36,258 research outputs found

    Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook

    Get PDF
    Two-dimensional (2D) semiconductors provide a unique opportunity for optoelectronics due to their layered atomic structure, electronic and optical properties. To date, a majority of the application-oriented research in this field has been focused on field-effect electronics as well as photodetectors and light emitting diodes. Here we present a perspective on the use of 2D semiconductors for photovoltaic applications. We discuss photonic device designs that enable light trapping in nanometer-thickness absorber layers, and we also outline schemes for efficient carrier transport and collection. We further provide theoretical estimates of efficiency indicating that 2D semiconductors can indeed be competitive with and complementary to conventional photovoltaics, based on favorable energy bandgap, absorption, external radiative efficiency, along with recent experimental demonstrations. Photonic and electronic design of 2D semiconductor photovoltaics represents a new direction for realizing ultrathin, efficient solar cells with applications ranging from conventional power generation to portable and ultralight solar power.Comment: 4 figure

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    A Pennsylvania State University/General Electric Get Away Special (GAS) experiment

    Get PDF
    We describe four student-designed experiments by the Pennsylvania State University, which are planned for a GAS canister. The four experiments will measure: the effects of radiation on semiconductors; orbital debris impacts; the Space Shuttle's magnetic field; and the photoelectric yield of several different materials. These experiments are the result of the efforts of more than one hundred students

    VLSI Revisited - Revival in Japan

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government - through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors, Hitachi, Sony, Toshiba, Elpida, Renesas, Sematech, VLSI, JESSI, MEDEA, ASPLA, MIRAI, innovation system

    Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction

    Get PDF
    Recent progresses in plasmon-induced hot electrons open up the possibility to achieve photon harvesting beyond the fundamental limit imposed by band-to-band transitions in semiconductors. To obtain high efficiency, both the optical absorption and electron emission/collection are crucial factors that need to be addressed in the design of hot electron devices. Here, we demonstrate a photoresponse as high as 3.3mA/W at 1500nm on a silicon platform by plasmonic absorber (PA) and omni-Schottky junction integrated photodetector, reverse biased at 5V and illuminated with 10mW. The PA fabricated on silicon consists of a monolayer of random Au nanoparticles (NPs), a wide-band gap semiconductor (TiO2) and an optically thick Au electrode, resulting in broadband near-infrared (NIR) absorption and efficient hot-electron transfer via an all-around Schottky emission path. Meanwhile, time and spectral-resolved photoresponse measurements reveal that embedded NPs with superior absorption resembling plasmonic local heating sources can transfer their energy to electricity via the photothermal mechanism, which until now has not been adequately assessed or rigorously differentiated from the photoelectric process in plasmon-mediated photon harvesting nano-systems

    VLSI REVISITED – REVIVAL IN JAPAN

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government – through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors; Hitachi; Sony; Toshiba; Elpida; Renesas; Sematech; VLSI; JESSI; MEDEA; ASPLA; MIRAI; innovation system
    corecore