327 research outputs found

    Symptoms Based Image Predictive Analysis for Citrus Orchards Using Machine Learning Techniques: A Review

    Get PDF
    In Agriculture, orchards are the deciding factor in the country’s economy. There are many orchards, and citrus and sugarcane will cover 60 percent of them. These citrus orchards satisfy the necessity of citrus fruits and citrus products, and these citrus fruits contain more vitamin C. The citrus orchards have had some problems generating good yields and quality products. Pathogenic diseases, pests, and water shortages are the three main problems that plants face. Farmers can find these problems early on with the support of machine learning and deep learning, which may also change how they feel about technology.  By doing this in agriculture, the farmers can cut off the major issues of yield and quality losses. This review gives enormous methods for identifying and classifying plant pathogens, pests, and water stresses using image-based work. In this review, the researchers present detailed information about citrus pathogens, pests, and water deficits. Methods and techniques that are currently available will be used to validate the problem. These will include pre-processing for intensification, segmentation, feature extraction, and selection processes, machine learning-based classifiers, and deep learning models. In this work, researchers thoroughly examine and outline the various research opportunities in the field. This review provides a comprehensive analysis of citrus plants and orchards; Researchers used a systematic review to ensure comprehensive coverage of this topic

    A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm

    Get PDF
    Classifying of skin sensitization using the quantitative structure-activityrelationship (QSAR) model is important. Applying descriptor selection isessential to improve the performance of the classification task. Recently, abinary crow search algorithm (BCSA) was proposed, which has been successfully applied to solve variable selection. In this work, a new time-varyingtransfer function is proposed to improve the exploration and exploitation capability of the BCSA in selecting the most relevant descriptors in QSAR classification model with high classification accuracy and short computing time.The results demonstrated that the proposed method is reliable and can reasonably separate the compounds according to sensitizers or non-sensitizerswith high classification accuracy

    Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming

    Get PDF
    One of the strategies a company uses to retain its customers is Customer Relationship Management (CRM). CRM manages interactions and supports business strategies to build mutually beneficial relationships between companies and customers. The utilization of information technology, such as data mining used to manage the data, is critical in order to be able to find out patterns made by customers when processing transactions. Clustering techniques are possible in data mining to find out the patterns generated from customer transaction data. Fuzzy C-Means (FCM) is one of the best-known and most widely used fuzzy grouping methods. The iteration process is carried out to determine which data is in the right cluster based on the objective function. The local minimum is the condition where the resulting value is not the lowest value from the solution set. This research aims to solve the minimum local problem in the FCM algorithm using Genetic Programming (GP), which is one of the evolution-based algorithms to produce better data clusters. The result of the research is to compare the application of fuzzy c-means (FCM) and genetic programming fuzzy c-means (GP-FCM) for customer segmentation applied to the Cahaya Estetika clinic dataset. The test results of the GP-FCM yielded an objective function of 20.3091, while for the FCM algorithm, it was 32.44741. Furthermore, evaluating cluster validity using Partition Coefficient (PC), Classification Entropy (CE), and Silhouette Index proves that the results of cluster quality from gp-fcm are more optimal than fcm. The results of this study indicate that the application of genetic programming in the fuzzy c-means algorithm produces more optimal cluster quality than the fuzzy c-means algorithm

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Automatic detection of cereal rows by means of pattern recognition techniques

    Get PDF
    Automatic locating of weeds from fields is an active research topic in precision agriculture. A reliable and practical plant identification technique would enable the reduction of herbicide amounts and lowering of production costs, along with reducing the damage to the ecosystem. When the seeds have been sown row-wise, most weeds may be located between the sowing rows. The present work describes a clustering-based method for recognition of plantlet rows from a set of aerial photographs, taken by a drone flying at approximately ten meters. The algorithm includes three phases: segmentation of green objects in the view, feature extraction, and clustering of plants into individual rows. Segmentation separates the plants from the background. The main feature to be extracted is the center of gravity of each plant segment. A tentative clustering is obtained piecewise by applying the 2D Fourier transform to image blocks to get information about the direction and the distance between the rows. The precise sowing line position is finally derived by principal component analysis. The method was able to find the rows from a set of photographs of size 1452 x 969 pixels approximately in 0.11 s, with the accuracy of 94 per cent

    Quantitative Techniques in Participatory Forest Management

    Get PDF
    Forest management has evolved from a mercantilist view to a multi-functional one that integrates economic, social, and ecological aspects. However, the issue of sustainability is not yet resolved. Quantitative Techniques in Participatory Forest Management brings together global research in three areas of application: inventory of the forest variables that determine the main environmental indices, description and design of new environmental indices, and the application of sustainability indices for regional implementations. All these quantitative techniques create the basis for the development of scientific methodologies of participatory sustainable forest management

    Deep learning sensor fusion in plant water stress assessment: A comprehensive review

    Get PDF
    Water stress is one of the major challenges to food security, causing a significant economic loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural productivity through optimization of plant water usage, maximizing plant breeding strategies, and preventing forest wildfire for better ecosystem management. Recent advancements in sensor technologies have enabled high-throughput, non-contact, and cost-efficient plant water stress assessment through intelligence system modeling. The advanced deep learning sensor fusion technique has been reported to improve the performance of the machine learning application for processing the collected sensory data. This paper extensively reviews the state-of-the-art methods for plant water stress assessment that utilized the deep learning sensor fusion approach in their application, together with future prospects and challenges of the application domain. Notably, 37 deep learning solutions fell under six main areas, namely soil moisture estimation, soil water modelling, evapotranspiration estimation, evapotranspiration forecasting, plant water status estimation and plant water stress identification. Basically, there are eight deep learning solutions compiled for the 3D-dimensional data and plant varieties challenge, including unbalanced data that occurred due to isohydric plants, and the effect of variations that occur within the same species but cultivated from different locations

    Quantitative Techniques in Participatory Forest Management

    Get PDF
    Forest management has evolved from a mercantilist view to a multi-functional one that integrates economic, social, and ecological aspects. However, the issue of sustainability is not yet resolved. Quantitative Techniques in Participatory Forest Management brings together global research in three areas of application: inventory of the forest variables that determine the main environmental indices, description and design of new environmental indices, and the application of sustainability indices for regional implementations. All these quantitative techniques create the basis for the development of scientific methodologies of participatory sustainable forest management
    corecore