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ABSTRACT 

Indoor navigation is important for various applications such as disaster 

management, building modelling and safety analysis. In the last decade, the indoor 

environment has been a focus of extensive research that includes the development of 

indoor data acquisition techniques, three-dimensional (3D) data modelling and 

indoor navigation. 3D indoor navigation modelling requires a valid 3D geometrical 

model that can be represented as a cell complex: a model without any gap or 

intersection such that the two cells, a room and corridor, should perfectly touch each 

other. This research is to develop a method for 3D topological modelling of an 

indoor navigation network using a geometrical model of an indoor building 

environment. To reduce the time and cost of the surveying process, a low-cost non-

contact range-based surveying technique was used to acquire indoor building data. 

This technique is rapid as it requires a shorter time than others, but the results show 

inconsistencies in the horizontal angles for short distances in indoor environments. 

The rangefinder was calibrated using the least squares adjustment and a polynomial 

kernel. A method of combined interval analysis and homotopy continuation was 

developed to model the uncertainty level and minimize error of the non-contact 

range-based surveying techniques used in an indoor building environment. Finally, a 

method of 3D indoor topological building modelling was developed as a base for 

building models which include 3D geometry, topology and semantic information. 

The developed methods in this research can locate a low-cost, efficient and 

affordable procedure for developing a disaster management system in the near-

future. 
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ABSTRAK 

Navigasi dalam bangunan sangat penting bagi pelbagai aplikasi seperti 

pengurusan bencana, permodelan bangunan dan analisis keselamatan. Sedekad lalu, 

persekitaran dalam bangunan telah menjadi fokus keseluruhan kajian termasuklah 

pembangunan teknik-teknik pengumpulan data, model tiga-dimensi (3D) dan 

navigasi dalam bangunan. Pemodelan 3D navigasi dalaman memerlukan model 

geometri 3D yang sah dipamerkan sebagai sel komplek: satu model tanpa jurang atau 

pertindihan seperti dua sel, satu bilik dan koridor, harus saling bersentuhan dengan 

sempurna. Kajian ini dijalankan bagi membangunkan satu kaedah pemodelan 

topologi 3D dalam jaringan navigasi dalaman menggunakan persekitaran model 

geometri bangunan. Bagi mengurangkan masa dan kos proses pengukuran, satu 

teknik pengukuran kos rendah, tidak bersentuhan berdasarkan jarak telah digunakan 

bagi mendapatkan data dalaman bangunan. Ketepatan alat tersebut telah dinilai dan 

model spatial dilakarkan semula menggunakan data sebenar. Teknik pantas ini 

memerlukan masa yang singkat berbanding teknik lain, tetapi memberikan hasil tidak 

konsisten pada sudut-sudut mendatar bagi jarak-jarak dekat dalam persekitaran 

dalaman bangunan. Alat pencari jarak ini telah dikalibrasi menggunakan pelarasan 

kuasa dua terkecil dan polinomial kernel. Satu gabungan kaedah analisis selang dan 

kesinambungan homotopy telah dibangunkan untuk pemodelan tahap ketidakpastian 

dan pengurangan ralat dari teknik-teknik pengukuran tidak bersentuhan berdasarkan 

jarak pada persekitaran dalaman bangunan. Dan akhir sekali, satu kaedah pemodelan 

topologi 3D dalaman bangunan telah dihasilkan sebagai satu asas model-model 

bangunan termasuklah geometri 3D, topologi dan maklumat semantik. Teknik-teknik 

yang telah dibangunkan dalam kajian ini dapat mengenalpasti prosedur-prosedur kos 

rendah, cekap dan berpatutan bagi membangunkan satu sistem pengurusan bencana 

pada masa hadapan. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

3D spatial modelling involves the definition of spatial objects, data models, 

and attributes for visualization, interoperability and standards (Chen et al., 2008). 

Due to the complexity of the real world, 3D spatial modelling leads towards different 

approaches in different Geography Information Science (GIS) applications (Haala 

and Kada, 2010). In the last decade, there has been huge demand for 3D GIS due to 

the drastic advances in the field of 3D computer graphics. According to Chen et al. 

(2008), there is no universal 3D spatial model that can be used and shared between 

different applications, and different disciplines according to their input and output 

have used different spatial data models. 

3D building modelling is an example of 3D spatial modelling. A building 

model has three spaces, including geometrical, topological and semantic space. This 

research focuses on topological space, which is important for network analysis (e.g. 

shortest path finding). A topological model which is derived from a geometrical 

model defines the relationship between adjacent objects (e.g. rooms). A topological 

model is defined by a graph which is a navigable network consisting of nodes and 

edges. Semantic space presents attributes attached to geometrical and topological 

models. 
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According to Donath and Thurow (2007), considering various fields of 

applications for building modelling and various demands, the geometric 

representation of a building is the most crucial aspect of building modelling. In 

previous research works such as Becker et al. (2009) and Liu and Zlatanova (2012), 

3D modelling of buildings and their relationships (i.e. topological models) with the 

surrounding roads and terrain were provided, but their utility is limited in many cases 

of navigation and emergency planning (i.e. only the exteriors of the buildings were 

analyzed). For many kinds of emergency response, such as fire, smoke, and 

pollution, the interiors of the buildings need to be described along with the relative 

locations of the rooms, corridors, doors and exits, as well as their relationships to 

adjacent spaces. The relationship between adjacent spaces needs to be defined in a 

topological model. 

Topological modelling is a challenging task in GIS environment, as the data 

structures required to express these relationships are particularly difficult to be 

developed. Even within the recent CityGML research community, the structures for 

expressing the relationships between adjacent objects (i.e. topology) are complex and 

often incomplete (Li and Lee, 2013; Kim et al., 2014).  

A 3D topological model is necessary for disaster management models in 

network analysis. Network analysis is one of the most significant aspects of GIS 

(Curtin, 2007). Network analysis is used in disciplines such as medicine (Finnvold, 

2006), psychology (Walker et al., 2006), urban planning (Toccolini et al., 2006), and 

computer science (Bera and Claramunt, 2005). There are two data structures in 

network analysis: non-topological and topological networks. A non-topological 

structure (i.e. the “spaghetti” data model) does not contain any topological 

information related to edges.  

Non-topological network models are simple to understand and they are 

sufficient for digital cartographic maps. The spaghetti data model is widely used in 

Computer Aided Design (CAD) communities due to its simplicity. Duplication of 

storage for the same vertices is one of the disadvantages of the spaghetti data model. 

Non-topological network models are useless for network analysis. The shapefile 

developed by the Environmental Systems Research Institute (ESRI) is another 
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example of a non-topological network data structure which is insufficient for 

network analysis (Curtin, 2007). Dual Incidence Matrix Encoding (DIME) (Cooke, 

1998) and Topologically Integrated Geographic Encoding and Referencing (TIGER) 

are examples of topological data structures. One of the biggest issues with 

topological network data structures is the definition of bridges or tunnels. 

For network analysis, this research focuses on indoor building network 

modelling. Different methods have been used for indoor building network modelling 

(Li et al., 2010; Goetz and Zipf, 2011), which are mostly based on the 2D floor plan 

or simple 3D models of buildings. The Geometric Network Model (GNM) has been 

widely accepted as a suitable navigable network (Gröger and Plümer, 2010; Choi and 

Lee, 2009). A GNM is a graph consisting of nodes and edges in which nodes 

represent the position or location of an object such as a room while edges represent 

connection between nodes. Li and Lee (2010) attempted to integrate GNM with 

Indoor GML. Luo et al. (2014) proposed the generation of a GNM from 3D imaging 

and scanning technologies. Indoor navigation network models including the GNM, 

Navigable Space Model, sub-division model and regular-grid model lack indoor data 

sources and abstraction methods. 

To generate an indoor network model, a geometrical model is required. 

Currently there is growing interest in 3D topological modelling in GIS and Building 

Information Modeling (BIM) expert communities. The GIS group is interested in 

models of existing buildings for analysis in cases of emergency or disaster 

management systems (Liu and Zlatanova, 2012). Indoor surveying is vital when no 

other data sources are available (e.g. there are no paper plans or architectural 

models). Even if this kind of data is provided, BIM expert group is interested in 

models with ‘as-built’ conditions (construction plans are often different from the 

final building and it is rare that appropriate plans are available to the model builder 

(Tang et al., 2010; Volk et al., 2014). In this case, the buildings and their rooms must 

be surveyed in three dimensions to obtain the locations of walls, edges and corners, 

as well as their relationships to adjacent spaces (i.e. a topological model). 

This research is to demonstrate the feasibility of interior surveying for 

navigable network modelling. The proposed approach uses relatively cheap 
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equipment: a light laser rangefinder appears to be the most feasible, but it needs to be 

tested to see if the observation accuracy is sufficient for the intended purpose: the 

construction of a topological indoor building network model. There are three main 

issues which this research is intended to investigate as follows: 

a. Indoor building data collection 

Indoor building data collection is currently based on laser scanning 

technology which is costly and time consuming. This research uses a low-cost non-

contact range-based surveying technique alongside a Total Station and Laser 

Scanner. 

b. Uncertainty modelling 

Uncertainty modelling is currently based on statistical methods such as least 

squares which topology is not concerned. In this research, a novel method of 

combined interval analysis and homotopy continuation is developed. The least 

squares methods assume a linear statistical model of propagation of the errors and a 

normal probability distribution function of the measurements. However, in any real 

measurement experiment, it can be observed that no probability distribution function 

fits the data set to any desired degree of accuracy. 

c. Indoor building navigation network modelling 

There are four main navigable network models including dual graph model, 

navigable space model, sub-division model and regular-grid model, each of which 

has several drawbacks and requires a precise geometrical model. This research uses 

an imprecise and precise geometrical model to develop a topological navigable 

network model. 
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1.2. Problem Statements 

For many kinds of systems like disaster or emergency management systems, 

interior models are essential (Boguslawski et al., 2011; Liu and Zlatanova, 2012). 

Indoor models can be reconstructed from construction plans, but they are sometimes 

unavailable or very often they differ from the ‘as-built’ plans. In this case, the 

buildings and their rooms must be surveyed. Unfortunately, many methods used for 

land surveying cannot be easily applied because of, to name a few: the lack of a 

Global Positioning System (GPS) signal from satellites in indoor environments; the 

limited working area inside buildings especially in office space; the very detailed 

environment with furniture and installations. There are four approaches that seem to 

be suitable for indoor building surveying: 

A. Laser scanning technology 

 a construction model depends on complex calculations which need to 

manage many measured points. This is suitable for the detailed geometrical models 

utilized for representation, yet excessively overstated when a simple model including 

walls, floors, roofs, entryways, and windows are required; such a basic model being a 

key for efficient network analysis such as shortest path finding. Laser scanning 

requires considerable modelling effort to fit sections of the resulting point cloud to 

basic features such as walls, resulting in extensive manual work after data collection 

and no easy way to integrate individual scan results with the model of a complete 

complex building (Dongzhen et al., 2009; Yusuf, 2007).  

B. Traditional surveying with a Total Station 

 A Total Station or equivalent is also possible, but conversion of captured 

data points into a building model requires complex procedures and so far, limited 

availability of the software or tools for topological modelling as one of current 

challenges in 3D GIS community (Anton, 2017; Boguslawski, 2016; Abdul Rahman, 

2016). The important disadvantage of traditional Total Station mapping is the 
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enormous amount of work required to study vast regions, with the station 

administrator usually required to set up and work from several datums, while a 

second person must constantly move to reset a reflector rod, which causes 

communication difficulties between the two (Kvamme et al., 2006). 

C. A light laser rangefinder 

 A rangefinder which integrates azimuth (from a digital compass) and 

inclination along with the laser rangefinder appears to be the most feasible, although 

it has a lower level of accuracy than the Total Station.  

D.  Photogrammetry technique 

 Photogrammetry technique uses uncalibrated non-metric cameras to extract 

3D information from a scene of images. For indoor surveying, it is as simple as 

taking pictures. Additionally, images can be used for texture extraction – textures can 

be attached to walls, floors, and ceilings in the model, which will increase the realism 

of the visualization. 

In most researches, building models contain exteriors while their interiors are 

not taken into consideration – interiors are more difficult to measure and the models 

are more complex (Deak et al., 2012). Based on the literature reviews (e.g. Liu and 

Zlatanova, 2012; Boguslawski et al., 2011; Luo et al., 2014, and Kim et al., 2014), 

3D indoor navigation modelling requires a precise 3D geometrical model that can be 

represented as a cell complex: a model without any gap or intersection such that two 

cells such as rooms and corridor perfectly touch each other. GIS integrates spatial 

information and spatial analysis. An important example of the integration of spatial 

information and spatial analysis is an emergency response, which requires route 

planning inside and outside a building. Route planning requires detailed information 

related to the indoor and outdoor environment (Teo and Cho,2016).  
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Indoor navigation network models including dual graph model, navigable 

space model, sub-division model and regular-grid model lack indoor data sources 

and abstraction methods. For indoor navigation, Geometric Network Model (GNM) 

is extensively used due to its simplicity. GNM models are mostly extracted from 2D 

plans and the extracted indoor network information is coarse. GNM models do not 

contain accurate indoor information and they are complex and time-consuming (Teo 

and Cho, 2016). 

Generation of a 3D indoor network model is a labour-intensive process and it 

becomes worse if some nodes require extra information (Teo and Cho, 2016). 3D 

buildings require new data information sources as they change over time. Data 

information sources generated by Computer Aided Design systems are not useful for 

detailed indoor applications as they only roughly approximate indoor building 

entities. According to Vanclooster and Maeyer (2012), indoor navigation 

communities focus only on the technological aspects of indoor navigation (Mautz 

and Tilch., 2011) or on the generation of the indoor data structure (Lee and Kwan, 

2005; Lorenz et al., 2006). 

This research intends to investigate and develop a method of topological 

navigation network modelling with a less accurate geometrical model. The methods 

investigated in this research can help to find a rapid and low-cost method of indoor 

surveying and model construction. The resulting models include the topology of the 

interior and have less detailed information about irrelevant objects; therefore, they 

are suitable for analysis such as emergency rescue studies. 

An indoor building navigable network model is developed as a base for 

models which include the 3D geometry, topology and semantic information. Further 

model development will take the latest theory on 3D indoor navigation into 

consideration. The hypothesis is: a rangefinder with a digital compass and 

inclinometer is sufficient to obtain the indoor topology of a 3D building. 
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1.3.Research Questions 

i. What are the the issues encountered with the current non-contact range-based 

indoor building data collection? 

a)  Are the current non-contact range-based surveying techniques including 

TLS and total station suffiecient for indoor building data collection? 

ii. How to model the uncertainty level of a non-contact range-based surveying 

equipment in an indoor building environment? 

a) How  linear and non-linear statistical methods including least square 

adjustment and polynomial kernel model the uncertainty level of a non-

contact range-based surveying equipment in an indoor building 

environment? 

b) How  linear and non-linear mathematical methods including interval 

analysis and homotopy continuation model the uncertainty level of a non-

contact range-based surveying equipment in an indoor building 

environment? 

iii. How to model an indoor building navigation network? 

a) Are the current GNM models icluding the dual graph model, navigable 

space model, sub-division model and regular-grid model sufficient for 

representation of indoor navigation modelling? 

b) How are the geometry and topology defined for 3D navigation network 

modelling? 

c) How can indoor building topology be used for navigable network 

reconstruction? 

1.4.Research Aims 

According to the problem statements, this research aims to propose a non-

contact range-based surveying technique to develop a topological indoor navigable 
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network model from precise and imprecise geometrical model. A novel method of 

combined interval analysis and homotopy continuation is developed to model the 

uncertainty level and to minimize error of the non-contact range-based surveying 

techniques used in an indoor building environment. A precise geometrical model is 

reconstructed by merging of imprecise geometrical model features with defined six 

topological rules.  

1.5.Objectives 

i. To propose a cheap and rapid  non-contact range-based surveying 

technique. 

ii. To develop a novel method of combined interval analysis and 

homotopy continuation to minimize error of the proposed non-contact 

range-based surveying technique. 

iii. To develop a topological indoor building navigation network from 

precise and imprecise geometrical models constructed from the 

proposed non-contact range-based surveying technique. 

1.6. Scope of Research 

The goal of this research is to investigate the complexity of interior building 

modelling and to develop a topological indoor navigation network model. Besides 

laser scanning technologies such as the Leica ScanStation C10 and Faro Photon 

120/20 used for range-based indoor surveying, a cheap laser rangefinder with a 

digital compass, Trimble LaserAce 1000 was used. There are several linear and non-

linear statistical and mathematical methods to model the uncertainty level of 

surveying equipment, but due to the huge diversity and limitation of scope of this 

research,  a few methods such as least squares adjustment, polynomial kernels, 

interval analysis and homotopy continuation have been researched. Precise and 



7-xxix 

 

imprecise models are used to reconstruct a topological navigation network, which is 

tested for path-finding in a building. 

1.7.Research Approach 

This research is designed according to the “Design Science Research 

Methodology” (Henver et al., 2004). This research consists of five main phases: 

conceptual, design, development, evaluation and communication, as follows: 
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Figure 1.2    Research approach 

1.7.1. Conceptual Phase 

The conceptual phase includes a literature review of both current indoor 

building surveying techniques and indoor navigation network modelling, and 

Phase 2- Design phase 

-Delaunay triangulation 
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developing the conceptual framework for the research, case study, and data 

collection techniques. 

In chapter 2, different 3D building data collection techniques including 

photogrammetry, land surveying and laser scanning technologies are discussed. In 

chapter 3, current methods of navigation network modelling based on the graph 

duality concept, navigable space, regular-grid model and sub-division are discussed. 

1.7.2. Design Phase 

The design phase includes the design of the framework to develop a method 

of topological navigation network modelling in an indoor building environment. In 

this phase, in accordance with the knowledge acquired during the conceptual phase, 

different theories and methods are adopted. Closed traverse surveying as the 

surveying method and Delaunay triangulation as the connectivity of surveying 

control points, and Johnson’s algorithm as the shortest path finding algorithm are 

selected in this phase. 

1.7.3. Development Phase 

The development phase includes implementation of the framework for a 

topological navigation network model. An indoor building navigation network model 

is proposed as a base for models which include the 3D geometry, topology and 

semantic information. A further model development will take the latest theory on 3D 

indoor navigation into consideration. 
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1.7.4. Evaluation Phase 

The evaluation phase includes demonstration of the framework using a case 

study, framework verification and validation. Model verification and validation are 

vital for any simulation model and they present the usefulness of the proposed 

system. Verification presents the completeness of the model and degree of validation 

of the correctness of the model. In this research, cross-validation (comparison to 

alternative models) was used as the validation method. 

1.7.5. Synthesis and Communication Phase 

The synthesis and communication phase includes the findings of the research, 

documenting the conclusions, recommendations and future research. The final phase 

covers outputs including the results and publications. 

1.8. Thesis Structure 

This thesis is structured in seven chapters as follows: 

Chapter 1 delivers the introduction and background of 3D geometrical and 

topological modelling, indoor navigation network modelling. The problem 

statements, research questions, aims and scope of this research are discussed and 

formalized. 

In Chapter 2, 3D building data collection techniques and 3D spatial 

modelling are discussed. Laser scanning technology including Terrestrial Laser 

Scanning (TLS), Mobile Laser Scanning (MLS) and Aerial Laser Scanning (ALS) is 
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reviewed. CityGML, Building Information Model (BIM) and Dual Half Edge (DHE) 

are discussed. 

Topological and geometrical indoor navigation network modelling is 

discussed in Chapter 3. Graph, network analysis as a base for the shortest path  

finding is discussed. Indoor navigation network models including GNM, the 

navigable space model, sub-division model and regular-grid model are reviewed. 

In Chapter 4, a method of cheap and rapid indoor building surveying is 

proposed. The Faro Photon 120/20, Leica ScanStation C10, Leica 307 TCR and 

Trimble total station M3 are used for 3D building data collection and to validate the 

results of the rangefinder. 

To model the uncertainty level of the proposed surveying method, several 

statistical and mathematical analyses including least squares adjustment, polynomial 

kernels,  interval analysis and homotopy continuation are discussed in Chapter 5. The 

rangefinder’s horizontal angle sensor was calibrated using a least squares adjustment 

algorithm, a polynomial kernel, and novel method of interval valued homotopies. All 

these methods provide mathematical or statistical models for the inaccuracies of the 

measurements by the magnetometer. 

In Chapter 6,  an indoor building navigation network model is proposed and 

implemented. Johnson's algorithm was used to find the shortest paths for network 

analysis. The modelling results were evaluated against an accurate geometry of an 

indoor building environment which was acquired using the highly accurate Trimble 

M3 total station. The proposed network model consists of two main procedures – 3D 

modelling and navigable networking. These procedures are explained in six steps. 

The conclusions, recommendations and future directions of this study are 

discussed in Chapter 7. 
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1.9.Summary 

In this chapter, the structure of this research was discussed. Current issues in 

indoor building modelling and different buiding surveying methods were addressed. 

The problem statements, the aims of the research and questions which need to be 

answered were set out. Finally, the structure of the presented thesis was formalised. 
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