1,372 research outputs found

    Tendencias líderes de investigación sobre estrategias de trading

    Full text link
    [EN] Trading strategies have attracted the attention of academic researchers and practitioners for a long time, but most specially in recent years due to the explosion of high-quality databases and computation capacity. Numerous studies are devoted to the analysis and proposal of trading strategies which cover aspects such as trend prediction, variables selection, technical analysis, pattern recognition etc. and apply many di erent methodologies. This paper conducts a meta-literature review which covers 1187 research articles from 1984 to 2020. The aim of this paper is to show the increasing importance of the topic and present a systematic study of the leading research areas, countries, institutions and authors contributing to this field. Moreover, a network analysis to identify the main research streams and future research opportunities is conducted.[ES] La creación de estrategias de inversión siempre ha atraído la atención de los académicos y de los inversores profesionales, pero, indudablemente, esta popularidad ha aumentado en los últimos años, con la aparición de bases de datos más completas y mayor potencia de cálculo de las computadoras. Son numerosos los estudios que analizan y proponen estrategias de inversión y que tratan aspectos como la predicción de la tendencia, la selección de variables, el análisis técnico, el reconocimiento de patrones etc. aplicando diferentes metodologías. En este trabajo se realiza un estudio bibliográfico que abarca 1187 artículos de investigación desde 1984 hasta 2020. El objetivo es mostrar la creciente importancia de este campo de investigación y presentar un análisis sistemático de los países, instituciones y autores que más están contribuyendo al avance del conocimiento. Además, se realiza un análisis de redes para identificar las principales áreas de investigación y las tendencias futuras.Oliver-Muncharaz, J.; García García, F. (2020). Leading research trends on trading strategies. Finance, Markets and Valuation. 6(2):27-54. https://doi.org/10.46503/LHTP1113S27546

    High-low Strategy of Portfolio Composition using Evolino RNN Ensembles

    Get PDF
    trategy of investment is important tool enabling better investor's decisions in uncertain finance market. Rules of portfolio selection help investors balance accepting some risk for the expectation of higher returns. The aim of the research is to propose strategy of constructing investment portfolios based on the composition of distributions obtained by using high–low data. The ensemble of 176 Evolino recurrent neural networks (RNN) trained in parallel investigated as an artificial intelligence solution, which applied in forecasting of financial markets. Predictions made by this tool twice a day with different historical data give two distributions of expected values, which reflect future dynamic exchange rates. Constructing the portfolio, according to the shape, parameters of distribution and the current value of the exchange rate allows the optimization of trading in daily exchange-rate fluctuations. Comparison of a high-low portfolio with a close-to-close portfolio shows the efficiency of the new forecasting tool and new proposed trading strategy

    A forecasting of indices and corresponding investment decision making application

    Get PDF
    Student Number : 9702018F - MSc(Eng) Dissertation - School of Electrical and Information Engineering - Faculty of Engineering and the Built EnvironmentDue to the volatile nature of the world economies, investing is crucial in ensuring an individual is prepared for future financial necessities. This research proposes an application, which employs computational intelligent methods that could assist investors in making financial decisions. This system consists of 2 components. The Forecasting Component (FC) is employed to predict the closing index price performance. Based on these predictions, the Stock Quantity Selection Component (SQSC) recommends the investor to purchase stocks, hold the current investment position or sell stocks in possession. The development of the FC module involved the creation of Multi-Layer Perceptron (MLP) as well as Radial Basis Function (RBF) neural network classifiers. TCategorizes that these networks classify are based on a profitable trading strategy that outperforms the long-term “Buy and hold” trading strategy. The Dow Jones Industrial Average, Johannesburg Stock Exchange (JSE) All Share, Nasdaq 100 and the Nikkei 225 Stock Average indices are considered. TIt has been determined that the MLP neural network architecture is particularly suited in the prediction of closing index price performance. Accuracies of 72%, 68%, 69% and 64% were obtained for the prediction of closing price performance of the Dow Jones Industrial Average, JSE All Share, Nasdaq 100 and Nikkei 225 Stock Average indices, respectively. TThree designs of the Stock Quantity Selection Component were implemented and compared in terms of their complexity as well as scalability. TComplexity is defined as the number of classifiers employed by the design. Scalability is defined as the ability of the design to accommodate the classification of additional investment recommendations. TDesigns that utilized 1, 4 and 16 classifiers, respectively, were developed. These designs were implemented using MLP neural networks, RBF neural networks, Fuzzy Inference Systems as well as Adaptive Neuro-Fuzzy Inference Systems. The design that employed 4 classifiers achieved low complexity and high scalability. As a result, this design is most appropriate for the application of concern. It has also been determined that the neural network architecture as well as the Fuzzy Inference System implementation of this design performed equally well

    The development of hybrid intelligent systems for technical analysis based equivolume charting

    Get PDF
    This dissertation proposes the development of a hybrid intelligent system applied to technical analysis based equivolume charting for stock trading. A Neuro-Fuzzy based Genetic Algorithms (NF-GA) system of the Volume Adjusted Moving Average (VAMA) membership functions is introduced to evaluate the effectiveness of using a hybrid intelligent system that integrates neural networks, fuzzy logic, and genetic algorithms techniques for increasing the efficiency of technical analysis based equivolume charting for trading stocks --Introduction, page 1

    TM-vector: A Novel Forecasting Approach for Market stock movement with a Rich Representation of Twitter and Market data

    Full text link
    Stock market forecasting has been a challenging part for many analysts and researchers. Trend analysis, statistical techniques, and movement indicators have traditionally been used to predict stock price movements, but text extraction has emerged as a promising method in recent years. The use of neural networks, especially recurrent neural networks, is abundant in the literature. In most studies, the impact of different users was considered equal or ignored, whereas users can have other effects. In the current study, we will introduce TM-vector and then use this vector to train an IndRNN and ultimately model the market users' behaviour. In the proposed model, TM-vector is simultaneously trained with both the extracted Twitter features and market information. Various factors have been used for the effectiveness of the proposed forecasting approach, including the characteristics of each individual user, their impact on each other, and their impact on the market, to predict market direction more accurately. Dow Jones 30 index has been used in current work. The accuracy obtained for predicting daily stock changes of Apple is based on various models, closed to over 95\% and for the other stocks is significant. Our results indicate the effectiveness of TM-vector in predicting stock market direction.Comment: 24 pag

    Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks.

    Get PDF
    Política de acceso abierto tomada de: https://www.aimspress.com/index/news/solo-detail/openaccesspolicyThe blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict “buy” or “sell” decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.This research was funded by the Universitat de Barcelona, under the grant UB-AE-AS017634

    An adaptive network-based approach for advanced forecasting of cryptocurrency values

    Full text link
    This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time.Comment: 11 page
    corecore