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Abstract. Semantic segmentation of outdoor scenes is problematic
when there are variations in imaging conditions. It is known that albedo
(reflectance) is invariant to all kinds of illumination effects. Thus, using
reflectance images for semantic segmentation task can be favorable. Addi-
tionally, not only segmentation may benefit from reflectance, but also
segmentation may be useful for reflectance computation. Therefore, in
this paper, the tasks of semantic segmentation and intrinsic image decom-
position are considered as a combined process by exploring their mutual
relationship in a joint fashion. To that end, we propose a supervised end-
to-end CNN architecture to jointly learn intrinsic image decomposition
and semantic segmentation. We analyze the gains of addressing those two
problems jointly. Moreover, new cascade CNN architectures for intrinsic-
for-segmentation and segmentation-for-intrinsic are proposed as single
tasks. Furthermore, a dataset of 35K synthetic images of natural envi-
ronments is created with corresponding albedo and shading (intrinsics),
as well as semantic labels (segmentation) assigned to each object/scene.
The experiments show that joint learning of intrinsic image decomposi-
tion and semantic segmentation is beneficial for both tasks for natural
scenes. Dataset and models are available at: (https://ivi.fnwi.uva.nl/cv/
intrinseg).

1 Introduction

Semantic segmentation of outdoor scenes is a challenging problem in com-
puter vision. Variations in imaging conditions may negatively influence the seg-
mentation process. These varying conditions include shading, shadows, inter-
reflections, illuminant color and its intensity. As image segmentation is the pro-
cess of identifying and semantically grouping pixels, drastic changes in pixel
values may hinder a successful segmentation. To address this problem, several
methods are proposed to mitigate the effects of illumination to obtain more
robust image features to help semantic segmentation [1–4]. Unfortunately, these
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methods provide illumination invariance artificially by hand crafted features.
Instead of using narrow and specific invariant features, in this paper, we focus
on image formation invariance induced by a full intrinsic image decomposition.

Intrinsic image decomposition is the process of decomposing an image into
its image formation components such as albedo (reflectance) and shading (illu-
mination) [5]. The reflectance component contains the true color of objects in
a scene. In fact, albedo is invariant to illumination, while the shading com-
ponent heavily depends on object geometry and illumination conditions in a
scene. As a result, using reflectance images for semantic segmentation task can
be favorable, as they do not contain any illumination effect. Additionally, not
only segmentation may benefit from reflectance, but also segmentation may be
useful for reflectance computation. Information about an object reveals strong
priors about its intrinsic properties. Each object label constrains the color dis-
tribution and is expected to reflect that property to class specific reflectance
values. Therefore, distinct object labels provided by semantic segmentation can
guide intrinsic image decomposition process by yielding object specific color dis-
tributions per label. Furthermore, semantic segmentation process can act as an
object boundary guidance map for intrinsic image decomposition by enhanc-
ing cues that differentiate between reflectance and occlusion edges in a scene.
In addition, homogeneous regions (i.e. in terms of color) within an object seg-
ment should have similar reflectance values. Therefore, in this paper, the tasks
of semantic segmentation and intrinsic image decomposition are considered as a
combined process by exploring their mutual relationship in a joint fashion.

To this end, we propose a supervised end-to-end convolutional neural network
(CNN) architecture to jointly learn intrinsic image decomposition and seman-
tic segmentation. The joint learning includes an end-to-end trainable encoder-
decoder CNN with one shared encoder and three separate decoders: one for
reflectance prediction, one for shading prediction, and one for semantic segmen-
tation prediction. In addition to joint learning, we explore new cascade CNN
architectures to use reflectance to improve semantic segmentation, and semantic
segmentation to steer the process of intrinsic image decomposition.

To train the proposed supervised network, a large dataset is needed with
ground-truth images for both image semantic segmentation (i.e. class labels)
and intrinsic properties (i.e. reflectance and shading). However, there is no such
a dataset. Therefore, we have created a large-scale dataset featuring plants and
objects under varying illumination conditions that are mostly found in natural
environments. The dataset is at scene-level considering natural environments
containing intrinsic image decomposition and semantic segmentation ground-
truths. The dataset contains 35K synthetic images with corresponding albedo
and shading (intrinsics), as well as semantic labels (segmentation) assigned to
each object/scene.

Our contributions are: (1) a CNN architecture for joint learning of intrinsic
image decomposition and semantic segmentation, (2) analysis on the gains of
addressing those two problems jointly, (3) new cascade CNN architectures for
intrinsic-for-segmentation and segmentation-for-intrinsic, and (4) a very large-
scale dataset of synthetic images of natural environments with scene level intrin-
sic image decomposition and semantic segmentation ground-truths.
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2 Related Work

Intrinsic Image Decomposition. Intrinsic image decomposition is an ill-posed
and under-constrained problem since an infinite number of combinations of pho-
tometric and geometric properties of a scene can produce the same 2D image.
Therefore, most of the work on intrinsic image decomposition considers pri-
ors about scene characteristics to constrain a pixel-wise optimization task. For
instance, both [6] and [7] use non-local texture cues, whereas [8] and [9] constrain
the problem with the assumption of sparsity of reflectance. In addition, the use of
multiple images helps to resolve the ambiguity where the reflectance is constant
and the illumination changes [10,11]. Nonetheless, with the success of supervised
deep CNNs [12,13], more recent research on intrinsic image decomposition has
shifted towards using deep learning. [14] is the first work that uses end-to-end
trained CNNs to address the problem. They argue that the model should learn
both local and global cues together with a multi-scale architecture. In addi-
tion, [15] proposes a model by introducing inter-links between decoder modules,
based on the expectation that intrinsic components are correlated. Moreover,
[16] demonstrates the capability of generative adversarial networks for the task.
On the other hand, in more recent work, [17] considers an image formation loss
together with gradient supervision to steer the learning process to achieve more
vivid colors and sharper edges.

In contrast, our proposed method jointly learns intrinsic properties and seg-
mentation. Additionally, the success of supervised deep CNNs not only depends
on a successful model, but also on the availability of annotated data. Generat-
ing ground-truth intrinsic images is only possible in a fully-controlled setup and
it requires enormous effort and time [18]. To that end, the most popular real-
world dataset for intrinsic image decomposition includes only 20 object-centered
images with their ground-truth intrinsics [18], which alone is not feasible for
deep learning. On the other hand, [19] presents scene-level real world relative
reflectance comparisons over point pairs of indoor scenes. However, it does not
include ground-truth intrinsic images. The most frequently used scene-level syn-
thetic dataset for intrinsic image decomposition is the MPI Sintel Dataset [20].
It provides around a thousand of cartoon-like images with their ground-truth
intrinsics. Therefore, a new dataset is created consisting of 35K synthetic (out-
door) images with 16 distinct object types/scenes which are recorded under
different illumination conditions. The dataset contains intrinsic properties and
object segmentation ground-truth labels. The dataset is described in detail in
the experimental section.

Semantic Segmentation. Traditional semantic segmentation methods design
hand-crated features to achieve per-pixel classification with the use of an external
classifier such as support vector machines [21–23]. On the other hand, contempo-
rary semantic segmentation methods such as [24–26] benefit from the powerful
CNN models and large-scale datasets such as [27,28]. A detailed review on deep
learning techniques applied to semantic segmentation task can be found in [29].
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Photometric changes, which are due to varying illumination conditions, cause
changes in the appearance of objects. Consequently, these appearance changes
create problems for the semantic segmentation task. Therefore, several methods
are proposed to mitigate the effects of varying illumination to accomplish a
more robust semantic segmentation by incorporating illumination invariance in
their algorithms [1–4]. However, these methods provide invariance artificially by
hand crafted features. Therefore, they are limited in compensating for possible
changes in photometry (i.e. illumination). Deep learning based methods may
learn to accommodate photometric changes through data exploration. However,
they are constrained by the amount of data. In this paper, we propose to use
the intrinsic reflectance property (i.e. fully illumination invariance) to be used
for semantic segmentation.

Joint Learning. Semantic segmentation has been used for joint learning tasks
as it provides useful cues about objects and scenes. For instance, [30–32] pro-
pose joint depth prediction and semantic segmentation models. Joint semantic
segmentation and 3D scene reconstruction is proposed by [33]. Furthermore,
[34] formulates dense stereo reconstruction and semantic segmentation in a joint
framework.

For intrinsic image decomposition, [35] introduces the first unified model for
recovering shape, reflectance, and chromatic illumination in a joint optimization
framework. Other works [36,37], jointly predict depth and intrinsic property.
Finally, [38] exploits the relation between the intrinsic property and objects (i.e.
attributes and segments). The authors propose to address these problems in
a joint optimization framework. Using hand crafted priors, [38] designs energy
terms per component and combines them in one global energy to be minimized.
In contrast to previous methods, our proposed method is an end-to-end solution
and does not rely on any hand crafted priors. Additionally, [38] does not optimize
their energy function for each component separately. Therefore, the analysis
on the influence of intrinsic image decomposition on semantic segmentation is
omitted. In this paper, an in-depth analysis for each component is given.

3 Approach

3.1 Image Formation Model

To formulate our intrinsic image decomposition, the diffuse reflectance compo-
nent is considered [39]. Then, an RGB image, I, over the visible spectrum ω, is
defined by:

I = mb(n, s)
∫

ω

fc(λ) e(λ) ρb(λ) dλ. (1)

In the equation, n denotes the surface normal, whereas s is the light source direc-
tion; together forming the geometric dependencies m, which in return forms the
shading component S(x) under white light. Additionally, λ represents the wave-
length, fc(λ) is the camera spectral sensitivity, e(λ) specifies the spectral power
distribution of the illuminant, and ρb represents the diffuse surface reflectance
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Fig. 1. Model architecture for jointly solving intrinsic image decomposition and seman-
tic segmentation with one shared encoder and three separate decoders: one for shading,
one for reflectance, and one for semantic segmentation prediction. The part in the dot-
ted rectangle denotes the baseline ShapeNet model of [15].

R(x). Then, using narrow band filters and considering a linear sensor response
under white light, intrinsic image decomposition can be formulated as:

I(x) = R(x) × S(x). (2)

Then, for a position x, I(x) can be approximated by the element-wise product
of its intrinsic components. When the light source is colored, it is also included
in the shading component.

3.2 Baseline Model Architectures

Intrinsic Image Decomposition. We use the model proposed by [15],
ShapeNet, without the specular highlight module. The model is shown in the
dotted rectangle part of Fig. 1. The model provides state-of-the results for intrin-
sic image decomposition task. Early features in the encoder block are connected
with the corresponding decoder layers, which are called mirror links. That proves
to be useful for keeping visual details and producing sharp outputs. Furthermore,
the features across the decoders are linked to each other (inter-connections) to
further strengthen the correlation between the components.

To train the model for intrinsic image decomposition task, we use a com-
bination of the standard L2 reconstruction loss (MSE) with its scale invariant
version (SMSE). Let J be the prediction of the network and Ĵ be the ground-
truth intrinsic image. Then, the standard L2 reconstruction loss LMSE is given
by:

LMSE(J, Ĵ) =
1
n

∑
x,c

||Ĵ − J ||22, (3)

where x denotes the pixel coordinate, c is the color channel index and n is the
total number of evaluated pixels. Then, SMSE scales J first and compares MSE
with Ĵ :

LSMSE(J, Ĵ) = LMSE(αJ, Ĵ), (4)
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α = argmin LMSE(αJ, Ĵ). (5)

Then, the combined loss LCL for training an intrinsic component becomes:

LCL(J, Ĵ) = γSMSE LSMSE(J, Ĵ) + γMSE LMSE(J, Ĵ), (6)

where the γs are the corresponding loss weights. The final loss LIL for training
the model for intrinsic image decomposition task becomes:

LIL(R, R̂, S, Ŝ) = γR LCL(R, R̂) + γS LCL(S, Ŝ). (7)

Semantic Segmentation. The same architecture is used as the baseline for
semantic segmentation task. However, one of the decoders is removed from the
architecture, because there is only one task. As a consequence, inter-connection
links are not used for the semantic segmentation task. Furthermore, as a second
baseline, we train an off-the-shelf segmentation algorithm [24], SegNet, that is
specifically engineered for semantic segmentation task.

To train the model for semantic segmentation, we use the cross entropy loss:

LCE = − 1
n

∑
x

∑
L∈Ox

log(pL
x ) , (8)

where p is the output of the softmax function to compute the posterior prob-
ability of a given pixel x belonging to Lth class, where L ∈ Ox and Ox =
{0, 1, 2, · · ·, C} as the category set for pixel level class label.

3.3 Joint Model Architecture

In this section, a new joint model architecture is proposed. It is an exten-
sion of the base model architecture for intrinsic image decomposition task,
ShapeNet [15], that combines the two tasks i.e. intrinsic image decomposition
and semantic segmentation. We modify the baseline model architecture to have
one encoder and three distinct decoders i.e. one for reflectance prediction, one
for shading prediction, and one for semantic segmentation prediction. We main-
tain the mirror links and inter-connections. That allows for the network to be
constrained with different outputs, and thus reinforce the learned features from
different tasks. As a result, the network is forced to learn joint features for the
two tasks at hand not only in the encoding phase, but also in the decoding phase.
Both encoder and decoder parts contain both intrinsic properties and semantic
segmentation characteristics. This setup is expected to be exploited by individ-
ual decoder blocks to learn extra cues for the task at hand. Figure 1 illustrates
the joint model architecture. To train the model jointly, we combine the task
specific loss functions by summing them together:

LJL(I,R, R̂, S, Ŝ) = γCE LCE + γIL LIL(R, R̂, S, Ŝ). (9)

The effect of the gamma parameters of Eq. 6 and more implementation details
can be found in the supplementary materials.
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4 Experiments

4.1 New Synthetic Dataset of Natural Environments

A large set of synthetic images is created featuring plants and objects that are
mostly found in natural environments such as parks and gardens. The dataset
contains different species of vegetation such as trees and flowering plants with
different types of terrains and landscapes under different lighting conditions.
Furthermore, scenarios are created which involves human intervention such as
the presence of bushes (like rectangular hedges or spherical topiaries), fences,
flowerpots and planters, and etc. (16 classes in total). There is a substantial
variety of object colors and geometry. The dataset is constructed by using the
parametric tree models [40] (implemented as add-ons in Blender software), and
several manually-designed models from the Internet that aim for realistic natural
scenes and environments. Ambient lighting is provided by real HDR sky images
with a parallel light source. Light source properties are designed to correspond
to daytime lighting conditions such as clear sky, cloudy, sunset, twilight, etc. For
each virtual park/garden, we captured the scene from different perspectives with
motion blur effects. Scene are rendered with the physics-based Blender Cycles1

engine. To obtain annotations, the rendering pipeline is modified to output RGB
images, their corresponding albedo and shading profiles (intrinsics) and semantic
labels (segmentation). The dataset consists of 35K images, depicted 40 various
parks/gardens under 5 lighting conditions. A number of samples are shown in
Fig. 2. For the experiments, the dataset is randomly split into 80% training and
20% testing (scene split).

4.2 Error Metrics

To evaluate our method for intrinsic image decomposition task, we report on
mean squared error (MSE), its scale invariant version (SMSE), local mean
squared error (LMSE), and dissimilarity version of the structural similarity index
(DSSIM). DSSIM accounts for the perceptual visual quality of the results. Fol-
lowing [18], for MSE, the absolute brightness of each image is adjusted to mini-
mize the error. Further, k = 20 is used for the window size of LMSE. For semantic
segmentation task, we report on global pixel accuracy, mean class accuracy and
mean intersection over union (mIoU).

5 Evaluation

5.1 Influence of Reflectance on Semantic Segmentation

In this experiment, we evaluate the performance of reflectance and RGB
color images as input for semantic segmentation task. We train an off-the-
shelf segmentation algorithm SegNet [24] using (i) ground-truth reflectance

1 https://www.blender.org/.

https://www.blender.org/
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Fig. 2. Sample images from the Natural Environment Dataset (NED) featuring plants
and objects under varying illumination conditions with ground-truth components

(Albedo − SegNet) and (ii) RGB color images (RGB − SegNet); separately,
and (iii) RGB + reflectance (Comb. − SegNet); together, as input. The results
are summarized in Table 1 and illustrated in Fig. 3. Further, confusion matrices
for (RGB − SegNet) and (Albedo − SegNet) are provided in Fig. 4.

Table 1. Semantic segmentation accuracy using albedo and RGB images as inputs.
Using albedo images significantly outperforms RGB images

Methodology Global pixelClass averagemIoU

RGB − SegNet 0.8743 0.6259 0.5217

Comb. − SegNet 0.8958 0.6607 0.5577

Albedo − SegNet0.9147 0.6739 0.5810

The results show that semantic segmentation algorithm highly benefits from
illumination invariant intrinsic properties (i.e. reflectance). The combination
(Comb. − SegNet) outperforms single RGB input (RGB − SegNet). On the
other hand, the results with reflectance as single input (Albedo − SegNet) are
superior to the results with inputs including RGB color images in all metrics.
The combined input (Comb.−SegNet) is not better than using only reflectance
(Albedo − SegNet), because the network may be negatively influenced by the
varying photometric cues introduced by the RGB input. Although the CNN
framework may learn, to a certain degree, illumination invariance, it is not pos-
sible to cover all the variations caused by the illumination. Therefore, a full
illumination invariant representation (i.e. reflectance) helps the CNN to improve
semantic segmentation performance. Moreover, the confusion matrices show that
the network is unable to distinguish a number of classes based on RGB input.
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Fig. 3. Qualitative evaluation of the influence of reflectance on semantic segmenta-
tion. The results show that the semantic segmentation algorithm highly benefits from
illumination invariant intrinsic properties (i.e. reflectance)

Fig. 4. Confusion matrices for (RGB − SegNet) and (Albedo− SegNet)

Using reflectance, the same network gains the ability to correctly classify the
ground class, as well as making fewer mistakes with similar-looking box and
topiary classes.

5.2 Influence of Semantic Segmentation on Intrinsic Decomposition

In this experiment, we evaluate the performance of intrinsic image decomposition
using ground-truth semantic segmentation labels as an extra source of infor-
mation to the RGB images. We compare the performance of intrinsic image
decomposition trained with RGB images (RGB) only as input and intrinsic
decomposition trained with RGB images and ground-truth semantic segmen-
tation labels (RGB + SegGT ) together as their input. As for RGB + SegGT ,
four input channels (i.e. RGB color image and semantic segmentation labels)
are provided as input. The results are summarized in Table 2.
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Table 2. The influence of semantic segmentation on intrinsic property prediction.
Providing segmentation as an additional input (RGB + SegGT ) clearly outperforms
the approach of using only RGB color images as their input

MSE LMSE DSSIM
Alb Shad Alb Shad Alb Shad

RGB 0.0094 ± 0.008 0.0088 ± 0.0078 0.0679 ± 0.0412 0.0921 ± 0.0582 0.1310 ± 0.0535 0.1303 ± 0.0495
RGB + SegGT 0.0076 ± 0.0063 0.0078 ± 0.0064 0.0620 ± 0.0384 0.0901 ± 0.0613 0.1141 ± 0.0472 0.1312 ± 0.0523

As shown in Table 2, intrinsic image decomposition clearly benefits from seg-
mentation labels. RGB + SegGT outperforms RGB in all metrics. DSSIM met-
ric, accounting for the perceptual visual quality, shows the improvement on
reflectance predictions, which indicates that the semantic segmentation process
can act as an object boundary guidance map for reflectance prediction. A number
of qualitative comparisons are shown for RGB and RGB + SegGT in Fig. 5.

Fig. 5. Columns 2 and 3 show that RGB + SegGT is better in removing shadows and
shading from the reflectance images, as well as preserving sharp object boundaries and
vivid colors, and therefore is more similar to the ground truth

5.3 Joint Learning of Semantic Segmentation and Intrinsic
Decomposition

In this section, we evaluate the influence of joint learning on intrinsic image
decomposition and semantic segmentation performances. We perform three
experiments. First, we evaluate the effectiveness of joint learning of intrinsic
properties and semantic segmentation considering semantic segmentation perfor-
mance. Second, we evaluate the effectiveness of joint learning of intrinsic property
and semantic segmentation to obtain intrinsic property prediction. Finally, we
study the effects of the weights of the loss functions for the tasks.

Experiment I. In this experiment, we evaluate the performance of the proposed
joint learning-based semantic segmentation algorithm (Joint), an off-the-shelf
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Fig. 6. Proposed joint learning framework outperforms single task framework SegNet.
Our method preserves the object shapes and boundaries better and is robust against
varying lighting conditions

semantic segmentation algorithm [24] (SegNet) and the baseline of one encoder
one decoder ShapeNet [15] (Single). All CNNs receive RGB color images as their
input. SegNet and Single output only pixel level object class label predictions,
whereas the proposed method predicts intrinsic property (i.e. reflectance and
shading) in addition to the object class labels. We compare the accuracy of the
models in Table 3. As shown in Table 3, the proposed joint learning framework
outperforms the single task frameworks in all metrics. Further, visual comparison
between SegNet and the proposed joint framework is provided in Fig. 6. In
addition, confusion matrices are provided in the supplementary material.

Table 3. Comparison of the semantic segmentation accuracy. The proposed joint learn-
ing framework outperforms the single task frameworks in all metrics

Methodology Global pixel Class average mIoU

Single 0.8022 0.4584 0.3659

SegNet 0.8743 0.6259 0.5217

Joint 0.9302 0.7055 0.6332
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By analyzing the 3rd and 4th row of the figure, it can be derived that unusual
lighting conditions negatively influence the results of the SegNet. In contrast,
our proposed method is not effected by varying illumination due to the joint
learning scheme. Furthermore, our method preserves object shapes and bound-
aries when compared to the SegNet model (rows 1, 2 and 5). Note that the joint
network does not perform any additional fine-tuning operations (e.g. CRF etc.).
Additionally, SegNet architecture is deeper than our proposed model. However,
our method still outperforms SegNet. Finally, the joint network outperforms
the single task cascade network; for mIoU 0.6332 vs. 0.5810, see Tables 1 and 3,
as the joint scheme enforces to augment joint features.

Experiment II. In this experiment, we evaluate the performance of the pro-
posed joint learning-based and the state-of-the-art intrinsic image decompo-
sition algorithms [15] (ShapeNet). Both CNNs receive RGB color images as
input. ShapeNet outputs only intrinsic properties (i.e. reflectance and shading),
whereas the proposed method predicts pixel level object class labels as well as
intrinsic properties. We train ShapeNet and the proposed method using ground-
truth reflectance and shading labels on the training set of the proposed dataset.
We compare the accuracy of ShapeNet and the proposed method in Table 4.

Table 4. Influence of joint learning on intrinsic property prediction

MSE LMSE DSSIM
Alb Shad Alb Shad Alb Shad

ShapeNet 0.0094 ± 0.0080 0.0088 ± 0.0078 0.0679 ± 0.0412 0.0921 ± 0.0582 0.1310 ± 0.0535 0.1303 ± 0.0495
Int.-Seg. Joint 0.0030 ± 0.0040 0.0030 ± 0.0024 0.0373 ± 0.0356 0.0509 ± 0.0395 0.0753 ± 0.0399 0.0830 ± 0.0381

As shown in Table 4, the performance of the proposed joint learning framework
outperforms single task learning (ShapeNet) in all the metrics for reflectance
(albedo) and shading estimation. Further, our joint model obtains lower standard
deviation values. To give more insight on reflectance prediction performances, a
number of visual comparisons between ShapeNet and the proposed joint frame-
work are given in Fig. 7. In the figure, (the first two columns) it can be derived
that the semantic segmentation process acts as an object boundary guidance
map for the intrinsic image decomposition task by enhancing cues to differenti-
ate between reflectance and occlusion edges in a scene. Hence, object boundaries
are better preserved by the proposed method (e.g. the separation between pave-
ment and ground in the first image and the space between fences in the second
image). In addition, information about an object reveals strong priors about it’s
intrinsic properties. Each object label adopts to a constrained color distribution.
That can be observed in third and fourth columns. Semantic segmentation guides
intrinsic image decomposition process by yielding the trees to be closer to green
and flowers to be closer to pink. Moreover, for class-level intrinsics, the best
improvement (3.3 times better) is obtained by concrete step blocks, which have
achromatic colors. Finally, as in segmentation, the joint network outperforms
the single task cascade network, see Tables 2 and 4.
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Fig. 7. The first two columns illustrate that the proposed method provides sharper
outputs especially at object boundaries than ShapeNet. The 3rd and 4th columns
show that the proposed method predicts colours that are closer to the ground truth
reflectance. The last column shows that the proposed method handles sharp cast shad-
ows better than ShapeNet (Color figure online)

Experiment III. In this experiment, we study the effects of the weightings of
the loss functions. As the cross entropy loss is an order of magnitude higher than
the SMSE loss, we first normalize them by multiplying the intrinsic loss by 100.
Then, we evaluate different weights on top of the normalization (SMSE ×100×
w). See Table 5 for the results. If higher weights are assigned to intrinsics, they
both jointly increase. However, weights which are too high, negatively influence
the mIoU values. Therefore, w = 2 appears to be the proper setting for both
tasks.

Table 5. Influence of the weighting of the loss functions. SMSE loss is weighted by
(SMSE × 100 × w). w = 2 appears to be the proper setting for both tasks

ω
Segmentation MSE LMSE DSSIM
Global mIoU Alb Shad Alb Shad Alb Shad

0.01 0.9179 0.567 0.0083 ± 0.0068 0.0083 ± 0.0072 0.0650 ± 0.0412 0.0920 ± 0.0611 0.1224 ± 0.0498 0.1343 ± 0.0545
0.5 0.7038 0.512 0.0038 ± 0.0037 0.0035 ± 0.0027 0.0398 ± 0.0311 0.0550 ± 0.0416 0.1633 ± 0.0538 0.1353 ± 0.0497
1 0.9048 0.533 0.0044 ± 0.0041 0.0044 ± 0.0036 0.0477 ± 0.0352 0.0655 ± 0.0474 0.0926 ± 0.0445 0.1040 ± 0.0421
2 0.9302 0.633 0.0030 ± 0.0040 0.0030 ± 0.0024 0.0373 ± 0.0356 0.0509 ± 0.0395 0.0753 ± 0.0399 0.0830 ± 0.0381
4 0.9334 0.611 0.0028 ± 0.3300 0.0028 ± 0.0023 0.0356 ± 0.02997 0.0491 ± 0.04081 0.0716 ± 0.03804 0.0695 ± 0.0357

5.4 Real World Outdoor Dataset

Finally, our model is evaluated on real world garden images provided by the
3D Reconstruction meets Semantics challenge [41]. The images are captured by
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Fig. 8. Evaluation on real world garden images. We observe that our proposed method
capture better colors and sharper outputs compared with [15]

a robot driving through a semantically-rich garden with fine geometric details.
Results of [15] are provided as a visual comparison on the performance in Fig. 8.
It shows that our method generates better results on real images with sharper
reflectance images having more vivid and realistic colors. Moreover, our method
mitigates sharp shadow effects better. Note that our model is trained fully on
synthetic images and still provides satisfactory results on real, natural scenes.
For semantic segmentation comparison, we fine-tuned SegNet [24] and our app-
roach on the real world dataset after pre-training on the garden dataset. Since
we only have the ground-truth for segmentation, we (only) unfreeze the segmen-
tation branch. Results show that SegNet and our approach obtain 0.54 and 0.54
for mIoU and a global pixel accuracy of 0.85 and 0.88 respectively. Note that
our model is much smaller in size and predicts the intrinsics together with the
segmentation. More results are provided in the supplementary material.

6 Conclusion

Our approach jointly learns intrinsic image decomposition and semantic seg-
mentation. New CNN architectures are proposed for joint learning, and sin-
gle intrinsic-for-segmentation and segmentation-for-intrinsic learning. A dataset
of 35K synthetic images of natural environments has been created with corre-
sponding albedo and shading (intrinsics), and semantic labels (segmentation).
The experiments show joint performance benefit when performing the two tasks
(intrinsics and semantics) in joint manner for natural scenes.
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