2,770 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    An automated 3D modeling of topological indoor navigation network

    Get PDF
    © 2015, Springer Science+Business Media Dordrecht. Indoor navigation is important for various applications such as disaster management, building modeling, safety analysis etc. In the last decade, indoor environment has been a focus of wide research that includes development of indoor data acquisition techniques, 3D data modeling and indoor navigation. In this research, an automated method for 3D modeling of indoor navigation network has been presented. 3D indoor navigation modeling requires a valid 3D model that can be represented as a cell complex: a model without any gap or intersection such that two cells (e.g. room, corridor) perfectly touch each other. This research investigates an automated method for 3D modeling of indoor navigation network using a geometrical model of indoor building environment. In order to reduce time and cost of surveying process, Trimble LaserAce 1000 laser rangefinder was used to acquire indoor building data which led to the acquisition of an inaccurate geometry of building. The connection between surveying benchmarks was established using Delaunay triangulation. Dijkstra algorithm was used to find shortest path in between building floors. The modeling results were evaluated against an accurate geometry of indoor building environment which was acquired using highly-accurate Trimble M3 total station. This research intends to investigate and propose a novel method of topological navigation network modeling with a less accurate geometrical model to overcome the need of required an accurate geometrical model. To control the uncertainty of the calibration and of the reconstruction of the building from the measurements, interval analysis and homotopy continuation will be investigated in the near future

    Automated construction of variable density navigable networks in a 3D indoor environment for emergency response

    Get PDF
    Widespread human-induced or natural threats on buildings and their users have made preparedness and quick response as crucial issues for saving human lives. Available information about an emergency scene, e.g. the building structure, material and trapped people helps for decision-making and organizing rescue operations. The ability to evaluate potential scenarios for human evacuation, and then identifying the paths of egress during an emergency is critical for rescue and emergency services. Good quality models supporting real, or near-real, time decision-making and allowing the implementation of automated methods are highly desirable. In this paper, we propose a new automated method for deriving a navigable network in a 3D indoor environment, including a full 3D topological model which may be used not only for standard navigation but also for finding alternative egress routes and simulating phenomena associated with disasters such as fire spread and heat transfer

    Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

    Full text link
    Recent years have seen a proliferation of new digital products for the efficient management of indoor spaces, with important applications like emergency management, virtual property showcasing and interior design. While highly innovative and effective, these products rely on accurate 3D models of the environments considered, including information on both architectural and non-permanent elements. These models must be created from measured data such as RGB-D images or 3D point clouds, whose capture and consolidation involves lengthy data workflows. This strongly limits the rate at which 3D models can be produced, preventing the adoption of many digital services for indoor space management. We provide a radical alternative to such data-intensive procedures by presentingWalk2Map, a data-driven approach to generate floor plans only from trajectories of a person walking inside the rooms. Thanks to recent advances in data-driven inertial odometry, such minimalistic input data can be acquired from the IMU readings of consumer-level smartphones, which allows for an effortless and scalable mapping of real-world indoor spaces. Our work is based on learning the latent relation between an indoor walk trajectory and the information represented in a floor plan: interior space footprint, portals, and furniture. We distinguish between recovering area-related (interior footprint, furniture) and wall-related (doors) information and use two different neural architectures for the two tasks: an image-based Encoder-Decoder and a Graph Convolutional Network, respectively. We train our networks using scanned 3D indoor models and apply them in a cascaded fashion on an indoor walk trajectory at inference time. We perform a qualitative and quantitative evaluation using both trajectories simulated from scanned models of interiors and measured, real-world trajectories, and compare against a baseline method for image-to-image translation. The experiments confirm that our technique is viable and allows recovering reliable floor plans from minimal walk trajectory data

    Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

    Get PDF
    Recent years have seen a proliferation of new digital products for the efficient management of indoor spaces, with important applications like emergency management, virtual property showcasing and interior design. These products rely on accurate 3D models of the environments considered, including information on both architectural and non-permanent elements. These models must be created from measured data such as RGB-D images or 3D point clouds, whose capture and consolidation involves lengthy data workflows. This strongly limits the rate at which 3D models can be produced, preventing the adoption of many digital services for indoor space management. We provide an alternative to such data-intensive procedures by presenting Walk2Map, a data-driven approach to generate floor plans only from trajectories of a person walking inside the rooms. Thanks to recent advances in data-driven inertial odometry, such minimalistic input data can be acquired from the IMU readings of consumer-level smartphones, which allows for an effortless and scalable mapping of real-world indoor spaces. Our work is based on learning the latent relation between an indoor walk trajectory and the information represented in a floor plan: interior space footprint, portals, and furniture. We distinguish between recovering area-related (interior footprint, furniture) and wall-related (doors) information and use two different neural architectures for the two tasks: an image-based Encoder-Decoder and a Graph Convolutional Network, respectively. We train our networks using scanned 3D indoor models and apply them in a cascaded fashion on an indoor walk trajectory at inference time. We perform a qualitative and quantitative evaluation using both simulated and measured, real-world trajectories, and compare against a baseline method for image-to-image translation. The experiments confirm the feasibility of our approach.Comment: To be published in Computer Graphics Forum (Proc. Eurographics 2021

    Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

    Get PDF
    Recent years have seen a proliferation of new digital products for the efficient management of indoor spaces, with important applications like emergency management, virtual property showcasing and interior design. While highly innovative and effective, these products rely on accurate 3D models of the environments considered, including information on both architectural and non-permanent elements. These models must be created from measured data such as RGB-D images or 3D point clouds, whose capture and consolidation involves lengthy data workflows. This strongly limits the rate at which 3D models can be produced, preventing the adoption of many digital services for indoor space management. We provide a radical alternative to such data-intensive procedures by presenting Walk2Map, a data-driven approach to generate floor plans only from trajectories of a person walking inside the rooms. Thanks to recent advances in data-driven inertial odometry, such minimalistic input data can be acquired from the IMU readings of consumer-level smartphones, which allows for an effortless and scalable mapping of real-world indoor spaces. Our work is based on learning the latent relation between an indoor walk trajectory and the information represented in a floor plan: interior space footprint, portals, and furniture. We distinguish between recovering area-related (interior footprint, furniture) and wall-related (doors) information and use two different neural architectures for the two tasks: an image-based Encoder-Decoder and a Graph Convolutional Network, respectively. We train our networks using scanned 3D indoor models and apply them in a cascaded fashion on an indoor walk trajectory at inference time. We perform a qualitative and quantitative evaluation using both trajectories simulated from scanned models of interiors and measured, real-world trajectories, and compare against a baseline method for image-to-image translation. The experiments confirm that our technique is viable and allows recovering reliable floor plans from minimal walk trajectory data

    REDISCOVERING CULTURAL HERITAGE SITES BY INTERACTIVE 3D EXPLORATION: A PRACTICAL REVIEW OF OPEN-SOURCE WEBGL TOOLS

    Get PDF
    Georeferenced reconstructions can help understand the dynamic evolution of the urban context surrounding a historical site, supporting decision-making processes in the field of urban planning. The development of web applications that allow the interaction between 2D and 3D products, as well as their exploration, can facilitate virtual inspections and foster collaboration in digitization of interventions and site evolutions over time. The article discusses how virtual scene reconstructions and visits can provide alternatives to traditional in-situ tourism promotion, through digital storytelling solutions for the exploration of sites. The article also describes how 3D storytelling technologies are currently being used for dissemination cultural heritage sites. The case study of the Castello Farnese, an old XVI century heritage site in Piacenza (Italy), test the adoption of two distinct free and open-source JavaScript WebGL, Potree and Cesium, for the rendering of photogrammetric and laser scanning georeferenced scaled products and for the integration of narrative features such as annotations, camera animations, texts, and other multimedia contents. Potentials and limitations of both tools are discussed in detail, highlighting how they can be implemented for enhancing user experience in virtual tour and exploration of 3D products. In order to guarantee replicability for other case studies, source code of the implemented application is shared on GitHub along with its documentation for contributions

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    Joint Learning of Intrinsic Images and Semantic Segmentation

    Get PDF
    Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinsegComment: ECCV 201

    3D indoor topological modelling based on homotopy continuation

    Get PDF
    Indoor navigation is important for various applications such as disaster management, building modelling and safety analysis. In the last decade, the indoor environment has been a focus of extensive research that includes the development of indoor data acquisition techniques, three-dimensional (3D) data modelling and indoor navigation. 3D indoor navigation modelling requires a valid 3D geometrical model that can be represented as a cell complex: a model without any gap or intersection such that the two cells, a room and corridor, should perfectly touch each other. This research is to develop a method for 3D topological modelling of an indoor navigation network using a geometrical model of an indoor building environment. To reduce the time and cost of the surveying process, a low-cost non-contact range-based surveying technique was used to acquire indoor building data. This technique is rapid as it requires a shorter time than others, but the results show inconsistencies in the horizontal angles for short distances in indoor environments. The rangefinder was calibrated using the least squares adjustment and a polynomial kernel. A method of combined interval analysis and homotopy continuation was developed to model the uncertainty level and minimize error of the non-contact range-based surveying techniques used in an indoor building environment. Finally, a method of 3D indoor topological building modelling was developed as a base for building models which include 3D geometry, topology and semantic information. The developed methods in this research can locate a low-cost, efficient and affordable procedure for developing a disaster management system in the near-future
    corecore