15,081 research outputs found

    Usability testing for improving interactive geovisualization techniques

    Get PDF
    Usability describes a product’s fitness for use according to a set of predefined criteria. Whatever the aim of the product, it should facilitate users’ tasks or enhance their performance by providing appropriate analysis tools. In both cases, the main interest is to satisfy users in terms of providing relevant functionality which they find fit for purpose. “Testing usability means making sure that people can find and work with [a product’s] functions to meet their needs” (Dumas and Redish, 1999: 4). It is therefore concerned with establishing whether people can use a product to complete their tasks with ease and at the same time help them complete their jobs more effectively. This document describes the findings of a usability study carried out on DecisionSite Map Interaction Services (Map IS). DecisionSite, a product of Spotfire, Inc.,1 is an interactive system for the visual and dynamic exploration of data designed for supporting decisionmaking. The system was coupled to ArcExplorer (forming DecisionSite Map IS) to provide limited GIS functionality (simple user interface, basic tools, and data management) and support users of spatial data. Hence, this study set out to test the suitability of the coupling between the two software components (DecisionSite and ArcExplorer) for the purpose of exploring spatial data. The first section briefly discusses DecisionSite’s visualization functionality. The second section describes the test goals, its design, the participants and data used. The following section concentrates on the analysis of results, while the final section discusses future areas of research and possible development

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method

    Providing behaviour awareness in collaborative project courses

    Get PDF
    Several studies show that awareness mechanisms can contribute to enhance the collaboration process among students and the learning experiences during collaborative project courses. However, it is not clear what awareness information should be provided to whom, when it should be provided, and how to obtain and represent such information in an accurate and understandable way. Regardless the research efforts done in this area, the problem remains open. By recognizing the diversity of work scenarios (contexts) where the collaboration may occur, this research proposes a behaviour awareness mechanism to support collaborative work in undergraduate project courses. Based on the authors previous experiences and the literature in the area, the proposed mechanism considers personal and social awareness components, which represent metrics in a visual way, helping students realize their performance, and lecturers intervene when needed. The trustworthiness of the mechanisms for determining the metrics was verified using empirical data, and the usability and usefulness of these metrics were evaluated with undergraduate students. Experimental results show that this awareness mechanism is useful, understandable and representative of the observed scenarios.Peer ReviewedPostprint (published version

    Providing behaviour awareness in collaborative project courses

    Get PDF
    Several studies show that awareness mechanisms can contribute to enhance the collaboration process among students and the learning experiences during collaborative project courses. However, it is not clear what awareness information should be provided to whom, when it should be provided, and how to obtain and represent such information in an accurate and understandable way. Regardless the research efforts done in this area, the problem remains open. By recognizing the diversity of work scenarios (contexts) where the collaboration may occur, this research proposes a behaviour awareness mechanism to support collaborative work in undergraduate project courses. Based on the authors previous experiences and the literature in the area, the proposed mechanism considers personal and social awareness components, which represent metrics in a visual way, helping students realize their performance, and lecturers intervene when needed. The trustworthiness of the mechanisms for determining the metrics was verified using empirical data, and the usability and usefulness of these metrics were evaluated with undergraduate students. Experimental results show that this awareness mechanism is useful, understandable and representative of the observed scenarios.Peer ReviewedPostprint (published version

    Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis

    Get PDF
    Exploring data requires a fast feedback loop from the analyst to the system, with a latency below about 10 seconds because of human cognitive limitations. When data becomes large or analysis becomes complex, sequential computations can no longer be completed in a few seconds and data exploration is severely hampered. This article describes a novel computation paradigm called Progressive Computation for Data Analysis or more concisely Progressive Analytics, that brings at the programming language level a low-latency guarantee by performing computations in a progressive fashion. Moving this progressive computation at the language level relieves the programmer of exploratory data analysis systems from implementing the whole analytics pipeline in a progressive way from scratch, streamlining the implementation of scalable exploratory data analysis systems. This article describes the new paradigm through a prototype implementation called ProgressiVis, and explains the requirements it implies through examples.Comment: 10 page
    • …
    corecore