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        A wireless video surveillance system contains three major components, the video 

capture and preprocessing, the video compression and transmission over wireless sensor 

networks (WSNs), and the video analysis at the receiving end. The coordination of 

different components is important for improving the end-to-end video quality, especially 

under the communication resource constraint. Cross-layer control proves to be an 

efficient measure for optimal system configuration. In this dissertation, we address the 

problem of implementing cross-layer optimization in the wireless video surveillance 

system. 

        The thesis work is based on three research projects. In the first project, a single PTU 

(pan-tilt-unit) camera is used for video object tracking. The problem studied is how to 

improve the quality of the received video by jointly considering the coding and 

transmission process. The cross-layer controller determines the optimal coding and 

transmission parameters, according to the dynamic channel condition and the 

transmission delay. Multiple error concealment strategies are developed utilizing the 

special property of the PTU camera motion.  

        In the second project, the binocular PTU camera is adopted for video object tracking. 

The presented work studied the fast disparity estimation algorithm and the 3D video 



 

transcoding over the WSN for real-time applications. The disparity/depth information is 

estimated in a coarse-to-fine manner using both local and global methods. The 

transcoding is coordinated by the cross-layer controller based on the channel condition 

and the data rate constraint, in order to achieve the best view synthesis quality. 

        The third project is applied for multi-camera motion capture in remote healthcare 

monitoring. The challenge is the resource allocation for multiple video sequences. The 

presented cross-layer design incorporates the delay sensitive, content-aware video coding 

and transmission, and the adaptive video coding and transmission to ensure the optimal 

and balanced quality for the multi-view videos. 

        In these projects, interdisciplinary study is conducted to synergize the surveillance 

system under the cross-layer optimization framework. Experimental results demonstrate 

the efficiency of the proposed schemes. The challenges of cross-layer design in existing 

wireless video surveillance systems are also analyzed to enlighten the future work.  
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Chapter 1 

Introduction 

1.1 Research Background 

Video surveillance over wireless sensor networks (WSNs) has been widely adopted in 

various cyber-physical systems including traffic analysis, healthcare, public safety, 

wildlife tracking and environment/weather monitoring. The unwired node connection 

facility in WSNs comes with some typical problems in data transmission. Among them 

are line-of-sight obstruction, signal attenuation and interference, data security, and 

channel bandwidth or power constraint. A vast amount of research work has been 

presented to tackle these problems, and many have been successfully applied in practice 

and have become industrial standards. However, for video surveillance applications, 

especially those with real-time demands, the processing and transmission process at each 

wireless node with a large amount of video data is still challenging. 

 

1.1.1 Video Surveillance System 

The development of the video surveillance system has experienced three generations – 

the analog video surveillance system, the digital video surveillance system, and the 

network video surveillance system [1]. The analog video surveillance system adopts 

analog video capture devices known as the Closed Circuit Television (CCTV). The video 

signal is transmitted via dedicated wired cables to the monitors, as shown in Figure 1.1. 

The advantages of this kind of system are the signal safety and cost efficiency, making it 

still popular in many small-scale surveillance areas like a housing estate and a factory 

district. In the analog system, the video signal is directly captured, transmitted and stored 
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without A/D conversion.  The displayed video usually maintains high quality with little 

delay. However, when the transmission distance is getting longer, the signal is subject to 

deterioration due to attenuation, delay and interference. Applying amplifier helps to 

elongate the distance but also brings in more noises. Moreover, the system lacks the 

flexibility of wiring and camera rearranging. The storage of large amount of video data 

and the magnetic storage device’s vulnerability to deformation are also among the 

limitations of the analog system. Therefore, its application is confined to small 

surveillance areas. 

 

 

Figure 1.1 : An analog video surveillance system [1]. 

 

      The digital video surveillance system is widely adopted after the commercialization 

of digital video recorder (DVR) in 1990s. DVR converts analog signals into digital 

signals and records the video on hard disk with much larger storage capacity than the 

magnetic cassette tape. The DVR incorporates the functions of A/D conversion, video 
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codec, video storage, network transmission, and remote control to support some 

intelligent services including virtual array switch, networking, and software development 

for image processing such as encryption, indexing and backup. The digital video 

surveillance system is deployed based on the DVR and network infrastructure, as 

displayed in Figure 1.2. Compared to the analog system, it can ensure the video quality 

for long-distance transmission utilizing the modern digital signal communication 

technologies. As the computer processor unit’s fast growing computing ability enables 

various video analysis tasks to be implemented in the system for more advanced 

surveillance applications, e.g. data indexing and event detection, the digital system is 

rapidly developed, especially in large-scale, intelligent video surveillance applications. 

 

 

Figure 1.2 : A digital video surveillance system [1]. 

 



4 

      The popularity of broadband IP internet creates a new era for video surveillance, 

known as the network video surveillance, or IP video surveillance. This kind of system 

relies on the technical advances of multidisciplinary fields including image/video codec, 

microchip, pattern recognition, software control, and mostly the digital communication 

over the high speed internet. Depending on the networking and intelligent video analysis 

technologies, the surveillance system is capable of providing more complex services. For 

example, the authorized user can access the video via the browser at any client node in 

the network, including the mobile wireless network, and the alarm signal can be 

automatically generated based on the event detection results. Compared to the 

conventional surveillance system, the network video surveillance has more flexibility for 

data access, content display, video distribution, network extension, and protocol 

adaptability for video streaming. The properties of these three kinds of surveillance 

systems are summarized in Table 1.1. 

 

Table 1.1 Comparison of three video surveillance systems 

 Analog Video 

Surveillance System 

Digital Video 

Surveillance System 

Network Video 

Surveillance System 

Coverage small large large 

Networking dedicated compatible with 

internet 

compatible with 

internet 

Management complex, manual complex, manual simple, remote 

control 

Extensibility limited limited multi-level 

 Video Access surveillance center designated PC or 

surveillance center 

anywhere, anytime 

via network 

System Scale small small large 

Remote Control no poor good 

Data Storage magnetic cassette 

tape 

disk array or optic 

disk 

disk array 

Safety low normal high 
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      According to the characteristics of the dedicated service, the existing research and 

development work on video surveillance can be classified into three categories – the 

intelligent video surveillance, the high definition video surveillance, and the wireless 

video surveillance. The intelligent video surveillance system features the advanced video 

analysis technologies for object tracking or event detection, usually with a set of 

distributed, cooperative network cameras. It has been successfully applied for some 

public services such as the intelligent transportation as demonstrated in Figure 1.3 [1].     

 

 

Figure 1.3 : Intelligent video surveillance at the traffic station [1]. 

 

      The high definition video surveillance sees its market in more delicate situations 

when the high definition images are required to perform the pattern recognition tasks. For 

instance, the accuracy of the face recognition result is significantly improved with the 

high definition images, and hence the system well accommodates the safety purpose such 

as the surveillance at the bank, station and other public areas. 
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      The wireless video surveillance is getting popular along with the development of 

WSN. The properties of WSN enable the source nodes and the intermediate nodes to be 

placed at some prohibitive locations, like the wildlife habitat, and the contagious or 

biochemical district. It is also possible to equip each node with certain mobility. These 

advantages are incomparable by the wired system when it comes to those special 

surveillance scenarios. However, the wireless video surveillance inevitably inherits the 

technical challenges for the WSN. A more prominent problem is how to coordinate 

different components in the system based on the WSN framework. We will discuss this 

problem in this thesis work and present the solutions with experimental results from 

several practical projects.    

 

1.1.2 Wireless Video Surveillance 

In current state-of-the-art wireless video surveillance systems, each source node is 

usually equipped with one or more cameras, a microprocessor and/or the storage unit, a 

transceiver, and the power supply. The basic functions of each node include video 

capture, video compression and data transmission.  The process of video analysis for 

different surveillance purpose is performed either by the sender or by the receiver, 

depending on their computational capability. The remote control unit at the receiver’s end 

can also provide some useful information feedback to the sender in order to better serve 

the surveillance purpose. The major functional modules of a video surveillance system 

are illustrated in Figure 1.4. 
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Figure 1.4 : A wireless video surveillance system. 

 

      In the U.S.A., the Federal Communication Commission (FCC) is responsible for 

regulating radio spectrum usage [2]. The most commonly used license-exempt frequency 

bands in current wireless surveillance systems include 900MHz, 2.4GHz, and 5.8GHz. 

The 4.9GHz frequency band is reserved for Intelligent Transportation Systems (ITS) for 

public safety and other municipal services [3]. The specific communication parameters 

are defined in several groups of standards including IEEE 802.11/WiFi, IEEE 

802.16/WiMax, IEEE 802.15.4/ZigBee, etc. The existing WSN technologies are utilized 

in all kinds of wireless video surveillance applications. One popular application is traffic 

analysis in intelligent transportation. For example, the traffic signal system deployed by 

the transportation department in the city of Irving, Texas (Irving, 2004) [4] implemented 

seventy pan-tilt-zoom (PTZ) CCTV cameras to cover about two hundred intersections. 

One smart camera capable of video codec and video over IP function was installed at 

each traffic site together with a radio/antenna unit. The on-site signal is transmitted to the 
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base stations ringed in a 100 Mbps wireless backbone operating at the licensed 

frequencies of 18-23 GHz. 

     The traffic monitoring system developed at the University of Minnesota (UMN, 2005) 

[5] attached each node with one or more CCTV cameras, a computer for video recording 

and compression, and an Ethernet radio subscriber unit. Multiple SIF video feeds were 

recorded and compressed simultaneously at the traffic site, and were transmitted to the 

base station for real-time observation. 

      The traffic surveillance system tested at the University of North Texas (UNT, 2011) 

[6] installed at each of the three campus sites an Axis 213PTZ camera and a radio device. 

The traffic video was transmitted to the control center through a daisy chain network. The 

control center was able to remotely adjust the PTZ camera position and the focal length, 

and to estimate the vehicle speed on a roadway parallel to the image plane. 

      Video surveillance in other wireless communication applications is also intensively 

studied. To monitor the lightning stricken forest fire, a remote weather monitoring system 

(FireWxNet, 2006) initially developed for the fire fighting community in the Bitterroot 

National Forest in Idaho was introduced in [7]. The system was composed of three sensor 

networks consisting of a total of thirteen nodes, five wireless access points, and two PTZ 

web cameras (Sony SNC-RZ30N and Panasonic KX-HCM280). The battery and solar 

powered webcams had an infra-red night vision feature and could deliver video to 

designated web servers via a Trango radio unit. 

      The smart camera network system (SCNS, 2011) used in a railway station was 

described in [8]. Deployed in a mesh network, each sensor node was able to communicate 

with others, so that the targeted object was continuously tracked by cameras installed at 
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different locations of the station. The vision analytic PC associated with each camera 

processed the captured QVGA video at a speed up to ten frames per second, and 

transmitted the target information to other nodes. A sensor node equipped with a PTZ 

camera performed automatic object tracking upon received target information. 

      An indoor surveillance system tested in a multi-floor department building at the 

University of Massachusetts-Lowell was introduced in [9]. The moving target was 

assumed to carry a battery-powered TMote TelosB wireless sensor to signal its 

information to a nearby wireless router. The router passed its location information to the 

server and received back the camera control command to enable video capture, 

compression and transmission. 

      For surveillance in a wide social area like metropolis, the sensor deployment is more 

complex. An example is the multi-sensor distributed system developed at Kingston 

University, named proactive integrated systems for security management by 

technological institutional and communication assistance (PRISMATICA, 2003) [10]. 

Both wired and wireless video and audio subsystems were integrated in the centralized 

network structure. The data processing module at the operation center supported multiple 

real-time intelligent services, such as overshadowing and congestion detection upon 

received video. 

      Another group of research work focused on the power efficiency problem at the 

sensor node. In the video WSN (Panoptes, 2003) described in [11], each node was built 

on an Intel StrongARM based Compaq IPAQ PDA platform with an 802.11 card and a 

Logitech webcam. A central node received data from other client nodes and performed 

video aggregation to detect unusual events. The energy saving strategy employed by the 
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client node included data filtering, buffering and adaptively discarding. The power 

consumption was around 5 Watts when the system fully functioned. 

      A hybrid-resolution smart camera mote (MeshEye, 2007) was designed to perform 

stereo vision at the sensor node with low energy cost [12]. A fully integrated Printed 

Circuit Board (PCB) was built consisting of an Atmel AT91SAM7S family 

microcontroller with an ARM7TDMI ARM Thumb processor, two kilopixel cameras, a 

VGA resolution CMOS camera, and a Texas Instruments CC2420 RF transceiver. The 

location of the targeted object was first estimated from the image data by the two low 

resolution cameras. Then the high resolution camera marked the position in its image 

plane and transmitted only the video data inside the target region.   

      The multiview visual target surveillance system developed at Tsinghua University 

(Tsinghua, 2009) [13] was capable of target localization through collaboration among 

sensor nodes. Each sensor node carried an image sensor controlled by a neighboring 

pyroelectric-infrared sensor. The computing module of each sensor node was constructed 

on an ARM9 (200 MHz) single-board computer with a normal computing power of 122 

mW. It performed the target classification and tracking task, and shared with other nodes 

the down sampled color data and other information. Different network topologies and 

collaboration strategies were instrumented to realize automatic, continuous object 

tracking. 

      Some technical parameters of these effectively deployed systems are listed in Table 

1.2. 
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Table 1.2 Wireless video surveillance systems 

Surveillance 

System 

Surveillance 

Environment 

MAC 

Protocol 

Carrier 

Frequency 

Maximum 

Throughput 

Network 

Topology 

Camera 

Number 

Camera 

Control 

Video 

Delivery 

Panoptes, 

2003 [11] 

indoor 802.11 2.4 GHz 12 Mbps star multiple fixed unicast 

PRISMATIC

A, 2003 [10] 

indoor/ 

outdoor 

802.11 2.44 GHz N. A. star multiple fixed unicast 

Irving, 2004 

[4] 

highway 802.11a 

802.16 

5.8, 18, 

24/23 GHz 

20 - 60 Mbps 

for on-site, 

100 Mbps for 

backbone 

star, ring multiple PTZ unicast 

UMN, 2005 

[5] 

highway 802.16 5.4 GHz 3/30 Mbps star multiple fixed simulcast 

FireWxNet, 

2006 [7] 

wildland 802.11 924Mhz 10 Mbps tree multiple PTZ unicast 

MeshEye, 

2007 [12] 

indoor/ 

outdoor 

802.15.4 2.4 GHz 11 Kbps point-to-

point 

multiple fixed simulcast 

Tsinghua, 

2009 [13] 

indoor 802.15.4 900 MHz 19.2 Kbps star, tree, 

mesh 

multiple fixed unicast 

UML, 2010 

 [9] 

indoor 802.11b/

g 

2.4 GHz 54 Mbps tree multiple fixed unicast 

SCNS, 2011 

[8] 

railway 802.11g 

802.11j 

2.4, 5 GHz 20 Mbps mesh multiple fixed, 

PTZ 

unicast 

UNT, 2011 

[6] 

campus 802.11 

a/n 

5.4, 5.8 

GHz 

20 Mbps chain multiple PTZ unicast 

 

      In these systems, the wireless communication technologies dedicated for improving 

the video quality are the key to a successful application. Besides the traditional technical 

characteristics, the WSN technologies applied for surveillance purpose need to consider 

the optimal configuration based on the practical system architecture. This new feature 

requires interdisciplinary study, and has drawn in myriad research endeavor, as the 

application is becoming increasingly popular.  

 

1.2 Research Motivation 

In a wireless video communication system, the limited channel resource is managed 

through configuring the options at different layers in the network architecture, for 

example, the coding and error control at the application layer, the congestion control and 

reliability protocol at the transport layer, the routing at the network layer, the contention 
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scheme at the MAC (medium access control) layer, and the modulation and coding 

scheme (MCS) at the physical layer [14]. To jointly implement the configuration 

procedure, the cross-layer control methodology is developed to optimize the system-level 

resource allocation [15]. Given the channel state information (CSI), the controller is able 

to coordinate decision making at different layers in order to maximize the visual quality 

of the received video. The general optimization framework is formulated as a distortion 

minimization problem under certain constraints, typically the delivery delay constraint 

[16-20], and the transmission power constraint [21-24].  

      While the well-established WSN infrastructure and video coding standards can be 

utilized in the surveillance system, many new technologies have been proposed to 

accommodate the special requirements of the surveillance applications, such as the target 

object tracking, content-aware resource allocation, and the delay or power constrained 

video transmission. To bring out the optimal configuration, the major components in a 

surveillance system, including the video capture and preliminary vision tasks, video 

coding and transmission, and video analysis at the receiving end, have to be jointly 

considered. Under this circumstance, the cross-layer control proves to be a natural and 

desirable measure for system-level optimal resource allocation. 

      In this thesis work, we study the delay sensitive cross-layer control in the surveillance 

system, based on three practical surveillance applications, including the dynamic video 

object tracking with a single PTU camera, the binocular video object tracking with fast 

disparity estimation and the 3D video streaming, and the multi-camera motion estimation 

for remote healthcare monitoring.  
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      In the first project, a single PTU (pan-tilt-unit) camera is used for video object 

tracking in an unmanned surveillance environment. The problem studied in this work is 

how to improve the quality of the received video by jointly considering the coding and 

transmission process at the source node. The cross-layer controller should be able to 

estimate the end-to-end video distortion, and to determine the optimal coding and 

transmission parameters, taking into account the dynamic channel condition and the 

transmission delay constraint. The error concealment strategies need to be considered for 

video quality enhancement, and the special property of the PTU camera motion can be 

utilized to accelerate the processing.  

        In the second project, the binocular PTU camera is adopted for video object tracking. 

The presented work studied the fast disparity estimation algorithm and the 3D video 

transcoding over the WSN for real-time applications. In the surveillance scenario, the 

disparity/depth information is used to adjust the tracking window size by the MeanShift 

tracking procedure, so as to improve the accuracy of the tracking results. The transcoding 

process for the 3D video, including one video sequence and its corresponding disparity 

data, can be coordinated by the cross-layer controller based on the channel condition and 

the data rate constraint, in order to achieve the best view synthesis quality at the receiving 

end with different display dimensions. 

        The third project is applied for multi-camera motion capture in remote healthcare 

monitoring, aiming to provide caregivers with timely access to the patient’s health status 

through mobile communication devices. The challenge in this work is the resource 

allocation problem for the multiple video sequences delivered over the WSN for the 3D 

joint motion estimation by the receiver, rather than the resource allocation for a single 
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video in the traditional video surveillance system. The cross-layer control is designed to 

incorporate the delay sensitive, content-aware video coding and transmission, and the 

adaptive video coding and transmission procedures to jointly allocate the communication 

resources for multiple sequences, ensuring the optimal and balanced quality for the multi-

view videos. 

      In these research projects, the essential idea is that the three major components in the 

surveillance system, namely the video capture, the video compression and transmission, 

and the video analysis, should be seamlessly cooperating under the cross-layer 

optimization framework. It is demonstrated through extensive experimental results that 

the presented cross-layer optimization schemes are preferable for enhancing the 

performance of a wireless video surveillance system.  

1.3 Outline 

The remainder of this dissertation is organized as follows. 

      In Chapter 2, we introduce the cross-layer optimization mechanism in wireless 

multimedia communications, and the special requirement for implementing cross-layer 

design in wireless video surveillance.  

      In Chapter 3, we present a wireless surveillance system for dynamic video object 

tracking with single PTU camera. The system contains three major modules, PTU camera 

control for surveillance video capture, cross-layer control for data compression and 

transmission, and error concealment for video quality enhancement. The system design 

for data collection and transmission over wireless networks is evaluated with physical 

surveillance equipments. The camera is capable of automatically following the moving 

target according to the control information. The target object can be segmented using 
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background subtraction, based on the special property of the PTU camera movement. The 

end-to-end distortion estimation in the delay constrained video coding process takes into 

account the dynamic channel condition and physical layer MCS to determine optimal 

coding and transmission parameters. Moreover, multiple error resilience and error 

concealment strategies, including interleaving, boundary match and video up-sampling, 

are applied utilizing the special property of the PTU camera motion. Experimental results 

show the efficiency of the surveillance system, and the superiority of the cross-layer 

optimization scheme, compared to the traditional video delivery scheme. 

      In Chapter 4, a binocular video object tracking system is designed with runtime 3D 

video content generation and data streaming over WSN. The purpose of applying two 

cameras is to generate the disparity/depth information, in order to adjust the tracking 

window size according to the distance between the target and the camera. Meanwhile, the 

3D video content, including one video sequence and the corresponding disparity 

information, are transmitted for more advanced surveillance applications. To realize the 

real-time tracking, a fast disparity estimation algorithm is proposed. The disparity 

estimation process for each stereoscopic pair is formulated as an energy minimization 

problem. The iterative solution procedure is implemented in a course-to-fine manner. The 

estimated disparity is used to scale the tracking window by the Mean Shift algorithm, i.e. 

the size of the tracking area is adjustable according to its inner disparity, and thus the 

moving object can be better located by the camera. The program maintains the semi-real-

time performance and acceptable accuracy as evaluated on a set of standard test data. In 

our experiment, two PointGrey cameras are controlled through a PTU device. The 

disparity estimation process on the recorded tracking video (640x480) achieves 6fps on 
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an ordinary PC (2.66GHz CPU, 4GB RAM). The 3D video content is transmitted over a 

heterogeneous WSN where the transcoding is required to adjust the frame size according 

to the terminal display device. A cross-layer optimized transcoding scheme is proposed to 

select the optimal quantization parameters for re-encoding the 3D video data.  

      In Chapter 5, a multi-camera motion capture system for healthcare monitoring is 

presented aiming to provide caregivers with timely access to the patient’s health status 

through mobile communication devices. The major components include video capture, 

object detection, video coding and transmission, error concealment, and video analysis. 

In this surveillance system, several novel ideas are developed, including fast object 

detection, and content-aware and adaptive video coding and transmission. All 

components are seamlessly integrated in a unified optimization framework dedicated for 

online data transmission. In the scenario, the subject walked on a treadmill with four 

tripod cameras capturing the video from different viewpoints. After video compression 

and transmission over a wireless sensor network, the remote receiver recovered the 

videos and performed multi-view motion capture for gait analysis. Experimental results 

show that the presented system design achieves better video quality than traditional video 

coding and transmission scheme, while the requirement for a low-cost, noninvasive and 

real-time healthcare monitoring system is accommodated. 

      The summary of our research contributions and the future research directions are 

provided in Chapter 6. 
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Chapter 2 

Cross-layer Optimization in Wireless Multimedia Communications 

2.1 Introduction 

The unstable channel condition and limited resources post great challenges for data 

communications in wireless sensor networks. This problem is more conspicuous for 

transmitting the large amount of multimedia data. Different from the traditional OSI 

communications model with virtually strict boundaries between layers, the cross-layer 

optimization mechanism enables systematic coordination and jointly decision making for 

all layers based on the resource constraints, and thus is considered a desirable and 

promising measure for wireless multimedia communications. 

      The cross-layer control has been widely adopted in various wireless communication 

systems [25]. Popular applications include the congestion control in single-path and 

multi-path routing [26], the adaptive modulation and channel coding for data 

transmission under delay and error performance constraints [27], and the subcarrier 

allocation for multiple users in OFDM wireless networks [28]. A common methodology 

in these cross-layer control schemes is to estimate the end-to-end signal error rate over 

the wireless channel for the designated resource configuration. These designs mainly 

focus on lower layers in the communication systems, such as the transmission path 

selection, channel access multiplexing, automatic repeat request, and the modulation and 

channel coding. When applied to multimedia communications, the source processing 

technologies in the application layer provide much more powerful error adaptation 

capability for the cross-layer controller. Take the video streaming as an example. One 

representative paradigm is the cross-layer optimized video coding and transmission 
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scheme [29] that adjusts both the coding parameters (coding mode, quantization 

parameter) and the transmission parameters (path selection, MCS) according to the video 

playback delay constraint. This cross-layer control scheme evolves from the joint source 

channel coding scheme [30, 31] which adjusts the coding parameters based on the 

varying data rate limit. The presented cross-layer control model is demonstrated in Figure 

2.1.  

 

 

Figure 2.1 : A cross-layer control model for wireless video streaming [29]. 

 

      The various error resilience and error concealment methods in traditional video 

source coding can be applied and be considered in the error estimation process by the 

cross-layer controller. A popular error resilience technique in the video source coding 

process is multiple description coding (MDC). The main concept of MDC is to create 
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several independent descriptions that contribute to one or more characteristics of the 

original signal: spatial or temporal resolution, signal-to-noise ratio (SNR), or frequency 

content [32]. MDC is considered an efficient measure to counteract bursty packet losses. 

Its robustness lies in the fact that it is unlikely the portions of the whole set of 

descriptions corresponding to the same part of the picture all corrupt during the 

transmission. Each description can be independently decoded and the visual quality is 

improved when more descriptions are received. The compression efficiency of MDC is 

affected due to reduced redundancy in each description. The extra overhead is largely 

ignored when otherwise the complex channel coding schemes or the complex 

communication protocols have to be applied in the presence of high packet loss. 

      Other video source coding error resilience measures include the scalable video coding 

(SVC) [33] and the distributed video coding (DVC) [34]. The error concealment 

techniques are also considered in the end-to-end distortion estimation process. They are 

designed to restore the missing packets in the received video, based on the encoding 

patterns at the transmitter. For example, the slice/frame copy is often adopted to replace 

the lost packets that are encoded as an entire slice/frame at the source node [30], and the 

boundary match [35] algorithm is developed for the concealment of the missing blocks 

that are encoded in an interleaved manner. 

      Furthermore, the source processing technologies are incorporated with the 

transmission process in some cross-layer designs to synergize the system performance 

enhancement. One typical example is to apply the unequal error protection (UEP) 

mechanism based on the data type. The idea of UEP is to allocate more resources to the 

parts of the video sequence that have a greater impact on video quality, while spending 
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fewer resources on parts that are less significant [21]. In the cross-layer optimized video 

communication system presented in [36], the authors applied the priority-based 

discarding of video packets. The MAC always drops the packets belonging to the least 

important SVC layer first to allow more resource consumption by the more important 

layers in the queues. This way, the MAC ensures that the most important base-layer 

packets have the highest probability to get transmitted, and thus helping to maintain 

service continuity for the client. The RoI (region of interest) based wireless video 

streaming system introduced in [37] adopted multiple error resilience schemes for data 

protection. The RoI region was obtained through image segmentation, and was assigned 

more resources than other background areas, including chessboard interleaving rather 

than slice interleaving, higher degree of forward error correction and automatic repeat 

request.  

      Closely related to the practical system architecture, the cross-layer design needs to 

take into account the specific requirements of different applications, in order to properly 

configure the parameters. To further describe this mechanism, the rest of this section 

introduces the formulation of the cross-layer optimization problem, and its 

implementation in wireless video surveillance. 

  

2.2 Formulation 

The cross-layer optimization problem is generally considered the optimal resource 

allocation process under the system resource constraints [25, 38]. A standard formulation 

for the cross-layer optimization procedure in the communication system can be expressed 

as a utility maximization, or equivalently, a distortion minimization problem as follows, 
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                                                                                                               (2.1) 

 

where D is the expected end-to-end data distortion under the system configuration set 

          . p is the expected data loss over the WSN given the same configuration. 

              is the vector of corresponding consumed resources, and      

represents the resource constraints. For multimedia data such as the video, the distortion 

estimation considers both the source coding distortion and the channel distortion. The 

source coding distortion is caused by data compression, while the channel distortion is 

due to the packet loss. Based on the application services provided by the system, the data 

distortion and the resource constraint expressed in Formula (2.1) could have different 

definitions, and the solution strategy to the optimization problem also varies, as discussed 

in the following subsections. 

  

2.2.1 Optimization Goal 

The expected end-to-end data distortion in Formula (2.1) is application dependent. For 

most video delivery tasks, the distortion is defined as the difference between the original 

data and the received data after compression and transmission over the wireless channel, 

or the utility is measured as the similarity between the original data and the received data, 

to evaluate the quality of service (QoS), or the quality of experience (QoE) provided by 

the system. Some commonly applied QoS or QoE metrics include MSE (mean square 

error), PSNR (peak-signal-to-noise-ratio), mean opinion score (MOS) and SSIM 

(structural similarity). For other vision tasks, the distortion is defined as the difference 

between the generated vision product using the original data, and the other generated 
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vision product using the received contaminated data. For example, in the cross-layer 

optimized transcoding scheme presented by Liu et al [39], the view synthesis distortion 

using the transcoded data is considered.  The cross-layer control scheme designed by 

Thakolsri et al [40] distinctively defined the temporal video quality fluctuation as the 

optimization goal, aiming to provide a smooth viewing experience for the audience. 

 

2.2.2 Optimization Constraint 

The resource constraints expressed in Formula (2.1) also depend on the system. A 

commonly considered constraint for video communications is the transmission delay for 

real-time applications. To achieve real-time video delivery, the cross-layer optimized 

video coding and transmission scheme described in [19] considered the physical layer 

MCS in estimating the dynamic packet loss rate in a Rayleigh fading channel. For video 

streaming over multi-hop WSNs, the systems demonstrated in [17] and [18] enabled 

adaptive configuration for both the physical layer MCS and the link layer path selection. 

The work introduced in [20] incorporates congestion control with link adaptation for real-

time video streaming over ad hoc networks.  

      Power constraint is another consideration for energy efficient mobile devices. In [22], 

node cooperation is applied to optimally schedule the routing in order to minimize the 

energy consumption and delay. The cross-layer design presented in [23] jointly 

configured the physical, MAC, and routing layers to maximize the lifetime of energy-

constrained WSNs. The object based video coding and transmission scheme developed 

by Wang et al [21] performed UEP for the shape data and the texture data in the rate and 

energy allocation procedure.  
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      Other resource constraints, such as the computation complexity [41], the fairness 

among multiple users [28], can be conveniently included in the cross-layer optimization 

framework described in Formula (2.1), according to the requirements of the specific 

application. 

 

2.2.3 Solution Strategy 

The definition of the optimization goal and constraints determines the unique solution 

strategy for each wireless multimedia communication system. As the implemented vision 

task gets more complicated, or the posted constraints are more complex, the traditional 

exhaustive full search method for all possible parameter configurations is time-

consuming, and is infeasible for some mobile devices. A popular optimization solution 

strategy is to utilize the Lagrange relaxation, and to apply dynamic programming to 

obtain the solution given that the convexity (or concavity for a utility function) of the 

described problem is guaranteed, and that the distortion estimation is independent 

between two consecutive recursion steps [18, 21]. When the constraints are complex and 

thus even the dynamic programming algorithm is time-consuming, the approximate 

optimization solution strategy based on the relaxation is often applied, such as the fast 

optimization method for the power-rate-distortion optimized cross-layer control scheme 

presented in for video streaming over wireless sensor networks [42]. With this kind of 

approximation scheme, the solution is obtained in an iterative procedure. In current 

iteration, one part of the parameter set is fixed, and the optimal solution for the rest part is 

determined, which serves as the fixed part in the next iteration. The procedure terminates 

until the difference between two consecutive iterations falls below certain threshold, or 

the maximal iteration number is reached. In the cross-layer optimization strategy for data 
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communication over the OFDM wireless sensor networks developed by Song et al [28], 

the optimal resource allocation for multiple users is achieved by applying multiple greedy 

algorithms for resource allocation, for both concave and nonconcave utility functions. 

 

2.3 Cross-layer Optimization in Wireless Video Surveillance 

Most of the cross-layer optimization schemes for wireless multimedia communications 

are applicable for wireless video surveillance, if the major service provided by the system 

is the surveillance video delivery. In some scenarios, the primary concern is that the 

moving target object is of greater interest than the background, and should be given 

higher priority. When the communication resources are limited, an alternative of heavier 

compression is to implement unequal error protection for different parts of the video data. 

Hence the RoI based UEP mechanism is a natural way to optimize resource allocation in 

a wireless video surveillance system. The system design for surveillance video coding 

and transmission over wireless sensor and actuator networks (WSANs) proposed in [16] 

extended the UEP mechanism from source data processing to network management. Each 

intermediate sensor node in the selected transmission path put the target packets ahead of 

all the background packets in the queue. Thus the target packet had a lower packet loss 

rate than the background packet when the sensor node started dropping packets with a 

higher waiting time than the packet delay limit.  

      Current video coding standards provide different interfaces for RoI data processing. 

For example, the object based video representation is supported in the MPEG-4 standard 

[43]. A contour free object shape coding method compatible with the SPIHT codec [44] 

was introduced in [45]. In the latest H.264/AVC standard, several tools intended for error 

resilience like Flexible Macroblock Ordering (FMO) and Arbitrary Slice Ordering (ASO) 
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can be used to define the RoI region [46]. These interfaces enable convenient 

incorporation of the object based UEP mechanism in the coding and transmission process 

in the surveillance system. 

      In other scenarios, the focus of the service provided by the system could be other 

issues, such as the security and privacy concerns [47, 48], and other vision applications 

including super resolution [49], view synthesis [50], and 3D model reconstruction [51]. 

However, most of these technologies are either based on undistorted video data, or 

independent of the error control procedure at the transmitter. The impact of video 

compression on RD performance was considered in several vision applications for 

optimal source coding decision at the transmitter, including view synthesis [52, 53], 

object tracking [54], and super resolution [55]. Some JSCC schemes were embedded in 

the coding structure for optimal resource allocation based on end-to-end distortion 

estimation [56, 57]. The channel distortion model for more complex vision applications 

remains a challenging research topic. 

 

2.4 Summary 

Cross-layer optimization proves to be an efficient measure for wireless multimedia 

communications. For wireless surveillance video communications, new challenges are 

emerging in the process of compressing and transmitting large amount of video data, and 

in the presence of run time and energy conservation requirements for mobile devices. The 

requirements and constraints for different surveillance systems can be described under 

the general cross-layer optimization framework, to facilitate the resource allocation 

process. Another trend in this field is the 3D signal processing technology in more 

advanced multiview video surveillance. The wireless communication environment posts 
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greater difficulty for this kind of applications. How to efficiently estimate the distortion 

for the dedicated vision task at the receiving end using the compressed and concealed 

video data remains a research topic worth exploring. 
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Chapter 3 

Video Surveillance with Single PTU Camera 

3.1  Introduction 

Wireless video sensor networks with active cameras are gaining increasing popularity in 

various surveillance applications such as intelligent transportation, environmental 

monitoring, homeland security, construction site monitoring, and public safety [58]. 

Current work on video surveillance with active cameras mainly focused on automatic 

camera control algorithms [59, 60]. To extend these algorithms into a wireless 

surveillance system, the dynamic channel condition and the data delivery delay constraint 

need to be considered in the data compression and transmission process, in order to meet 

the visual quality and real-time requirements demanded by the online application. 

      In block based video compression, the selection of coding mode and corresponding 

quantization parameter (QP) is an important process for rate-distortion (RD) control. 

While QP selection under predefined coding mode structure has been extensively studied 

[61-63], combining mode selection could enhance the coding results for its inherent 

adaptability [64, 65]. In [64], the intra/inter mode selection process is formulated as a 

Lagrange cost minimization problem solved by dynamic programming. The authors in 

[65] further explored the efficiency of multi-resolutional coding by adaptively selecting 

among intra, inter and down-sampling modes for each macro block (MB). It was reported 

that better performance is acquired under low data rate constraint [65, 66], since smaller 

QPs could be chosen for down sampled MBs. These source coding methods merely look 

into the quantization induced distortion. In packetized video transmission over wireless 

networks, packet loss is also a major cause for the data distortion observed by the 
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receiver. Incorporating the packet loss information in the end-to-end distortion estimation 

process has been proved to be an efficient measure to improve the coding efficiency [30, 

31]. The coding method described in [19] further considered the physical layer MCS to 

estimate the dynamic packet loss rate (PLR) in a time-varying Rayleigh fading channel. 

Moreover, the video streaming systems discussed in [17] and [18] enabled adaptive 

configuration for physical layer MCS and link layer path selection through cross-layer 

control. To enhance the overall system performance, we consider the flexible 

configuration for both the video coding parameters and the MCS. Intra, inter, down-

sampling and skip (packet drop) coding modes are available in the compression process, 

and the MCS is determined according to the distortion estimation result based on the 

corresponding PLR and data rate. 

      Error concealment is another important factor in quality enhancement. In block based 

codec, interleaving is an effective error resilience technique to avoid losing consecutive 

MBs in one packet bearing strong spatial or temporal correlation with each other [37, 67, 

68]. The proposed interleaving mechanism is capable of grouping the MBs into the 

designated packet number with controllable decomposition depth. For a lost MB, after 

deinterleaving, patches from previous frames are compared to its boundary pixels [35]. 

The property of PTU camera motion is exploited in the patch search process to carry out 

an efficient implementation. Finally, the down-sampled data is recovered to the normal 

resolution using the total variation (TV) method [66, 69]. 

      The architecture of the wireless video surveillance system is illustrated in Figure 3.1. 

The transmitter is in charge of video capture and compression for data transmission. The 

PTU camera is controlled by both the commands from a remote control unit (RCU) and 
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the local tracking result. The captured video is recorded by the local tracker and is sent to 

the data processing center. The data center collects channel state information (CSI) and 

handles the procedure of video compression and system configuration. Camera 

parameters, such as the focal length, the camera center, and the pan/tilt angles are 

transmitted along with the video packets to the RCU. The RCU performs error 

concealment on received data and provides necessary feedback to the transmitter, 

including the packet loss information and the camera redirection commands. 

 

 
 

Figure 3.1 : A video surveillance system with single PTU camera. 

       

      In the following sections, we will introduce the detail function of each component in 

the surveillance system, including the property of PTU camera movement and the object 

tracking algorithm for video capture, the cross-layer optimization procedure for data 

compression and transmission, and the error concealment strategies for video recovery at 

the RCU. 

 

3.2  PTU Camera Model 
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Object detection is a primary task in video surveillance applications. An automatic, 

intelligent surveillance system should be able to monitor moving objects within certain 

areas and extract the most important information. Therefore both tracking and detection 

are critical to the performance of such a system. Furthermore, the method adopted in each 

system must take into account the specific camera arrangement. For example, if multiple 

cameras are placed at different locations with static pose, the tracking process should be 

able to coordinate these camera outputs so that the detection process knows how to locate 

useful information. If the system has control over camera movement, usually fewer 

cameras are required, with increased complexity in software algorithms since the tracking 

process needs to incorporate camera control and detection has to deal with changing 

background. 

      A freely moving camera is usually infeasible in an unmanned surveillance 

environment due to technical or fiscal constraints. A more practical scheme is to use a 

PTU camera, where the camera projection center is generally unchanged and the retinal 

plane is capable of angular movement. In this kind of system, the camera control 

algorithm for tracking process needs to estimate the angular speed/acceleration of the 

moving object, and background alignment in different video frames is required for 

motion detection. In the PTU camera tracking algorithm proposed by Petrov et al. [59], a 

linear feedback controller is applied based on the theory of Lyapunov Stability. The 

control parameters are updated by object position estimated using Mean Shift [70] 

algorithm. The unique geometric property of a PTU camera model is that the camera 

projection center remains unchanged while the pan and tilt angles are controllable, as 

illustrated in Figure 3.2 (a) [59]. The focus F denotes the projection center. The image 
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plane is viewed down along its y axis, and is projected on the X-Y world coordinate plane. 

α is the angle between the object center and the X axis, θ is the angle between the image 

center and the X axis, f is the focal length, and xc is the distance between the projected 

object center and the image center along the x axis. Only pan control is displayed in the 

figure. The algorithm applies to tilt control similarly. 

      The linear feedback controller aims to minimize xc and the difference between the 

estimated object speed and the measured object speed. According to the Theory of 

Lyapunov Stability, the camera angular speed wθk, the camera angle θ, and the estimated 

distance xc are updated at every time instance: 

 

                                                                   (3.1) 

 

                                                                   (3.2) 

 

                                                                     (3.3) 

 

 

 
(a) Object tracking.                                        (b) Corresponding points. 

 

Figure 3.2 : PTU camera model. 
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where     is the estimated object angular speed, and    is the estimated object angle. p is a 

parameter used to control the convergence speed in the dynamic system. And     is the 

duration of the k-th time interval for the control parameters update. Different from [59] 

where the constant time interval is applied, we consider the control delay in the real 

communication system and adopt noisy interval values in Equation (3.2) to test the 

performance of our proposed method. The updated camera motion information and the 

recorded video data are then processed at the data center prior to transmission. 

      With a fixed focus position, it is observed that the captured video possesses a special 

correlation between the corresponding background pixels in two consecutive frames. As 

demonstrated in Figure 3.2 (b), C1 and C2 are the image centers (origins of the image 

coordinates) in previous and current frames, P1 and P2 are the image pixels projected on 

to these two frames from the same static object in the surveillance environment, and β is 

the pan (or tilt) angle between two camera positions. The correlation of the coordinates of 

P1 and P2 can be expressed as, 

 

                                                       

                                                             
  

 
                                       (3.4) 

 

where x1 and x2 are the x (or y) coordinates of P1 and P2, respectively. Even if the object 

is moving, its corresponding pixel can still be found in a nearby neighborhood according 

to Equation (3.4) in previous frame, as long as it is not occluded. Thus given the camera 

parameters and the coordinate of a pixel in current frame, the motion searching process 

for the pixel’s counterpart in previous frames can be accelerated. This property will also 

be utilized in the error concealment process, as discussed in Section 3.5. 
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3.3  Video Object Tracking 

Object detection with fixed camera often takes advantage of static background. A 

commonly used technique is background subtraction based on Gaussian Mixture Model 

(GMM) [71]. This temporal learning process models different conditions of a pixel at 

certain position as a mixture of Gaussian distributions. Weight, mean and variance values 

of each Gaussian model can be updated online, and pixels not conforming to any 

background model are quickly detected. The adaptive learning property makes this 

technique suitable for real-time applications, and a variety of detection methods are 

developed combining other spatiotemporal processing [72-74]. For object detection with 

moving cameras, more factors need to be considered. Mean Shift is efficient in locating 

object position according to the object’s color distribution [75, 76]. However, it can only 

indicate the approximate position, rather than the shape of the tracked object. Hence 

further processing is necessary to bring out more accurate information. Among all the 

features that are useful for shape detection, motion is one of the most essential. The first 

step for motion detection with a moving camera is background alignment. While 

traditional optical flow approach is very time-consuming and loses accuracy when the 

camera has large motions [75], features such as corners and edges [77, 78] are often used 

to estimate the geometric relation between different video frames. In an affine camera 

model, this relation can be represented by either the fundamental matrix [79] or the 

homography [78]. We will show in the next subsection that the fundamental matrix is not 

suitable for a PTU tracking system, and the multi-layer homography model [80] is 

unnecessary, because of the special property of the camera movement. Moreover, we 

propose an object detection method based on the analysis of PTU camera model. In the 
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tracking process, one PTU camera is used. The linear control algorithm in [59] is used to 

follow the object’s movement. The Mean Shift estimation and the control algorithm work 

in an interactive way to enhance accuracy and speed up convergence. The moving object 

can thus always be visible in center area of the image plane. In the detection process, first 

the background is aligned using the homography computed from RANSAC (Random 

Sample Consensus) fitting. Then correlation between the video frame and aligned 

background image is adaptively thresholded according to the distance between each pixel 

and the estimated object center from Mean Shift. A variational level set method [81] is 

applied afterwards to contour the outline and remove noises. The experiment on our PTU 

camera video demonstrates promising results. 

 

3.3.1  Background Alignment 

 

With a moving camera, the object detection procedure has to consider the background 

difference among the video sequence. Background alignment for motion detection is 

usually implemented by computing the fundamental matrix [79] or homography [78]. 

However, the fundamental matrix method fails to handle the situation when the camera 

projection center is not moving. As shown in Figure 3.3, the 2D points m1 and mi 

projected on two image planes from the same 3D point M are related through the 

following fundamental matrix F: 

 

                                                                (3.5) 

 

      When the camera centers C1 and C2 overlaps, the computed matrix F is singular and it 

is very sensitive to noises. By contrast, the homography method estimates the direct 

mapping between corresponding points. And there is no need to worry about the multi-
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layer homography problem described in [80] since a point on one projection ray will 

always be projected to a fixed position in the image plane regardless of the depth of this 

point. As demonstrated in Figure 3.2 (b), if a point locates on the ray OP1, where O is the 

projection center, and P1 is its projected point in image plane C1, its projection on image 

plane C2 will be P1, no matter how far it is from the projection center. 

 

   
 

Figure 3.3 : Background matching with fundamental matrix. 

      

      Therefore, the homography method is adopted in the system for background 

alignment, which is then used for object segmentation, as introduced in the next 

subsection. In the alignment process, the Harris corner finder [87] is applied to detect 

feature points in both video frame and the background image, as shown in Formula (3.6), 

where      is the gradient of a pixel in image I, and    ,     are the projected gradients 
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in the direction of x and y axis.   is a small positive number to prevent the evaluation 

from getting infinitely large in some smooth areas. Figure 3.4 (a) displays the detected 

feature points in the pre-captured background image. 

 

    
   
     

      
 

   
     

   
                                                 (3.6) 

 

      Corners in one image I1 find their matches in the other image I2 with highest 

correlation.  

 

    
                 

   
          

      
                                             (3.7) 

 

      And mismatched pairs are eliminated by RANSAC fitting, through which the 

homography is computed: 

 

                                                                   (3.8) 

 

      Here H is the homography, and x’, x denote the coordinates of a matched pair in two 

images. The matching results can be observed from Figure 3.4. As seen in the ceiling 

light area, the mismatched pairs in Figure 3.4 (b) due to similar correlation values are 

eliminated in Figure 3.4 (c) by the homography method, and the background is correctly 

aligned with the video frame. 
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(a)                                                            (b)                         

 
(c)                                                             (d) 

 

Figure 3.4 : (a) Background image with detected corners; corner pair matching by (b) 

fundamental matrix method and (c) homography method; (d) aligned background. 
 

 

3.3.2  Object Segmentation 

 

In the video object tracking procedure, object segmentation is provided for more accurate 

object detection purpose. The system architecture of the two step object detection method 

is demonstrated in Figure 3.5. In the tracking process, two modules work interactively. 

The Mean Shift algorithm provides the measured object position as input for parameters 

update in PTU camera control, while the updated control parameters provide initial 

position for Mean Shift at next time instance in order to speed up the convergence. In the 

detection process, firstly background is aligned with each video frame. A background 
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image necessary for subtraction can be synthesized either from several pre-captured 

backgrounds [78], or from some learning methods [82, 83] using other video frames.       

 

 
 

Figure 3.5 : Object detection with segmentation. 

       

      After aligning the background using the method introduced in previous subsection, 

the correlation value of each pixel in video frame with aligned background is calculated 

and thresholded according to its distance from the object center (xc, yc) estimated by the 

Mean Shift algorithm, 

 

          
 
      

        
 

                                                       (3.9) 

 

         
                                     

                                         
                                  (3.10) 

 

       

      The parameter A and B are predefined constants used to adjust the range of the 

threshold T. By adopting such an adaptive measure, foreground areas around the object 

center will have higher threshold and can be more easily detected than boundary areas, 

where the lighting condition is volatile and the subtraction result is prone to suffer. After 
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thresholding, the variational level set method proposed by Li et al. [81] is applied on the 

residual image to contour and infill the outline of foreground objects. Noises can be 

further removed due to the length shrinking property of the evolutional curves. During 

the implementation of the detection process, a multi-resolution strategy is adopted to 

reduce the computation. 

      The experimental results with our PTU (Directed Perception D47) camera tracking 

system are demonstrated in Figure 3.6. Two different video frames are displayed in 

Figure 3.6 (b) and (c) to illustrate the tracking result. The walking person dressed in red is 

always visible in the center area of the image. The background alignment result can be 

observed in Figure 3.4 from the previous subsection. The correlation threshoding results 

with constant threshold values are provided in Figure 3.6 for comparison. The threshold 

value is set to 0.3 (Figure 3.6 (d)) and 0.7 (Figure 3.6 (e)) respectively. The constants 

defined in Equation (3.9) are selected such that A = 0.8, and B equals to one fourth of the 

image diagonal length. As shown in Figure 3.6 (f) - (g), our adaptive thresholding method 

is more robust to noises, thus it can facilitate the level set contour process. As can be 

observed from the outline infill result in Figure 3.6 (h), our proposed detection method 

can bring out foreground object shape efficiently, even only intensity values of the video 

data are processed. 
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(a)                                                     (b) 

 
(c)                                                     (d) 

 
(e)                                                           (f) 

 
(g)                                                         (h) 
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Figure 3.6 : (a) PTU camera; tracking (b) - (c) and detection (d) - (h). Correlation 

thresholding with (d) - (e) constant and (f) adaptive threshold; (g) level set contour; (h) 

infill. 

 

      The video object detection method presented in this paper utilizes the special 

geometric property of PTU camera movement. In the tracking process, Mean Shift and 

the camera control model work interactively to enhance accuracy and achieve real-time 

performance. This tracking mechanism centers the object in image plane and provides 

useful information for detection process. In the detection process, foreground areas are 

efficiently detected through background alignment and correlation thresholding. The 

adaptive thresholding scheme works successfully given the tracking position information. 

Experimental results on intensity data are encouraging. The proposed method is suitable 

for resource limited surveillance applications. 

 

3.4  Cross-layer Control 

Video communications over wireless networks face various challenges including power 

and bandwidth constraint, random time-varying channel fading effect, network 

heterogeneity, and quality of service requirement [84]. Information from different 

network layers is necessary to be incorporated in data compression/coding procedure in 

order to achieve better system performance. Therefore, alongside with the development 

in source coding strategies [61, 64, 65, 85, 86], increasing dependence on cross-layer 

optimization is observed in emerging mobile multimedia applications [17-19, 21, 87 ].  

      In video compression, coding mode and corresponding quantization parameter (QP) 

selection is an important process for rate-distortion (RD) control. While QP selection 

under predefined GOP structure has been extensively studied [18, 19, 61], combining 
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mode selection could enhance the coding results for its inherent adaptability [64]. 

Traditional mode selection methods mainly consider RD results obtained in application 

layer, i.e. given rate or buffer constraint, quantization distortion is minimized by optimal 

coding decision. A plethora of research work has been done in this area. In [64], the 

mode selection process is formulated as a Lagrange cost minimization problem solved by 

dynamic programming. Other information such as local edge or block boundary 

difference is also utilized to accelerate the coding decision process [86]. The authors in 

[65] further explored the efficiency of multiresolutional coding by adaptively selecting 

among intra, inter and down sampling modes for each macro block (MB), and reported 

that better performance is acquired under low data rate, since smaller QPs could be 

chosen for down sampled MBs.  

      These source coding methods merely look into quantization induced distortion. In 

packetized video transmission over wireless networks, packet loss is also a major cause 

of distortion at receiver’s side. In [30], the ‘recursive optimal per-pixel estimate’ (ROPE) 

method is presented for MB coding mode decision. Expected end-to-end distortion is 

estimated with certain PLR. This statistical model demonstrates a new way to adjust 

coding decision according to both source coding and channel distortion, whereas the 

impact of dynamic channel condition on RD results is not considered. Another joint 

source channel coding (JSCC) method introduced in [31] adopts random intra refreshing. 

Source coding distortion is modeled as a function of the intra MB refreshing rate, while 

channel distortion is calculated in a similar recursive fashion as is done in [30]. In this 

method, channel coding rate and forward error correction (FEC) are considered, yet some 
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parameters need to be determined beforehand exclusively for each video, and the time 

varying channel condition is still ignored. 

      To cope with channel fading, the object based video coding method described in [21] 

calculates practical channel capacity in a Rayleigh fading channel. Distortion for intra 

and inter mode coding is estimated separately with resulting PLR. Discriminative coding 

decision is determined for shape and texture data under delay and transmission power 

constraints. The work in [19] takes into account physical layer MCS, and adaptively 

estimates PLR in a Rayleigh fading channel based on convolution coding and BPSK 

modulation. More flexible MCS configuration is applied in [17, 18] through cross-layer 

design with channel information feedback. However, these methods provide no 

specification for online coding mode selection. Exhaustive searching is time consuming; 

dynamic programming and random intra refreshing prearrange coding decision on 

consecutive packets/frames, and might not be suitable with online channel information 

feedback. Thus we propose to incorporate cross-layer design in coding decision. The 

mode selection process is formulated as a delay constrained distortion minimization 

problem. Optimal decision is carried out for each packet by a cross-layer controller with 

adaptive MCS configuration. In our experiment, intra or inter mode is selected for MBs 

in each packet under proper MCS, and down sampling is considered an alternative for 

inter coding in low data rate transmission. 

 

3.4.1  Problem Formulation 

The object tracking procedure ensures that the moving target is visible in the recorded 

video. The recorded video is then processed at the data center for compression and 

transmission over wireless networks. The interleaving step before video encoding divides 



44 

the MB data in one frame into a desired number of packets. Details of this interleaving 

and deinterleaving method will be introduced in Section 3.5. In the surveillance 

application, the encoded data rate is constrained by a frame delay Tn, and the coding 

parameters for each frame are selected according to the estimated distortion D: 

 

                                      
 

   
 

 

                                                        
             

       

 
                      (3.11) 

 

      Here Q and M represent the QP and the coding mode. (m, r) denotes the physical 

layer modulation and FEC code pair as defined in IEEE 802.16 [88]. Numerically, m is 

the modulation order and r is the FEC code rate. Ln,k is the encoded data length of the k-th 

packet in the n-th frame, and R is the data rate limit for each frame calculated from the 

channel bandwidth W and the SNR γ: 

 

                                                                          (3.12) 

 

      The data distortion is estimated with the coding parameters, the dynamic channel 

condition and the configurable MCS. To better illustrate the distortion estimation process, 

some assumptions adopted in this work are listed below. 

 The channel condition remains time invariant for one frame, but varies from 

frame to frame. In the simulation, a Rayleigh fading channel is modeled with an 

exponential distributed SNR: 

 

              
 

  
 
 
 

                                                      (3.13) 
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Here    is the average received SNR. The resulting PLR associated with a specific 

(m, r) is estimated using the 802.11a WLAN packet loss model described in [87]. 

 Perfect channel CSI is available to the receiver and is fed back to the transmitter 

without error and latency. This assumption could be approximately satisfied by 

using a fast feedback channel with powerful error control information as adopted 

in [88]. 

 The RCU provides packet loss information to the transmitter. 

 The data center is capable of cross-layer coordination, information collection and 

system configuration throughout the network architecture. 

 A one-hop scenario is assumed in the transmission process, and other 

communication overhead is ignored. 

 

3.4.2  Distortion Estimation 

To determine the optimal coding parameters, data distortion is estimated for each coding 

mode and its optional QPs. Four coding modes, intra, inter, down-sampling and skip 

modes, are available to accommodate different channel conditions. The expected end-to-

end distortion for one packet contains both the source coding distortion Ds, and the 

channel distortion Dc.    

 

                                                                                              (3.14) 

 

      Ds is mainly determined by the QP. For the down-sampling coding mode, the 

corresponding up-sampling method is also considered. The packet loss induced Dc is 



46 

estimated in a recursive fashion regarding previous packet loss condition [30, 31]. 

Specifically, for a pixel i with a value of   in an intra coded packet in the n-th frame, 

given the PLR p, D is proportional to the distance between   and the concealed value    

from a pixel j in previous frame: 

 

                                  
 
                          (3.15) 

 

      In an inter coded packet, the estimated channel distortion of the pixel is related to the 

channel distortion of a motion predicted pixel h in previous frame, and the distortion 

caused by the concealed pixel j (not necessarily the same as h) in previous frame: 

 

                                                                       

                               
 
                              (3.16) 

 

      For a packet coded in the down-sampling mode, the down-sampled data is 

compressed with intra coding. The expected channel distortion is estimated in a similar 

fashion as for the intra coding: 

 

                                   
 
                          (3.17) 

     

      Under poor channel condition, we consider the skip coding mode a more desirable 

option than applying large quantization step. When the packet is dropped, the distortion 

solely depends on the error concealment result: 

 

                             
 
                                    (3.18) 
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      The received pixel value    at the receiver’s end is estimated with the quantized pixel 

value   : 

                                                                 (3.19) 

 

      The recursion step is decided by the data processing center according to the received 

packet loss feedback from the RCU, and the system’s computation capability. If the 

transmitter receives no loss feedback after △ frames, a random packet loss decision will 

be made by the encoder for that frame based on its estimated PLR. 

 

3.4.3  Parameter Selection 

The video sequence is coded in a way that one of the three coding modes, intra, inter and 

down-sampling (with a down sample rate of two in this work), is assigned for each frame 

with a uniform QP for all MBs. If the resulted coding rate exceeds the data rate limit in 

Equation (3.12), skip mode is applied to one or more packets from that frame until the 

rate or delay constraint is satisfied. The optimal coding parameters and the MCS 

configuration are selected according to the distortion estimation result by Equations 

(3.11) to (3.19). Several approximation methods for source coding rate and distortion 

estimation can also be adopted to reduce the computation overhead [19, 31]. 

 

3.5  Error Concealment 

The channel distortion estimation process discussed in previous section is related to the 

error concealment strategies adopted by the receiver. Before encoding, interleaving is 

implemented to separate spatially neighboring MBs into different packets. At the 

receiver’s end, after decoding and deinterleaving one frame, the lost MBs are replaced 
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with matched patches from previous frames, and the down sampled data is restored to 

normal resolution through video up-sampling. 

 

3.5.1  Interleaving 

The interleaving process adopted in this work includes chessboard decomposition and 

row separation, as show in Figure 3.7. The chessboard decomposition separates 

horizontally or vertically connected MBs into two groups. The row separation in one 

group further divides the MBs in the odd-numbered and the even-numbered rows into 

two subgroups. These two steps can be repeatedly operated on one group of MBs until 

the desired data length is acquired. A successive implementation of these two steps 

ensures that no MBs in one group are directly connected (horizontally, vertically or 

diagonally) with each other in the original image. Further, after i times of repeating such 

implementation, no MBs in a 2
i
x2

i
 neighborhood are in the same group. The receiver 

performs deinterleaving according to the information of encoder interleaving steps and 

the packet order. Figure 3.8 (b) shows a received decoded frame (intra coded, Q= 28) 

with five-step interleaving (resulting in 32 packets) and four packet loss. The luminance 

component of the original frame is shown in Figure 3.8 (a). 

 

 

(a) Chessboard decomposition 
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(b) Row separation 

 

Figure 3.7 : Interleaving. 

 

 

             

            (a) Original surveillance video                                    (b) Packet loss        

                  (luminance component)                                (4/32 packets lost, Q= 28) 

          
                   (c) Boundary match                                       (d) Video up-sampling  

            (PSNR= 36.45, SSIM= 0.96)                          (PSNR= 25.04, SSIM= 0.85) 

 

Figure 3.8 : Error concealment. 
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3.5.2  Boundary Match 

For a lost MB, its available boundary pixels are used to search for a concealment patch in 

previous frames. As explained by Equation (3.4), the correlation between the coordinates 

of two corresponding points in consecutive frames is utilized to determine the center of 

the search area. A patch yielding the smallest sum of absolute difference value in the 

search area is used to replace the missing MB, followed by a deblocking filter. The 

concealment result for the frame in Figure 3.8 (b) is displayed in Figure 3.8 (c). The 

visual quality is measured in PSNR (dB) and SSIM [89]. 

 

3.5.3  Video Up-sampling 

Upon receiving a down-sampling coded frame, lost data is first recovered with the above 

described boundary match method. The reference frames are also sampled at the same 

resolution. Afterwards, the TV up-sampling method [69] is applied to restore the data to 

the normal resolution. Finally the up sampled data is compared with the reference frames 

using once again the coordinate correlation property to further refine the visual quality. 

The concealment result for a down-sampling coded frame in Figure 3.8 (a) can be 

observed in Figure 3.8 (d), with the same QP, interleaving and packet loss imposed. 

 

3.6  Experimental Results 

In the experiment, the PLR estimation method introduced in [87] models packet loss in 

video transmission over 802.11a WLAN networks, with a fixed packet length 8k bits. 

 

                             
  

 

    
       

                                                       (3.20) 
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      Here   is the signal to interference-plus-noise ratio (SINR) in dB. It is considered 

SNR when user interference noise is ignored.    and    are constant parameters 

associated to each MCS denoted by M. Convolution coding is used as the FEC code. For 

variable packet size L, we adopt an approximate PLR calculation as shown in Equation 

(3.21). Four of the tested MCSs are listed in Table 3.1.  

 

                                         
                                                        (3.21) 

 

Table 3.1. Tested MCSs 

 

Modulation, code rate    (dB
-1

)    (dB) 

MCS1 (64-QAM, 2/3) 0.625 18.2 

MCS2 (16-QAM, 3/4) 0.352 15.1 

MCS3 (QPSK, 1/2) 0.461 5.3 

MCS4 (BPSK, 1/2) 0.640 2.3 

 

3.6.1  Settings 

The physical equipments for surveillance video capture include a PTU device (Directed 

Perception D47) and a PointGrey camera, both connected to a PC [60]. The video is 

recorded at 30 fps and is formatted to a 640x480 YUV420 sequence. The PTU camera 

motion is updated every two frames and is recorded for both the encoder distortion 

estimation and the decoder error concealment. The proposed video codec is developed 

based on the H.264/AVC standard [90]. The Y component is processed. The MB size is 

16x16 for coding at normal resolution, and 8x8 for down-sampling coding. The available 

QPs include 16, 20, 28, 32, 34, 36 and 38. The maximum recursion step △ in distortion 

estimation is set to two frames. Four MCS (m, r) configurations, namely MCS1 (6, 2/3), 

MCS2 (4, 3/4), MCS3 (2, 1/2), and MCS4 (1, 1/2), and the corresponding PLR models 
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are chosen from [87], as shown in Table 3.1. The frame delay constraint for video 

delivery is set to 1/30 second. In the transmission process, the first frame is fully intra 

coded and is assumed to be correctly received with extra protection (ARQ or stronger 

FEC). The average SNR    in Equation (3.13) is set to 20dB, and the channel bandwidth 

W is set to 1MHz and 100kHz to simulate different channel conditions. 

 

3.6.2  Performance 

To test the efficiency of the proposed surveillance video coding and transmission scheme, 

three other types of coding methods with a fixed MCS are considered for performance 

comparison. The first one is the traditional intra+inter coding method, using slice copy as 

the error concealment (Slice MCS). The end-to-end distortion estimation process for the 

intra, inter and skip modes is applied. The second one is the down-sampling included 

coding method with the error concealment stated in Section 3.5 (EC MCS). The same 

distortion estimation process is also applied. The third one is similar to the EC MCS 

method, except that the distortion estimation only considers compression induced source 

coding distortion under a fixed data rate (SCEC MCS), i.e. using    in Equation (3.13). 

      The delay (second), PSNR (dB) and SSIM performance of the three coding methods 

using MCS1 on sixty recorded frames are demonstrated in Figure 3.9. Under a better 

channel condition (W = 1MHz), the average PSNR/SSIM for Slice MCS1, EC MCS1, 

SCEC MCS1, and the proposed scheme is 20.52/0.77, 26.13/0.82, 23.48/0.80, and 

34.32/0.92. Under a worse channel condition (W = 100kHz), it is 17.63/0.64, 19.68/0.70, 

18.94/0.67, and 23.55/0.80, respectively. In both tests, the proposed scheme achieves the 

highest video quality. The experiment with the EC MCS1 method yields better video 

quality than the Slice MCS1 and the SCEC MCS1. This result demonstrates the 
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superiority of the adaptive coding, and the error concealment strategies. Lacking proper 

error concealment measures, the video quality with the Slice MCS1 method is the lowest. 

      In both tests, the delay performance of the SCEC MCS1 scheme is poor due to the 

lack of channel information, while other methods provide proper response to the dynamic 

channel status and confines to the transmission delay constraint. 
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(a) W= 1MHz,   = 20dB   
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(b) W= 100kHz,   = 20dB 

 

Figure 3.9 : Delay constrained video delivery. 

 

      The comparison of the Slice MCS method with different MCS on the average delay 

(millisecond, excludes the first frame), PSNR (dB), and SSIM can be observed from 

Table 3.2. For W= 1MHz, MCS3 is better than others while MCS1 is preferred for W= 

100kHz. Thus the adaptability of the proposed scheme is desirable under the dynamic 

channel condition. The percentage (%) of the intra and inter coded packets for the 

proposed scheme is provided in Table 3.2. With lower bandwidth, a higher portion (88%) 

of the packets is encoded in down-sampling mode to accommodate the deteriorated 

channel condition. 
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Table 3.2. Performance comparison (Slice MCS vs. Proposed) 

 

 Delay  PSNR SSIM Intra Inter 

 

 

1MHz 

MCS1 25.5 20.52 0.7722 95 5 

MCS2 27.9 24.44 0.8382 100 0 

MCS3 27.6 28.78 0.8940 97 3 

MCS4 31.9 22.76 0.8165 70 30 

Proposed 27.7 34.32 0.9189 70 20 

 

 

100kHz 

MCS1 32.3 17.63 0.6437 83 17 

MCS2 31.7 16.02 0.5813 70 30 

MCS3 18.0 15.35 0.4720 70 30 

MCS4 8.4 13.24 0.4472 100 0 

Proposed 28.8 23.55 0.7967 12 0 

 

3.7  Summary 

This Section presented a system design for wireless video surveillance with a single PTU 

camera, including video capture with automatic camera control, data compression and 

transmission with cross-layer control, and error concealment. The video coding process is 

formulated as a delay constrained distortion minimization problem with consideration to 

configurable system parameters. Multiple error concealment strategies are adopted to 

counteract packet loss. The property of the PTU camera motion is also exploited to 

accelerate the concealment process. The experimental results are promising for a real-

time surveillance application. Part of this work is published in [60, 62, 63, 91, 92]. 
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Chapter 4 

Binocular Video Object Tracking and 3D Video Transcoding 

4.1  Introduction 

Traditional monocular tracking methods mainly explore the temporal correlation in one 

video to detect moving areas [59, 75, 93, 94]. With the development of the 3D signal 

processing technologies, multiview video object tracking is gaining increasing interest. In 

the tracking algorithm presented in [95], both inter-frame and inter-view correlations are 

utilized to predict the object’s position and speed, using optical flow and disparity 

estimation. The outdoor tracking algorithm presented in [96] performed ground view 

alignment using homography; each moving object is detected via background subtraction. 

These works use fixed cameras and may have limitation in view scope. The post-capture 

tracking method described in [97] handles the changing camera viewpoint by 

constructing a panoramic image used for background registration and object detection.  

      In the video tracking and streaming system introduced in [98], active cameras are 

adopted for runtime operation. A master camera is manually controlled and other slave 

cameras will automatically follow. For object tracking with moving cameras, a more 

practical strategy is to use automatic PTU/PTZ cameras, where the camera projection 

center is generally unchanged and the retinal plane is capable of angular movement. In 

this kind of system, the camera control algorithm for the tracking process needs to 

estimate the angular speed/acceleration of the moving object, and the background 

alignment in different video frames is required for motion detection. In the PTU camera 

tracking algorithm proposed by Petrov et al. [59], a linear feedback controller is applied 

based on the Theory of Lyapunov Stability. The control parameters are updated by object 
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position estimated using the Mean Shift [93] algorithm. Mean Shift is efficient in locating 

object position according to the object’s color distribution [97], [98]. However, a key 

problem with this method is the scaling of the tracking area, since the size of the object 

appears differently as its depth changes. A tentative scheme is suggested in [93] to adjust 

the tracking region according to the similarity measure. It might have problem if similar 

color is present around the boundary of the tracking area. The object segmentation based 

approach is more robust, and time consuming [75]. Yang et al. [94] developed an 

updating rule for scaling factor by comparing second-order moments between the 

template and the target, but only small tracking region is tested. 

      To enable tracking in an unmanned environment, we use a PTU device (Directed 

Perception D47) to perform camera control. The master camera is able to rotate and its 

projection center stays unchanged [59]. A slave camera is placed on the flank, and moves 

along with the master camera, as shown in Figure 4.1. The Mean Shift algorithm [93] is 

adopted in our project for real-time tracking. With binocular video output, we consider 

the object depth/disparity as a natural and reliable resource for adjusting the tracking 

window, since disparity contains object position information and it is necessary for multi- 

view video streaming [98].  
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Figure 4.1: Binocular PTU cameras.             

 

      During the 3D data streaming process, we consider the requirement of transcoding by 

different display devices in a heterogeneous wireless network. Since different types of 3D 

displays can render 3D video, there are many types of formats to realize 3D video [99]. 

The principle of 3D video is based on the binocular vision fused by the signals of both 

eyes. Therefore, the simplest format for 3D video is the stereoscopic video which 

contains two captured views. This kind of format can provide the 3D perception, but it 

cannot provide the parallax-adjustable 3D effects [100]. Comparably, as an alternative of 

stereoscopic video, video plus depth representation can provide the parallax-adjustable 

3D perception in a limited range. Due to its simplicity of compression, video plus depth 

based stereoscopic video can be easily used for mobile 3D video applications [101]. 

      Currently, 3D video is mainly aiming at the home application with high-definition 

(HD) formats. The HD 3D contents are mostly delivered through the ways of terrestrial 

broadcast, cable, satellite and IPTV [102]. Though HD 3D videos provide the vivid visual 
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effects, it requires much more transmission bandwidth. With the high-rate Internet, the 

HD 3D video is also possible to be transmitted. However, with the advancements of 

mobile communication technologies, Internet networks are mostly the heterogeneous 

networks which consist of the wired and wireless networks. The heterogeneous networks 

usually provide the different transmission qualities. Since the HD 3D video has been 

compressed and distributed for home application, the solution of scalable video coding is 

not appropriate for the 3D video transmission over the heterogeneous network. To deploy 

the 3D video service on the mobile devices, the rate reduction and down-sample 

transcoding must be considered to adapt to the wireless channel and mobile device. 

Figure 4.2 shows the rate reduction transcoding application for mobile 3D video 

streaming. After being encoded at the media server, the captured video and generated 

depth data are firstly streamed through the wire-line Internet. When the receiver is mobile 

user, the high bit-rate HD 3D video data is transcoded to the low bit-rate mobile 3D video 

data at the transcoding gateway and is then streamed to the mobile receiver. 

 
 

Figure 4.2 : The mobile 3D video transcoding application. 
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      Based on the 3D video content generated from the binocular object tracking 

procedure, we proposed a dynamic rate allocation scheme for the 3D video transcoding 

over the wireless channel, through the cross-layer controller. The rest of this section is 

organized as follows. Section 4.2 introduces the binocular Mean Shift tracking using the 

disparity information. Section 4.3 describes the fast disparity estimation procedure. 

Section 4.4 provides the object tracking results using the proposed disparity estimation 

algorithm. Section 4.5 introduces the cross-layer control procedure for the video/depth 

3D data rate allocation according to the dynamic channel condition. Experimental results 

are provided in Section 4.6, and Section 4.7 draws the conclusions. 

 

4.2  Binocular PTU Camera Tracking 

In this subsection, we present a binocular PTU camera video object tracking scheme 

using the Mean Shift algorithm and the runtime disparity estimation. The proposed 

method is to accommodate the requirement of 3D content generation and accurate 

tracking in more advanced video surveillance applications. The disparity estimation 

process for each stereoscopic pair is formulated as an energy minimization problem. The 

iterative solution procedure is implemented in a course-to-fine manner. The estimated 

disparity is used to scale the tracking window by the Mean Shift algorithm, i.e. the size of 

the tracking area is adjustable according to its inner disparity, and thus the moving object 

can be better located by the camera. The program maintains the semi-real-time 

performance and acceptable accuracy as evaluated on a set of standard test data. In our 

experiment, two PointGrey cameras are controlled through a PTU device. The disparity 

estimation process on the recorded tracking video (640x480) achieves 6fps on an 

ordinary PC (2.66GHz CPU, 4GB RAM). 
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      The video object tracking procedure is illustrated in Figure 4.3. The estimated 

disparity values from the stereoscopic image pair are used to adjust the size of the 

tracking region. The object center is detected using the Mean Shift algorithm, and it is 

provided for PTU control [59] on the master camera. 

 

 
Figure 4.3 : Tracking procedure. 

 

 

      The unique geometric property of a PTU camera model is that the camera projection 

center remains unchanged while the pan and tilt angles are controllable, as illustrated in 

Figure 3.2 (a). The focus F denotes the projection center. The image plane is viewed 

down along its y axis, and is projected on the X-Y world coordinate plane. α is the angle 

between the object center and the X axis, θ is the angle between the image center and the 

X axis, f is the focal length, and xc is the distance between the projected object center and 

the image center along the x axis. Only pan control is displayed in the figure. The 

algorithm applies to tilt control similarly.  
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      The linear feedback controller aims to minimize xc and the difference between the 

estimated object speed and the measured object speed. According to the Theory of 

Lyapunov Stability, the camera angular speed wθk, the camera angle θ, and the estimated 

distance xc are updated at every time instance according to Equations (3.1) ~ (3.3). 

      Once the control parameters are updated, the disparity information for the master 

camera side is estimated using the method described in Section 4.3. The camera 

projection matrix used for the stereo rectification is obtained beforehand through 

chessboard calibration. After the control parameter update, the Mean Shift algorithm is 

applied to locate the object center in the new frame. The size of the rectangular tracking 

window is scaled according to 

 

                                                                (4.1) 

 

 

where l1, l2 denote the edge length of the tracking window at two consecutive updates, z 

is the depth of the object, and d is the average estimated disparity for the object region, as 

shown in Figure 4.4. 

 
 

Figure 4.4 : Binocular Mean Shift tracking with window size adjustment. 

 

 

4.3  Fast Disparity Estimation  



65 

The implementation of the disparity estimation process is essential for the real-time 

object tracking. Stereo matching/disparity estimation has been extensively studied as a 

fundamental vision task. Popular solutions include the local winner-take-all [103-105] 

and the global MRF (Markov Random Field) optimization [106-108]. Local methods 

compare matching cost computed within a neighborhood. They are known for their fast 

implementation, but have difficulty in dealing with ambiguous or similar textures. Global 

methods are capable of imposing smoothness constraint, such as graph cut [106] and 

belief propagation [107]. Their occlusion detection ability is impeded in the presence of 

curved surfaces and the computation is usually very expensive. Smith et al. [108] 

proposed to perform graph cut optimization on a sparse graph obtained using maximum 

spanning tree. Local filtering is applied at the finer grid for further refinement. Although 

this method better detects non-planar surfaces, the process of spanning tree generation 

and full image filtering are still costly to implement. For our tracking procedure, disparity 

estimation has to meet the runtime requirement in order to timely adjust the tracking 

region. While some real-time approach [103] relies on GPU implementation, Geiger et al. 

[104] introduced an efficient matching method based on Delaunay triangulation [109]. 

This method exhibits superior results in less textured areas, and semi-real-time 

performance is reported. However, the initial supporting points acquired using the local 

method fall short of resolving spurious matches caused by similar textures, which are 

commonly encountered in an indoor surveillance environment with reduplicate building 

structures or wall decorations. This will in turn result in incorrect estimation on the finer 

grid. Moreover, the disparity values on the finer grid are also estimated using the local 
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method, thus the estimation changes of the neighbors could not be further utilized to 

estimate the disparity of the current pixel. 

       To overcome these shortages, we propose to implement global optimization on the 

initial supporting points. A best disparity for each initial supporting point is selected from 

multiple candidates through Iterative Conditional Mode (ICM) [110]. The disparity 

estimation process on the finer grid is formulated as an energy minimization problem. 

Both the data consistency term and the smoothness term constrain the iterative solution 

procedure. The program still maintains semi-real-time performance and acceptable 

quality. 

 

4.3.1 Problem Formulation 

According to Bayes’ rule, the process of disparity estimation can be formulated as a 

MAP-MRF problem [107]. For example, in binocular stereo matching, the estimation on 

the left image from a stereoscopic pair I1 (left), I2 (right), is usually considered as a 

process of minimizing the following energy function,  

 

                                            
 

   

                                                          
                    (4.2) 

 

where        is the estimated disparity at pixel      .    and    are the scaling factors. 

     and        are distance measures and represent the penalty terms on photo 

consistency and smoothness. For horizontally rectified images, 
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where   is the gradient, and   denotes the neighboring pixels. Using the calculus of 

variations [111], the minimum of Equation (4.2) can be obtained by solving its Euler-

Lagrange equation: 

 
 

 
  

  
                                                         

       

              ,                                                                                                                     (4.5) 

 
 

where     is the derivative of the feature response in I2, and   is the Laplacian operator. 

The solution procedure is implemented in an iterative manner. The initial value of d is 

essential to the convergence speed. Kosov et al. [112] adopted a multi-grid strategy. The 

disparity values are estimated at a lower resolution, and are refined at a higher resolution 

with a feature-adaptive full approximation scheme. The estimation at the coarser grid 

provides a good initial guess for the iterative refinement at the finer grid, but the 

computation is still high for the full coarse grid estimation. Geiger et al. [104] perform 

Delaunay triangulation interpolation on a set of detected feature points to achieve fast 

implementation. The idea is that given the disparity values at a set of sparse supporting 

points, triangulation on these points can segment the image into small triangular regions, 

and the disparity of a point inside each region can be approximated through interpolation 

by disparity values of its three vertices. This method is very efficient for obtaining initial 

disparities. A disadvantage is that the erroneous detected vertices using the local method 

result in false interpolation. Thus we apply the global ICM on the detected supporting 

points. The iterative solution procedure is performed on the normal grid with the initial 
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values obtained from the triangulation results. The details of the multi-resolution strategy 

for disparity estimation are provided in the following subsection. 

 

4.3.2 Multi-resolution Strategy 

To accelerate the disparity estimation process, we adopt a coarse-to-fine strategy to 

reduce the computation overhead. A sparse grid is obtained with robust left-right image 

feature point correspondence, using both local search for photo consistency, and global 

ICM match. An initial estimation is provided through performing Delaunay Triangulation 

interpolation on the sparse grid, and is then refined using local search on the finer grid. 

To prepare candidate options for the ICM implementation, multiple disparities d1, d2, …, 

dn, with the highest photo consistency are selected for each textured supporting point on a 

sparse grid. 

 

                               
 

                                                                        
 

                         and                                                                              (4.6) 

 

      Occlusion is detected with the thresholding method. 

 

                        
                                        
                                       

                              (4.7) 

 

      Here    is the thresholding parameter. The best option d is chosen from these n (n = 2 

in our experiment) candidates according to 

 

                             .                                        (4.8) 
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      If a supporting point could not yield any valid match as described in Formula (4.6), it 

will be eliminated from the set. After several iterations of ICM operation according to 

Equation (4.8), most spurious matches due to the presence of similar textures could be 

corrected, and a sufficient number of supporting points are obtained. The result can be 

observed from Figure 4.5 for the test data Aloe (1282x1110) [113]. The mismatch rate is 

reduced from 2.92% to 2.46% (two-pixel error threshold on non-occluded areas). And the 

extra computation time for two ICM iterations is negligible. 

 

          
 

Figure 3.5 : Disparity estimation for Aloe. The results using Geiger et al.’s method [104] 

with (left) and without (right) ICM operation for selecting the supporting points. 

 

      The idea of Delaunay triangulation interpolation is that given disparity values at a set 

of sparse support points, triangulation on these points can segment the image into small 

triangular regions, and the disparity of a point inside each region can be approximated 

through interpolation by disparity values of its three vertexes [104]. As shown in Figure 

3.6, given the estimated disparities of the supporting points S1, S3, S4, the triangulated 

plane S1S3S4 provides interpolated disparity values for the pixels inside the plane, such as 

the one denoted in green. Thus an initial guess for the whole image’s disparity data can 
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be calculated from the sparse set of the supporting points processed by the method 

described above. 

 

 
Figure 3.6 : Delaunay Triangulation interpolation [104]. 

 

 

      After obtaining the initial disparity values by applying Delaunay triangulation 

interpolation on the supporting points, the result is further refined using Equation (4.5). 

The discretization form of the equation is 

 
 

                                                      

                 

 

                     
                                                                               

(4.9) 

 

      By applying the Gauss-Seidel method [114], above linear equation can be solved 

iteratively. At the (t+1)-th iteration, the disparity of pixel i is updated as 
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(4.10) 

 

where   
     ,   

      are the neighboring pixels processed before and after pixel i. In 

practical implementation, two situations are considered. In textured areas (detected with 

Sobel operator), a local search is applied according to the value computed from the 

second part       . The disparity with the minimum data consistency penalty is used as 

the update. In non-textured areas, the value of the first part        from the data 

consistency penalty is small enough and is hence ignorable.    is set to 1 to impose the 

influence from the neighboring pixels. The evolution process stops when the maximum 

number of iterations is reached, or the change of the disparity values falls below a 

threshold. The iterative process is bound to converge since       . 

 

4.3.3 3D Content Generation 

To verify the efficiency of the proposed disparity estimation method, several stereoscopic 

image pairs from the Middlebury dataset [113] are tested on the matching accuracy and 

the processing time. The object tracking results using the disparity-based window scaling 

Mean Shift algorithm are provided in Section 4.4. 

      The supporting feature points used for triangulation interpolation are selected from a 

sparse grid on the tested images. Only intensity data are processed. Two types of grids 

with different cell size are tested in the experiment, the 8x8 cell size, and the 16x16 cell 

size. The calculated mismatch rate (M.R.) and the number of selected supporting points 

are listed in Table 4.1, with two-pixel error threshold on all non-boundary areas. Two 

iterations are performed on the interpolated initial estimation. The disparity estimation 
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results can be observed from Figure 4.7. The occluded areas are interpolated using the 

results from the neighboring pixels. 

 

Table 4.1 Mismatch rate (%) and the number of supporting points. 

 Cones 

(900x750) 

Teddy 

(900x750) 

Aloe 

(1282x1110) 

M.R. Points M.R. Points M.R. Points 

8x8 6.2 1497 7.6 1247 9.9 2503 

16x16 6.7 541 7.8 405 10.1 864 

 

       

      The processing time on Cones for different phases of the estimation process is listed 

in Table 4.2. The mismatch rate reduction is displayed in Figure 4.8. Most of the 

disparity change occurs during the first two iterations. Note that the multi-grid algorithm 

by Kosov et al. takes up 300ms to 1300ms to process the same data at half the resolution 

(450x375), with similar computational resources, as reported in [113]. Compared to 

Geiger et al.’s method [104], the extra processing time concerns the iterative evolution at 

the finer grid. The average processing time is 52ms per iteration, and the average 

mismatch rate reduction is 0.5%. 

 

Table 4.2 Processing time (ms) for different phases: computing supporting points, 

triangulation interpolation, 1st iteration, 2nd iteration, 3rd iteration, 4th iteration, and 5th 

iteration. 

 

 Supp. Tri. Iter.1 Iter.2 Iter.3 Iter.4 Iter.5 

8x8 489 158 57 52 52 52 52 

16x16 383 124 62 53 52 52 53 
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(c) Aloe (1282x1110) 

 

Figure 4.7 : Disparity estimation. From the first row to the last row: the left image, 

ground truth, initial estimation, 1st iteration, 2nd iteration. 

(b) Teddy (900x750) 

 

(a) Cones (900x750) 
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Figure 4.8 : Mismatch rate reduction. 

 

 

4.4  Object Tracking 

In the object tracking process, two PointGrey Firefly MV CMOS cameras are placed on 

the PTU device, and are connected to a desktop via a 1394 firewire USB2.0 hub. The 

640x480 video is recorded at a frame rate of 15 fps. The average processing time for the 

disparity estimation is 178 ms per frame. An initial tracking window is obtained through 

user input. The tracking window is rescaled every 3 frames. The disparity estimation and 

the tracking results are provided in Figure 4.9. In the tracking process, the object walked 

along the corridor inside our department building. The environment contains both 

textured (mosaic tiles) and non-textured (wall, floor, pillar) materials. When applying 

traditional Mean Shift tracking using fixed window size, the camera lost track of the 

object easily when the object approached areas with similar colors, such as the situation 

in Figure 4.9 (b), when the color distribution inside the old tracking window could not 

fully represent the original target model.  
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(a) 

                          
   (b) 

                          
  (c) 

                          
  (d) 

                             
  (e) 
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  (f) 

 

Figure 4.9 : Video object tracking. 

 

4.5  3D Video Transcoding 

The binocular video object tracking procedure generates the video plus depth 3D video 

data. To deliver the 3D content to different display terminals in a heterogeneous wireless 

network, we design a cross-layer optimization framework for 3D video transcoding. In 

the past years, a lot of transcoding works were proposed, but there were little research 

works on 3D video applications. Liu et al. [115] first proposed an efficient 3D video 

transcoding scheme for the virtual view. However, it did not aim at the error-resilient 

transcoding. As we all known, the wireless network is error-prone due to the non-static 

end-users, and the 3D video transcoding should correspondingly provides a certain 

degree of the error-resilience ability [116]. The bandwidth resources of wireless channel 

are limited so that the rate adaptation to the channel is very necessary. Because the video 

plus depth based 3D video usually generates a pair of views consisting of one captured 

view and one synthesized virtual view, the virtual view quality has a strong dependency 

on the depth and video fidelities of the reference view. The video/depth rate allocation 

[117] can control the fidelities of video and depth of reference views, and 

correspondingly has an influence on the virtual view quality. The video/depth rate 

allocation for 3D video coding is originally optimized for the wire-line transmission, and 
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it does not consider the packet loss effect on the virtual view quality so that it is not 

appropriate for the new wireless transmission. Hence, the new error-resilient rate 

allocation between video and depth should be taken into account in the 3D video 

transcoding. In the transcoding proxy, the original signals cannot be accessed to compute 

the distortions of video and depth at different bit-rates, and consequently the optimal rate 

allocation between video and depth cannot be evaluated if not given the original video 

and depth data. Moreover, if we do the exhaustive seeking of the optimal rate allocation 

between video and depth at the transcoding proxy, the transcoding proxy will endure such 

computational complexity as to affect the speed of transcoding. To solve the problem of 

the absence of original signal, and in the mean time to avoid the additional complexity, a 

look-up table method is proposed to realize the mobile 3D video transcoding. In this 

section, we propose an error-resilient transcoding framework for mobile 3D video 

streaming, which transcodes the HD 3D video stream to the mobile 3D video stream. The 

proposed transcoding framework builds a rate allocation table at the streaming server side 

and then transmits it to the transcoding proxy. The encoding server first encodes the 

video plus depth based HD 3D video, and then down-sample the decoded video and 

depth. By utilizing the exhaustive full-searching method, the down-sampled video and 

depth will be re-encoded with different QP pairs for computing the virtual view 

distortions under different packet loss rates (PLRs) to generate the Rate-QP-PLR table. 

According to the actual PLR returned from the wireless channel, the transcoding proxy 

converts the HD 3D video stream to mobile 3D video stream by looking up the Rate-QP-

PLR table. Detail implementation of the cross-layer control mechanism is explained in 

following subsections.  
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4.5.1 Framework 

To provide a rate-adaptive and error-resilient transmission over the heterogeneous 

network, we propose a 3D video transcoding framework, which consists of the encoding 

server and the transcoder. The video encoding server and the transcoder are originally 

independent components of the video streaming system. Currently, we integrate the 

encoding with transcoding to transfer a part of transcoding computations to the encoding 

server. Especially, the heavy computation for video/depth rate re-allocation originally 

needed to be performed at the transcoder can be moved to the high performance encoding 

server. Moreover, the problem of accessing the original signals at the transcoder also 

disappears by moving the video/depth rate allocation to the encoding server. 

      Figure 4.10 shows the flowchart of the transcoding framework. The encoding server 

compresses the HD 3D contents, and generates the Rate-QP-PLR table for assisting the 

transcoding. Generally, the mobile display size is small, and the former spatial resolution 

does not adapt to the mobile device. The video and depth need to be appropriately down-

sampled. The server reconstructs the video and depth from the former streams and then 

down-samples them. After that, the server re-encodes the down-sampled video and depth 

data multiple times to perform the video/depth rate allocation and generates the Rate-QP-

PLR table. The Rate-QP-PLR table contains the specific information of the video QP and 

depth QP under different rate and PLR levels. Since the packet loss effects have been 

considered in the video/depth rate allocation, the Rate-QP-PLR table can be used to guide 

the error-resilient transcoding. Via looking up the Rate-QP-PLR table, the transcoder 

performs the cross-layer control, collects the PLR and channel information returned from 

the actual transmission channel, and transcodes the compressed video and depth streams 
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with the appropriate QP pairs according to the Rate-QP-PLR table. Though the encoding 

server does not know the actual channel behaviors in advance, the random packet loss 

previously simulated in the encoding server can reflect the actual influence of the 

transmission error on the video quality in the statistical sense. 

 

 

Figure 4.10 : The proposed transcoding framework. 

 

4.5.2 Cross-layer Control for Video/Depth Rate Allocation 

During the re-encoding process, the encoding server also considers the effect of different 

intra refreshing rate (IRR). Intra coding can eliminate the temporal error propagation by 

restraining packet loss induced prediction drifting error. Cyclic intra refresh coding is to 

split the image into N equal-sized regions and intra-code all macroblocks (MBs) of one 

region in every inter-coded frame. Here, 1/N is the IRR. The intra refresh cross N frames 

will generate the equal error-resilience effect of inserting one intra frame among N 

frames. Increasing the number of intra-coded MBs in inter-coded frames can strengthen 
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the error-resilience to packet loss. However, intra-mode coding will consume much more 

bit-rate than inter-mode coding so that there is a trade-off between IRR and the coding 

efficiency under given packet loss rate. And also the bit-rate increasing or decreasing will 

change the packet loss possibility for a given packet under the constant bit error rate 

(BER). When one slice packs into one package for transmitting, intra refresh coding 

changes the coding bits for a slice and the estimated PLR will also be changed since it is 

related to the BER. Hence, the PLR and IRR need to be jointly considered to guarantee 

the optimal rate distortion performance. For video plus depth based 3D video, Figure 4.11 

shows the 3D rate-distortion performances under different PLRs and different IRRs for 

the Book_Arrival sequence. 

 

 
 

Figure 4.11 : 3D rate-distortion performance at the total rate (video plus depth) of 1Mbps 

with 600kbps for video and 400kbps for depth. 
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      Since the IRR has a strong relation with the PLR, we preset several levels of the intra 

refresh to adapt to the actual PLR returned from the channel. The IRR can be adaptively 

set for the error-resilient video/depth rate allocation. Therefore, the transcoder performs 

cross-layer control to dynamically select the optimal QP and IRR for the re-encoding 

process by the encoder server. The formulation of the decision making procedure can be 

expressed as follows. 

 

     
        

      
      

            
                    

                                        

 

                                                               (4.11) 

 

      The symbols      ,      and      ,      denote the QPs applied for encoding the video 

data and the depth data, before and after the transcoding procedure begins.   and   are 

the corresponding PLR and IRR for current slice. DS denotes the view synthesis distortion 

at the receiving end, using the re-encoded video and depth data. Rv and Rd are the resulted 

data rates, and Rc is the total data rate constraint limited by the channel bandwidth. To 

seek the optimal QP and IRR pair for the video and depth, the full searching method is 

used [117]. Via traversing all the candidates of video and depth QP pairs, the optimal QP 

pair with minimal distortion for one rate constraint is selected, at a specific IRR and the 

associated PLR and data rate constraint. We can compute the optimal QP pairs 

corresponding to a series of discrete rate constraints, and then build a rate allocation table. 

The complete algorithm for building the transcoding rate allocation table is listed below: 

      Step 1: Encode the video and depth with q1,v and q1,d, respectively. Decode the 

compressed video and depth streams and down-sample the reconstructed video and depth. 
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      Step 2: According to the pre-set total rate (video rate plus depth rate) constraint levels, 

compute the all possible QP candidates for video and depth; Encode the down-sampled 

video and depth with all possible QP candidates and record all the encoded streams. 

      Step 3: Set the possible PLR levels of ρv and ρd. Through simulating the packet loss 

behaviors, decode the corrupt streams of different PLR levels with error concealments. 

      Step 4: Synthesize the virtual views with all possible combinations of video and 

depth, compute their distortions and then select the optimal QP pairs for video and depth 

with minimal distortions for different PLR levels. 

      Step 5: Build the Rate-QP-PLR table for different rate constraints under different 

PLR combinations of video and depth. 

      During the transcoding procedure, the cross-layer controller collects the channel PLR 

information according to different IRR and the data rate constraint, and selects the QP 

and IRR pair for the video and depth data, based on the minimal estimated view synthesis 

distortion, as shown in Formula (4.11). 

 

4.6  Experimental Results 

This section evaluates the proposed transcoding framework. Since video plus depth is 

used for mobile 3D video streaming, we have implemented the proposed 3D video 

transcoding framework based on JM17.1. The packet loss model of SVC/AVC [118] 

(including random loss and burst loss) and the error concealment method with motion 

vector prediction are used in the experiment. In the experiments, the GOP size is set to 30 

and the IPPP coding structure is used. Currently, the proposed transcoding framework 

adopts the fixed QP coding for video and depth to guarantee the consistent visual quality 

in the temporal domain. To illustrate the performance of the proposed framework in 
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Figure 4.10, the fixed QP transcoding with fixed video/depth rate ratio (5:1) [100] is used 

as the comparison reference. In the transcoding, rate control can be used to obtain the 

appropriate bit-rate. However, the rate control often results in the non-consistent visual 

quality in the temporal domain. Thus, we also adopt the fixed QP for the reference 

transcoding. Since the virtual view generally does not exist, the virtual view synthesized 

by the original video and depth is used as the reference signal for computing the virtual 

view distortion. In the experiment, the HD 3D video sequence of Poznan_CarPark 

(1920x1088) is used for wireless transcoding with target display size of 320x240, and the 

original video and depth are both encoded with the QP of 32. For Poznan_CarPark, the 

video and depth of view2 are used to synthesize the view3 to generate the video plus 

depth based stereoscopic 3D video. 

      Figure 4.12 (a) shows the performance of the proposed transcoding with error-

resilient video/depth rate allocation (Transcoding_ER_VDRA) compared with the 

transcoding with fixed ratio (5:1) video/depth rate allocation (Transcoding_FR_VDRA), 

when no packet loss occurs. It can be seen that, when no packet loss occurs the proposed 

Transcoding_ER_VDRA can obtain the better virtual view quality than the 

Transcoding_FR_VDRA. Currently, the QP for the reference transcoding is carefully 

selected to satisfy the bandwidth limitation, it means that the QP selection for the 

reference transcoding is also optimized. Therefore, the performance improvement of the 

proposed framework over the reference is not very large. 

      When the video and depth have the different PLRs, for example, 5% for the video and 

10% for the depth, the transcoding performance can also be improved by the optimal 

error-resilient video/depth rate allocation, as Figure 4.12 (b) displays. Figure 4.12 (c) and 
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(d) show the error resilience performance of the proposed transcoding framework with 

the increasing PLRs. In these figures, the PLRs for video and depth have equal values.  

 

   
(a)                                                                   (b) 

  
(c)                                                          (d) 

 

Figure 4.12 : (a) The performance of the proposed Transcoding_ER_VDRA compared 

with Transcoding FR_VDRA without packet loss; (b) The transcoding performance with 

PLR of 5% for video and PLR of 10% for depth; (c) The error-resilience performance of 

the proposed transcoding at total rate of 200kbps; (d) The error-resilience performance of 

the proposed transcoding at total rate of 600kbps. 

 

      To further eliminate the packet loss effect, the IRR is adaptively regulated in the 

transcoding. Intra refresh coding can result in the new optimal QP combination of video 

and depth. Figure 4.13 (a) shows the transcoding performance of the proposed 

transcoding framework with the optimal IRR. It can be seen from Figure 4.13 (a) that the 
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transcoding with the optimal IRR can promote the transcoding performance when the 

preset IRR is adapted to the actual PLR. 

      The wireless channel bandwidth is time-varying. The variable bit-rate (VBR) channel 

has much more influence on the 3D video than 2D video. To verify the adaptation 

performance of the proposed transcoding framework over the wireless channel, we also 

performed the VBR transcoding experiment. Since the original length of the sequence is 

very short for evaluating the proposed transcoding framework with VBR coding, the 

sequence is extended to 600 frames with three duplicate 200 frames. In the experiments, 

three temporal-periods with each period of 200 frames are used, and the Rate-QP-PLR 

tables for different temporal-periods are built and transmitted to the transcoding proxy. 

The rates vary from the first period to the third period, and the rate will increase 100kbps 

for each ordinal period. Figure 4.13 (b) shows the transcoding performance for the VBR 

channel, and the channel rate is the average rate of the three temporal-periods. 

 

 
(a)                                                                        (b) 

 

Figure 4.13 : (a) The transcoding performance of optimal IRR compared with fixed 10% 

IRR; (b) The transcoding performance of optimal IRR compared with fixed 10% IRR 

under the variable bit-rate channel. 

 

 

4.7  Summary 
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In a multi-camera surveillance environment, online 3D content generation is required for 

more advanced applications. In this work, we presented a video object tracking scheme 

incorporating a fast disparity estimation process into the Mean Shift based tracking 

algorithm, in order to adjust the size of the tracking window, thus the camera can better 

follow the moving object. Due to the run-time requirement of the tracking application, 

traditional disparity estimation methods such as graph cut and belief propagation do not 

suffice. While most of the existing real-time disparity estimation methods rely on GPU 

implementation, the proposed scheme achieves 6fps on an ordinary PC (2.66GHz CPU, 

4GB RAM) on the recorded tracking video (640x480). Its accuracy and runtime 

performance are evaluated on a set of standard test data, and the comparison with the 

semi-real-time schemes by Geiger et al. and Kosov et al. is analyzed. Currently the 

disparity estimation is performed independently on each image pair. The temporal 

correlation utilizing the camera control parameters and the tracking performance with 

more complex scenes will be studied in the future work.  

      For the 3D video delivery over the WSN, we also proposed an efficient transcoding 

framework for mobile 3D video streaming with optimal video/depth rate allocation. 

Through building a Rate-QP-PLR table, the proposed framework can select the optimal 

transcoding QPs for the error-prone transmission to satisfy the channel rate constraint and 

therefore it can adapt to the error-prone network with the optimal quality for mobile 3D 

video streaming. In the future work, we shall intend to integrate the proposed framework 

with the fast transcoding architecture to promote the transcoding speed. Part of this work 

is published in [39, 119-121]. 
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Chapter 5 

Multi-camera Motion Capture for Remote Healthcare Monitoring 

5.1  Introduction 

Remote healthcare monitoring is becoming increasingly popular due to the advances in 

multiple disciplines, like sensor circuits, 3D modeling, and wireless communication 

technologies. One important task in a healthcare monitoring system is to provide a means 

to monitor walking patterns since it is a necessity for health evaluation of the 

neuromuscular system. For instance, gait analysis is often used to provide prognostic and 

diagnostic measures of pathological locomotion bio-rhythms such as Parkinson’s disease, 

diabetic peripheral neuropathy, and Huntington’s disease. It is also utilized for the 

clinical assessment of stroke rehabilitation, prosthetic alignment, and the success of 

orthopedic interventions such as anterior cruciate ligament reconstruction [122]. However, 

there are three major issues which prevent existing human gait monitoring systems from 

being used in the resource-limited environment such as rural clinics: 1) existing human 

motion capture systems using infrared sensing or other body sensing equipments are 

expensive. The average cost is around $250,000 which usually is not affordable for small 

clinics. 2) A motion capture system containing any body attachments, such as reflective 

or magnetic markers, gyroscopes and accelerometers, will be considered invasive, 

especially in geriatric attendance. 3) Currently most marker-less motion capture systems 

are dedicated to offline and error free video transmission in wired networks, such as the 

system designed by Ballan and Cortelazzo [123] and the one by Hasler et al [124]. When 

there is interaction between the remote caregiver and the patient involved, e.g. instruction 

on how to adjust the gait, real-time transmission of the monitoring videos over the WSN 
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is required. Optimal resource allocation to multiple video sequences is the most 

challenging problem in this kind of communication system. This issue is of primary 

concern when the communication resources are constrained.  

      Based on these considerations, we designed a marker-less motion capture system 

using multiple off-the-shelf cameras, aiming to provide caregivers with timely access to 

the patient’s health status through mobile communication devices. This research is 

dedicated to developing a cost efficient remote healthcare monitoring system (through 

human gait analysis for neuro-health evaluation) at rural clinics in western Nebraska, 

based on our existing testbed of large-scale wireless multi-hop networks deployed in 

remote rural areas. The focus of this research is to study how to enhance the end-to-end 

video quality in an application-centric delay-constrained scenario through a cross-layer 

design method, by which video content analysis, video encoding/decoding, and video 

transmission are systematically considered. Therefore, multiple factors in the system 

level configuration are considered to determine the optimal video encoding and 

transmission parameters, including unequal error protection (UEP), transmission delay, 

quality balance, and error concealment. 

      To describe the function of each component in the multi-camera motion capture 

system, Section 5.2 describes the system architecture and the formulation of the delay-

constrained video coding and transmission problem. The fast object detection algorithm 

for UEP is introduced in Section 5.3. The content-aware video coding and transmission 

procedure is described in Section 5.4, and the adaptive video coding and transmission 

procedure is described in Section 5.5. The error concealment scheme by the receiver is 

explained in Section 5.6. In Section 5.7, the multi-view motion estimation process is 
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described. Experimental results are provided in Section 5.8. Section 5.9 draws the 

conclusions. 

 

5.2  Problem Description 

The multi-camera motion capture system aims to provide caregivers with timely access to 

the patient’s health status through mobile communication devices. The major components 

include video capture, object detection, video coding and transmission, error concealment, 

and video analysis. In the scenario, the subject walked on a treadmill with four tripod 

cameras capturing the video from different viewpoints. After video compression and 

transmission over a wireless sensor network, the remote receiver recovered the videos 

and performed multi-view motion capture for gait analysis. 

 

5.2.1 System Architecture 

The presented motion capture system for remote healthcare monitoring is illustrated in 

Figure 5.1. The videos showing the subject’s walking pattern on a treadmill are recorded 

by four synchronized and calibrated tripod cameras from different viewpoints, as 

displayed in Figure 5.2. These videos are processed at the data center, i.e. the computer, 

where the RoI information is detected, and the parameters for video encoding and 

transmission are determined through cross-layer control. The multi-view motion 

estimation process is implemented by the receiver using the recovered videos and the 

camera calibration parameters [125]. To achieve optimal resource allocation, a content-

aware video encoding and transmission procedure is applied by the cross-layer controller; 

and to ensure real-time video transmission, an adaptive encoding and transmission 

procedure is also applied concurrently based on the CSI.  The number of cameras is 
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limited for the consideration of cost and processing time. The cameras are sparsely 

positioned around the treadmill, and little inter-view correlation exists between different 

videos. Therefore, the four sequences of video packets are simulcast over the WSN. 

 

 
Figure 5.1 : Multi-camera motion capture system over WSN. 

 

 
 

          
 

Figure 5.2 : Recorded video frame from four different views. 

 

 5.2.2 Formulation 

At the cross-layer controller, the video encoding and transmission process is formulated 

as an end-to-end distortion minimization problem under a frame delay constraint: 

 

     
      

                    
 
   

 
                       

 

                     
         

           

 

   

  

 

                                               
 
   

 
                                        (5.1)   
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      Here E[D] is the expected end-to-end distortion of one packet i, K is the number of 

views, and I is the number of packets in one frame.              denotes the source coding 

parameter and channel transmission parameter vector for a frame n in view k. E[T] 

represents the expected transmission time for one packet, and T
max

 is the maximum 

allowable delay for all the packets in one frame from K views to be transmitted.  

      Besides frame delay, another constraint is that, the maximum distortion of all the 

video frames should be minimized, i.e., the lowest quality is maximized, which also 

implicates a balanced quality among all the views. This constraint is necessary since the 

visual quality of each received video is considered to contribute equally to a successful 

3D motion estimation process. 

      According to Formula (5.1), a best parameter vector      
      

   is chosen for a new 

frame based on multiple factors affecting the expected distortion, including RoI, current 

channel condition, and previous packet loss information. Details of the solution 

procedures are explained in following sections. 

 

5.3  Fast Object Detection 

Background subtraction using Gaussian Mixture Model (GMM) is a popular video 

motion detection method known for its change adaptability and noise tolerance. GMM is 

an online learning process. Each pixel in a new frame is checked against the existing 

background models until a match is found. A match is defined as the distance between 

the mean and the pixel value is within 2.5 times the standard deviation [71]. To accelerate 

the learning process, the background setting without moving objects is recorded at the 
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beginning of the video, when sufficient data can be acquired to train the background 

models. Figure 5.3 (a) shows the foreground detection results for one frame in one view. 

 

                
(a) Background subtraction                         (b) Anisotropic diffusion 

 

Figure 5.3 : Object detection. 

 

      A problem with the temporal GMM based motion detection method is that it fails to 

detect some foreground regions with similar color to the background. As can be observed 

from Figure 5.2 and Figure 5.3, part of the body area is missing where the color of the T-

shirt is close to the color of the wall. Spatial color correlation can be utilized to solve this 

problem, such as anisotropic diffusion [126]. Here anisotropic diffusion is applied as a 

post-processing step to improve the detection result. The motive of the diffusion process 

is to minimize the difference between neighboring pixels, while the edge property is 

preserved. The process can be formulated as the following energy minimization problem. 

 

             
 

                                                 (5.2) 

 

where   is the image domain, and (x, y) is the pixel I’s coordinates. The solution can be 

obtained using the gradient decent [127], 
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                                                                   (5.3) 

 

and a 4-nearest-neighbors discretization of the diffusion is expressed as 

 

    
      

          
        

        
        

                             (5.4) 

 

where   
  is the diffusion value at iteration t and at pixel i. λ is a constant between 0 and 

1/4. N, S, E, W are subscripts for North, South, East, West.    
  denotes the nearest-

neighbor difference, and the conduction coefficient c is a kernel function of the Euclidean 

norm of    
 , 

 

  
        

                                                               (5.5) 

 

      We design the kernel function as reversely increasing with    , the color difference 

between adjacent pixels, 

 

      
    

      

         
   

 
         

                                            (5.6) 

                 
 
                                                    (5.7) 

 

where A and B are predefined constants controlling the diffusion speed.   denotes the 

neighboring pixels. The diffusion value is initiated with GMM learning result, i.e., if a 

pixel i is detected as background,   
  = 0; otherwise   

  = 1. At the end of each iteration, 

resulting   
    is thresholded so that pixels with higher   

    value are determined as 
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foreground. The iteration process is terminated either when the predefined maximum 

number of iteration is reached, or when the difference of the number of detected 

foreground between two successive iterations is below certain threshold, whichever 

comes first. Function (5.6) is a weighted version of the kernel function introduced in 

[126]. The merit is that if some region is missing, and it has neighboring foreground 

regions with similar color, its diffusion value will be raised continuously during the 

iterative diffusion process, making it more likely to be merged with those neighboring 

foreground regions. The final detection results are displayed in Figure 5.3 (b). 

      The video object detection algorithm has an efficient implementation. For 300 

recorded 640x480 frames from one view, the average processing time is 0.3 second per 

frame on a 32-bit PC machine with Intel E7300 2.66GHz CPU and 2GB RAM. 

Compared to traditional video object detection methods, the presented algorithm is 15% 

faster than the min-cut [128], and 50% faster than the Iterative Conditional Mode (ICM) 

[110], with similar visual quality. The RoI region is defined as the smallest rectangle 

containing all the foreground pixels, aligning to the encoder block size. When the 

computation resource is constrained, only the data from one view is processed, the frames 

are down sampled (average processing time is 0.02 second per 160x120 frame), and the 

RoI regions for other views are projected using the camera parameters, and the input of 

the object’s stature [125]. 

 

5.4  Content-aware Video Coding and Transmission 

The recorded videos endure data compression and transmission before arriving at the 

receiver. When the communication resources are limited in a WSN, an alternative of 

heavier compression is to implement unequal error protection (UEP) to impose higher 
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priority on the parts of the video sequence that have a greater impact on video quality, 

e.g. the RoI [21, 129]. Thus the distortion estimation process by the cross-layer controller 

needs to consider the different packet delay for the unequally protected foreground and 

background packets. 

 

5.4.1 Unequal Error Protection 

In the content-aware video coding and transmission procedure, the foreground data and 

the background data are grouped into different packets. While the sender applies the same 

compression and transmission parameters to all packets in one frame, the intermediate 

nodes in the WSN put a foreground packet ahead of all background packets in the queue. 

When a packet is lost, it will be retransmitted until it is correctly received, or is discarded 

when the maximum transmission delay T
max

 is exceeded. This UEP mechanism reduces 

the packet loss possibility of the foreground target packets due to the transmission delay 

constraint. 

 

5.4.2 End-to-end Packet Delay 

As a result of the retransmission mechanism, the packet loss probability over a link 

between two nodes (u, v) mainly exhibits as the probability of packet drop due to delay 

deadline expiration when queuing at node u. Based on priority queuing analysis, it can be 

calculated from the tail distribution of the waiting time [130]: 

 

                                                      
        

              
 
      

 
          

              
 
   

                               (5.8) 
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                                         (5.9) 

 

where     
  is the packet arrival time at node u, and      is the average arrival rate of the 

Poisson input traffic into the queue at node u. E[Wg,(u,v)]  is the average packet waiting 

time at the queue of node u, and E[Zg,u] is the average service time at node u, measured as 

a geometric distribution with the effective transmission rate (goodput), packet length, and 

packet error and collision rate. Both the goodput and the packet error and collision rate 

are related to the link SINR (signal to interference and noise ratio) information and the 

selected modulation and channel coding scheme (MCS) [29]. Accordingly, the end-to-

end packet loss rate (PLR) over a selected path P is estimated as 

 

                                                                        (5.10) 

 

      The end-to-end packet delay is estimated as the sum of the packet delay          over 

each link (u, v): 

 

                                                                       (5.11)   

 

      The estimated packet loss rate and delay over each path are used by the cross-layer 

controller for optimal decision of coding and transmission parameters based on Formula 

(5.1). The solution strategy is summarized in next section. 

 

5.5  Adaptive Video Coding and Transmission 
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The multiple video sequences are simulcast over a multi-hop WSN. To accommodate the 

dynamic channel condition, flexible configuration of the video encoding and transmission 

parameters is enabled, including the selection of quantization parameter (QP), coding 

mode, MCS, and transmission path, resulting in a configuration quadruple (Q, Mode, 

MCS, P). In literature, how to choose the combination of the parameters for multiple 

sequences has been studied in various video streaming applications [17, 131]. Without 

the min-max (quality balance) constraint, the problem expressed in Formula (5.1) 

resembles the multiple-choice knapsack problem (MCKP) in classical combinatorial 

optimization [132]. In our application, the resource allocation is constrained by both 

transmission delay and quality balance. The expected video distortion is estimated with 

online CSI. And the optimal encoding and transmission parameters are configured by a 

cross-layer controller based on the distortion estimation results, using a greedy search 

algorithm. 

 

5.5.1 End-to-end Distortion Estimation 

When transmitted over the wireless network, the end-to-end distortion of a video packet 

includes the source coding distortion D
s
 and channel distortion D

c
. Under a given 

configuration (Q, Mode, MCS), an optimal path P is selected based on the estimated 

video distortion, using the routing algorithm similar to the work in [29]. According to 

Equations (5.8) to (5.11), the estimated distortion for a packet πg is 

 

                                                     

       
           

 
                          

  
    

                                                     
                              (5.12) 
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                                             (5.13) 

 

                    
                 

 
                                                        (5.14) 

 

 

        denotes the original data.    is the encoder recovered data after quantization.    is the 

concealed data in the presence of packet loss. It is determined based on the receiver’s 

packet loss feedback for previous frames. When the estimated packet delay is larger than 

the threshold, the concealment result is used to calculate the distortion directly. It is 

assume that perfect channel CSI is available to the sender without error and latency. This 

assumption could be approximately satisfied by using a fast feedback channel with 

powerful error control information as adopted in [88]. 

 

5.5.2 Cross-layer Control 

From previous discussion, each configuration quadruple leads to a       pair. It serves 

as an operation point for parameter selection. For each frame in a single view, the number 

of operation points is factored by the number of packets and available QPs, coding 

modes, and MCSs. To reduce the overhead, the packets in one frame share the same 

configuration. Maximum and minimum QPs for each view are tested under different 

coding modes and MCSs. The (Mode, MCS, P) configuration with minimum distortion is 

first selected for current frame in each view. To accommodate the video with the lowest 

quality, the selected (MCS*, P*) with maximum distortion among K views is assigned to 

other views. Then the maximum and minimum QPs are tested again under different 

coding modes and the assigned (MCS*, P*) to choose the optimal coding mode for each 

of the other views. After the (Mode*, MCS*, P*) parameters are determined for each 
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view, operation points using different QPs are generated, i.e. the number of operation 

points for each view is identical to the number of QPs, NQ. The optimal QP is then 

chosen for each view according to Formula (5.1). To compare with the MCKP algorithm 

aiming at maximum sum product [132], the       pair is transformed to      . P 

represents the quality (product), e.g. PSNR. It bears an increasing profile with T (weight). 

The solution procedure is listed in Figure 5.4 (a). Figure 5.4 (b) illustrates the point 

selection procedures with four views. The upper half shows selected four operation points 

(in red color) before step 2.4 proceeds. The lower half shows the selection result after 

first replacement.  

 
(a) Greedy search. 
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(b) Operation points. 

 

Figure 5.4 : Search for optimal combination of QPs. 

 

5.6  Error Concealment 

To counteract packet loss, error resilience and error concealment technologies are 

adopted to improve the video quality, including interleaving and boundary match. Before 

video encoding, interleaving is implemented to separate spatially neighboring MBs into 

different packets. This interleaving mechanism contains two steps, chessboard 

decomposition and row separation, as show in Figure 5.5. The chessboard decomposition 

separates horizontally or vertically connected MBs into two groups. The row separation 
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in one group further divides the MBs in the odd-numbered and the even-numbered rows 

into two subgroups. These two steps can be repeatedly operated on one group of MBs 

until the desired data length is acquired. A successive implementation of these two steps 

ensures that no MBs in one group are directly connected (horizontally, vertically or 

diagonally) with each other in the original image. Further, after i times of repeating such 

implementation, no MBs in a 2
i
x2

i
 neighborhood are in the same group. The receiver 

performs deinterleaving according to the information of encoder interleaving steps and 

the packet order.  

      For lost blocks in received video, the decoder performs boundary match [35] to 

search for similar patches in a spatiotemporal neighborhood. A patch yielding the 

smallest difference value in the search area is used to replace the missing MB, followed 

by a deblocking filter. 

 

 
 

Figure 5.5 : Interleaving. 

 

 

5.7  Motion Estimation 
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The recovered video sequences are observed by the receiver. For motion estimation, the 

3D positions of the object’s joints are reconstructed using triangulation [133] based on 

the selected 2D coordinates from each view, as shown in Figure 5.6. Specifically, the 

projection from a point M in 3D world coordinates (X, Y, Z) to a pixel mi (x, y) on a 2D 

image plane is 

 

     
 
 
 
       or     

             

             
                                     (5.15) 

 

      P(i) is the i-th row of the camera projection matrix P. Equation (5.15) is equivalent to 

 

 

          
          
          

                                               (5.16) 

 

 

      For K views, there is a system of equations according to Equation (5.16). The solution 

for M is obtained by singular value decomposition using the joint matrix [A1; A2; …; AK]. 

 

 

 
 

Figure 5.6 : Triangulation. 
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5.8  Experimental Results 

In our experiment, four tripod cameras (PointGrey Firefly MV) are placed around the 

object for video recording. The image size is 640x480. 100 frames from each view are 

processed. They are down-sampled to 160x120 to accelerate the computation. The video 

codec is based on the H.264/AVC standard [90]. The available QP set is {16, 20, 24, 28, 

32, 34, 36, 38, 39, 40}. The MCSs include MCS1 (6, 2/3), MCS2 (4, 3/4), MCS3 (2, 1/2), 

and MCS4 (1, 1/2) with a packet size 1k bytes [87]. A 30-node network with a directed-

acyclic-graph (DAG)-modeled connectivity structure and the Rayleigh fading channel 

[29] is simulated in MATLAB. The packet arrival rate at each node is set to 100 packets/s. 

To test the system performance under different conditions, the frame delay constraint is 

set to 15 fps and 30 fps, the average SINR is set to 15dB and 20dB, and the channel 

bandwidth BW is set to 100kHz and 1MHz.    

      The content-aware video coding and transmission procedure places higher priority on 

foreground packets. Under better channel condition (BW = 1MHz,            = 20dB), the 

average PSNR for the RoI is 36dB under 15 fps delay constraint, and 32dB under 30 fps, 

2-5 dB higher than the traditional coding and transmission scheme without priority, as 

shown in Figure 5.7.  

      The adopted error concealment also has significant impact on the visual quality of the 

received videos. Figure 5.8 (a) shows one recovered frame using the traditional scheme 

with slice copy as the error concealment measure. Compared to the result in Figure 5.8 (b) 

obtained with the proposed method, the misplaced ankle could impose considerable error 

for the 3D motion estimation. 
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      The adaptive coding and transmission procedure provides more accurate rate-

distortion control under the dynamic channel condition, as demonstrated in Figure 5.9 (a) 

and (b). The source coding scheme using a fixed MCS and transmission path is compared 

with the proposed method, on the average PSNR of four views. The delay constraint is 

set to 30 fps. 

      The parameter selection procedure in Section 5.5.2 achieves the min-max requirement 

as expressed in Formula (5.1). Figure 5.10 lists a set of {P(dB), T(ms)} operation points 

for one frame from four views. The total weight constraint is 30ms. The selected 

combination by the MCKP algorithm [132] is {15, 2}, {15, 4}, {28, 10}, {32, 14}. The 

result with our algorithm is {19, 5}, {23, 8}, {21, 7}, {20, 10}. The total product is lower, 

but the lowest quality is improved from 15 to 19, as well as the quality variance among 

different views. 

      Finally, to illustrate the motion capture process, the reconstructed 3D points at four 

different time instances are displayed in Figure 5.11. The blue markers represent the 

joints at the hip, knee, and ankle of the left leg, and the black markers represent the 

corresponding joints of the right leg. The primary objective of gait analysis is to identify 

the variability of gait patterns. Linear or non-linear measures, such as the standard 

deviation and coefficient of variation, and the Lyapunov Exponent [134], can be applied 

to investigate the gait variability in patients with knee anterior cruciate ligament 

deficiency and reconstruction, and in the elderly. 
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Figure 5.7 : Average PSNR under different delay constraints. 

 

 

 

                
(a) Slice copy based concealment.          (b)  Interleaving based concealment. 

 

                                        Figure 5.8 : Error concealment. 
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(a) 

 

 
   (b) 

 

Figure 5.9 : Video coding and transmission. 
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Figure 5.10 : Operation points.  

 

 

                                               Figure 5.11 : Motion capture. 
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5.9  Summary 

In remote healthcare monitoring, gait analysis is gaining increasing interests due to its 

value in health evaluation of the patient’s neuromuscular system. Among existing 

technologies, motion capture based on multi-camera video communications over wireless 

sensor networks (WSN) is considered an effective and efficient means for gait analysis in 

remote healthcare monitoring. How to allocate the limited wireless channel resources to 

the multi-camera video data to ensure maximum and balanced visual quality is the key 

challenge in this kind of communication system. Based on the introduction of our multi-

camera motion capture system designed to provide caregivers with timely access to the 

patient’s health status through mobile communication devices, this section presented a 

solution for the video encoding and transmission process over WSN through cross-layer 

control. All components are seamlessly integrated in a unified cross-layer optimization 

framework dedicated for online data transmission, including coding mode and QP 

selection for video encoding, and MCS and path selection for video transmission. 

Experimental results show that the presented system design achieves better video quality 

than traditional video coding and transmission scheme, while the requirement for a low-

cost, noninvasive and real-time healthcare monitoring system is accommodated. Part of 

this work is published in [135].  
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Chapter 6 

Summary and Future Work 

6.1  Summary of the Thesis Work and Our Contributions 

This thesis work studied the cross-layer optimization in different wireless video 

surveillance systems, including the wireless video surveillance system with a single PTU 

camera, the binocular video object tracking and mobile 3D video transcoding system, and 

the multi-camera motion capture system for remote healthcare monitoring. The cross-

layer control design considers the specific architecture of each surveillance system and 

accommodates the practical requirements by different application scenarios, such as the 

camera control, the computation and communication resource limits, the video quality 

enhancement and balance, and so on. Interdisciplinary study is conducted to incorporate 

different components of the system, including video object detection, data compression 

and transmission, and video analysis, into a delay-constrained resource optimization 

framework over WSN. The cross-layer controller adaptively selects the source coding 

parameters and channel transmission parameters according to the available system 

resources and the CSI information. Our contributions are summarized below: 

 We implemented systematic design for different wireless video surveillance 

systems, including the wireless video suveillance system with a single PTU 

camera, the binocular video object tracking and mobile 3D video transcoding 

system, and the multi-camera motion capture system for remote healthcare 

monitoring. General components, i.e. the video capture, the video compression 

and transmission, and the video analysis, and the specific requirements of a 

practical surveillance system are considered. 
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 We studied the cross-layer optimization mechanism to incorporate different 

components of the system into a delay-constrained resource optimization 

framework over WSN. The cross-layer designs for the source processing and 

wireless transmission of the single surveillance video, the video plus depth 3D 

data, and the multiple simulcast videos, can guarantee enhanced video quality and 

timely video playback. 

 Multiple video quality enhancement strategies are proposed for the surveillance 

systems, including the block-based interleaving error resilience, the boundary 

match error concealment, the down-sampling/up-sampling video coding, the 

dynamic rate allocation for video/depth data, the UEP for foreground/background 

packets, and the balanced quality for multiple video simulcast. 

 Fast implementation of the video processing methods is considered for the run-

time requirement of the surveillance system. For example, the 3D content 

generation process in the binocular video object tracking accommodates the run-

time surveillance application. The background subtraction in object detection, the 

motion estimation in the video compression, and the boundary match in the error 

concealment, all utilize the special property of the PTU camera movement in the 

cyber-physical system to accelerate the computation. 

 

6.2  Future Work 

Wireless video surveillance is popular in various visual communication applications. 

While the advanced WSN infrastructure provides a strong support for surveillance video 

communications, new challenges are emerging in the process of compressing and 

transmitting large amount of video data, and in the presence of run time and energy 
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conservation requirements for mobile devices. Another trend in this field is the 3D signal 

processing technology in more advanced multiview video surveillance. The wireless 

communication environment posts greater difficulty for this kind of applications. How to 

efficiently estimate the distortion for the dedicated vision task at the receiving end using 

the compressed and concealed video data remains a research topic worth exploring. Our 

future work includes: 

 Extend the resource constraint in the cross-layer control process to power/energy, 

consumed by both the computation and communication modules in the 

surveillance system. 

 Further explore the cross-layer design for the multi-view video surveillance 

system. Study the efficient implementation for more complex 3D data processing 

algorithms in more advanced surveillance applications. 

 Research on the rate-distortion model for other popular vision tasks, such as the 

3D scene reconstruction, and the free viewpoint video-on-demand application, 

especially in a wireless environment. 
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