297 research outputs found

    Q-AIMD: A Congestion Aware Video Quality Control Mechanism

    Get PDF
    Following the constant increase of the multimedia traffic, it seems necessary to allow transport protocols to be aware of the video quality of the transmitted flows rather than the throughput. This paper proposes a novel transport mechanism adapted to video flows. Our proposal, called Q-AIMD for video quality AIMD (Additive Increase Multiplicative Decrease), enables fairness in video quality while transmitting multiple video flows. Targeting video quality fairness allows improving the overall video quality for all transmitted flows, especially when the transmitted videos provide various types of content with different spatial resolutions. In addition, Q-AIMD mitigates the occurrence of network congestion events, and dissolves the congestion whenever it occurs by decreasing the video quality and hence the bitrate. Using different video quality metrics, Q-AIMD is evaluated with different video contents and spatial resolutions. Simulation results show that Q-AIMD allows an improved overall video quality among the multiple transmitted video flows compared to a throughput-based congestion control by decreasing significantly the quality discrepancy between them

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    An Architecture for Provisioning In-Network Computing-Enabled Slices for Holographic Applications in Next-Generation Networks

    Full text link
    Applications such as holographic concerts are now emerging. However, their provisioning remains highly challenging. Requirements such as high bandwidth and ultra-low latency are still very challenging for the current network infrastructure. In-network computing (INC) is an emerging paradigm that enables the distribution of computing tasks across the network instead of computing on servers outside the network. It aims at tackling these two challenges. This article advocates the use of the INC paradigm to tackle holographic applications' high bandwidth and low latency challenges instead of the edge computing paradigm that has been used so far. Slicing brings flexibility to next-generation networks by enabling the deployment of applications/verticals with different requirements on the same network infrastructure. We propose an architecture that enables the provisioning of INC-enabled slices for holographic-type application deployment. The architecture is validated through a proof of concept and extensive simulations. Our experimental results show that INC significantly outperforms edge computing when it comes to these two key challenges. In addition, low jitter was maintained to preserve the hologram's stability

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    An Improved Active Network Concept and Architecture for Distributed and Dynamic Streaming Multimedia Environments with Heterogeneous Bandwidths

    Get PDF
    A problem in todays Internet infrastructure may occur when a streaming multimedia application is to take place. The information content of video and audio signals that contain moving or changing scenes may simply be too great for Internet clients with low bandwidth capacity if no adaptation is performed. In order to satisfactorily reach clients with various bandwidth capacities some works such as receiver-driven multicast and resilient overlay networks (RON) have been developed. However these efforts mainly call for modification on router level management or place additional layer to the Internet structure, which is not recommended in the nearest future due to the highly acceptance level and widely utilization of the current Internet structure, and the lengthy and tiring standardization process for a new structure or modification to be accepted. We have developed an improved active network approach for distributed and dynamic streaming multimedia environment with heterogeneous bandwidth, such as the case of the Internet. Friendly active network system (FANS) is a sample of our approach. Adopting application level active network (ALAN) mechanism, FANS participants and available media are referred through its universal resource locator (url). The system intercepts traffic flowing from source to destination and performs media post-processing at an intermediate peer. The process is performed at the application level instead of at the router level, which was the original approach of active networks. FANS requires no changes in router level management and puts no additional requirement to the current Internet architecture and, hence, instantly applicable. In comparison with ALAN, FANS possesses two significant differences. From the system overview, ALAN requires three minimum elements: clients, servers, and dynamic proxy servers. FANS, on the other hand, unifies the functionalities of those three elements. Each of peers in FANS is a client, an intermediate peer, and a media server as well. Secondly, FANS members tracking system dynamically detects the existence of a newly joined computers or mobile device, given its url is available and announced. In ALAN, the servers and the middle nodes are priori known and, hence, static. The application level approach and better performance characteristics distinguished also our work with another similar work in this field, which uses router level approach. The approach offers, in general, the following improvements: FANS promotes QoS fairness, in which clients with lower bandwidth are accommodated and receive better quality of service FANS introduces a new algorithm to determine whether or not the involvement of intermediate peer(s) to perform media post-processing enhancement services is necessary. This mechanism is important and advantageous due to the fact that intermediate post-processing increases the delay and, therefore, should only be employed selectively. FANS considers the size of media data and the capacity of clients bandwidth as network parameters that determine the level of quality of service offered. By employing the above techniques, our experiments with the Internet emulator show that our approach improves the reliability of streaming media applications in such environment

    Distributed Coding/Decoding Complexity in Video Sensor Networks

    Get PDF
    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C
    corecore