF γ=10.0 90 1.0 1.01 73.18

mum. The RBF function seems to perform equally independently of the ran-
dom layer size.

SUSY dataset

The last dataset evaluated is SUSY, which exhibits opposite trends with re-
spect the two previous datasets as shown in Table 4.2.4. RBF obtained the
best accuracy, while the sigmoid function performed significantly worse than
the sigmoid and ReLU (' 10 points). Again, the γ value on the RBF is not
influencing the accuracy.

As shown in Figure 4.2.3, the sigmoid curve is always worse than the
RBF, achieving its maximum peak with 20 neurons. The sigmoid with ≥ 40

47

Chapter 4 Data Stream Classification using Random Features

Figure 4.2.2: COVT Normalized Dataset

10 20 30 40 50 60 70 80 90 100
200
300
400
500
600
700
800
900
100

0
150

0
200

0

0

20

40

60

80

100

(94.59)

Random Layer Size

A
cc
u
ra
cy

(%
)

Sigmoid

ReLU

ReLU-inc

RBF

Table 4.2.4: SUSY Evaluation

Activation Random Neurons µ η Accuracy(%)
Sigmoid 20 1 0.61 67.28

ReLU 20 1 0.61 74.84
ReLU-inc 20 1 0.91 74.80

RBF γ=0.001 600 1 0.71 77.63
RBF γ=0.01 600 1 0.71 77.63
RBF γ=0.1 600 1 0.71 77.63
RBF γ=1.0 600 1 0.71 77.63
RBF γ=10.0 600 1 0.71 77.63

neurons accuracy drops significantly staying constant as the size grown. Both
ReLU and ReLU-inc present a similar behaviour.

Discussion

In general, the RBF activation function seems not very sensitive to different
values of γ parameters. Figures 4.2.1, 4.2.2 and 4.2.3 show that RBF perfor-
mance is very stable in all datasets even if the results are not very good in
some cases (ELEC and COVT).

On the other hand, there is no clear correlation on how hyper-parameters
are affecting learning. The empirical tests suggest that using independent
hyper-parameters for momentum (µ) and learning rate (η) is a good strategy,
since none of the best results presented the relation µ = 1−η shown in section

48

Chapter 4 Data Stream Classification using Random Features

Figure 4.2.3: SUSY Dataset

10 20 30 40 50 60 70 80 90 100
200
300
400
500
600
700
800
900
100

0
150

0
200

0

0

20

40

60

80

100

(77.63)

Random Layer Size

A
cc
u
ra
cy

(%
)

Sigmoid

ReLU

ReLU-inc

RBF

4.1.1. Using fixed values for (µ) and (η) averages across the entire dataset,
and in the presence of a concept drift for example, it may be preferable to con-
trol dynamically (µ) and (η) in order to properly adapt to the new underlying
data distribution. Dynamically controlling (µ) and (η) is out of the scope of
this work.

Testing many configurations in order to obtain the best one is not a fea-
sible strategy in online learning for two reasons: there is no clue when the
underlying data distribution is going to change; and the model has a finite
time to learn from the data.

4.2.2 RPL comparison with other data streams methods

This subsection compares, in terms of accuracy, the best RPL results obtained
in the previous section with other well-known streaming methods available
in the MOA framework. Reference methods used are: the Hoeffding Tree
(HT), Leveraging Bagging (LB), K-nearest neighbours (kNN) and Stochastic
Gradient Descent (SGD) without hidden layer. All methods were tested using
the default values in MOA, except for kNN that uses a buffer size of 5,000,
and LB that uses 10 learners.

Table 4.2.5 details the accuracy obtained for each method and dataset. The
best performing method on average is LB, while our proposed RPL achieved
the second best average rank.

In the COVT evaluation, RPL obtained the best accuracy outperforming by
more than two points the kNN algorithm. Despite RPL obtaining the second
best accuracy in the ELEC dataset, the difference with the best (LB) is more

49

Chapter 4 Data Stream Classification using Random Features

Table 4.2.5: RPL accuracy (%) comparison against other popular data streams
methods.

HT SGD kNN LB RPL
Dataset Acc(%) rank Acc (%) rank Acc (%) rank Acc (%) rank Acc (%) rank

ELEC 79.2 3 57.6 5 78.4 4 89.8 1 85.3 2
COVT 80.3 4 60.7 5 92.2 2 91.7 3 94.59 1
SUSY 78.2 2 76.5 4 67.5 5 78.7 1 77.63 3

Average 79.23 3.00 64.93 4.67 79.37 3.67 86.73 1.67 85.84 2.00

Table 4.2.6: SGD Batch vs Incremental

Batch Incremental
SGD SGD RPL LB

Dataset iterations neurons Acc(%) Rank Acc(%) Rank Acc(%) Rank Acc(%) Rank
ELEC 100 100 85.149 3 57.6 4 85.33 2 89.8 1
COVT 10000 2000 88.654 3 60.7 4 94.59 1 91.7 2
SUSY 1000 100 76.675 3 76.5 4 77.63 2 78.7 1

Average - - 83.49 3 64.93 4 85.85 1.67 86.73 1.33

than 4 points. In the last dataset (SUSY), RPL performed relatively poorly
being outperformed by a single HT and LB, with a difference of 1.07 points in
the worst case (LB).

The SGD method performed poorly in the ELEC and COVT compared to a
single HT. The main reason is that tree-based methods require less instances
than SGD based methods to reach competitive accuracy. On datasets with
low number of instances such as ELEC (45k instances), a single pass on the
data is not enough for the SGD method to achieve a good accuracy (only
57.6), specially if compared with HT (79.2). In the next section we show that
iterating over the dataset reduces this gap. On datasets with large number
of samples, such as SUSY (5M instances), the gap narrows significantly even
when only a single pass on thef data is done.

RPL significantly improves SGD in all datasets. Note that RPL is the result
of adding a single random layer to the SGD method.

4.2.3 Batch vs Incremental

This last section compares the incremental and batch vesions of the SGD-
based methods. The batch version iterates up to 20K times over the dataset,
while the incremental version makes a single pass over the data. The same
values for µ, η and hidden layer size as in Section 4.2.1 were tested on the
batch SGD.

The best results obtained by the SGD-batch and its configurations are sum-
marized in Table 4.2.6. Note that since SGD has no hidden layer, all SGD
results in this section were achieved using the sigmoid activation function.

Table 4.2.6 compares in terms of accuracy the Incremental and batch ver-
sion of the SGD along with RPL results. As stated in section 4.2.2, a single
pass over the data achieves good accuracy only when the number of instances

50

Chapter 4 Data Stream Classification using Random Features

is large (the SUSY dataset). Results in Table 4.2.6 show that iterating over
a dataset improves the SGD accuracy, specially on those datasets with fewer
instances such as ELEC.

Adding the RPL to the SGD improves the network accuracy, making it
performing similarly to the batch version. The advantage is that RPL makes a
single pass over the data leading to a faster learning, removing the need for
iterating over the data. The drawback is that RPL still requires tuning other
hyper-parameters such mas momentum (µ), hidden layer size or learning rate
(η).

4.3 Summary

The random layer can turn a simple gradient descent learner into a competi-
tive method for continual learning of data streams. Results shown in this chap-
ter suggest that having independent values for momentum (µ) and learning
rate (η) is a better strategy for processing data streams compared to using the
usual coupled µ = 1−η. The momentum also acts as a forgetting mechanism.

RPL still requires hyper-parameters to be tuned, and it adds one extra
hyper-parameter when using independent values for µ and η. RPL, and NNs in
general, have proven to be very sensitive to hyper-parameters configurations,
requiring many combinations to be tested in order to achieve competitive ac-
curacy. Even when choosing the best configuration for a dataset, RPL could
only outperform one of the streaming methods evaluated. And it has been
observed that in one dataset the difference can be larger than 4 points.

This chapter highlights important issues of using NNs for data streams
classification. How to overcome these issues is out of the scope of this disser-
tation. Given the results obtained in the evaluations, we decided to go in the
direction of using a hybrid alternative combining neural network and tree-
based methods contributing with the proposal that is presented in the next
chapter.

51

5
Echo State
Hoeffding Tree Learning

This chapter details the second contribution of this dissertation. We focus on
improving the Hoeffding Tree (HT) by proposing an extension that is able to
capture the strong temporal dependencies that are typically present in data
streams: the Echo State Hoeffding Tree (ESHT). We propose the use of a
hybrid approach that combines a recurrent neural network (the Echo State
Network) with an incremental decision tree or regressor tree depending on
the learning task. This combination takes advantage of the good temporal
properties of recurrent neural networks for improving single-tree predicting
performance.

5.1 The Echo State Hoeffding Tree

In this section we present the Echo State Hoeffding Tree (ESHT), our new
approach to learn from data streams with strong temporal dependencies. We
propose a hybrid approach that combines the ESL ability to encode time de-
pendencies in the ESN, with a very efficient incremental decision tree. On
classification problems the incremental decision tree used is the Hoeffding

Chapter 5 Echo State
Hoeffding Tree Learning

Tree. On regression problems we use an HT regressor, the FIMT-DD [62]. The
proposed architecture is shown in Figure 5.1.1.

PREDICTION
ŷ

INPUT
U(n) Echo State

Layer
X(n)

FIMT-DD
(Hoeffding Tree

Regressor)

O(n)

Hoeffding Tree

O(n)

REGRESSION

CLASSIFICATION

Figure 5.1.1: Echo State Hoeffding Tree design for regression (top blue box)
and classification (bottom blue box)

The ESHT uses the same ESL as decribed in Section 2.4.1. The hyper-
parameters required to configure the ESL are: α in Eq. 2.8, number of neu-
rons, and density of the sparse matrix W res

N,N in Eq. 2.7 (in this work, density
∈ (0, 1.0]). Regarding the number of neurons in the echo state X(n), [75]
states as a generic rule to set it up proportional to the number of time steps
an input should be remembered.

As can be observed in the architecture in Figure 5.1.1, our proposal re-
places the single layer feed-forward NN (SLFN) in the original ESN proposal
with a Hoeffding Tree (for classification) or a FIMT-DD (for regression).

The main advantage of using either a HT or a FIMT-DD is that they require
less samples than a NN to achieve good accuracy. In addition, they are easier
to deploy since they do not require the configuration of hyper-parameters,
reducing the deployment complexity of the proposed architecture.

5.2 Evaluation

The capabilities of the proposed architecture are tested on both regression
and classification problems. The regression version of ESHT is evaluated with
typical string-based functions with strong temporal dependences. The new ar-
chitecture is able to incrementally learn these functions in real time with fast
adaptation to unknown sequences and analyses the influence of the reduced
number of hyper-parameters in the behaviour of the proposed solution. On
classification problems, we show that the temporal capabilities of ESHT im-

54

Chapter 5 Echo State
Hoeffding Tree Learning

prove the accuracy of a single HT on the same datasets that we also used in
Chapter 4.

5.2.1 Regression evaluation methodology: learning functions

As a proof of concept, we propose the ESHT to learn functions typically im-
plemented by programmers. In the evaluations we use what we call a module
(Figure 5.2.1) that is composed of a label generator and an ESHT. A module
learns one function by only looking at its inputs and output (no other infor-
mation is provided to the ESHT) in real time.

The label generator uses the function we want to learn to label the input.
The input to the ESHT can be randomly generated or read from a file, and
can be a single integer or a vector. Both input and label are forwarded to the
ESHT.

In this work we use only one module in the evaluations, but modules could
be combined to solve complex tasks the same way programmers combine func-
tions when writing programs. A potential application of this methodology is
to treat programming as a black box: we could write the tests for a function
and use the ESHT to learn the function instead of implementing it. This way,
scaling computations is a matter of scaling a single model.

Figure 5.2.1: Module internal design: label generator and ESHT

55

Chapter 5 Echo State
Hoeffding Tree Learning

5.2.2 Regression evaluation

This section evaluates the behaviour of the proposed ESHT architecture for
learning three character-stream functions: Counter, lastIndexOf and emailFil-
ter. Function Counter counts the number of elements that appear in the input
between two consecutive zeros. Function lastIndexOf outputs the number of
elements in the input since we last observed the current symbol. In other
words, it counts the number of elements between two equal symbols in the
stream (i.e. use one Counter for each symbol). Finally, emailFilter is a function
that detects valid email addresses in a character stream.

In order to understand the behaviour of ESHT we study the effect of its
two hyper-parameters: α in Eq. 2.8 and the density of the sparse matrix
W res
N,N in Eq. 2.7. We use Counter and lastIndexOf functions for this purpose.

In both evaluations we fix the number of neurons to 1,000. In the Counter
evaluation we test combinations of α and density in the range [0.1, 1.0] in
steps of 0.1. In the lastIndexOf evaluation we use the outcomes to test only
some combinations of α in the same range.

We use emailFilter function to compare the behaviour of the proposed
ESHT architecture with a FIMT-DD regressor tree, a standard fully-connected
feed-forward NN and the ESN.

Two metrics are used for the purposes of evaluating the behaviour of
ESHT, both derived from the errors detected in the output: cumulative loss
and accuracy. An error occurs when the output is incorrectly classified, i.e.
when |y − ŷ| >= 0.5, being ŷ the predicted label and y the actual label; we
use a distance of 0.5 since all labels are integer numbers. The cumulative loss
shows the accumulated |y − ŷ| for all the incorrectly classified inputs. And
accuracy shows the proportion of correctly predicted labels with respect to the
number of inputs.

Since ESHT is proposed for real-time analysis, it is also important to an-
alyze the number of iterations that are needed in order to correctly output
the correct label for a previously seen sequence. For example, for the Counter
function evaluation, when we say that ESHT needs to observe a sequence
two times, it means that at the third time the ESHT observes that sequence it
outputs its correct length.

Counter

Two variations of the Counter function have been implemented (shown in
Figure 5.2.2). In Opt1 the label for each symbol in the input stream is the
number of symbols since the last zero appeared (and 0 when the zero symbol
appears); in Opt2 the label is different than 0 only when zero appears in the
input stream, returning in this case the number of symbols since the previous
zero appeared.

56

Chapter 5 Echo State
Hoeffding Tree Learning

Figure 5.2.2: Counter generator functions

The input stream is a random sequence of 0/1 symbols generated following
a normal distribution. We use it to analyze the influence of parameters α and
density on the loss and accuracy mentioned in the previous section for an input
of 1,000 samples.

Figure 5.2.3 shows the evolution along time (number of input symbols)
for the cumulative loss (top) and accuracy (bottom), for each Counter option
and for two different combinations of parameters α and density. From a visual
inspection of the output generated, the first conclusion that we obtain is that
ESTH is able to learn possible sequences of the input symbols after seeing
them two or three times.

The first observation from the cumulative loss plot on the top is that the
errors and loss rapidly decrease with time. This is the expected behaviour
for a randomly generated sequence that follows a normal distribution: the
more samples we generate the less chance of an unseen sequence (giving
ESHT ability to learn already seen sequences). From the accuracy plot on the
bottom of Figure 5.2.3 we conclude that an accuracy of 0.9 is achieved with
only a few hundred samples (200 in this specific configuration of the α and
density parameters); in other words, almost all loss is incurred on the first
few hundreds of samples, and after this, the loss stabilizes being opt1 the one
where loss stabilizes faster. Some of the results have a transient accuracy of
1 for the first item; this is due to ESHT always outputs a zero for the first
element (which is the label of the first item in the input stream, as shown in
Figure 5.2.2).

Figure 5.2.4 shows the influence of the α (top) and density (bottom) pa-
rameters in the accuracy of the counter opt1. In both plots, the horizontal
axis shows the variation of one of the parameters while the box plot shows
the variation of the other parameter (with values inside the box that have an
accuracy with the standard deviation). The plot at the top shows that there
is a monotonic growth of the accuracy with parameter α; lower values for α
place relatively more importance on older reservoir states (see Eq.2.8), which

57

Chapter 5 Echo State
Hoeffding Tree Learning

0
20
0

40
0

60
0

80
0

1,
00
0

0

10

20

30

Samples

C
u
m
m
u
la
ti
ve

L
os
s

Op1(density=0.3,α=1.0)

Op1(density=1.0,α=0.7)

Op2(density=0.8,α=1.0)

Op2(density=0.8,α=0.7)

0
20
0

40
0

60
0

80
0

1,
00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

A
cc
u
ra
cy

(%
)

Op1(density=0.3,α=1.0)

Op1(density=1.0,α=0.7)

Op2(density=0.8,α=1.0)

Op2(density=0.8,α=0.7)

Figure 5.2.3: Cumulative loss (up) and accuracy (bottom) on the Counter
stream.

has the effect that it takes longer for the model to learn new sequences. In
this same plot, the influence of density seems to have a less relevant influence.
In fact the plot at the bottom shows that there is no clear correlation between
density and accuracy. The outliers in that plot correspond to the low values of
α that were already commented in the previous plot.

lastIndexOf

Figure 5.2.5 shows the output of the lastIndexOf function (which is how this
function is known to Java programmers). Given a sequence of input symbols,

58

Chapter 5 Echo State
Hoeffding Tree Learning

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.5

0.6

0.7

0.8

0.9

1

Alpha (α)

A
cc
u
ra
cy

(%
)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.5

0.6

0.7

0.8

0.9

1

Density (%)

A
cc
u
ra
cy

(%
)

Figure 5.2.4: Influence of parameters α and density on the Counter stream. In
each figure, the box plot shows the influence of the other parameter.

the function returns for each symbol the relative position of the last occur-
rence of the same symbol (i.e. how many time steps ago the symbol was last
observed). Note that for each time-step all symbols but the current one are
one step further, thus, generating a highly dynamic output.

59

Chapter 5 Echo State
Hoeffding Tree Learning

Figure 5.2.5: lastIndexOf generation function

The input stream is a sequence of symbols of an alphabet randomly gene-
rated following a normal distribution. Sequences of up to 10,000 samples and
alphabets of 2, 3 and 4 symbols have been used to perform the evaluation of
ESHT in terms of accuracy.

As the number of symbols in the alphabet grows more samples are needed
to learn a pattern. Consequently, the number of combinations grows expo-
nentially with the number of symbols. Figure 5.2.6 shows this trend for two
different pairs of values α and density. Alphabets with 2 and 3 symbols are
relatively simple to be learnt (the ESHT achieved 80+% accuracy with only
1,000 samples) while with a 4-symbols alphabet the ESHT needed 10,000
samples to achieve 75% accuracy.

0

2,
00
0

4,
00
0

6,
00
0

8,
00
0

10
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 0
00

Samples

A
cc
u
ra
cy

(%
)

2symbols density=0.1 α=0.8

2symbols density=0.4 α=0.9

3symbols density=0.1 α=0.9

3symbols density=0.4 α=0.8

4symbols density=0.1 α=0.9

4symbols density=0.4s α=0.9

Figure 5.2.6: Accuracy for the lastIndexOf function for alphabets with 2, 3 and
4 symbols.

60

Chapter 5 Echo State
Hoeffding Tree Learning

0 1 0 0

0 0.5 0 0

x

Figure 5.2.7: Encoding x symbol as a vector

From a visual inspection on the ESL output we observed that a relatively
small number of samples were needed to saturate the output signal. To delay
this saturation we decided to use a vector of features (one element for each
symbol) as the input instead of a scalar value. The position corresponding to
the current symbol index is set equal to 0.5 and the rest equal to zero. Figure
5.2.7 shows how the x symbol is encoded as input vector. This way, the input
signal to the FIMT-DD has different levels (in contrast to the saturated signal
observed when using a scalar input). Figure 5.2.8 shows the improvement
achieved by using a vector instead of scalar input for different values of the α
hyper-parameter. For the rest of the evaluations in this subsection we will use
the vector input.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

A
cc
u
ra
cy

(%
)

2symbols density=0.4

2symbols-vec density=0.4

3symbols density=0.4

3symbols-vec density=0.4

4symbols density=0.4

4symbols-vec density=0.4

Figure 5.2.8: Effect on the accuracy of coding the input to lastIndexOf as a
scalar or a vector of features (density=0.4)

Figure 5.2.9 shows the influence of the α and density hyper-parameters
on the accuracy. In both plots, the horizontal axis shows the variation of one
of the parameters and different lines are used to show the variation of the

61

Chapter 5 Echo State
Hoeffding Tree Learning

other parameter. From the plot at the top it is clear the monotonic growth
of the accuracy with parameter α. It can be seen in the bottom plot that the
influence of density seems to have a less relevant influence if the value of
alpha is correctly set. In fact the plot at the bottom shows that there is no
clear correlation between density and accuracy. Similarly, one could predict a
similar conclusion when changing the number of neurons in the ESL.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alpha (α)

A
cc
u
ra
cy

(%
)

2symbols density=0.1

2symbols density=0.4

3symbols density=0.1

3symbols density=0.4

4symbols density=0.1

4symbols density=0.4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.3

0.4

0.5

0.6

0.7

0.8

Density

A
cc
u
ra
cy

(%
)

α=0.2

α=0.3

α=0.4

α=0.5

α=0.6

α=0.7

α=0.8

α=0.9

α=1.0

Figure 5.2.9: Effect of alpha and density on the accuracy for lastIndexOf

emailFilter

The emailFilter function labels the input stream with the length of the email
address detected or 0 otherwise (including wrong formatted email address).

62

Chapter 5 Echo State
Hoeffding Tree Learning

For the evaluation of the ESHT and comparison with previous proposals we
use a synthetic dataset based on the 20 newsgroups dataset, that comprises
around 18,000 newsgroups posts on 20 topics [71]. We extracted a total of
590 characters and repeated them eight times. Each repetition, or block, con-
tains 11 email addresses and random text (including wrong formatted email
addresses) at the same proportion. The resulting dataset has a label balance
of 97.8% zeros.

Based on the conclusion from lastIndexOf evaluation, we decided to rep-
resent the input as a vector of features, one for each symbol in the alpha-
bet. However, this would require a vector for an ASCII encoded input, which
would increase the memory consumption (larger input matrix on the ESL) and
would require more samples to abstract a pattern. To speed up the learning
process we reduced the input space to only four symbols, those strictly nec-
essary to identify a correctly formatted email address. Table 5.2.1 shows the
map used to create the 4-symbols dataset. The reduced input vector implies
faster vector-matrix multiplication (low dimensionality) and less memory con-
sumption (due to a smaller matrix size). In addition, the reduced input space
improves the learning speed.

ASCII Domain 4-Symbols Domain
Original Symbols Target Symbol Target Symbol Index

[\ t \n\ r]+ Single space 0
[a−zA−Z0−9] x 1

@ @ 2
[.]+ Single dot 3

Table 5.2.1: Map from ASCII domain to 4-symbols

For the comparison we configured the different algorithms (FIMT-DD,
feed-forward NN, ESN and ESHT) as shown in Table 5.2.2. For the ESN we
explored different values for the α, density and learning rate hyper-parameters
in the range [0.1, 1.0] and linear output. For the standard NN we also explored
values for the learning rate in the same range. In order to configure ESHT, we
used the results obtained for Counter Opt2 in section 5.2.2, with α = 1.0 and
density=0.4. We increased the number of neurons to 4,000.

Algorithm Density α Learning rate Loss # Errors Accuracy (%)
FIMT-DD - - - 4,119.7 336 91.61

NN - - 0.8 2,760 88 97.80
ESN1 0.2 1.0 0.1 1,032 57 98.47
ESN2 0.7 1.0 0.1 850 61 98.47
ESHT 0.1 1.0 - 180 10 99.75

Table 5.2.2: Email address detector results

The first conclusion from the results shown in Table 5.2.2 is the well known

63

Chapter 5 Echo State
Hoeffding Tree Learning

inability of both FIMT-DD and NN to capture time dependencies in the input.
The NN defaults to the majority class (always predicts a 0 symbol), achieving
97.80% of accuracy (88 errors, the total number of correct email addresses in
the dataset input) with loss of 2,760 (the length of all emails in the dataset).
The FIMT-DD obtains the worst accuracy (91.61% with loss 4,119.70).

ESHT clearly outperforms the two best configurations obtained for ESN,
with only 10 errors and a cumulative loss of 180 (compared to around 60
errors and cumulative error around 1,000 in ESN). In order to better under-
stand the results shown in Table 5.2.2 for ESN and ESHT, the top plot in Figure
5.2.10 shows the cumulative loss evolution with the number of samples in the
input. After eight repetitions the ESN failed to get right all the 11 emails in
the same block (observe how the cumulative loss continues to grow with the
number of samples). The ESHT clearly outperforms the ESN with only 500
samples; after this number of samples, the plot shows a constant loss for the
ESHT between 500 and 1,000 samples (this is an effect of the plot scale, in
this range the loss grows, but after this it stays constant).

The bottom plot in Figure 5.2.10 shows the evolution of the accuracy of
ESN and ESHT with the number of samples in the input. Observe that the
three curves start with 100% accuracy; this is due to the fact that the first
label is zero, and all tests started biased to zero.

5.2.3 Classification evaluation methodology and real-world
datasets

The classification version of ESHT is evaluated using real-world datasets
widely used for data streams classification. The datasets used were COVT
and ELEC. The SUSY dataset used in Chapter 4 has not been used due to its
excessive execution time (+24hrs, where MOA only needed few minutes to
finish in the worst case). Our proof of concept implementation did not used
GPUs for accelerating computations required by ESL.

The temporal capabilities of our proposed design were tested using a sin-
gle HT as a reference. Also, we compare ESHT to the best results obtained in
Section 4.2.2, which were obtained using two state-of-the-art methods: Leve-
raging Bagging (LB) and k-nearest neighbours (kNN).

The evaluation scheme used in this evaluation is the prequential evalua-
tion approach typically used in datastreams (see Section 3.3).

5.2.4 Classification evaluation

As in the regression evaluation, combinations of α and density in the range
[0.1, 1.0] in steps of 0.1, and neurons in the hidden layer from 10 to 100
(with increments of 10) were tested in order to assess their impact in the final
accuracy.

64

Chapter 5 Echo State
Hoeffding Tree Learning

0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

0

200

400

600

800

1,000

1,200

50
0

Samples

C
u
m
m
u
la
ti
ve

L
os
s

ESN1

ESN2

ESHT

0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

50
0

Samples

A
cc
u
ra
cy

(%
)

ESN1

ESN2

ESHT

Figure 5.2.10: Cumulative loss (top) and accuracy (bottom) evolution for
emailFilter

Table 5.2.3 summarizes the best results obtained by ESHT and its config-
uration. ESHT improves a single HT in both datasets, which was our initial
target. In addition, ESHT outperformed LB, an ensemble of HTs, and kNN by
almost 4 percentage points in the COVT dataset. In the ELEC dataset, LB is
still providing the best accuracy, outperforming ESHT by 8.5 points. Regard-
ing the hyper-parameters configuration, observe that the only difference in
configuration was in the α hyper-parameter, the other two hyper-parameters
had the same values for density (1.0) and number of neurons (10).

A detailed influence in the accuracy of the α hyper-parameters for the best
results configuration (10 neurons and density 1.0) is shown for each dataset in
Figure 5.2.11. Despite both plots having a clear peak where best accuracy was
achieved, in some cases results vary in an unpredictable way when increasing
α by 0.1. For example, in the ELEC dataset, using α = 0.6 leads to the worst

65

Chapter 5 Echo State
Hoeffding Tree Learning

ESHT Best Results HT State-of-the-art
Dataset Acc (%) rank α Density neurons Acc (%) rank Acc (%) rank Alg

ELEC 81.3 1 0.9 1.0 10 79.2 3 89.8 1 LB
COVT 96.1 1 0.2 1.0 10 80.3 3 92.2 2 kNN

Table 5.2.3: ESHT performance comparison against a single HT, and the best
results obtained on each dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Alpha

70

75

80

85

90

95

Ac
cu

ra
cy

ELEC
COVT

Figure 5.2.11: Influence of α on the ESHT accuracy; Fixed density=1.0 and
10 neurons in the ESL

State-of-the-Art Hoeffding Tree ESHT
Dataset Method Time (s) Time (s) Time(s)
ELEC LB 10 1 50.2
COVT kNN 605 19 2434
SUSY LB 530 45 -

Table 5.2.4: Comparing ESHT execution time against other data-streams
methods.

accuracy, but increasing α by 0.1 (α = 0.7) yields to the best accuracy. A
similar observation can be done in the COVT dataset for α = 0.1 and α = 0.2.

Unfortunately, as shown in Table 5.2.4, ESHT major issue is the computa-
tion time which is about one order of magnitude higher than other popular
data streaming methods. Most of the extra time needed to process the input
data is due to ESL since all matrix multiplications were computed in the CPU.

5.3 Summary

This chapter proposes the Echo State Hoeffding Tree (ESHT) for learning tem-
poral dependencies in data streams in real time. The proposal is based on the

66

Chapter 5 Echo State
Hoeffding Tree Learning

combination of the reservoir in the Echo State Network (ESN) and a Hoeffding
Tree (on classification problems) or a FIMT-DD (on regression problems).

The ESHT regression version was evaluated with a proof-of-concept im-
plementation and three string-based input sequences generated by functions
typically implemented by a programmer, opening the door to explore the pos-
sibilities of Learning Functions instead of programming them. ESHT was able
to learn faster than standard ESN and requires fewer hyper-parameters to
be tuned (only two). In addition, these two hyper-parameters have a more
predictable effect on the final accuracy than typical neural networks hyper-
parameters such as learning rate or momentum.

On classification problems, our proof-of-concept implementation was
tested on some of the datasets used in Chapter 4. The results show that ESHT
can capture temporal dependences, outperforming a single HT significantly
(accuracy difference is larger then one percentage point). Compared to LB (an
ensemble of HT), ESHT could only outperform it in one out of two datasets.
The limiting factor was the execution time which limits the number of sam-
ples throughput, and being the main reason why SUSY dataset evaluation was
aborted. Using hardware accelerators such as GPU may reduce significantly
the ESL computation time. However, we still need to face the problem that
the final ESHT accuracy is not as good as LB for some datasets.

Given the issues we are facing with NNs for data streams, in the next
two contributions, we decided to focus on ensembles exclusively. This way, in
Chapter 6 we reduce the number of learners used in ensembles, enabling their
deployment on more constrained hardware environments. Later, in Chapter
7, we propose a HT and an ensemble design that fully exploits modern CPUs
capabilities in order to reduce the response time down to a few microseconds.

67

6
Resource-aware
Elastic Swap Random Forest
for Evolving Data Streams

Leveraging Bagging (LB), an ensemble of Hoeffding Trees, obtained consistent
results (usually the best) in the evaluations of Chapters 4 and 5. This is not
a coincidence, since ensemble learners are the preferred choice for process-
ing evolving data streams due to their better classification performance over
single models. LB was considered the state-of-the-art classifier in MOA [12]
at the moment of starting this dissertation. However, the ADAPTIVE RANDOM

FOREST (ARF) [44] was introduced in 2017 and since then, it is currently con-
sidered the state-of-the-art ensemble for classifying evolving data streams in
the MOA.

The number of learners in the ensemble is usually decided independently
of the characteristics of the data stream. For example, the ARF uses by default
100 random decision trees, or the LB in Chapters 4 and 5 used 10 decision
trees. In this chapter, we argue that this number of learners in ARF is not
optimal and that we can get similar results using a smaller number of learners.
For this, we introduce a new adaptive methodology to automatically decide
the number of learners to be used in incremental models.

In this contribution, the originally proposed ARF is extended in two or-
thogonal directions. On one side, ELASTIC SWAP RANDOM FOREST (ESRF)
splits the learners in two groups: a forefront group that contains only the
learners used to do predictions, and a second candidate group that contains

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

learners trained in the background and not used to make predictions. At any
time, a learner in the forefront group can be replaced by a candidate learner if
this swapping operation improves the overall ensemble accuracy. On the other
side, ESRF extends ARF by dynamically increasing/decreasing the number of
learners in the ensemble, in particular the number of learners in the forefront
set.

6.1 Preliminaries

By default, the reference implementation for ARF in the Massive Online Anal-
ysis (MOA) framework uses 100 random trees (ARF100). While this config-
uration provides competitive accuracy we have observed that accuracy can
converge for sizes lower than 100 random trees, which is the case for almost
all datasets used in this chapter as shown in Figure 6.1.1. The convergence
point is different for each dataset, but once the accuracy converges, adding
extra trees only increases computational and memory costs with marginal im-
pact in the accuracy. For example, the RBF f dataset requires 70 learners in
the ensemble to achieve a percentage difference in terms of accuracy (with
respect to ARF100) in the second decimal place; however, the COVT dataset
achieves the same difference in accuracy with only 30 learners.

Table 6.1.1 details ARF results for sizes 40, 50, 100, and 200 (namely
ARF40, ARF50, ARF100 and ARF200 respetively). For each dataset, results
are expressed in terms of accuracy difference with respect the best result. ARF
requires at least 50 learners for all results to be within the one point range

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Ensemble Size

65

70

75

80

85

90

95

Ac
cu

ra
cy AGR_a

 AGR_g
 AIRL
 COVT

 ELEC
 GMSC
 HYPER
 LED_a

 LED_g
 RBF_f
 RBF_m

 RTG
 SEA_a
 SEA_g

Figure 6.1.1: ARF accuracy evolution with ensemble size.

70

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Table 6.1.1: Difference in accuracy for difference ARF sizes with respect the
best one. A negative result means worse then the best.

ARF Best ∆Accuracy w.r.t. ARF Best
Dataset Acc(%) Size ARF40 ARF50 ARF100 ARF200
AGR a 89.80 110 -0.48 -0.28 -0.07 -0.10
AGR g 84.61 140 -0.67 -0.58 -0.08 -0.12
HYPER 85.17 130 -0.25 -0.16 -0.01 -0.06
LED a 73.73 190 -0.04 -0.04 -0.01 -0.004
LED g 72.87 160 -0.11 -0.06 -0.01 -0.01
RBF f 72.54 180 -1.36 -0.96 -0.19 -0.03
RBF m 86.05 120 -0.50 -0.32 -0.04 -0.07
RTG 93.91 100 -0.11 -0.13 0 -

SEA a 89.66 70 -0.013 -0.009 -0.01 -0.048
SEA g 89.25 60 -0.002 -0.002 -0.01 -0.05
AIRL 66.30 180 -0.18 -0.13 -0.05 -0.02
COVT 92.32 80 -0.08 -0.05 -0.01 -0.10
ELEC 88.57 100 -0.09 -0.06 -0.005 -0.13
GMSC 93.55 100 -0.01 -0.01 -0.002 -0.01

Average 84.17 122.86 -0.28 -0.20 -0.04 -0.05

(i.e., the difference in accuracy is larger than one percentage point). Observe
that ARF40 performed significantly worse in the RBF f evaluation since the
difference is above one percentage point. Is between 50 and 100 learners
where the accuracy curve converges for all datasets (it can also be seen in
Figure 6.1.1): observe the marginal differences in accuracy for ARF100 with
respect the best results. Further from 100 learners, increasing the ensemble
size from 100 to 200 has marginal impact in the accuracy. However, mem-
ory and CPU requirements are doubled since they grow with the number of
learners in the ensemble.

In terms of memory, in the worst case scenario ARF allocates one back-
ground learner for each active learner in the ensemble, requiring twice the
memory. However, background learners are simpler since they do not need to
keep any drift detection data structure. In practice, the number of background
learners is usually lower than the number of active learners as it can be ap-
preciated in Table 6.1.2, being 5 and 10 the average number of background
learners used by ARF50 and ARF100 respectively.

Regarding the execution time, each active and background tree needs to
be traversed for each new arriving instance. With the aim of reducing the com-
putational and memory requirements of the ensemble, enabling either high–
throughput implementations or their deployment in resource–constrained de-
vices, this chapter proposes the ELASTIC SWAP RANDOM FOREST algorithm
described in the next section.

71

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Table 6.1.2: Average number of background learners for ARF with 100 and 50
learners. Note that RTG dataset has no drift, thus, ARF needed 0 background
learners

ARF 100 ARF 50
Dataset Mean stdev max Mean stdev max
AGR a 5.25 3.67 39.00 2.74 2.47 21.00
AGR g 8.75 4.02 40.00 4.40 2.51 20.00
HYPER 9.50 7.95 39.00 4.26 3.83 19.00
LED a 10.04 8.55 51.00 4.74 3.63 26.00
LED g 8.07 4.05 37.00 4.62 2.54 24.00
RBF f 20.55 4.44 41.00 10.26 3.08 24.00

RBF m 13.60 4.28 31.00 6.74 2.75 20.00
RTG 0.00 0.00 0.00 0.00 0.00 0.00

SEA a 0.06 1.41 54.00 0.03 0.68 31.00
SEA g 0.68 4.09 53.00 0.31 2.02 26.00

airlines 7.95 4.81 31.00 3.95 2.72 19.00
covtypeNorm 38.01 12.20 70.00 19.07 6.50 37.00

elecNormNew 28.82 9.62 55.00 13.29 5.29 27.00
GMSC 0.65 0.81 2.00 0.49 0.72 3.00

Average 10.13 4.66 36.20 4.99 2.58 19.80

6.2 ELASTIC SWAP RANDOM FOREST

ELASTIC SWAP RANDOM FOREST (ESRF) is a fast streaming random forest
based method that adapts its size in an elastic way, to be consistent with the
current distribution of the data. ESRF also includes a swap component that
maintains two pools of classifiers to decide which ones are actually used for
better prediction making. Although the elastic and swap components in ESRF
are independent, they are presented together in Algorithm 3.

The swap component in ESRF divides the classifiers into two groups: the
foreground (or active) learners and the background (or candidate) learners.
The Forefront Set (FS) contains those classifiers with higher accuracy that are
used for predicting; the Candidates Set (CS) contains those classifiers that are
trained but nor used for prediction since they accuracy is low compared to
those on the FS. For each arriving instance X, the prediction is done just
using the learners in FS (lines 14–16). During training (lines 1–6), as done
in ARF, all classifiers are trained simulating bagging by weighting the instance
according to a Poisson(λ = 6). After that (lines 4–5), ESRF swaps the worst
classifier in FS (i.e. the one with the lowest accuracy fmin) with the best
in CS (i.e. the one with the highest accuracy cmax) when the later becomes
more accurate. With the swap component the number of learners required in
the ensemble is |FS|+ |CS|; all the learners in these two sets are trained for
each arriving instance.

The elastic component in ESRF dynamically determines the size of the FS.
This elastic component is not tied to ESRF and it could be implemented in

72

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

any ensemble method such as the original ARF. For each arriving instance,
the algorithm checks if FS needs to be resized (line 2), adding or removing
r new learners. In case of growing, the new r learners could be taken from
the CS set; however, and in order to add more diversity in the ensemble, the
elastic component introduces a third set of learners, the Grown Set (GS) with
r learners, which also nees to be trained on each arriving instance and is reset
on every resizing operation.

Algorithm 4 details how the elastic component in ESRF works. For each

Algorithm 3 ELASTIC SWAP RANDOM FOREST

Require:
X: input sample
z: label for input sample
FS: Set of forefront learners
CS: Set of candidate learners
r: Resize factor
GS: Set of r random trees
fmin: Classifier from FS with lowest accuracy
cmax: Classifier from CS with highest accuracy

1: function TRAINONINSTANCE(X)
2: RESIZEENSEMBLE(X, z)
3: TRAINALLCLASSIFIERS(X)
4: find cmax and fmin
5: swap classifiers if cmax is more accurate than fmin
6: end function
7: function TRAINALLCLASSIFIERS(x)
8: for each classifier c ∈ FS ∪ CS ∪GS do
9: w ← Poisson(λ = 6)

10: Set the weight of x to w
11: Train classifier c using x
12: end for
13: end function
14: function PREDICTONINSTANCE(X)
15: return PREDICTLABEL(X, FS)
16: end function
17: function PREDICTLABEL(x, S)
18: for each classifier c ∈ S do
19: ŷc ← prediction for x using c
20: end for
21: ŷ ← combination of predictions ŷc
22: return ŷ
23: end function

73

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

arriving instance, ESRF simulates having three ensembles of random trees
(lines 2–4):

• the default one (i.e., the current ensemble with |FS| learners in FS);

• the shrunk ensemble containing only the |FS| − r learners with higher
accuracies in FS;

• and the grown ensemble containing the learners in FS FS plus the r
extra learners in the Grow set GS (i.e. in total |FS|+ r learners).

Line 5 decides whether resizing is needed, based on the performance of each
of these three ensembles. ESRF may decide to keep the current configura-
tion for the ensemble or to apply a resize operation if either the shrunk or
grown ensemble improve the default ensemble performance. In this case, the
r learners in GS are added to FS in case growing is decided (lines 6–9) or
the r classifiers in FS with lowest accuracy are removed in case shrinking is
decided (lines 10–13). Observe that the proposed elastic component does not
use the candidates set CS, although this is an alternative option that is not
considered due to the limit in the number of pages.

The performance for an ensemble is computed using the exponential
weighted moving average (EWMA) of its accuracy. EWMA gives larger weight
to recent data, and a smaller weight to the older one. The weighting fac-
tor decreases exponentially but never reaches zero. It is calculated using this
formula:

EWMAi = EWMAi−1 + α ∗ (Si − EWMAi−1)

where Si is the current value being added, α is the weighting factor defined
as α = exp(1/W), where W is a fixed time window. In ESRF, W = 2000 and
Si ∈ {0, 1}, 1 for a label predicted correctly and 0 otherwise. EWMA allows
ESRF to keep track of each ensemble accuracy without being influenced too
much by past prediction results.

The necessary logics to decide whether the ensemble should be resized or
not are detailed in function CHECKIFRESIZE in Algorithm 4. First, it updates
each ensemble EWMA (lines 16–18); then compares the EWMA estimation
of the default ensemble with the other two ensembles to compute the differ-
ences ∆shrink and ∆grown (line 19–20). If ∆grown is larger than ∆shrink, and
∆grown is above a threshold, then a grow operation is triggered (lines 21–
23). The shrink operation is decided in lines 24–26 and works similarly. In
case ∆grown = ∆shrink, ESRF favours growing against shrinking by comparing
∆grown first.

As mentioned above, only classifiers in FS are used to make the ensemble
prediction (lines 14–16 in Algorithm 3). ESRF implements the same weighting
voting policy for instances as in ARF: each classifier has an associated weight
that is computed as the number of correctly classified instances divided by

74

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Algorithm 4 Check resize and update size for ESRF

Require:
r: Resize factor
FS: Set of forefront learners
FSmin: Set of r learners from FS with lower accuracy
GS: Set of r random trees
SRK: Shrunk ensemble FS \ FSmin
GRN : Grown ensemble FS ∪GS
Tg: grow threshold
Ts: shrink threshold

1: function RESIZEENSEMBLE(x, z)
2: ŷs ← PREDICTLABEL(x, SRK)
3: ŷd ← PREDICTLABEL(x, FS)
4: ŷg ← PREDICTLABEL(x, GRN)
5: Operation← CHECKIFRESIZE(z, ŷs, ŷd, ŷg)
6: if Operation==GROW then
7: FS = FS ∪GS
8: Start new GS with r new trees
9: end if

10: if Operation==SHRINK then
11: FS = FS \ FSmin
12: Start new GS with r new trees
13: end if
14: end function
15: function CHECKIFRESIZE(z, ŷs, ŷd, ŷg)
16: Update EWMAshrunk using ŷs and z
17: Update EWMAdefault using ŷd and z
18: Update EWMAgrow using ŷg and z
19: ∆shrink = EWMAshrunk − EWMAdefault
20: ∆grow = EWMAgrown − EWMAdefault
21: if ∆grow > ∆shrink and ∆grow > Tg then
22: return GROW;
23: end if
24: if ∆shrink > ∆grow and ∆shrink > Ts then
25: return SHRINK
26: end if
27: end function

the total number of instances since last reset (due to concept drift), reflecting
the classifier performance on the current concept. To cope with evolving data
streams, a drift detection algorithm is used with each learner of the ensemble
algorithm described above (not shown in algorithm 3). ESRF resets a tree
as soon as it detects concept drifting. This is much simpler than the drift

75

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

detection algorithm in ARF since there is a single threshold and no background
learners are created when drift is detected.

6.3 Experimental Evaluation

ELASTIC SWAP RANDOM FOREST (ESRF) has been implemented using MOA
(Massive Online Analysis) framework, and evaluated using datasets shown in
Table 6.3.1 (see Chapter 3 for more details). We gradually evaluate the im-
pact of the two components in the proposed ESRF. First we evaluate the per-
formance of the swap component and then we evaluate the impact of adding
the elastic component, always comparing against the baseline ARF ensemble
with 100 learners (ARF100). Two parameters in ESRF are fixed in the eval-
uation presented in this chapter: |CS| = 10 and r = |GS| = 1. Regarding
the number of learners in CS, we have observed that it does not have a major
impact in terms of accuracy for values larger than 10; in order to make a fair
comparison in terms of resources when comparing with ARF, we set the value
to 10, which coincides with the average number of background learners that
are required by the drift mechanism in ARF for the datasets used in this chap-
ter. Regarding the resize factor in the elastic component, we have evaluated
values of 1 and 5.

The parameters that are evaluated are: |FS| (with a minimum value of 15
and maximum limited to |FS| + |CS| + |GS| = 100) and the two thresholds
that decide resizing (Tg and Ts). The rest of hyper-parameters, which are
common for both ESRF and ARF100, are set to their default values in MOA.

For completeness, later in this section we evaluate the performance of only
using the elastic component in the ESRF. We will refer to this configuration as

Dataset Samples Attrs Labels Generator Drift
AGR a 1,000,000 9 2 Agrawal A
AGR g 1,000,000 9 2 Agrawal G
HYPER 1,000,000 10 2 Hyperplane I.F
LED a 1,000,000 24 10 LED Drift A
LED g 1,000,000 24 10 LED Drift G
RBF m 1,000,000 10 5 RBF I.M
RBF f 1,000,000 10 5 RBF I.F
RTG 1,000,000 10 2 RTG N
SEA a 1,000,000 3 2 SEA A
SEA g 1,000,000 3 2 SEA G
AIRL 539,383 7 2 - -
COVT 581,012 54 7 - -
ELEC 45,312 8 2 - -
GMSC 150,000 11 2 - -

Table 6.3.1: Synthetic (top) and real-world (bottom) datasets used for perfor-
mance evaluation and comparison. Synthetic datasets drift type: A (abrupt),
G (gradual) I.F (incremental fast), I.M (incremental moderate), N (None)

76

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

ELASTIC RANDOM FOREST (ERF). Other than not using the swap component,
main difference with respect ESRF of this configuration is that it uses the same
drift detection used in ARF.

The hardware platform that has been used to conduct the performance
analysis is an Intel(R) Xeon(R) Platinum 8160 CPU running at 2.10GHz (24
cores, 48 threads), 96GB of RAM, SUSE Linux Enterprise Server 12 SP2 (ker-
nel 4.4.120-92.70-default) and openJDK 64bits 1.8.0 161.

The evaluation methodology that has been used to conduct all the experi-
ments reported is streaming prequential CV detailed in Section 3.3.2.

6.3.1 SWAP RANDOM FOREST

This subsection individually evaluates the swap component in ESRF in terms
of accuracy and ensemble size, using ARF100 as a reference. We will refer to
this ESRF ensemble configuration as SWAP RANDOM FOREST (SRF).

Figure 6.3.1 shows the accuracy obtained by SRF when using a fixed num-
ber of learners in the FS. Comparing to Figure 6.1.1 one can appreciate that
the accuracy of SRF converges faster than ARF100. With only 35 learners in
FS the differences in accuracy are less than 1 percentage point, while ARF100
required 50 learners to be within the same range (see Table 6.1.1).

10 20 30 40 50 60 70 80 90 10
0

Ensemble Size

65

70

75

80

85

90

95

Ac
cu

ra
cy AGR_a

 AGR_g
 AIRL
 COVT

 ELEC
 GMSC
 HYPER
 LED_a

 LED_g
 RBF_f
 RBF_m

 RTG
 SEA_a
 SEA_g

Figure 6.3.1: SRF accuracy evolution as the ensemble size increases

Table 6.3.2 details the results for two SRF configurations (SRF F35 and
F50) and ARF100. The ∆acc column always shows the difference with
ARF100. When using 35 learners in the front set of SRF, the differences ob-
served in terms of accuracy are marginal in most of the tests, except for the

77

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

two RBF datasets that are a little bit more noticeable; however, in terms of
resources, SRF is only using one third of the trees that are used in ARF100.
When using 50 learners, half of the trees compared to ARF100, SRF outper-
forms ARF100 in 11 of the 14 datasets, being the differences in the other 3
smaller than before. The reduction in size for F50 implies a speedup of 2.03x
on average. Looking at the average for all datasets, we conclude that the av-
erage difference is very small (0.07 worse for F35 and 0.06 better for F50 wrt
ARF100).

The average standard deviation around the mean accuracy (of 10 runs) are
the same for ARF100 and SRF50, while SRF35 is slightly larger than ARF100
(see stdev columns in Table 6.3.2). While SRF50 is able to reduce stdev in
some datasets, SRF35 has larger variance in almost all datasets. In general,
the lower the number of learners the harder it is to compensate miss classified
outputs, which causes more fluctuations in the combined voting. However, the
absolute value of ∆acc between ARF100 and SRF50 is never larger than their
respective stdev columns, and similarly for ARF100 and SRF35. Therefore,
we can conclude that there is no significant difference between them in any of
the datasets tested. This was expected since both algorithms use the same set
of F learners that are contributing more to the combined voting (those with
higher accuracy). In fact, at any given time step SRF is equivalent to an ARF
that places zero weighting to those learners not in the SRF forefront set.

Table 6.3.2: Accuracy comparison between ARF100 and SRF with |FS| = 35
and |FS| = 50

ARF100 SRF F35 SRF F50
Dataset Acc(%) Stdev Acc(%) Stdev ∆acc Acc(%) Stdev ∆acc

AGR a 89.73 0.07 90.13 0.11 0.40 90.04 0.08 0.31
AGR g 84.53 0.01 84.81 0.08 0.28 85.05 0.08 0.52
HYPER 85.16 0.01 84.96 0.02 -0.20 85.17 0.01 0.01
LED a 73.72 0.02 73.69 0.02 -0.03 73.72 0.01 0.00
LED g 72.86 0.01 72.77 0.01 -0.09 72.82 0.00 -0.04
RBF f 72.35 0.01 71.59 0.01 -0.76 72.15 0.01 -0.20

RBF m 86.01 0.00 85.41 0.01 -0.60 85.75 0.01 -0.26
RTG 93.91 0.20 93.82 0.19 -0.09 94.03 0.20 0.12

SEA a 89.66 0.00 89.66 0.00 0.00 89.67 0.00 0.01
SEA g 89.24 0.00 89.25 0.00 0.01 89.25 0.00 0.01
AIRL 66.25 0.01 66.34 0.01 0.09 66.43 0.01 0.18

COVT 92.31 0.01 92.30 0.01 -0.01 92.35 0.01 0.04
ELEC 88.57 0.02 88.62 0.03 0.05 88.70 0.05 0.13

GMSC 93.55 0.01 93.54 0.00 -0.01 93.55 0.00 0.00
Average 84.13 0.03 84.06 0.04 -0.07 84.19 0.03 0.06

6.3.2 ELASTIC SWAP RANDOM FOREST

In this subsection we evaluate the complete ESRF ensemble, using both the
swap and elastic component together. Once we have seen in the previous sub-

78

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

section how the swap component is able to significantly reduce the number of
learners required in the ensemble, we want to see if the elastic component is
able to dynamically determine the most appropriate size for the FS. As be-
fore, accuracy and ensemble size are compared against the ARF100 baseline.

In order to asses the impact of grow and shrink thresholds (Tg and Ts in Al-
gorithm 4, respectively) in the accuracy and ensemble size, different sensitiv-
ity levels have been tested. Restrictive thresholds allow a resize operation only
when the difference for ∆shrunk or ∆grown is in first decimal or higher; sim-
ilarly, permissive thresholds allow differences in the second or third decimal.
In general, more permissive thresholds make ESRF grow faster, which in time,
reduces the differences with ARF100; however more restrictive thresholds
have the opposite effect. Consequently, a generic strategy for improving the
accuracy is to use of Tg = Ts and move along the diagonal from more restric-
tive thresholds (Tg = Ts = 0.5) to more permissive ones (Tg = Ts = 0.001),
as it can be appreciated in Figure 6.3.3 (real-world datasets) and Figure 6.3.2
(synthetic datasets). Although this generic strategy yields to an improvement
in the accuracy for all cases, observe that datasets such as SEA a, SEA g, LED g
and ELEC, obtained the best accuracy using a combination of restrictive shrink
and permissive grow thresholds.

The two thresholds can also be set to target different target scenarios. For
example, on hardware platforms, such as ARM boards typically used in Inter-
net of Things (IoT) applications, it may be desirable to make the ensemble
only grow if strictly needed and force it to reduce its size as soon as it can
in order to save memory and computation time. This can be achieved by us-
ing a shrink threshold (Ts) lower than the grow threshold (Tg), for example
Tg = 0.01 and Ts = 0.001. Table 6.3.3 details results obtained with this con-
figuration. Observe that the average performance of ESRF and ARF100 are
very similar (ESRF worse with −0.08 difference). In 11 out of the 14 datasets,
the difference in accuracy is never worse than -0.23, being able to outperform
ARF100 by 1 percentage point in the AGR g dataset. The three datasets pre-
senting more challenges to this configuration are RTG, RBF f, RBF m, being
the last the worst performing one (−0.81 difference). As shown in the central
and right part of this table, the main advantage of this configuration is that
the average number of trees used in the ensemble is 22, (4.5 times less trees
than ARF100, with the same proportional reduction in memory used); in 10
out of the 14 datasets ESRF never required more than 42 trees. This reduction
in the ensemble size implies an average speedup of 3.84x, or in other words,
may allow the use of devices up of 3.84x less powerful.

For other scenarios requiring higher accuracy, or in which memory or CPU
time are not an issue, ESRF may use more sensitive thresholds in order to
grow faster and reach higher accuracy requirements. For example, Table 6.3.4
shows the results that are obtained when using Tg = Ts = 0.001. This con-
figuration allows ESRF to grow larger in those datasets that were more chal-
lenging in Table 6.3.3, while keeping similar average size for the rest of the

79

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.4

0.2

0.0

0.2

0.4

0.6

(a) AGR a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.5

0.0

0.5

1.0

1.5

2.0

(b) AGR g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.225
0.200
0.175
0.150
0.125
0.100
0.075
0.050

(c) LED a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.35

0.30

0.25

0.20

0.15

0.10

0.05

(d) LED g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(e) RBF f

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

(f) RBF m

80

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce
0.06

0.05

0.04

0.03

0.02

(g) SEA a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010

(h) SEA g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.8

0.6

0.4

0.2

0.0

0.2

(i) HYPER

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5
Ac

cu
ra

cy
 d

iff
er

en
ce

0.4

0.3

0.2

0.1

0.0

(j) RTG

Figure 6.3.2: Influence of using a resize factor r = 1 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the synthetic datasets.
Negative numbers means ARF100 is better.

datasets. This narrows the difference in accuracy to be not lower than −0.05
in 12 out of the 14 datasets, and in the worst case −0.3 (RTG). In terms of
number of learners and speedup the same table shows a reduction of the exe-
cution time by 3.14x and the use of 33 learners on average, always compared
to ARF100.

For completeness, the results for ESRF using a resize factor r = 5 are
detailed in Figure 6.3.5 (real-world datasets) and Figure 6.3.4 (synthetic
datasets). In this configuration, the generic strategy mentioned above for
r = 1 (moving in the diagonal Tg = Ts) does not work as expected. For ex-
ample, moving to more permissive thresholds in the RBF f dataset, results in
accuracy differences larger than one percentage point. A generic observation

81

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

(a) AIRL (b) COVT

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.15

0.10

0.05

0.00

0.05

0.10

0.15

(c) ELEC

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.0400
0.0375
0.0350
0.0325
0.0300
0.0275
0.0250
0.0225
0.0200

(d) GMSC

Figure 6.3.3: Influence of using a resize factor r = 1 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the real-world datasets.
Negative numbers means ARF100 is better.

is that permissive shrink thresholds affects negatively the ESRF accuracy in
most datasets.

A proper strategy for r = 5 is to fix the shrink threshold to Ts = 0.5
and only varying the grow threshold (Tg). Table 6.3.5 details the case for
Tg = 0.01 and Ts = 0.5, which provides a similar accuracy than ARF100 using
an average of 50 learners. Larger resize factors makes the ESRF grow faster,
which in time, increases the ensemble performance at expenses of consuming
more CPU and memory due to the extra learners required.

In our opinion, a resize factor r = 1 the best option since it provides
a good balance between size and accuracy. Also, the strategy for balancing
this trade-off is very intuitive: only requires moving in the diagonal Tg = Ts,
where, more permissive the thresholds yield better performance at expenses
of increasing the ensemble size.

82

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Table 6.3.3: ESRF comparison with ARF100. Resource-constrained scenario:
Tg = 0.01 and Ts = 0.001

ARF100 ESRF accuracy ESRF speedup ESRF size
Dataset Acc(%) Time(s) Acc(%) Rank Delta Time(s) Speedup mean stdev max min
AGR a 89.73 22670.86 89.96 1 0.23 4423.66 5.12 11.86 2.49 25.00 10.00
AGR g 84.53 24630.29 85.55 1 1.02 4935.70 4.99 12.49 2.76 28.00 10.00
HYPER 85.16 20157.96 84.95 2 -0.21 7506.14 2.69 32.96 8.07 50.00 10.00
LED a 73.72 15344.18 73.59 2 -0.13 3439.01 4.46 19.74 6.32 38.00 10.00
LED g 72.86 15319.00 72.63 2 -0.23 3439.02 4.45 19.39 6.35 40.00 10.00
RBF f 72.35 19938.81 71.97 2 -0.38 9385.82 2.12 44.88 9.04 57.00 10.00
RBF m 86.01 19638.30 85.20 2 -0.81 6751.32 2.91 30.84 8.35 48.00 10.00
RTG 93.91 17669.59 93.45 2 -0.46 7611.35 2.32 11.73 2.54 30.00 10.00

SEA a 89.66 14298.62 89.62 2 -0.04 2913.33 4.91 14.72 1.63 20.00 12.00
SEA g 89.24 13979.24 89.20 2 -0.04 2902.59 4.82 14.72 1.63 20.00 12.00
AIRL 66.25 33588.54 66.34 1 0.09 12465.26 2.69 35.15 13.99 59.00 10.00
COVT 92.31 12625.36 92.14 2 -0.17 3352.87 3.77 23.10 5.04 37.00 10.00
ELEC 88.57 843.06 88.66 1 0.09 234.45 3.60 23.03 5.61 42.00 10.00
GMSC 93.55 2180.26 93.52 2 -0.03 443.70 4.91 14.10 1.61 17.00 10.00

Average 84.13 16634.58 84.06 1.71 -0.08 4986.02 3.84 22.05 5.39 36.50 10.29

Table 6.3.4: ESRF comparison with ARF100. Ts = Tg = 0.001

ARF100 ESRF accuracy ESRF speedup ESRF size
Dataset Acc(%) Time(s) Acc(%) Rank Delta Time(s) Speedup mean stdev max min
AGR a 89.73 22670.86 90.47 1 0.74 4916.52 4.61 12.42 2.92 26.00 10.00
AGR g 84.53 24630.29 86.53 1 2.00 5348.60 4.60 13.31 4.16 38.00 10.00
HYPER 85.16 20157.96 85.38 1 0.22 14878.47 1.35 72.03 22.60 89.00 10.00
LED a 73.72 15344.18 73.67 2 -0.05 3803.60 4.03 22.97 9.03 58.00 10.00
LED g 72.86 15319.00 72.74 2 -0.12 4119.97 3.72 24.75 10.60 49.00 10.00
RBF f 72.35 19938.81 72.30 2 -0.05 11706.91 1.70 57.24 17.10 89.00 10.00
RBF m 86.01 19638.30 85.87 2 -0.14 12117.52 1.62 61.58 19.05 89.00 10.00
RTG 93.91 17669.59 93.61 2 -0.30 6169.04 2.86 11.13 2.48 29.00 10.00

SEA a 89.66 14298.62 89.64 2 -0.02 3665.54 3.90 21.38 6.05 38.00 10.00
SEA g 89.24 13979.24 89.21 2 -0.03 3467.54 4.03 19.14 5.29 35.00 10.00
AIRL 66.25 33588.54 66.57 1 0.32 20700.48 1.62 66.36 20.79 89.00 10.00
COVT 92.31 12625.36 92.34 1 0.03 5065.27 2.49 40.24 12.57 61.00 10.00
ELEC 88.57 843.06 88.70 1 0.13 254.51 3.31 26.92 7.23 43.00 10.00
GMSC 93.55 2180.26 93.53 2 -0.02 521.10 4.18 18.30 4.44 35.00 10.00

Average 84.13 16634.58 84.33 1.57 0.19 6909.65 3.14 33.41 10.31 54.86 10.00

6.3.3 ELASTIC RANDOM FOREST

The last evaluation in this chapter assesses the performance of ESRF when
only using the elastic component, namely the ELASTIC RANDOM FOREST

(ERF). Again, results are compared to an ARF100 in terms of accuracy and
ensemble size. The results for the RTG dataset are missing due to large ex-
ecution times: ERF rapidly reaches 90 trees and further from it, many resize
operations are triggered increasing the execution time considerably.

The influence of the grow and shrink thresholds in the ERF accuracy are

83

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.4
0.3
0.2

0.1

0.0

0.1

0.2

(a) AGR a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.25
0.00
0.25
0.50
0.75
1.00
1.25

(b) AGR g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025

(c) LED a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

(d) LED g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

2.5

2.0

1.5

1.0

0.5

0.0

(e) RBF f

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

2.5

2.0

1.5

1.0

0.5

(f) RBF m

84

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce
0.05

0.04

0.03

0.02

0.01

0.00

(g) SEA a

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.05

0.04

0.03

0.02

0.01

0.00

(h) SEA g

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2

(i) HYPER

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5
Ac

cu
ra

cy
 d

iff
er

en
ce

1.4
1.2
1.0

0.8

0.6

0.4

0.2

(j) RTG

Figure 6.3.4: Influence of using a resize factor r = 5 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the synthetic datasets.
Negative numbers means ARF100 is better.

less significant than in ESRF: in almost all tests the ERF can adapt at early
steps, rapidly matching the ARF100 size and accuracy.

For example, using the resource-constrained configuration (Tg = 0.01 and
Ts = 0.001) the ERF average ensemble size is 90 with marginal differences
in the accuracy with respect the ARF100. Observe that when using both the
elastic and the swap mechanism (ESRF), the average ensemble size is four
times lower for the same thresholds configuration (see Table 6.3.3).

Without a component affecting the underlying ensemble behaviour (such
as the swap component), the elastic component in ERF only switches between
ARFs with different sizes. It is expected then that the ERF will prefer growing
over shrinking since the ARF accuracy slowly but constantly improves when

85

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.2

0.1

0.0

0.1

0.2

0.3

(a) AIRL

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.05

(b) COVT

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.1

0.0

0.1

0.2

0.3

0.4

(c) ELEC

Grow Threshold

0.0
01

0.0
05

0.0
1

0.0
5

0.1
0.2

5
0.5 Shrink T

hreshold

0.001

0.005

0.01

0.05

0.1
0.25

0.5

Ac
cu

ra
cy

 d
iff

er
en

ce

0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.000

(d) GMSC

Figure 6.3.5: Influence of using a resize factor r = 5 in the accuracy distance
w.r.t. ARF100 of the grow and shrink thresholds on the real-world datasets.
Negative numbers means ARF100 is better.

increasing the ensemble size from 10 to 100 (see Figure 6.1.1). Also, the ARF
accuracy never drops significantly at any point.

Even when using a very restrictive threshold configuration such as Tg = 0.1
and Ts = 0.1, ERF the average ensemble size is 91. In 13 out of 14 datasets
the average size is 85 or larger, indicating that the ERF is using high number
of tree most of the time. The ESF accuracy difference with respect ARF100 are
marginal: −0.02 on average.

86

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Table 6.3.5: ESRF resize factor r = 5 comparison with ARF100. Tg = 0.01 and
Ts = 0.5

ARF100 ESRF accuracy ESRF speedup ESRF size
Dataset Acc(%) Time(s) Acc(%) Rank Delta Time(s) Speedup mean stdev max min
AGR a 89.73 22670.86 89.97 1 0.24 7020.70 3.23 25.84 9.92 50.00 10.00
AGR g 84.53 24630.29 84.52 2 -0.01 6613.64 3.72 21.10 6.99 45.00 10.00
HYPER 85.16 20157.96 85.32 1 0.16 16212.10 1.24 79.40 18.18 89.00 10.00
LED a 73.72 15344.18 73.71 2 -0.01 7888.49 1.95 51.48 24.24 89.00 10.00
LED g 72.86 15319.00 72.79 2 -0.07 8691.49 1.76 56.72 22.83 89.00 10.00
RBF f 72.35 19938.81 72.66 1 0.31 16045.70 1.24 82.10 13.09 89.00 10.00
RBF m 86.01 19638.30 85.97 2 -0.04 15092.19 1.30 79.05 17.91 89.00 10.00
RTG 93.91 17669.59 93.85 2 -0.06 26050.77 0.68 38.96 14.00 60.00 10.00

SEA a 89.66 14298.62 89.65 2 -0.01 4518.45 3.16 27.85 6.82 40.00 10.00
SEA g 89.24 13979.24 89.24 1 0.00 4738.44 2.95 29.26 7.81 40.00 10.00
AIRL 66.25 33588.54 66.53 1 0.28 22724.20 1.48 74.39 19.62 89.00 10.00
COVT 92.31 12625.36 92.34 1 0.03 6768.14 1.87 56.85 22.46 89.00 10.00
ELEC 88.57 843.06 88.76 1 0.19 415.46 2.03 48.46 21.73 89.00 10.00
GMSC 93.55 2180.26 93.54 2 -0.01 736.14 2.96 28.24 9.75 50.00 10.00

Average 84.13 16634.58 84.20 1.50 0.07 10251.14 2.11 49.98 15.38 71.21 10.00

Table 6.3.6: ERF comparison with ARF100. Resource-constrained scenario:
Tg = 0.01 and Ts = 0.001

ARF100 ESRF accuracy ESRF speedup ESRF size
Dataset Acc(%) Time(s) Acc(%) Rank Delta Time(s) Speedup mean stdev max min
AGR a 89.73 22670.86 89.73 1 0.00 21998.92 1.03 97.72 2.79 99.00 12.00
AGR g 84.53 24630.29 84.81 1 0.28 24230.22 1.02 98.48 1.69 99.00 12.00
HYPER 85.16 20157.96 85.17 1 0.01 19985.14 1.01 98.96 1.37 99.00 13.00
LED a 73.72 15344.18 73.71 2 -0.01 14913.62 1.03 98.33 4.52 99.00 12.00
LED g 72.86 15319.00 72.84 2 -0.02 14941.38 1.03 98.46 4.50 99.00 12.00
RBF f 72.35 19938.81 72.31 2 -0.04 19596.19 1.02 98.32 2.94 99.00 12.00
RBF m 86.01 19638.30 86.02 1 0.01 19473.31 1.01 98.14 3.72 99 14.00
SEA a 89.66 14298.62 89.66 1 0.00 14088.31 1.01 98.80 2.45 99.00 11.00
SEA g 89.24 13979.24 89.25 1 0.01 13968.15 1.00 98.74 2.45 99.00 11.00
AIRL 66.25 33588.54 66.24 2 -0.01 34950.37 0.96 98.69 4.13 99.00 12.00
COVT 92.31 12625.36 92.32 1 0.01 12490.38 1.01 98.70 2.58 99.00 11.00
ELEC 88.57 843.06 88.70 1 0.13 785.47 1.07 93.65 19.99 99.00 13.00
GMSC 93.55 2180.26 93.57 1 0.02 2225.28 0.98 97.39 9.08 99.00 14.00

Average 83.38 16554.96 83.41 1.31 0.03 16434.36 1.01 90.48 4.50 91.38 11.15

6.4 Summary

This chapter presented a new ensemble method for evolving data streams:
ELASTIC SWAP RANDOM FOREST (ESRF). ESRF aims at reducing the number
of trees required by the reference ADAPTIVE RANDOM FOREST (ARF) ensem-
ble while providing similar accuracy. ESRF extends ARF with two orthogonal
components: 1) a swap component that splits learners into two sets based
on their accuracy (only classifiers with the highest accuracy are used to make
predictions); and 2) an elastic component for dynamically increasing or de-

87

Chapter 6 Resource-aware
Elastic Swap Random Forest for Evolving Data Streams

Table 6.3.7: ERF comparison with ARF100. Resource-constrained scenario:
Tg = 0.1 and Ts = 0.1

ARF100 ESRF accuracy ESRF speedup ESRF size
Dataset Acc(%) Time(s) Acc(%) Rank Delta Time(s) Speedup mean stdev max min
AGR a 89.73 22670.86 89.70 2 -0.03 21706.67 1.04 95.92 3.86 99.00 12.00
AGR g 84.53 24630.29 84.43 2 -0.10 24234.53 1.02 95.92 3.86 99.00 12.00
HYPER 85.16 20157.96 85.14 2 -0.02 19898.96 1.01 98.47 1.69 99.00 13.00
LED a 73.72 15344.18 73.69 2 -0.03 14040.89 1.09 93.01 16.46 99.00 12.00
LED g 72.86 15319.00 72.83 2 -0.03 14109.31 1.09 93.01 16.46 99.00 12.00
RBF f 72.35 19938.81 72.32 2 -0.03 19815.55 1.01 98.76 2.82 99.00 12.00
RBF m 86.01 19638.30 86.00 2 -0.01 19312.92 1.02 98.64 2.34 99.00 14.00
SEA a 89.66 14298.62 89.65 2 -0.01 11967.52 1.19 85.05 28.41 99.00 11.00
SEA g 89.24 13979.24 89.24 1 0.00 12093.98 1.16 85.05 28.41 99.00 11.00
AIRL 66.25 33588.54 66.24 2 -0.01 32640.22 1.03 98.56 5.35 99.00 12.00
COVT 92.31 12625.36 92.32 1 0.01 12433.49 1.02 98.83 2.48 99.00 11.00
ELEC 88.57 843.06 88.58 1 0.01 731.83 1.15 87.47 28.86 99.00 13.00
GMSC 93.55 2180.26 93.55 1 0.00 1254.44 1.74 56.50 42.09 99.00 14.00

Average 83.38 16554.96 83.36 1.69 -0.02 15710.79 1.12 91.17 14.08 99.00 12.23

creasing the number of classifiers in the ensemble. The experimental evalua-
tion of ESRF and comparison with the original ARF shows how the two new
components effectively contribute to reducing the number of classifiers up to
one third while providing almost the same accuracy, resulting in speed-ups in
terms of per-sample execution time close to 3x. In addition, a sensitivity anal-
ysis of the two thresholds determining the elastic nature of the ensemble has
been performed, establishing a trade-off in terms of resources (memory and
computational requirements) and accuracy (which in all cases is comparable
to the accuracy achieved by ARF100).

The next chapter presents the final contribution of this dissertation, a mul-
tithreaded ensemble for processing data streams that fully exploits modern
CPUs capabilities. The proposed design can process instances in the order of
few microseconds, meaning an average speedup of 85x with respect MOA.

88

7
Low-Latency Multi-threaded
Ensemble Learning for
Dynamic Big Data Streams

The last contribution in this dissertation is a high performance low-latency
incremental HT and multi-threaded ARF ensemble. Modularity, scalability and
adaptivity to a variety of hardware platforms, from edge to server devices, are
the main requirements that have driven the proposed design.

This contribution shows the opportunities the proposed design offers in
terms of optimised cache memory layout, use of vector SIMD capabilities
available in functional units and use of multiple cores inside the processor.
Although the parallelisation of decision trees and ensembles for batch classi-
fication has been considered in the last years, the solutions proposed do not
meet the requirements of real-time streaming.

An extensive evaluation of the proposed designs, in terms of accuracy and
performance, and comparison against two state–of–the–art reference imple-
mentations: MOA (Massive Online Analysis [12]) and StreamDM [40]. The
proposed designs are evaluated on a variety of hardware platforms, including
Intel i7 and Xeon processors and ARM–based SoC from Nvidia and Applied
Micro. This chapter also shows how the proposed single decision tree behaves
in low–end devices such as the Raspberry RPi3.

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

7.1 LMHT Design Overview

This section presents the design of LMHT, a Low-latency Multi-threaded Ho-
effding Tree aiming at providing portability to current processor architectures,
from mobile SoC to high–end multicore processors. In addition, LMHT has
been designed to be fully modular so that it can be reused as a standalone
tree or as a building block for other algorithms, including other types of deci-
sion trees and ensembles.

7.1.1 Tree Structure

The core of the LMHT binary tree data structure is completely agnostic with
regard to the implementation of leaves and counters. It has been designed
to be cache friendly, compacting in a single L1 CPU cache line an elementary
binary sub-tree with a certain depth. When the processor requests a node, it
fetches a cache line into L1 that contains an entire sub-tree; further accesses
to the sub-tree nodes result in cache hits, minimising the accesses to main
memory. For example, Figure 7.1.1 shows how a binary tree is split into 2
sub-trees, each one stored in a different cache line. In this example, each sub-
tree has a maximum height of 3, thus, a maximum of 8 leaves and 7 internal
nodes; leaves can point to root nodes of other sub-trees.

cache line

cache line

Figure 7.1.1: Splitting a binary tree into smaller binary trees that fit in cache
lines

In the scope of this chapter we assume 64-bit architectures and cache line
lengths of 64 bytes (the usual in Intel x86 64 and ARMv8 architectures to-
day). Although 64 bits are available only 48 bits are used to address memory,
leaving 16 bits for arbitrary data. Based on that we propose the cache line

90

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

layout shown in Figure 7.1.2: 8 consecutive rows, each 64 bits wide storing
a leaf flag (1 bit), an attribute index (15 bits) and a leaf pointer address (48
bits).

Figure 7.1.2: Sub-tree L1 cache line layout

With this layout a cache line can host a sub-tree with a maximum height
of 3 (8 leaves and 7 internal nodes, as the example shown in Figure 7.1.2).
The 1-bit leaf flag informs if the 48-bit leaf pointer points to the actual leaf
node data structure (where all the information related with the leaf is stored)
or points to the root node of the next sub-tree. The 15-bit attribute index field
indexes the attribute that is used in each one of the 7 possible internal nodes.
This imposes a maximum of 215 (32,768) combinations (i.e. attributes per

Figure 7.1.3: L1 cache line tree encoding

91

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

instance), one of them reserved to indicate that a sub-tree internal node is the
last node in the tree traversal. For current problem sizes we do not expect this
number of attributes to be a limiting factor. Having an invalid attribute index
allows sub-trees to be allocated entirely and internally grow in an incremental
way as needed.

The specific mapping (encoding) of the sub-tree into this 64-byte cache
line layout is shown in Figure 7.1.3. Regarding attributes, the root node at-
tribute index is stored in row 4, level 1 attributes are stored in rows 2 and 6,
and level 2 attributes are stored in rows 1, 3, 5 and 7; the attribute index in
row 0 is left unused. Regarding leaf pointers, they are mapped (and accessed)
using a 3-bit lookup value in which each bit represents the path taken at each
sub-tree level: the most significant bit is root node, next bit is the attribute in
level 1, and the least significant bit represents the attribute at level 2. The bit
is true if at that level the traverse took the left child, and false otherwise. The
resulting value is used as the row index (offset) to access to the leaf pointer
column.

7.1.2 Leaves and Counters

Each leaf node in the HT points to an instance of the data structure that encap-
sulates all the information that is required to compute its own split criterion
function (G in Algorithm 1) and apply a leaf classifier; the design for these
two functionalities is based on templates and polymorphism in order to pro-
vide the required portability and modularity. The key component in the pro-
posed design are the leaf counters, which have been arranged to take benefit
of the SIMD capabilities of nowadays core architectures.

For each label j (0 ≤ j < L) one needs to count how many times each
attribute i in the leaf (0 ≤ i < N) occurred with each one of its possible
values k (0 ≤ k < Vi). This requires L ×

∑N−1
i=0 Vi counters in total. For

simplicity, in this chapter we use binary attribute counters (though there is
no reason why other attribute counters could not be implemented) and no
missing attributes in the input instances. Therefore, for each label j one only
needs to count how many times attribute i had value 1 and the total number
of attributes seen for that label (in order to determine how many times each
attribute i had value 0). With these simplifications L × (N + 1) counters are
needed in total.

Attribute counters are stored consecutively in memory for each label, each
one occupying a certain number of bits (32 bits in the implementation in
this chapter). This layout in memory allows the use of SIMD registers and
instructions available in current processors. For example Intel AVX2 [63] can
accommodate 8 32-bit counters in each SIMD register and operate (sum for
example) them in parallel. The proposed layout allows the use of both vertical
(between two SIMD registers, e.g. the same attribute for different labels) and
horizontal (inside one SIMD register, e.g. different attributes or values for the

92

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

same attribute for the same label) SIMD instructions. These are the operations
needed to perform the additions, multiplications and divisions in expression
2.3 (the logarithm that is needed to compute the entropy is not available in
current SIMD instruction sets). The computation of the related Naive Bayes
classifier is also very similar in terms of operations required, so it also benefits
from SIMD in the same way.

7.2 Multithreaded Ensemble Learning

This section presents the design of a multithreaded ensemble for data streams.
Our proposed design is very similar to the Adaptive Random Forest (ARF) used
in Chapter 6, however, at the time of starting this project, ARF was not pub-
lished. The main differences between our proposed design and the ARF are in
the strategies for dealing with concept drifting and combining votings. When
a concept drift is detected, our design resets a tree while ARF uses two thresh-
olds for dealing with concept drifting: a permissive threshold warns a drift
and starts a local background learner which ends-up substituting the original
learner when the drift is confirmed. Also, in our design votings are combined
using the same weight for all learners, while in ARF a learner is weighted
using its accuracy.

The ensemble is composed of L learners, each one making use of the ran-
domHT described in the previous section. The overall design aims to low-
latency response time and good scalability on current multi-core processors,
also used in commodity low-end hardware.

Figure 7.2.1: Multithreaded ensemble design

The proposed multithreaded implementation makes use of N threads, as
shown in Figure 7.2.1: thread 1, the Data Parser thread, is in charge of parsing
the attributes for each input sample and enqueuing into the Instance Buffer;
threads 2 to N, the so-called Worker threads, execute the learners in parallel
to process each of the instances in the Instance Buffer. The number of threads
N is either the number of cores available in the processor, or the number of
hardware threads the processor supports in case hyper-threading is available
and enabled.

93

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

7.2.1 Instance Buffer

The key component in the design of the multithreaded ensamble is the In-
stance Buffer. Its design has been based on a simplified version of the LMAX
disruptor [105], a highly scalable low-latency ring buffer designed to share
data among threads.

In LMAX each thread has a sequence number that it uses to access the
ring buffer. LMAX is based on the single writer principle to avoid writing con-
tention: each thread only writes to its own sequence number, which can be
read by other threads. Sequence numbers are accessed using atomic opera-
tions to ensure atomicity in the access to them, enabling the at least one makes
progress semantics typically present on lock-less data structures.

Figure 7.2.2 shows the implementation of the Instance Buffer as an LMAX
Ring Buffer. The Head points to the last element inserted in the ring and
it is only written by the data parser thread, adding a new element in the
ring if and only if Head − Tail < #slots. Each worker thread i owns its
LastProcessedi sequence number, indicating the last instance processed by
worker i. The parser thread determines the overall buffer Tail using the circu-
lar lowest LastProcessedi for all workers i.

Figure 7.2.2: Instance buffer design

Atomic operations have an overhead: require fences to publish a value
written (order non-atomic memory accesses). In order to minimise the over-
head introduced, our proposed design allows workers to obtain instances from
the Ring Buffer in batches. The batch size is variable, depending on the values
of each worker LastProcessedi and Head.

7.2.2 Random Forest Workers and Learners

Random Forest learners are in charge of sampling the instances in the Instance
Buffer with repetition, doing the randomHT inference and, if required, reseting
a learner when drift is detected. Each worker thread has a number of learners
(|L|
|N−1| approximately) assigned in a static way (all learners l such that l%(N−

1) = i, being i the worker thread identifier). This static task distribution may

94

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

introduce certain load unbalance but avoids the synchronisation that would
be required by a dynamic assignment of learners to threads. In practice, we
do no expect this unbalance to be a big problem due to the randomisation
present in both the sampling and in the construction of the randomHT.

Each entry in the Ring Buffer stores the input instance and a buffer where
each worker stores the output of the classifiers. To minimise the accesses to
this buffer, each worker locally combines the output of its assigned learners
for each instance; once all learners assigned to the worker are finished, the
worker writes the combined result into the aforementioned buffer. Finally the
data parser thread is responsible of combining the outputs produced by the
workers and generating the final output.

7.3 Implementation Notes

This section includes some implementation notes that may be useful for some-
one willing to use the design proposed in this chapter or extend its function-
alities to implement other learners based on classification trees.

All the implementation relies on C++14 powerful template features. Tem-
plates replace dynamic allocations at runtime by static objects that can be
optimized by the compiler. Attribute counters are designed using a relaxed
version of the Single Responsibility Principle (SRP [82]). The counter class
only provides the data, and any extra functionalities such as the split criterion
(Information Gain in this study) or leaf classifier are implemented in a sepa-
rate object. Information gain and leaf classifiers rely on the compiler for the
automatic vectorisation of the computation in the HT leaves as a fast way to
achieve SIMD portability.

For safe access to the instance buffer in the multithreaded implementation
of Random Forest, the implementation makes use of the C++11 atomic API
(std::memory order), allowing to fine tune the order of memory accesses in a
portable way. In particular, the use of the memory order consume for write op-
erations and memory order relaxed for read operations. Regarding threads,
although the C++11 std::thread offers a portable API across platforms,
pinning threads to cores must be done using the native thread library (e.g.
Pthreads on Linux); thread pinning has been required to improve scalability
in some platforms.

7.4 Experimental Evaluation

This section evaluates the proposed design and implementation for both
LMHT and the multithreaded RF ensemble.

Performance and accuracy are compared against two state–of–the–art ref-
erence implementations: MOA (Massive Online Analysis [12]) and StreamDM

95

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

[40]. StreamDM does not provide a RF implementation, but we considered it
in the single HT evaluation since it is also written in C++.

In order to setup a basic environment for the evaluations, we implemented
binary counters for the HT which can only process binary attributes. This way,
all datasets used in the evaluations were binarized using the WEKA [33] un-
supervised NumericToBinary filter with the default values. The resulting bina-
rized datasets have 90+ binary attributes (except those generated with LED
and SEA dataset which have 25 binary features each). Table 7.4.1 summarises
the datasets used in this section and their resulting characteristics.

Table 7.4.1: Datasets used in the experimental evaluation, including both real
world and synthetic datasets

Dataset Samples Attributes Labels Generator
RBF1-6 1,000,000 91 5 RandomRBF Drift
HYPER1-2 1,000,000 91 5 Hyperplane
LED1 1,000,000 25 10 LED Drift
SEA1-2 1,000,000 25 2 SEA
COVT 581,012 134 7 Real world
ELEC 45,312 103 2 Real world

The hardware platforms that have been used to conduct the accuracy and
performance analysis in this section are summarised in Table 7.4.2. A desktop-
class Intel I7 platform is used to compare accuracy and to evaluate the perfor-
mance of the two reference platforms, StreamDM and MOA (running on Or-
acle JAVA JDK 1.8.0 73). In order to perform a more complete evaluation of
the throughput and scalability achieved by LMHT, additional platforms have
been used, including three ARM-based systems, from low-end Raspberry Pi3
to NVIDIA Jetson TX1 embedded system and Applied Micro X-Gene 2 server
board. Finally, a system based on the latest Intel Xeon generation sockets has
been used to explore the scalability limits of the multithreaded RF.

7.4.1 Hoeffding Tree Accuracy

Table 7.4.3 compares the accuracy achieved by MOA, StreamDM and LMHT.
The main conclusion is that the three implementations behave similarly, with
less than one percent difference in accuracy in all datasets but RBF2 and RBF5
for which LMHT improves almost two percent. On the real world data sets
(COVT and ELEC) learning curves are almost identically for all three imple-
mentations (not included for page limit reasons).

The minor differences that are observed are due to the fact that in few
cases LMHT obtains different values for the Hoeffding Bound (eq. 2.4) at the
same time step when compared to MOA, and this may cause node splits at
different time steps (and in few cases using different attributes). MOA uses

96

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

Table 7.4.2: Platforms used in the experimental evaluation

Platform Intel Xeon Intel i7 X-Gene2 Jetson TX1 Raspberry RPi3
Processor Xeon Platinum 8160 i7-5930K ARMv8-A Cortex A57 Cortex A53
Clock Speed 2.1Ghz 3.7 Ghz 2.4Ghz 1.9Ghz 1.2Ghz
Cores 24 6 8 4 4
RAM 96GB 64GB 128GB 4GB 1GB
Storage Network (gpfs) SSD Network (gpfs) eMMc Class 10 SD Card
SO SUSE 12 server Debian 8.7 Debian 8 L4T Fedora 26 64Bits
Kernel 4.4.59 4.7.8-1 4.3.0 3.10.96 4.11.8-300
Compiler GCC 7.1.0 GCC 6.3.0 GCC 6.1.0 GCC 6.1.0 GCC 7.1.0

Table 7.4.3: Single Hoeffding Tree accuracy comparison

Dataset MOA StreamDM LMHT
HYPER1 84.67 84.67 84.67
HYPER2 78.03 78.03 78.03
LED1 68.58 68.58 68.40
RBF1 82.04 82.04 82.98
RBF2 43.71 43.71 45.86
RBF3 31.58 31.58 32.24
RBF4 82.04 82.04 82.98
RBF5 75.88 75.88 77.40
RBF6 73.71 73.71 74.61
SEA1 85.81 85.81 85.85
SEA2 85.75 85.75 85.76
COVT 73.18 73.18 73.16
ELEC 79.14 79.14 79.14

dynamic vectors to store the attribute counters. These counters are forwarded
to child nodes as the previous class distribution in the presence of a split.
LMHT uses a preallocated vector that can only grow. In some cases these
vectors can have different sizes at the same time step, affecting the class range
used to compute the bound.

7.4.2 Hoeffding Tree Throughput Evaluation

Table 7.4.4 shows the throughput (instances per millisecond) achieved by the
two reference implementations and LMHT on the different platforms, for each
dataset and the average of all datasets. For each implementation/platform,
the speedup with respect to MOA is also shown.

On the Intel i7-based platform LMHT outperforms the two reference im-
plementations by a 6.7x factor, achieving on the average a throughput above
the 500 instances per millisecond. The worst case (COVT) has a throughput
close to 250 instances (of 134 attributes) per millisecond. StreamDM per-

97

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

Table 7.4.4: Single Hoeffding Tree throughput (instances per ms) on Intel
(top) and ARM (bottom) compared to MOA. ↓ indicates speed-down (MOA is
faster)

Intel
MOA(i7) StreamDM (i7) LMHT(i7)

Dataset inst/ms inst/ms Speedup inst/ms Speedup
HYPER1 62.11 54.79 0.88 ↓ 418.94 6.74
HYPER2 61.14 65.04 1.06 416.67 6.81
LED1 141.20 99.18 0.70 ↓ 834.03 5.91
RBF1 51.56 41.96 0.81 ↓ 333.00 6.46
RBF2 52.23 42.76 0.82 ↓ 333.56 6.39
RBF3 56.06 42.98 0.77 ↓ 332.78 5.94
RBF4 54.54 42.79 0.78 ↓ 334.56 6.13
RBF5 54.52 42.17 0.77 ↓ 326.90 6.00
RBF6 53.69 41.83 0.78 ↓ 332.56 6.19
SEA1 192.68 162.81 0.84 ↓ 1253.13 6.50
SEA2 179.22 166.09 0.93 ↓ 1250.00 6.97
COVT 41.20 34.65 0.84 ↓ 251.63 6.11
ELEC 36.70 60.98 1.66 415.71 11.33

Average 79.76 69.08 0.90 ↓ 525.65 6.73

Intel ARM
MOA(i7) LMHT(Jetson) LMHT(X-Gene2) LMHT(RPi3)

Dataset inst/ms inst/ms Speedup inst/ms Speedup inst/ms Speedup
HYPER1 62.11 127.96 2.06 101.18 1.63 89.57 1.44
HYPER2 61.14 128.49 2.10 127.16 2.08 89.39 1.46
LED1 141.20 277.01 1.96 231.27 1.64 79.81 0.57 ↓
RBF1 51.56 104.98 2.04 52.74 1.02 43.43 0.84 ↓
RBF2 52.23 107.54 2.06 94.71 1.81 42.84 0.82 ↓
RBF3 56.06 110.06 1.96 94.55 1.69 42.60 0.76 ↓
RBF4 54.54 110.84 2.03 95.30 1.75 43.43 0.80 ↓
RBF5 54.52 110.56 2.03 95.05 1.74 43.24 0.79 ↓
RBF6 53.69 110.24 2.05 94.81 1.77 42.95 0.80 ↓
SEA1 192.68 401.61 2.08 398.57 2.07 281.53 1.46
SEA2 179.22 402.58 2.25 398.57 2.22 281.69 1.57
COVT 41.20 78.67 1.91 68.13 1.65 43.78 1.06
ELEC 36.70 122.80 3.35 87.47 2.38 86.80 2.37

Average 79.76 168.72 2.14 149.19 1.80 93.16 1.13

forms the worst in almost all datasets, with an average slowdown compared
to MOA of 0.9.

On the Jetson and X-Gene2 ARM-based platforms, LMHT performs quite
similarly, achieving 3x lower throughput, on the average, compared to the
Intel i7-based system. However, on the average LMHT is able to process 168
and 149 instances per millisecond on these two ARM platforms, which is bet-
ter than the two reference implementations on the Intel i7, and in particular
2x better than MOA. The last column in Table 7.4.4 corresponds to the RPi3
throughput, which is similar to MOA on the Intel i7, showing how the imple-

98

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

Table 7.4.5: Comparing LMHT parser overhead (instances per ms). Parser
includes time to parse and process input data; No Parser means data is already
parsed in memory.

Dataset Parser No Parser speedup
HYPER1 418.94 1647.45 3.93
HYPER2 416.67 1636.66 3.93
LED1 834.03 1550.39 1.86
RBF1 333.00 890.47 2.67
RBF2 333.56 878.73 2.63
RBF3 332.78 881.83 2.65
RBF4 334.56 889.68 2.66
RBF5 326.90 884.96 2.71
RBF6 332.56 875.66 2.63
SEA1 1253.13 4000.00 3.19
SEA2 1250.00 4000.00 3.20
COVT 251.63 859.49 3.42
ELEC 415.71 1618.29 3.89
Average 525.65 1585.66 3.03

mentation of LMHT is portable to low-end devices doing real-time classifica-
tion on the edge.

The results are summarized in terms of performances in Figure 7.4.1, and
in terms of throughput in Figure 7.4.2. Up to this point, the main factor
limiting the performance of LMHT on a single HT is the CSV parser, which is in
charge of reading from a file the attributes for each input sample. In order to
disect the influence of this parser, Table 7.4.5 shows the overhead introduced
by the parser when data is read from a file or when data is already parsed and
directly streamed from memory, resulting in an average 3x improvement.

7.4.3 Random Forest Accuracy and Throughput

In this section we compare the performance and accuracy of MOA and the
proposed RF ensemble design with 100 learners. Table 7.4.6 compares the
accuracy of the two implementations, with less than one percentage points of
difference in the average accuracy. The comparison with StreamDM is not pos-
sible since it does not provide an implementation for RF. The same table also
shows the numerical stability of LMHT, with a small standard deviation (on
12 runs). These variations in LMHT are due to the random number generator
used at the sampling and random attributes selection. LMHT uses a different
seed at each execution, while MOA uses a default seed (unless a custom one
is specified by the user; we used the default seed in MOA).

As with the single HT, learning curves for the real world datasets COVT

99

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

CO
VT

EL
EC

HY
PE

R1

HY
PE

R2

LE
D1

RB
F1

RB
F2

RB
F3

RB
F4

RB
F5

RB
F6

SE
A1

SE
A2

Datasets

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

10

StreamDM (Intel i7)
LMHT (Intel i7)
LMHT (Jetson TX1)

LMHT (X-Gene2)
LMHT (Rpi3)

Figure 7.4.1: LMHT and StreamDM speedup over MOA using a single HT
(Intel i7). Down bars mean speed-down (slower than MOA)

Table 7.4.6: Random Forest Accuraccy

MOA LMHT
Dataset Avg. Std. dev.
HYPER1 87.97 88.41 0.24
HYPER2 83.18 82.48 0.24
LED1 68.68 68.18 0.20
RBF1 86.35 87.39 0.13
RBF2 65.96 68.04 0.14
RBF3 40.61 45.05 0.12
RBF4 86.35 87.41 0.13
RBF5 81.42 82.79 0.12
RBF6 79.10 79.81 0.12
SEA1 86.49 86.54 0.24
SEA2 86.48 86.53 0.24
COVT 85.34 86.37 0.23
ELEC 82.41 82.12 0.22

and ELEC have a similar pattern, as shown in Figure 7.4.3: at early stages
LMHT is slightly better, but soon they become very similar.

Table 7.4.7 summarises the results in terms of throughput, comparing

100

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

CO
VT

EL
EC

HY
PE

R1

HY
PE

R2

LE
D1

RB
F1

RB
F2

RB
F3

RB
F4

RB
F5

RB
F6

SE
A1

SE
A2

Datasets

0

100

200

300

400

500

In
st

an
ce

s/
m

s

83
4

12
53

12
50

LMHT MOA STREAMDM

Figure 7.4.2: LMHT, StreamDM and MOA single HT throughput comparison
(instances/ms)

again with the performance that the MOA reference implementation provides.
On the same hardware platform (Intel i7) we observe an average throughput
improvement of 85x compared to MOA when 11 threads are used as workers,
resulting on an average throughput very close to 100 instances per millisec-
ond; MOA throughput is less than 2 instances per millisecond in all tests. The
Intel Xeon platform results in almost the same throughput than the Intel i7
which uses a much modest core count (6 instead of 24). Two main reasons
for this behaviour: 1) the parser thread reads data from a CSV file stored
in GPFS on a large cluster with several thousand nodes; if the parser thread
directly streams data from memory, the throughput that is obtained raises to
175 instances per millisecond (143x faster than MOA). And 2) the different
clock frequencies at which the i7 and Xeon sockets operate (3.7 and 2.1 GHz,
respectively, as shown in Table 7.4.2); in any case, the Xeon–based platform
allows us to do an scalability analysis up to a larger number of cores.

On the ARM-based platforms we observe improvements of 10x and 20x on
the Jetson TX1 and X-Gene2 platforms, respectively.

101

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

0 100000 200000 300000 400000 500000 600000
Instances

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MOA LMHT

0 10000 20000 30000 40000
Instances

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MOA LMHT

Figure 7.4.3: Random Forest learning curve: COVT (top) and ELEC (bottom)

102

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

Table 7.4.7: Random Forest throughput comparison (instances/ms)

Intel ARM
MOA(i7) LMHT(i7) LMHT(Jetson) LMHT(X-Gene2) LMHT(RPi3)
1 Worker 11 Workers 23 Workers 3 Workers 7 Workers

Dataset inst/ms inst/ms Speedup inst/ms Speedup inst/ms Speedup inst/ms Speedup
HYPER1 1.15 103.42 90.25 100.63 87.82 12.51 10.92 28.52 24.89
HYPER2 1.37 98.89 72.23 97.99 71.57 11.19 8.18 26.95 19.68
LED1 1.54 100.95 65.56 142.11 92.29 12.07 7.84 26.99 17.53
RBF1 0.93 103.00 111.29 105.99 114.53 13.17 14.23 29.49 31.87
RBF2 1.15 101.54 87.97 104.55 90.57 13.05 11.30 29.21 25.31
RBF3 1.72 99.86 57.91 103.36 59.93 12.70 7.36 28.49 16.52
RBF4 0.91 102.70 113.07 103.64 114.10 13.17 14.50 29.76 32.77
RBF5 0.92 102.09 111.47 104.03 113.58 13.13 14.33 29.32 32.02
RBF6 0.94 103.08 109.72 106.76 113.63 13.14 13.98 29.49 31.39
SEA1 1.71 127.39 74.29 131.08 76.44 12.36 7.21 30.76 17.94
SEA2 1.74 124.64 71.67 127.00 73.03 11.54 6.64 30.20 17.37
COVT 1.30 96.48 74.22 90.85 69.89 14.68 11.29 31.31 24.09
ELEC 1.48 109.71 74.03 97.87 66.04 15.04 10.15 23.32 15.74

Average 1.30 105.67 85.67 108.91 87.95 12.90 10.61 28.76 23.62

7.4.4 Random Forest Scalability

Finally, this subsection analyses the scalability of the proposed ensemble im-
plementation with the number of worker threads, always limiting the analysis
to the number of cores (hardware threads) available in a socket. On the com-
modity Intel i7 platform, LMHT achieves a relative speedup with respect to
single threaded execution, between 5-7x when using 11 workers (12 threads),
as shown in Figure 7.4.4. It is interesting to observe the drop in performance
observed when going from 5 to 6 worker threads. Since the i7-5930K pro-
cessor has 6 cores and 12 threads (two threads mapped on the same physical
core), when 6 workers are used they start competing for the same physical
cores introducing some work imbalance. However, the hyperthreading capa-
bilities of the i7-5930K are able to mitigate this as the number of threads tends
to the maximum hardware threads.

X-Gene2 scalability has some variability for the different datasets and
speed-ups in the range 5-6.5x when using 7 worker threads (Figure 7.4.6).
On the other side, Jetson achieves an almost linear speedup very close to 3x
when using 3 threads as workers (Figure 7.4.5).

In order to better study the scalability limits of the LMHT ensemble, we
have extended our evaluation to one of the latest Intel Xeon Scalable Proces-
sor, the Platinum 8160 socket which include 24 cores. To better analyse if
the limits are in the producer parser thread or in the implementation of the
instance buffer and worker threads, we consider two scenarios: parser thread
reading instances from storage and directly streaming them from memory.

The two plots in Figure 7.4.7 show the speed-up, with respect to a single
worker, that is achieved when using up to 24 cores (23 worker threads). With

103

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

1 2 3 4 5 6 7 8 9 10 11

Workers threads

1

2

3

4

5

6

7

Re
la

tiv
e

Sp
ee

du
p

COVT
ELEC
HYPER1
HYPER2
LED1

RBF1
RBF2
RBF3
RBF4

RBF5
RBF6
SEA1
SEA2

Figure 7.4.4: Random Forest relative speedup on Intel i7

the parser from storage (top plot), an speed-up between 6-11x is obtained
when using 23 worker threads, which corresponds to a parallel efficiency be-
low 45%. Both figures raise to 10-16x and 70% when the parser streams
directly from memory (bottom plot).

Scalability curves in all tests have the similar shape, and the only different
is the maximum scalability achieved. This may be due the nature of the differ-
ent datasets affecting how our architecture fully exploits all cores. However,
validating this hypotheses requires an in deep study which is out of the scope
of this thesis and it is delayed to future work.

7.5 Summary

This chapter presented a novel design for real-time data stream classification,
based on a Random Forest ensemble of randomised Hoeffding Trees. This
work goes one big step further in fulfilling the low-latency requirements of
today and future real-time analytics. Modularity and adaptivity to a variety of
hardware platforms, from server to edge computing, has also been considered
as a requirement driving the proposed design. The design favours an effective
use of cache, SIMD units and multicores in nowadays processor sockets.

Accuracy of the proposed design has been validated with two reference im-
plementations: MOA (for HT and Random Forest) and StreamDM (for HT).

104

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

1 2 3

Workers threads

1

2

3

Re
la

tiv
e

Sp
ee

du
p

COVT
ELEC
HYPER1
HPER2
LED1

RBF1
RBF2
RBF3
RBF4

RBF5
RBF6
SEA1
SEA2

Figure 7.4.5: Random Forest relative speedup on Jetson TX1

1 2 3 4 5 6 7

Workers threads

1

2

3

4

5

6

7

Re
la

tiv
e

Sp
ee

du
p

COVT
ELEC
HYPER1
HYPER2
LED1
RBF1
RBF2

RBF3
RBF4
RBF5
RBF6
SEA1
SEA2

Figure 7.4.6: Random Forest speedup on X-Gene2

105

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Workers threads

1

2

3

4

5

6

7

8

9

10

11
Re

la
tiv

e
Sp

ee
du

p

COVT
ELEC
HYPER1
HYPER2
LED1

RBF1
RBF2
RBF3
RBF4

RBF5
RBF6
SEA1
SEA2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Workers threads

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Re
la

tiv
e

Sp
ee

du
p

COVT
ELEC
HYPER1
HYPER2
LED1

RBF1
RBF2
RBF3
RBF4

RBF5
RBF6
SEA1
SEA2

Figure 7.4.7: Intel Xeon Platinum 8160 scalability, with the parser thread
streaming from storage (top) and memory (bottom).

106

Chapter 7 Low-Latency Multi-threaded Ensemble Learning for Dynamic Big Data
Streams

Throughput is evaluated on a variety of platforms. On Intel-based systems:
i7 desktop (6 cores) and Xeon server (24 cores) class sockets. And on ARM-
based systems: NVIDIA Jetson TX1 (4 cores), Applied Micro X-Gene2 (8 cores)
and low-end Raspberry RPi3 (4 cores). For single HT the performance eval-
uation in terms of throughput reports 6.7x (i7), around 2x (Jetson TX1 and
X-Gene2) and above 1x (RPi3) compared to MOA executed in i7. For Ran-
dom Forest the evaluation reports throughput improvements of 85x (i7), 87x
(Xeon parsing from memory), 10x (Jetson TX1) and 23x (X-Gene2) compared
to single-threaded MOA on i7. The proposed multi-threaded implementation
for the ensemble shows good scalability up to the largest core count socket
that we have evaluated (75% parallel efficiency when using 24 cores on the
Intel Xeon).

The evaluation also reports how the parser thread, in charge of feeding
instances to the HT and ensemble, can easily limit throughput. The limits are
mainly observed because of the media used to store the data (GPFS, solid–
state disks, eMMC, SD, ...) that feeds the learners. For large core counts, we
need to investigate if the proposed single–parser design limits scalability and
find the appropriate number of learners per parser ratio.

107

8
Conclusions

This dissertation focus on improving the performance of the Hoeffding Tree
(HT) and its ensembles combinations by 1) improving single tree accuracy
(Echo State Hoeffding Tree), 2) reducing ensembles of HTs resource consump-
tion (Resource-Aware Elastic Swap Random Forest), and 3) providing a high
performant and scalable ensemble of HTs design that is able to scale linearly
and process instances in the order of microseconds on a desktop class intel
CPU (Ultra-low latency Random Forest).

This final chapter first reviews all the important results achieved in this dis-
sertation, and later discusses future work that will follow from our research.

8.1 Summary of Results

Data Stream Classification using Random Features

We proposed a random layer for Neural Networks (NNs) that can turn a simple
gradient descent learner into a competitive method for continual learning of
data streams. We highlighted important issues of using NNs for processing
data streams, being the most critical one the fact that NNs are very sensitive
to hyper-parameters configuration, requiring many combinations to be tested

Chapter 8 Conclusions

in order to achieve competitive accuracy; this is not feasible in a data streams
setup, and solving this issue is out of the scope of this dissertation.

Echo State Hoeffding Tree Learning

We proposed a novel architecture to learn temporal dependencies present in
data streams. The proposal is based on the combination of the reservoir in the
Echo State Network (ESN) and a Hoeffding Tree (on classification problems)
or a FIMT-DD (regression).

We showed that the ESHT is able to learn three string-based functions
typically implemented by a programmer. Our combination is able to learn
faster than the standard ESN with fast adaptation to new unseen sequences
as opposed to the standard FIMT-DD. The hyper-parameters required by the
ESHT have a more predictable effect on the final accuracy than the hyper-
parameters in typical neural networks (such as learning rate or momentum).

Despite the regression version of the ESHT achieving good results, the
classification version did not performed as expected. On classification prob-
lems, we showed that our proposed architecture is able to improve a single
HT on learning three well-known data streams datasets. However, it was not
able to clearly outperform ensemble methods. In addition, there is no simple
correlation between accuracy and hyper-parameters configuration on classifi-
cation problems, which makes not very suitable for production environment
as opposed to other well established methods such as the Adaptive Random
Forest.

Resource-Aware Elastic Swap Adaptive Randomf Forest

The Elastic Swap Random Forest (ESRF) is an extension to the Adaptive Ran-
dom Forest (ARF) ensemble method for reducing the number of base learners
required. It extends ARF with two orthogonal components: 1) a swap compo-
nent that splits learners into two sets based on their accuracy (only classifiers
with the highest accuracy are used to make predictions); and 2) an elastic
component for dynamically increasing or decreasing the number of classifiers
in the ensemble.

We showed in the evaluations that how the two new components effec-
tively contribute to reducing the number of classifiers up to one third (com-
pared to the original ARF) while providing almost the same accuracy, resulting
in speed-ups in terms of per-sample execution time close to 3x.

Furthermore, we made a sensitivity analysis of the two thresholds deter-
mining the elastic nature of the ensemble, establishing a trade–off in terms
of resources (memory and computational requirements) and accuracy (which
in all cases is comparable to the accuracy achieved by ARF100). This enables
ESHT to be deployed on more constrained hardware environments, such those
used in the IoT.

110

Chapter 8 Conclusions

Ultra-low latency Random Forest

This work goes one big step further in fulfilling the low-latency requirements
of today and future real-time analytics by exploiting current capabilities avail-
able on modern processors. We provide an flat ensemble architecture which is
modular and adaptive to a variety of hardware platforms, from server to edge
computing.

Accuracy of the proposed design has been validated with two reference im-
plementations: MOA (for HT and Random Forest) and StreamDM (for HT).
Throughput is evaluated on a variety of platforms. On Intel-based systems:
i7 desktop (6 cores) and Xeon server (24 cores) class sockets. And on ARM-
based systems: NVIDIA Jetson TX1 (4 cores), Applied Micro X-Gene2 (8 cores)
and low-end Raspberry RPi3 (4 cores). For single HT the performance eval-
uation in terms of throughput reports 6.7x (i7), around 2x (Jetson TX1 and
X-Gene2) and above 1x (RPi3) compared to MOA executed in i7. For Ran-
dom Forest the evaluation reports throughput improvements of 85x (i7), 143x
(Xeon parsing from memory), 10x (Jetson TX1) and 23x (X-Gene2) compared
to single-threaded MOA on i7. The proposed multi-threaded implementation
for the ensemble shows good scalability up to the largest core count socket
that we have evaluated (75% parallel efficiency when using 24 cores on the
Intel Xeon).

The evaluation also reports how the parser thread, in charge of feeding
instances to the HT and ensemble, can easily limit throughput. The limits are
mainly observed because of the media used to store the data (GPFS, solid–
state disks, eMMC, SD, ...) that feeds the learners.

8.2 Future Work

Our future work research involves extending the contributions presented in
chapters 6 and 7.

Resource-Aware Elastic Swap Random Forest

As part of our future work, we plan to improve the resize logic, trying to make
it more adaptive and correlated with the performance evolution of each tree
and their drift detectors. Also, we plan to make it more generic by extending
the work to other ensemble architectures. Finally, we would like to evaluate
our proposal with other base learners.

Ultra-low latency Random Forest

Future work involves investigating if the proposed single–parser design limits
scalability and finding the optimal number of learners per parser ratio. How to
improve the implementation in order to consider counters for attributes other

111

Chapter 8 Conclusions

than binary, is also part of our potential future work. We would like to work on
scaling the evaluation to multi-socket nodes in which NUMA may be critical
for performance. Finally, for dealing with large quantities of data, we would
like to distribute the ensemble across several nodes in a cluster/distributed
system.

112

Bibliography

[1] R. AGRAWAL, T. IMIELINSKI, AND A. SWAMI, Database mining: A perfor-
mance perspective, IEEE Trans. on Knowl. and Data Eng., 5 (1993),
pp. 914–925.

[2] G. H. R. K. ALBERT BIFET AND B. PFAHRINGER, Moa data stream min-
ing: A practical approach, 2011.

[3] P. BALDI, P. SADOWSKI, AND D. O. WHITESON, Searching for exotic
particles in high-energy physics with deep learning., Nature commu-
nications, 5 (2014), p. 4308.

[4] J. P. BARDDAL, H. M. GOMES, AND F. ENEMBRECK, Sfnclassifier: A scale-
free social network method to handle concept drift, in Proceedings of
the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
New York, NY, USA, 2014, ACM, pp. 786–791.

[5] G. E. A. P. A. BATISTA AND M. C. MONARD, A study of k-nearest neigh-
bour as an imputation method, in HIS, 2002, pp. 251–260.

[6] Y. BEN-HAIM AND E. TOM-TOV, A streaming parallel decision tree algo-
rithm, J. Mach. Learn. Res., 11 (2010), pp. 849–872.

[7] A. BESEDIN, P. BLANCHART, M. CRUCIANU, AND M. FERECATU, Evolu-
tive deep models for online learning on data streams with no storage,
in ECML/PKDD 2017 Workshop on Large-scale Learning from Data
Streams in Evolving Environments, Skopje, Macedonia, September
2017.

[8] A. BIFET, G. DE FRANCISCI MORALES, J. READ, G. HOLMES, AND

B. PFAHRINGER, Efficient online evaluation of big data stream clas-
sifiers, in Proceedings of the 21th ACM SIGKDD International Con-

BIBLIOGRAPHY

ference on Knowledge Discovery and Data Mining, KDD ’15, New
York, NY, USA, 2015, ACM, pp. 59–68.

[9] A. BIFET, E. FRANK, G. HOLMES, AND B. PFAHRINGER, Ensembles of re-
stricted hoeffding trees, ACM Trans. Intell. Syst. Technol., 3 (2012),
pp. 30:1–30:20.

[10] A. BIFET AND R. GAVALDÀ, Learning from Time-Changing Data with
Adaptive Windowing, in 2007 SIAM International Conference on
Data Mining (SDM’07), 2007.

[11] A. BIFET AND R. GAVALDÀ, Adaptive learning from evolving data streams,
in Advances in Intelligent Data Analysis VIII, N. M. Adams, C. Ro-
bardet, A. Siebes, and J.-F. Boulicaut, eds., Berlin, Heidelberg,
2009, Springer Berlin Heidelberg, pp. 249–260.

[12] A. BIFET, G. HOLMES, R. KIRKBY, AND B. PFAHRINGER, MOA: Massive
online analysis, J. Mach. Learn. Res., 11 (2010), pp. 1601–1604.

[13] A. BIFET, G. HOLMES, AND B. PFAHRINGER, Leveraging Bagging for
Evolving Data Streams, in Machine Learning and Knowledge Dis-
covery in Databases, Springer, 2010, pp. 135–150–150.

[14] A. BIFET AND R. KIRKBY, Data stream mining a practical approach,
(2009).

[15] J. A. BLACKARD AND D. J. DEAN, Comparative accuracies of artificial
neural networks and discriminant analysis in predicting forest cover
types from cartographic variables, 1999.

[16] L. K. BRANDON S PARKER, AHMAD MUSTAFA, Novel class detection
and feature via a tiered ensemble approach for stream mining, 24th
IEEE International Conference on Tools with Artificial Intelligence,
(2012).

[17] L. BREIMAN, Bagging predictors, Machine Learning, 24 (1996),
pp. 123–140.

[18] L. BREIMAN, Random forests, Machine Learning, 45 (2001), pp. 5–32.

[19] L. BREIMAN, J. FRIEDMAN, C. STONE, AND R. OLSHEN, Classification
and Regression Trees, The Wadsworth and Brooks-Cole statistics-
probability series, Taylor & Francis, 1984.

[20] L. BREIMAN, D. WOLPERT, P. CHAN, AND S. STOLFO, Pasting small votes
for classification in large databases and on-line, in Machine Learning,
1999, pp. 85–103.

[21] T. BUJLOW, T. RIAZ, AND J. M. PEDERSEN, Classification of http traffic
based on c5.0 machine learning algorithm, in 2012 IEEE Symposium
on Computers and Communications (ISCC), July 2012.

114

BIBLIOGRAPHY

[22] R. CARUANA AND A. NICULESCU-MIZIL, An empirical comparison of su-
pervised learning algorithms, in In Proc. 23 rd Intl. Conf. Machine
learning (ICML’06, 2006, pp. 161–168.

[23] A. CAUCHY, Méthode générale pour la résolution des systemes d’́equations
simultanées, 1847, pp. 536–538.

[24] G. CAUWENBERGHS AND T. POGGIO, Incremental and decremental sup-
port vector machine learning, in Proceedings of the 13th Inter-
national Conference on Neural Information Processing Systems,
NIPS’00, Cambridge, MA, USA, 2000, MIT Press, pp. 388–394.

[25] K. COMPATITION, Give me some credit dataset.
https://www.kaggle.com/c/GiveMeSomeCredit.

[26] M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI, Maintaining stream
statistics over sliding windows: (extended abstract), in Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’02, Philadelphia, PA, USA, 2002, Society for Indus-
trial and Applied Mathematics, pp. 635–644.

[27] A. P. DAWID, Present position and potential developments: Some personal
views: Statistical theory: The prequential approach, 1984, pp. 278–
292.

[28] R. DEY AND F. M. SALEM, Gate-variants of gated recurrent unit (GRU)
neural networks, CoRR, abs/1701.05923 (2017).

[29] T. G. DIETTERICH, Ensemble methods in machine learning, in Proceed-
ings of the First International Workshop on Multiple Classifier Sys-
tems, MCS ’00, London, UK, UK, 2000, Springer-Verlag, pp. 1–15.

[30] P. DOMINGOS AND G. HULTEN, Mining high-speed data streams, in
Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2000, pp. 71–80.

[31] P. DOMINGOS AND G. HULTEN, Mining high-speed data streams, in Pro-
ceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, 2000, pp. 71–80.

[32] J. DUCHI, E. HAZAN, AND Y. SINGER, Adaptive subgradient methods for
online learning and stochastic optimization, Tech. Rep. UCB/EECS-
2010-24, EECS Department, University of California, Berkeley, Mar
2010.

[33] E. FRANK, M. A. HALL, AND I. H. WITTEN, The WEKA Workbench. On-
line Appendix for ”Data Mining: Practical Machine Learning Tools and
Techniques”, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 4th ed., 2016.

[34] E. FRANK, G. HOLMES, R. KIRKBY, AND M. HALL, Racing committees for
large datasets, in Discovery Science, S. Lange, K. Satoh, and C. H.

115

BIBLIOGRAPHY

Smith, eds., Berlin, Heidelberg, 2002, Springer Berlin Heidelberg,
pp. 153–164.

[35] Y. FREUND AND R. E. SCHAPIRE, A decision-theoretic generalization of
on-line learning and an application to boosting, 1996.

[36] Y. FREUND AND R. E. SCHAPIRE, A decision-theoretic generalization of
on-line learning and an application to boosting, J. Comput. Syst. Sci.,
55 (1997), pp. 119–139.

[37] J. GAMA, I. ŽLIOBAITĖ, A. BIFET, M. PECHENIZKIY, AND

A. BOUCHACHIA, A survey on concept drift adaptation, ACM Com-
put. Surv., 46 (2014), pp. 44:1–44:37.

[38] J. A. GAMA, R. ROCHA, AND P. MEDAS, Accurate decision trees for
mining high-speed data streams, in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, New York, NY, USA, 2003, ACM, pp. 523–
528.

[39] A. GHAZIKHANI, R. MONSEFI, AND H. SADOGHI YAZDI, Online neural
network model for non-stationary and imbalanced data stream clas-
sification, International Journal of Machine Learning and Cybernet-
ics, 5 (2014), pp. 51–62.

[40] GITHUB, ed., StreamDM-C++: C++ Stream Data Mining, IEEE Com-
puter Society, 2015.

[41] C. GOLLER AND A. KÜCHLER, Learning task-dependent distributed repre-
sentations by backpropagation through structure, Proceedings of In-
ternational Conference on Neural Networks (ICNN’96), 1 (1996),
pp. 347–352 vol.1.

[42] H. M. GOMES, J. P. BARDDAL, L. E. BOIKO, AND A. BIFET, Adaptive
random forests for data stream regression, April 2018.

[43] H. M. GOMES, J. P. BARDDAL, F. ENEMBRECK, AND A. BIFET, A survey
on ensemble learning for data stream classification, ACM Comput.
Surv., 50 (2017), pp. 23:1–23:36.

[44] H. M. GOMES, A. BIFET, J. READ, J. P. BARDDAL, F. ENEMBRECK,
B. PFHARINGER, G. HOLMES, AND T. ABDESSALEM, Adaptive random
forests for evolving data stream classification, Machine Learning, 106
(2017), pp. 1469–1495.

[45] I. GOODFELLOW, J. POUGET-ABADIE, M. MIRZA, B. XU, D. WARDE-
FARLEY, S. OZAIR, A. COURVILLE, AND Y. BENGIO, Generative adver-
sarial nets, in Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, eds., Curran Associates, Inc., 2014, pp. 2672–2680.

116

BIBLIOGRAPHY

[46] B. GU, V. S. SHENG, Z. WANG, D. HO, S. OSMAN, AND S. LI, Incre-
mental learning for v-support vector regression, Neural Networks, 67
(2015), pp. 140 – 150.

[47] J. HADAMARD, Théorie des équations aux dérivées partielles linéaires
hyperboliques et du problème de cauchy, Acta Math., 31 (1908),
pp. 333–380.

[48] M. HARRIES, U. N. CSE TR, AND N. S. WALES, Splice-2 comparative
evaluation: Electricity pricing, tech. rep., 1999.

[49] S. HASHEMI, Y. YANG, Z. MIRZAMOMEN, AND M. KANGAVARI, Adapted
one-vs-all decision trees for data stream classification, 2009.

[50] K. HE, X. ZHANG, S. REN, AND J. SUN, Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification, in The
IEEE International Conference on Computer Vision (ICCV), Decem-
ber 2015.

[51] R. HECHT-NIELSEN, Neural networks for perception (vol. 2), Harcourt
Brace & Co., Orlando, FL, USA, 1992, ch. Theory of the Backpropa-
gation Neural Network, pp. 65–93.

[52] J. HECK AND F. M. SALEM, Simplified minimal gated unit variations for
recurrent neural networks, CoRR, abs/1701.03452 (2017).

[53] S. HOCHREITER AND J. SCHMIDHUBER, Long short-term memory, Neural
Comput., 9 (1997), pp. 1735–1780.

[54] W. HOEFFDING, Probability inequalities for sums of bounded ran-
dom variables, Journal of the American Statistical Association, 58
(1963), pp. 13–30.

[55] G. HOLMES, R. KIRKBY, AND B. PFAHRINGER, Stress-testing hoeffding
trees, in Knowledge Discovery in Databases: PKDD 2005, A. M.
Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, eds., Berlin,
Heidelberg, 2005, Springer Berlin Heidelberg, pp. 495–502.

[56] G. HUANG, What are extreme learning machines? filling the gap between
frank rosenblatt’s dream and john von neumann’s puzzle, Cognitive
Computation, 7 (2015), pp. 263–278.

[57] G.-B. HUANG, L. CHEN, AND C.-K. SIEW, Universal approximation using
incremental constructive feedforward networks with random hidden
nodes, Neural Networks, IEEE Transactions on, 17 (2006), pp. 879–
892.

[58] G. HULTEN, L. SPENCER, AND P. DOMINGOS, Mining time-changing data
streams, in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01,
New York, NY, USA, 2001, ACM, pp. 97–106.

117

BIBLIOGRAPHY

[59] G. HULTEN, L. SPENCER, AND P. DOMINGOS, Mining time-changing data
streams, in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01,
New York, NY, USA, 2001, ACM, pp. 97–106.

[60] G. HULTEN, L. SPENCER, AND P. DOMINGOS, Mining time-changing data
streams, in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01,
ACM, 2001, pp. 97–106.

[61] E. IKONOMOVSKA, Airline dataset for classification.
http://kt.ijs.si/elena ikonomovska/data.html.

[62] E. IKONOMOVSKA, J. GAMA, AND S. DŽEROSKI, Learning model trees
from evolving data streams, Data Mining and Knowledge Discovery,
23 (2010), pp. 128–168.

[63] INTEL, Optimizing performance with intel advanced vector extensions. in-
tel white paper, 2014.

[64] H. JAEGER, The ‘‘echo state’’ approach to analysing and training recurrent
neural networks - with an erratum note, tech. rep., German National
Research Center for Information Technology, 2001.

[65] P. KANG, Locally linear reconstruction based missing value imputation for
supervised learning, Neurocomputing, 118 (2013), pp. 65–78.

[66] M. KHAN, Q. DING, AND W. PERRIZO, K-nearest neighbor classification
on spatial data streams using p-trees, 12 2001.

[67] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization,
in ICLR, 2015.

[68] J. Z. KOLTER AND M. A. MALOOF, Dynamic weighted majority: A new
ensemble method for tracking concept drift, in Proceedings of the
Third IEEE International Conference on Data Mining, ICDM ’03,
2003, pp. 123–130.

[69] N. KOURTELLIS, G. D. F. MORALES, A. BIFET, AND A. MURDOPO, Vht:
Vertical hoeffding tree, in 2016 IEEE International Conference on Big
Data (Big Data), Dec 2016, pp. 915–922.

[70] L. I. KUNCHEVA AND C. J. WHITAKER, Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy, Machine
Learning, 51 (2003), pp. 181–207.

[71] K. LANG, 20 newsgroups data set, 2008.
Last accessed: October 2016.

[72] Y.-N. LAW AND C. ZANIOLO, An adaptive nearest neighbor classification
algorithm for data streams, in Knowledge Discovery in Databases:
PKDD 2005, A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and

118

BIBLIOGRAPHY

J. Gama, eds., Berlin, Heidelberg, 2005, Springer Berlin Heidelberg,
pp. 108–120.

[73] W. LING AND F. DONG-MEI, Estimation of missing values using a
weighted k-nearest neighbors algorithm, Environmental Science and
Information Application Technology, International Conference on,
3 (2009), pp. 660–663.

[74] V. LOSING, B. HAMMER, AND H. WERSING, KNN Classifier with Self
Adjusting Memory for Heterogeneous Concept Drift, in 2016 IEEE
16th International Conference on Data Mining (ICDM), IEEE, 2016,
pp. 291–300.

[75] M. LUKOŠEVIČIUS, A Practical Guide to Applying Echo State Networks, in
Neural Networks: Tricks of the Trade, vol. 7700 of LNCS, Springer
Berlin Heidelberg, 2012, ch. 27, pp. 659–686.

[76] M. LUKOŠEVIČIUS AND H. JAEGER, Survey: Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci. Rev., 3
(2009), pp. 127–149.

[77] W. MAASS AND H. MARKRAM, On the computational power of recurrent
circuits of spiking neurons, Electronic Colloquium on Computational
Complexity (ECCC), (2002).

[78] W. MAASS, T. NATSCHLÄGER, AND H. MARKRAM, Real-time computing
without stable states: A new framework for neural computation based
on perturbations, Neural Comput., 14 (2002), pp. 2531–2560.

[79] D. MARRON, G. D. F. MORALES, AND A. BIFET, Random forests of very
fast decision trees on gpu for mining evolving big data streams, in
Proceedings of ECAI 2014, 2014.

[80] D. MARRÓN, J. READ, A. BIFET, AND N. NAVARRO, Data stream classi-
fication using random feature functions and novel method combina-
tions, Journal of Systems and Software, (2016).

[81] J. MARTENS AND I. SUTSKEVER, Learning recurrent neural networks with
hessian-free optimization, in Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue, Washing-
ton, USA, June 28 - July 2, 2011, 2011, pp. 1033–1040.

[82] R. MARTIN, Agile Software Development: Principles, Patterns, and Prac-
tices, Alan Apt series, Pearson Education, 2003.

[83] L. L. MINKU, A. P. WHITE, AND X. YAO, The impact of diversity on
online ensemble learning in the presence of concept drift, IEEE Trans.
on Knowl. and Data Eng., 22 (2010), pp. 730–742.

[84] L. L. MINKU AND X. YAO, Ddd: A new ensemble approach for dealing
with concept drift, IEEE Transactions on Knowledge and Data Engi-
neering, 24 (2012), pp. 619–633.

119

BIBLIOGRAPHY

[85] H. MOUSS, D. MOUSS, N. MOUSS, AND L. SEFOUHI, Test of page-
hinckley, an approach for fault detection in an agro-alimentary pro-
duction system, in 2004 5th Asian Control Conference (IEEE Cat.
No.04EX904), vol. 2, July 2004, pp. 815–818 Vol.2.

[86] N. C. OZA, Online bagging and boosting, 2005 IEEE International Con-
ference on Systems, Man and Cybernetics, 3 (2001), pp. 2340–2345
Vol. 3.

[87] M. C. OZTURK AND J. C. PRÍNCIPE, An associative memory readout for
ESNs with applications to dynamical pattern recognition., Neural Net-
works, 20 (2007), pp. 377–390.

[88] R. POLIKAR, Ensemble based systems in decision making, IEEE Circuits
and Systems Magazine, 6 (2006), pp. 21–45.

[89] R. POLIKAR, L. UPDA, S. S. UPDA, AND V. HONAVAR, Learn++: an
incremental learning algorithm for supervised neural networks, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 31 (2001), pp. 497–508.

[90] M. PRATAMA, P. ANGELOV, J. LU, E. LUGHOFER, M. SEERA, AND C. PENG

LIM, A randomized neural network for data streams, 05 2017.

[91] N. QIAN, On the momentum term in gradient descent learning algo-
rithms, Neural Netw., 12 (1999), pp. 145–151.

[92] W. QU, Y. ZHANG, J. ZHU, AND Q. QIU, Mining multi-label concept-
drifting data streams using dynamic classifier ensemble, in Asian Con-
ference on Machine Learning, vol. 5828 of Lecture Notes in Com-
puter Science, Springer, 2009, pp. 308–321.

[93] J. READ, A. BIFET, B. PFAHRINGER, AND G. HOLMES, Batch-incremental
versus instance-incremental learning in dynamic and evolving data,
in Advances in Intelligent Data Analysis XI, J. Hollmén, F. Klawonn,
and A. Tucker, eds., Berlin, Heidelberg, 2012, Springer Berlin Hei-
delberg, pp. 313–323.

[94] L. ROKACH, Ensemble-based classifiers, Artificial Intelligence Review, 33
(2010), pp. 1–39.

[95] M. ROSEBERRY AND A. CANO, Multi-label knn classifier with self ad-
justing memory for drifting data streams, in Proceedings of the
Second International Workshop on Learning with Imbalanced Do-
mains: Theory and Applications, Proceedings of Machine Learn-
ing Research, ECML-PKDD, Dublin, Ireland, 10 Sep 2018, PMLR,
pp. 23–37.

[96] D. E. RUMELHART, J. L. MCCLELLAND, AND C. PDP RESEARCH GROUP,
eds., Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1: Foundations, MIT Press, Cambridge, MA,
USA, 1986.

120

BIBLIOGRAPHY

[97] D. SAHOO, Q. PHAM, J. LU, AND S. C. H. HOI, Online deep learn-
ing: Learning deep neural networks on the fly, in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18, International Joint Conferences on Artificial Intel-
ligence Organization, 7 2018, pp. 2660–2666.

[98] A. SALAZAR, G. SAFONT, A. SORIANO, AND L. VERGARA, Automatic
credit card fraud detection based on non-linear signal processing, in
2012 IEEE International Carnahan Conference on Security Technol-
ogy (ICCST), Oct 2012.

[99] B. SCHRAUWEN, D. VERSTRAETEN, AND J. V. CAMPENHOUT, An
overview of reservoir computing: theory, applications and implemen-
tations, in Proceedings of the 15th European Symposium on Artifi-
cial Neural Networks, 2007, pp. 471–482.

[100] A. SHAKER AND E. HÜLLERMEIER, Instance-based classification and re-
gression on data streams, in Learning in Non-Stationary Environ-
ments, Springer New York, 2012, pp. 185–201.

[101] D. SILVER, A. HUANG, C. J. MADDISON, A. GUEZ, L. SIFRE, G. VAN DEN

DRIESSCHE, J. SCHRITTWIESER, I. ANTONOGLOU, V. PANNEER-
SHELVAM, M. LANCTOT, S. DIELEMAN, D. GREWE, J. NHAM,
N. KALCHBRENNER, I. SUTSKEVER, T. LILLICRAP, M. LEACH,
K. KAVUKCUOGLU, T. GRAEPEL, AND D. HASSABIS, Mastering the
game of go with deep neural networks and tree search, Nature, 529
(2016), pp. 484–489.

[102] W. N. STREET AND Y. KIM, A streaming ensemble algorithm (sea)
for large-scale classification, in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’01, 2001, pp. 377–382.

[103] M. TENNANT, F. STAHL, O. RANA, AND J. B. GOMES, Scalable real-time
classification of data streams with concept drift, Future Generation
Computer Systems, 75 (2017), pp. 187 – 199.

[104] M. TENNANT, F. STAHL, O. RANA, AND J. B. GOMES, Scalable real-time
classification of data streams with concept drift, Future Generation
Computer Systems, (2017).

[105] M. THOMPSON, D. FARLEY, M. BARKER, P. GEE, AND A. STEWART,
DISRUPTOR: High performance alternative to bounded queues for ex-
changing data between concurrent threads, 2015.

[106] T. TIELEMAN AND G. HINTON, Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude, tech. rep., 2012.

[107] S. TULYAKOV, S. JAEGER, V. GOVINDARAJU, AND D. DOERMANN, Re-
view of Classifier Combination Methods, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 361–386.

121

BIBLIOGRAPHY

[108] P. E. UTGOFF, Incremental induction of decision trees, Machine Learning,
4 (1989), pp. 161–186.

[109] P. E. UTGOFF, N. C. BERKMAN, AND J. A. CLOUSE, Decision tree in-
duction based on efficient tree restructuring, Machine Learning, 29
(1997), pp. 5–44.

[110] D. S. VOGEL, O. ASPAROUHOV, AND T. SCHEFFER, Scalable look-ahead
linear regression trees, in Proceedings of the 13th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining,
KDD ’07, New York, NY, USA, 2007, ACM, pp. 757–764.

[111] I. ŽLIOBAITĖ, Combining time and space similarity for small size learning
under concept drift, in Foundations of Intelligent Systems, J. Rauch,
Z. W. Raś, P. Berka, and T. Elomaa, eds., Berlin, Heidelberg, 2009,
Springer Berlin Heidelberg, pp. 412–421.

[112] I. ŽLIOBAITĖ, Adaptive training set formation, PhD thesis, Vilnius Uni-
versity, 2010.

[113] P. J. WERBOS, Generalization of backpropagation with application to a
recurrent gas market model, Neural Networks, (1988), pp. 339 –
356.

[114] I. B. YILDIZ, H. JAEGER, AND S. J. KIEBEL, Re-visiting the echo state
property, Neural Networks, 35 (2012), pp. 1 – 9.

[115] L. ZHANG AND P. SUGANTHAN, A survey of randomized algorithms for
training neural networks, Inf. Sci., 364 (2016), pp. 146–155.

[116] P. ZHANG, B. J. GAO, X. ZHU, AND L. GUO, Enabling fast lazy learning
for data streams, in 2011 IEEE 11th International Conference on
Data Mining, Dec 2011, pp. 932–941.

122

