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Featured Application: In this paper, an all-inclusive review of deep learning sensor fusion with
its challenges and future perspectives in plant water stress assessment has been carried out.

Abstract: Water stress is one of the major challenges to food security, causing a significant economic
loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural
productivity through optimization of plant water usage, maximizing plant breeding strategies, and
preventing forest wildfire for better ecosystem management. Recent advancements in sensor tech-
nologies have enabled high-throughput, non-contact, and cost-efficient plant water stress assessment
through intelligence system modeling. The advanced deep learning sensor fusion technique has
been reported to improve the performance of the machine learning application for processing the
collected sensory data. This paper extensively reviews the state-of-the-art methods for plant water
stress assessment that utilized the deep learning sensor fusion approach in their application, together
with future prospects and challenges of the application domain. Notably, 37 deep learning solutions
fell under six main areas, namely soil moisture estimation, soil water modelling, evapotranspiration
estimation, evapotranspiration forecasting, plant water status estimation and plant water stress
identification. Basically, there are eight deep learning solutions compiled for the 3D-dimensional data
and plant varieties challenge, including unbalanced data that occurred due to isohydric plants, and
the effect of variations that occur within the same species but cultivated from different locations.

Keywords: artificial intelligence; agriculture monitoring system; modelling; plant-based water stress;
smart sensor

1. Introduction

Water stress, also known as drought stress, is part of plant abiotic stress, a pressing
threat to plant productivity if sustained over a long period [1]. Most major crop plant yields
can reduce by more than half due to lack of water availability [2,3]. Failure to produce
agriculture will in turn create a food security challenge, affecting the nation’s economy as
well as threatening farmers’ livelihood. Routine plant water stress assessment could help
minimize the risk of productivity loss by timely detection and appropriate intervention.

On the other hand, moderate stress induced in plants can improve the quality of
yields as supplying excess irrigation can lead to loss of nutrients in soil [4]. A moderate
level of water stress applied during the suitable growth period of mandarin and peach
cultivation can benefit through enhanced fruit quality parameters without significantly
compromising yield [5]. Regulated deficit irrigation (RDI) is the key technology that can
help improve plant water use efficiency, at the same time reducing the staggering amount
of agricultural water utilization [6]. Knowledge of plant water stress assessment methods is
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therefore highly significant for precision control of irrigation as not to induce unrecoverable
stress [7]. Moreover, to some extent, assessing the water status in plants could even prevent
wildfire [8], help in monitoring infested trees which inhibit water stress like symptoms [9]
and become a valuable tool for water stress resistant plant breeding [10].

There are many factors that can inflict water stress in plants. Soil condition, in particular
the moisture level, is directly correlated with the available water for plant consumption. Water
stress occurs as a result of an imbalance between water availability and water consumption
which leads to soil moisture being the widely used indicator of water stress in plants [11,12].
Environmental factors such as air temperature, relative humidity and solar radiation can
influence plant transpiration and soil water evaporation resulting in low water content in
plants. Hence several methods of plant water stress assessment are based on ecological
measurements [13]. Recently, plant physiological responses to limited water conditions has
been used as indicator of stress and is considered more sensitive than soil moisture [14].
Kramer [15] has argued that plant water stress assessment should be performed directly
on the plant, as growth is directly affected by the tissue water condition and only indirectly
by soil water deficit. However, most of the techniques used to measure the responses in
plants are destructive, time consuming, and labour intensive.

Advances in sensing technologies have truly revolutionized the methods for plant wa-
ter stress assessment as illustrated in Figure 1, allowing rapid, automated and cost-efficient
soil-plant ecophysiology monitoring [16]. These days, environmental sensors have become
inexpensive owing to the popularity of IoT devices that can measure agricultural data in
real-time. Various state-of-the-art remote sensing (RS) techniques have also been introduced
for fast and non-invasive plant water status estimation [17]. Alvino and Marino [18] have
reported in the recent literature on several RS approaches for plant water stress assessment
in the cultivated environment for irrigation management. Numerous platforms and sensor
types have been used providing unlimited heterogenous data, analysed using a range of
modelling approaches.
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Machine learning (ML) has promptly become the standard for data processing espe-
cially in agriculture, thanks to its ability of to process large amounts of information in a
non-linear framework [19,20]. Despite the significant achievements of ML application, the
technique has a fundamental limitation in that performance is subject to the features used,
the quality of data collected and the specific targeted application [21]. An advanced part
of ML called Deep learning (DL) has been widely investigated for big data analysis with
remote sensing [22–24] and computer vision [25] applications. DL has been attracting a lot
of interest recently in the agricultural field, for example in plant disease detection and yield
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prediction; however, it has been noted that DL application in plant water stress assessment
is quite new and research has been limited [26].

Several review papers on DL application in plant stress phenotyping have been pub-
lished [27–29] showing the high potential of the technique; however, these papers have mainly
focused on leaf-based biotic stress detection from the image processing point of view. This
investigation aims to comprehensively review almost all the major sub-approaches of plant
water stress assessment method connected to DL. Furthermore, an advanced prospect of DL
application in the field of plant water stress assessment and its challenges is also presented.

The structure of this paper is as follows: the review methodology is presented in
Section 2 while Section 3 provides the background of deep learning network architecture.
Section 4 presents the implemented approach of recent DL sensor fusion work based
on the planning protocol established in Section 2, as well as the performance metrics
when available. Section 5 discusses the challenges as well as the future prospects in the
application domain, followed by the conclusion in Section 6.

2. Review Methodology

A comprehensive and systematic review approach has been widely used to identify,
evaluate and interpret relevant research on a specific issue, area or phenomenon of interest.
This review methodology is an important study, which aims to carry out a survey of re-
search with the same scope, evaluating these critically in their methodologies and bringing
them together in a meta-analysis when this is possible.

2.1. Literature Review Planning Protocol

This paper considers the following planning protocol for the review:

• Research questions

Q1. What type of sensors and input data were used?
Q2. What DL model was proposed in the study?
Q3. Did the authors compare the DL approach with other machine learning approaches?
Q4. How was the performance of the DL model compared to conventional models?

• Exclusion criteria

E1. Works not related to water stress assessment and DL/ML.
E2. Works that do not present any type of experimentation or comparison results, and
make only propositions.

• Quality criterion

QC1. Papers that compare recent assessment results using different DL techniques.

2.2. Execution

The search for papers was methodically performed to identify studies that are related
to the scope of this work using academic databases such as Science Direct, IEEE Xplore,
Springer, Wiley, Taylor & Francis, MDPI, Google Scholar, and other Scopus indexed journals
and conference proceedings. Combinations of the main keyword “deep learning” with
keywords related to plant water stress assessment parameters such as “plant water status”,
“soil moisture” and “evapotranspiration” were used. Numerous research articles were
found (100+ articles), most recently published from 2016 onwards. After removing all
duplicates, articles selection was done with emphasis placed on peer-reviewed articles
from reputable journals and conference papers. Papers which are related to deep learning
but not applied to plant water stress assessment, do not present any type of experimental
results and merely make proposals, are excluded. The remaining papers were carefully read
and analysed according to the protocol established in Section 2.1. Section 4 summarizes all
the selected studies.
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3. Background on Deep Learning Network Architecture

Deep learning’s superiority in performance against conventional machine learning
was first demonstrated by Hinton and Salakhutdinov [30]. Deep learning can be described
as a model that represents non-linear processing consisting of multiple layers of artificial
neural networks (ANN). The method of learning used can be supervised or unsupervised
with feature representation in the form of high-level abstraction [31]. Schmidhuber [32]
described a Deep Neural Network (DNN) as having more than one hidden layer with
thousands of units of neurons making small and simple calculations. The increased struc-
ture complexity means DL can process large scale and complex data with more learning
capacity to characterize input and targeting data. In modern agriculture where the use of a
wireless sensor network (WSN) [33] is prevalent, the huge amount of data produced will
make the application of DL well suited, and usually leads to better performance.

The conventional machine learning method often requires specifically defined pre-
processing to obtain features as input variables. In plant science, this involves extracting the
plant features manually such as colour (e.g., RGB colour ratio) [34], texture (e.g., Grey-level
concurrence matrix (GLCM)) [35], spectral reflectance (e.g., vegetation indices (VI)) [36]
and thermal radiation (e.g., crop water stress index (CWSI)) [37] for analytical processing.
Processing the information is a labour-intensive and time-consuming endeavour which
depends highly on expert knowledge. Feature selection is also required to eliminate low-
quality variables and reduce the dimension of the input. Hendrawan and Murase [35]
developed several algorithms dedicated to the feature selection process for water stress
detection in Sunagoke Moss. Deep learning can reduce the need for hand-engineered
feature extraction and selection, which allows for automatic transformation for a faster
analysis, providing end-to-end data processing.

DL is now easily usable by many communities, including in plant science. There
are many supportive materials available on deep learning applications. The availability
of friendly DL libraries together with easy to learn tutorials ensuring convenience of
use [38] with popular programming languages [39] have propelled the wide adoption of the
method. Platforms such as Google Colab with GPUs notebook have made online software
development and teaching much simpler [40,41]. There are also many tools provided by
the DL community that could be useful in the study of plant stress phenotyping [42]. In
addition, much research has been conducted to understand more about the DL model and
why its performance is exceptional [43]. The problem of limited data sources has also slowly
been resolved as many research groups have shared their datasets with others [44,45].

3.1. Deep Belief Network

The deep belief network (DBN) is arguably the first successfully trained DL model. The
architecture is constructed of stacked Restricted Boltzmann Machines (RBMs) [46]. A single
RBM is an energy-based probabilistic generative model that consists of two connected layers,
visible and hidden, with no connections within a layer. The hidden layers are regarded
as higher-order features that capture the characteristics of the input data. In multi-layer
DBN, the output of the preceding RBM is used as input for the following RBM (Figure 2)
allowing for deeper feature extraction and dimension reduction. The training process is
done in two steps: firstly, initializing the proper deep network weights by utilizing an
efficient unsupervised fast greedy learning strategy; then the final fine-tuning of weights
takes place in a supervised manner through Back Propagation, with the addition of a linear
classifier on the top layer of the DBN.
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3.2. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of feedforward deep learning model
most commonly used for two-dimensional input data, such as an image. It is the most
popular model in computer vision applications, with growing popularity in agriculture [47].
The normal architecture is horizontally hierarchical and constitutes several convolutional,
pooling and fully connected layers as presented in Figure 3. Convolutional layers act as
feature extractors from the input image, employing kernels or filters. The output dimen-
sionality is then reduced by the pooling layers which extract the most significant features
through max pooling or average pooling. The last fully connected layers usually act as
classifiers through the softmax function. There have been many other popular architectures
such as AlexNet [48] and Visual Geometry Group VGG [49] with different applications and
advantages. Recently, 3D CNN has attracted attention in various vision-based applications
utilizing image sequences, such as video data [50].
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3.3. Long-Short Term Memory Network

Introduced by Hochreiter and Schmidhuber [51], the Long Short-Term Memory (LSTM)
network is the augmented version of the Recurrent Neural Network (RNN) used for time
series data. RNN was commonly used for discrete sequence analysis through deep feed
forward network to learn long-term features; however, it is difficult to store information
for very long. LSTM was constructed by adding a memory cell (Figure 4) to overcome
the problem of a vanishing gradient in RNN weight training when computed using Back-
propagation through time (BPTT) [52]. The cell state allows information to pass through
the forget gate layer, input gate layer and output gate layer enabling the recurrent unit
to capture long-term information at different time scales. The LSTM model highlights an
ability to preserve and learn previous information from long-term time series data through
application in natural language processing [53] and speech recognition [54].
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4. Deep Learning in Plant Water Stress Assessment

DL applications were divided into sub-categories via the main methods used in plant
water stress assessment including soil moisture estimation, soil water modelling, evap-
otranspiration estimation, evapotranspiration forecasting, plant water status estimation,
and plant water stress identification. The DL techniques used in the reviewed literature are
discussed below.

4.1. Soil Moisture Estimation

Soil moisture (SM) is an important parameter for assessing plant water stress as it is
directly related to water availability for plant consumption. Over the years, SM measurement
has been used for agricultural drought monitoring and irrigation control [55]. It is critical
that the percentage of SM does not approach the permanent wilting point, which is the
lower limit of plant-available water [56]. The traditional soil sampling few points method
for moisture analysis is time-consuming and does not reflect the whole field conditions
accurately. In situ measurement, on the other hand, is not feasible for large field application
due to the high cost of sensor installation [14]. Advanced remote sensing technique has
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offered advantages in terms of low-cost and wide scale of monitoring. DL techniques have
been used for fast and accurate SM estimation from several remote sensing platforms.

Several studies have used DL for aerial image analysis which could be easily captured
using an unmanned aerial vehicle (UAV) or drone for SM estimation. Sobayo et al. [57]
proposed a CNN-based regression model to estimate SM content from aerial captured
thermal images from three different farm areas. The model was able to predict SM content
more accurately than the plain DNN model. The technique shows promising application;
however, there is currently a lack of adequate local ground measurement data available at
the scale of captured images due to the cost and labour. Tseng et al. [58] tried to overcome
the shortcoming by developing an image simulator that can generate pseudo real plant
images from the available SM dissipation rate data. The study proposed CNN, which has
generated less error in the prediction of soil moisture dissipation rate from the simulated
test images in comparison to the traditional ML methods. It also worth noting that the
CNN method was robust against the noise introduced into the simulated images.

Large scale SM monitoring has been explored based on satellite observation. DL has
been proposed as an alternative to conventional physically-based models developed for
SM estimation using satellite data which often perform less well due to limited processing
capacity. Zhang et al. [59] used DNN for upscaling in-situ soil moisture estimation using
Visible Infrared Imaging Radiometer Suite (VIIRS) raw data records (RDR). The DL model
was able to achieve better accuracy than Soil Moisture Active Passive (SMAP) active sensor
products and the Global Land Data Assimilation System (GLDAS) model. In another study,
Lee et al. [60] also employed DNN to estimate soil moisture over the Korean peninsula
using surface and thermal variables from satellite. Compared with Advanced Microwave
Scanning Radiometer-2 (AMSR2) and GLDAS SM products, the model showed excellent
agreement with the ground measured data.

Wang et al. [61] used DBN to extract features from Fengyun-3D (FY-3D) Medium Res-
olution Spectral Imager-II (MERSI-II) imagery to estimate soil moisture in the Ningxia Hui
Autonomous Region of China. The developed model, called SM-DBN, has outperformed
the other conventional models of linear regression (LR) and ANN, based on accuracy
performance in correlation with the actual ground measurement data. Ge et al. [62] com-
pared the performance of CNN and conventional ANN for estimating in-situ SM using
satellite data of L-band Soil Moisture and Ocean Salinity (SMOS) brightness temperature
(TB), C-band Advanced Scatterometer (ASCAT) backscattering coefficients, the Moderate
Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index
(NDVI), and soil temperature. The results showed that CNN outperformed conventional
ANN with better correlation with in-situ soil moisture measurement.

4.2. Soil Water Modelling

Soil water content can be affected by many factors including soil properties, climatic
changes, plant growth dynamics, etc., hence it is challenging to determine the soil water
content variation accurately and in a timely manner. Modelling the soil water distribution
using collected data can be beneficial for predicting in advance the moisture condition in
soil by a few days earlier. This will not only support in planning an appropriate irrigation
schedule, but can also reduce the impact of drought conditions [63]. However, modelling
soil water distribution is not an easy task due to the complex hydrological nature of soil and
the correlation with plant and environmental variables. Efficient algorithms are necessary
to deal with the nonlinear complex characteristics.

DL has played an important and increasing role in soil water modelling using soil,
plant and environmental measurements and has shown better performance than the con-
ventional ML model. Song et al. [64] proposed DBN as feature extraction method combined
with the macroscopic cellular automata (MCA) model to simulate spatio-temporal soil
hydrological changes in an irrigated corn field using several determining environmen-
tal parameters. In comparison to conventional Multilayer Perceptron (MLP), DBN has
shown better results for predicting soil water content data, with a reduced error of 18%.
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Cai et al. [65] used a DNN-based regression model to predict soil moisture at a depth of
20 cm using selected meteorological variables and soil water content data. Comparison
with conventional models such as linear regression, support vector machine (SVM), and
ANN showed a higher correlation in DNN with the actual data.

Yu et al. [66] proposed a hybrid convolutional neural network-gated recurrent unit
(CNN-GRU) for predicting soil moisture in maize root zone using input from soil moisture
content and meteorological variables from five different cultivation areas. The validation
results showed that CNN-RGU performs better than the CNN and GRU model alone.
In an extended forecasting period, the predicted soil moisture from the proposed mod-
els were comparable to the sensor-based soil moisture measurements. In another study,
Yu et al. [67] investigated further the application of DL models and proposed a combination
of a CNN-based Resnet and Bidirectional Long Short-Term Memory (BiLSTM) model for
soil water content prediction at four different depths using integrated meteorological, soil
water content and growth stage records data for training. The deep learning model had
better prediction accuracy than the traditional machine learning models of support vector
regression (SVR), MLP and random forest (RF).

DL has also been used for large scale soil moisture prediction based on satellite data
such as SMAP. Fang et al. [68] developed LSTM that predicts SMAP level-3 moisture
product with atmospheric forcing, model-simulated moisture, and static physiographic
attributes as inputs. The results showed that LSTM outperformed conventional methods
of multiple linear regression (MLR), autoregressive models (AM) and one-layer ANN.
In a more recent study, Fang and Shen [69] further improved the work by introducing a
novel data integration (DI) kernel to assimilate the most recent SMAP observations for
near-real-time forecast of SM product. The DI-LSTM was compared to the original LSTM
model and gave less error in the forecasted values compared to actual measurements.

4.3. Evapotranspiration Estimation

Evapotranspiration (ET) correspond to atmospheric water loss due to plant transpi-
ration and soil evaporation. Crop evapotranspiration (ETc) specifically provides under-
standing of how fluctuations in climatic parameters can affect plant water consumption
under the active phase without restriction from nutritional supply [70]. Measuring field
ETc conventionally using a lysimeter is expensive, complex and labour-costly [71]. The
FAO-56 [72] model is the well-established method for ETc calculation based on energy and
water balance schemes at field scale shown in Equation (1):

ETc = Kc × ETo, (1)

where Kc is the crop coefficient and ETo is the reference evapotranspiration. ETo incorporates
the effects of weather into the ETc estimate whilst the properties of the crop which affect ETc
are quantified by Kc [73]. ETo is traditionally calculated using the Penman-Montieth (PM)
Equation [72] based on measured meteorological sensors. However, the method is limited to
the need for large variables.

Deep learning has been used for faster estimation of ETo with limited meteorological
variables as inputs. Saggi and Jain [74] used optimized meteorological based processed
data as input to DNN for estimation of evapotranspiration values in Punjab, Northern
India. Comparison with the standard methods of Generalized Linear Model (GLM), RF, and
Gradient-Boosting Machine (GBM) showed DNN’s better performance, providing higher
accuracy with the PM-based ETo while avoiding the overfitting issue. In another study,
Ferreira and da Cunha [75] proposed that the CNN model showed good performance when
used to estimate daily ETo directly from limited hourly meteorological data compared to
other models such as RF, extreme gradient boosting (XGBoost), and ANN.

Afzaal et al. [76] used LSTM and BiLSTM for estimating ETo using air temperature
and relative humidity as the only variables. Both DL models showed high accuracy com-
pared to the actual ETo, with less difference in performance between the two models.
Chen et al. [77] evaluate the performance of three DL methods of deep DNN, temporal
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convolution network (TCN) [78], and long short-term memory neural network (LSTM) for
reference evapotranspiration estimation. The results showed that DL model outperformed
other conventional models, and TCN and LSTM showed outstanding performance when
temperature features were used.

Recently, remote sensing has been used for large scale ET estimation providing high
spatial and temporal resolution. Several models and algorithms, such as Mapping evapo-
transpiration at high resolution with internalized calibration (METRIC), the Two-source
energy balance (TSEB) model, and machine learning have been used and discussed [79].
Recently, DL learning has been introduced to improve the ET estimation based on remotely
sensed data. Cui et al. [80] developed a gap-filling algorithm based on the temperature
surface-vegetation index (TSVI) model to provide continuous daily actual ET estimation at
regional scale. Results showed good correlation between the estimated ET from TSVI-DNN
model with ground observation. García-Pedrero, et al. [81], for the first time, introduced
CNN for estimating spatially distributed ET using remote sensing data without the need
of a surface energy model. Comparison with data from METRIC showed satisfactory ET
maps were produced by the CNN.

At individual plant scale, stress variation is expressed directly in plant transpiration
(T). Measuring plant transpiration can give better understanding of the relation between
plant stress and the environment. However, direct measurement of T by sap flow is expen-
sive, difficult and time-consuming. Several studies have used DL for plant transpiration
estimation using a sensory measured environmental variable. Shuaishuai et al. [82] have
utilized DBN and least square support vector machine (LSSVM) to directly predict the
leaf transpiration rate of strawberry in a greenhouse environment. DBN-LSSVM model
outperformed two conventional models with higher prediction accuracy suggesting DBN
as an efficient feature extractor. Fan et al. [83] compares several ML algorithms of SVM, XG-
Boost, and ANN, including DNN, for estimating maize transpiration using meteorological
variables, soil water and leaf area index as inputs. The result showed DNN outperformed
other techniques by a slight margin.

4.4. Evapotranspiration Forecasting

ET forecasting can bring important insights into future climate conditions which
can be beneficial in assessing plant water stress and irrigation planning. It can also com-
pensate for the lack of data generated, due to less sensors being installed as a result of
high cost and limited manpower. Recently, DL ability to consider temporal features in the
data has been utilized for accurate ET forecasting. Ferreira and da Cunha [84] proposed a
CNN-LSTM combination for multi-step ahead prediction of daily ETo with relatively good
performance achieved in comparison with traditional ML models and CNN and LSTM
alone. Lucas et al. [85] also explored the use of three different architectures of CNN in the
prediction of ETo time series. Using real climatic data, the models were able to predict daily
ETo with lower uncertainty. Yin et al. [86], on the other hand, considered a hybrid BiLSTM
to forecast short-term daily ETo from meteorological data collected in the semi-arid region
of central Ningxia, China. The results showed that the model was able to improve the
forecast performance constantly compared to the general model.

DL has also been investigated as a highly capable techniques for ETc forecasting based
on historical field measurement data. Chen et al. [87] conducted an attempt to estimate
ETc for maize using two-years field measurements of ETc data using a lysimeter and TCN.
The new form of DL, comprised of LSTM and DNN, was able to estimate maize ETc based
on plant height, air temperature, relative humidity, solar radiation, leaf-area index and
soil temperature better than the DNN and LSTM method alone. Elbeltagi, et al. [88] used
the DNN model to estimate and predict ETc for several locations of wheat cultivation in
Egypt based on recorded historical and future meteorological data. The results showed
high correlation between ETc values from the standard FAO-56 method and the values
predicted from the DL model.
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4.5. Plant Water Status Estimation

Many techniques have been developed over the years to describe plant water status
(PWS) such as relative water content (RWC) [89], equivalent water thickness (EWT) and fuel
moisture content (FWC) [90]. Other techniques are based on the changes in the plant physi-
cal system as a response to water content, such as stem diameter variations (SD) [91,92].
These parameters have been used as indicators for assessing plant conditions related to
drought (as water stress index) and irrigation management [93]. Recent progress has seen
remote sensing measurement estimate plant water status non-destructively with various
modelling methods have used to correlate the measurement and ground measured plant
water status, ranging from simple linear regression to machine learning technique [94–96].

The DL model is currently being investigated as a fast and robust method for PWS esti-
mation using aggregated data collected from various sensory measurements. Fariñas et al. [97]
evaluated CNN and the Random forest (RF) technique as regression model to estimate RWC
in plant leaf from the transmission coefficient of frequency data collected using Non-contact
resonant ultrasound spectroscopy (NC-RUS). The CNN technique utilizes the entire ultrasonic
spectra collected non-invasively from the leaf while RF takes only four relevant input spectra
resulting in better performance of the CNN model as shown by the higher correlation and
lower median prediction error.

DL has also been used to extract features from multi-modal data to increase inversion
performance. Kaneda et al. [98] combined environmental measurements with leaf wilting
features extracted from plant images using a CNN-based model as multi-modal feature
extractor to predict changes in stem diameter to assess water status in the tomato plant.
Comparison of several conventional regression algorithms showed the superiority of the
proposed model due to its low prediction error. The method proposed, however, has not
considered the temporal aspect of the data which could further increase the prediction
accuracy. In more recent years, Wakamori et al. [99] improved the existing work by proposing
an LSTM network with clustering-based drop (C-Drop). The C-Drop neural network supports
the regression analysis by giving the environmental feature an equal consideration. Based on
the results, the new proposed model improved the prediction accuracy by 21% compared to
the previous method.

Plant spectral information has been used to estimate PWS based on the developed
vegetation indices techniques, such as WI and NDWI [100]. Moreover, ML has been widely
investigated as the method used in the process of finding the relevant spectral bands
that give high correlation with the PWS parameters [90,101–104]. DL, however, has been
hardly applied to this problem. Rehman et al. [105] were possibly the first to have used
a 1D-convolutional neural network to extract the mean spectral reflectance from the hy-
perspectral image to predict RWC in maize. The model based on the updated Inception
module called DeepRWC was able to learn the features from hyperspectral data without
the need for spectral selection or dimensionality reduction. DeepRWC achieved better
accuracy in comparison with the two standard approaches of partial least square regression
(PLSR) and SVM.

In another study, Rao et al. [106] have integrated a physical model with RNN to accurately
predict live moisture fuel content (LMFC), defined as the mass of canopy leaf water per unit
of dry biomass, which is a key parameter for assessing wildfire risk. The model takes input
variables from microwave remote sensing of Sentinel-1 backscatter and Landsat-8 optical
reflectance, with additional soil properties, for training on LFMC field samples. They found
that the DL model performance exceeds the conventional process-based methods and that
precision can be improved with the addition of the microwave RS data.

4.6. Plant Water Stress Identification

Plant water stress identification refers to water stress detection in plants by distin-
guishing water stress and non-water stress in the labelled plant. A computer vision system
for plant water stress identification has been developed over the years using conventional
ML algorithms such as ANN [107], Adaptive neuro-fuzzy classifier [108], and Gradient
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boosting decision tree (GBDT) [109]. However, the need for feature extraction from the
images and for selection of conventional ML has limited the performance of the analysis.

DL superiority in image recognition by automatically learning from patterns has been
leveraged in plant water stress identification, with CNN becoming the standard model
for automated feature extraction and transformation. An et al. [110] were possibly the first
who attempted to identify plant water stress in maize using pre-trained CNN: Resnet50
and Resnet120 based on three treatments of stress: optimum moisture, light drought, and
moderate drought stress. The performances of the models showed between 91–98% accuracy
with the fastest training time close to 8 min. Compared to manually extracted features and
classification using the conventional GBDT model, CNN performs better with Resnet50
showing the highest accuracy.

Jiang et al. [111] attempted to improve the performance of the identification by intro-
ducing a Gabor filter to extract texture features from the same dataset used in [110] for the
Zhengdan maize variety and reduced the dimension before feeding to the pre-trained CNN
model of Alexnet. The results showed slight improvement in the model accuracy but with
good adaptation to illumination changes and angle transformation. Zhuang et al. [112]
further investigated the Zhengdan maize dataset by designing their own CNN architecture,
that was relatively simple but efficient in feature extraction, by selecting the most relevant
feature maps. The proposed method used SVM as final classifier and the results showed
better accuracy achieved in comparison with the other well-known CNN models of VGG16,
ResNet50, Xception and xPLNet.

Chandel et al. [113] evaluated instead the three different popular CNN models of
AlexNet, GoogLeNet and Inception V3 for plant water stress classification of maize, okra
and soybean images collected from different growth stages. The performance of GoogLeNet
was found to be superior compared to others with an accuracy of 98.3%, 97.5% and 94.1%
for maize, okra and soybean, respectively.

Realizing the potential of CNN as an image classifier for plant water stress identifica-
tion, recent studies have been assessing the applicability of such techniques to be used in
field conditions. Plant images were collected at certain heights providing wide monitoring
of multiple plants under the same cultivation area. Soffer et al. [114] used the pre-trained
CNN of VGG16 for real time classification of water stress treatment of five different groups
of corn. The proposed method used the image data concatenated with the plant images
as an input to the DL model. The results showed excellent accuracy for five treatment
classifications, although most studies showed less performance when dealing with a higher
number of classes. Freeman, et al. [115] assessed the use of cloud-based CNN training to
identify plant water stress across six container-grown ornamental shrub species. Using
near infrared images captured in the field from small, unmanned aircraft system (sUAS),
the framework was able to achieve high accuracy performance despite constraints of small
sample size, low image resolution, and lack of clear visual differences.

Although CNN is the most commonly used model in image processing, the sequential
characteristic of the time-series image is not considered in the previous classification
tasks. The temporal dependence relationship of a specific plant growth period may hold
information that can be used for water stress identification. In consideration of the temporal
feature, Li et al. [116] applied for the first time BiLSTM networks to extract features from
sequential digital images of maize and sorghum. BiLSTM has shown good performance
for plant water stress identification compared to the vanilla CNN, LSTM and RNN model.
They also found that BiLSTM can identify plant water stress at an early stage and with
mild stress, where less variations can be noted in the plant. Table 1 is the compilation of
the highlighted methods, input data, models with remarks based on DL applications.
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Table 1. Deep learning applications in plant water stress assessment.

Deep Learning
(DL) Applications Reference Input Data DL Model Comparison Models Results

Soil moisture
estimation

[57] Thermal images
Convolutional

Neural Network
(CNN)

Deep Neural
Network (DNN)

CNN-based model gives better prediction with R2

ranges between 0.95–0.99

[58] Synthetic aerial
images CNN

Random Forest (RF),
Support Vector
Machine (SVM)

CNN performed best compared to other models
with normalized mean absolute error of 3.4%

[59] Satellite data DNN Physical model
DNN shows improved accuracy compared to
physical model with R2 = 0.9875 and
RMSE = 0.0084

[60] Satellite data DNN Physical model DNN shows improved accuracy compared to
physical model with R = 0.89 and RMSE = 0.0383

[61] Satellite data Deep Belief
Network (DBN)

Linear Regression
(LR), Artificial Neural

Networks (ANN)

RMSE of SM-DBN is 0.032 compared to 0.101 and
0.083 for LR and ANN respectively

[62] Satellite data CNN ANN
CNN performed better than ANN by 6.25%
increase in temporal correlation with
in-situ measurement.

Soil water
modelling

[64] Environmental and
soil moisture data DBN Multilayer Perceptron

(MLP)
DBN based model led to decrease in RMSE by
18% in comparison with MLP based model

[65]
Meteorological and

soil water
content data

DNN SVM, ANN DNN shows improved accuracy compared to
physical model with R2 = 0.98 and RMSE = 0.78

[66]
Meteorological and

soil water
content data

CNN-Gated
Recurrent Unit

(GRU)
CNN and GRU alone MSE of CNN-GRU is 0.032 compared to 0.101 and

0.083 for LR and ANN respectively

[67]
Meteorological and

soil water
content data

Resnet +
Bidirectional Long

Short-Term
Memory (BiLSTM)

Support Vector
Regression (SVR_,

MLP and RF

ResBiLSTM model showed good prediction with
R2: 0.82–0.99 and MAE: 0.8–2.0%

[68] Satellite SMAP data LSTM
MLR, Advanced
Microwave (AM),
one-layer ANN

LSTM shows improved accuracy compared to
physical model with R2 > 0.87 and RMSE < 0.035

[69] Satellite SMAP data DI-LSTM LSTM DI-LSTM performed better through reduced error

Evapotranspiration
estimation

[74] Meteorological data DNN

Generalized Linear
Model (GLM), RF,
Gradient-Boosting

Machine (GBM)

DNN gives high performance compared to
conventional models with R2 = 0.95–0.99 and
RMSE = 0.1921–0.2691

[75] Meteorological data CNN
RF, Extreme Gradient
Boosting (XGBoost),

ANN

CNN outperformed other conventional models
with R2 = 0.69–0.84 and RMSE = 0.71–0.51

[76] Meteorological data BiLSTM LSTM BiLSTM can achieve higher accuracy than LSTM
with R2 > 0.9 and RMSE = 0.38–0.58

[77] Meteorological data

DNN, Temporal
Convolution

Network (TCN),
LSTM

SVM, RF, physical
models

TCN and RF performed better with R2 between
0.048 and 0.035 and RMSE = 0.096 and
0.079 respectively

[80] Satellite data
Temperature

Surface-Vegetation
Index (TSVI), DNN

Temperature-
Vegetation Index

Model (Ts-VI)

TSVI-DNN model improved the performance of
Ts-VI with increase in temporal coverage of 51%

[81] Satellite data CNN Physical model CNN gives good results with R2 between 0.523
and 0.713 and RMSE between 1.612 and 3.293

[82] Meteorological data DBN DNN
DBN model gives higher regression fitting degree
compared to traditional model with R2 = 0.972
and RMSE = 0.623

[83] Meteorological data DNN SVM, XGBoost, ANN DNN performed better compared to other ML
models with R2 between 0.816 and 0.954

Evapotranspiration
forecasting

[84] ET and
meteorological data CNN-LSTM LSTM, 1D CNN,

ANN, RF
CNN-LSTM performed the best than other
models with RMSE between 0.87 and 0.88

[85] Meteorological data CNN Ensemble models Ensemble CNN model gives better performance
with RMSE between 0.8 and 1.3

[86] Meteorological data Hybrid BiLSTM General models
Hybrid BiLSTM gives good performance
compared to general model with R = 0.972–0.992
and RMSE = 0.159–0.232
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Table 1. Cont.

Deep Learning
(DL) Applications Reference Input Data DL Model Comparison Models Results

Evapotranspiration
forecasting

[87]
Environmental

and plant
morphological data

TCN LSTM, DNN TCN improved R2 by 0.13 and 0.06 in comparison
with LSTM and DNN model respectively

[88] Environmental data DNN Physical model DL gives high prediction accuracy compared to
physical model with R2 ranges between 0.94–0.97

Plant water status
estimation

[97] NC-RUS data CNN RF CNN performance is higher compared to RF with
correlations between 0.92 and 0.84

[98] Plant image and
environmental data CNN Decision Tree (DT),

k-NN, SVR, GB, RF
The proposed method reduced the prediction
error by 20% compared to other models

[99] Plant image and
environmental data LSTM

SW-SVR, Extreme
Gradient Boosting

(XGBoost)

LSTM performance increased by up to 21% for
MAE and RMSE results compared to the models

[105] Plant spectral data
Deep Relative
Water Content

(RWC)
PLSR, SVM DeepRWC outperformed other models with R2 =

0.872 compared to SVR (0.824) and PLSR (0.814)

[106] Satellite data Recurrent Neural
Network (RNN) NA High prediction accuracy of RNN model with R2

= 0.63, RMSE = 25% and bias = 1.9%

Plant water stress
identification

[110] Maize images Resnet50
Resnet120

Gradient Boosting
Decision Tree (GBDT)

2 classes water stress identification: 98% accuracy
3 classes treatments classification: 96% accuracy

[111] Maize images Alexnet + Gabor
filter

Alex-sppnet,
Resnet50, Resnet101 5 classes stress classification: 98.8% accuracy

[112] Maize images Own CNN + SVM VGG16, ResNet50,
Xception, xPLNet

2 classes water stress identification: 94% accuracy
3 classes water treatment classification:
88.4% accuracy

[113]
Maize images
Okra images

Soybean images

Alexnet,
GoogLeNet,
Inception V3

NA
2 classes stress identification of maize, okra and
soybean: 98.3%, 97.5%, and
94.1% accuracy respectively

[114] Corn images VGG16 NA

3 classes water treatment classification:
98% accuracy
5 classes stress severity classification:
85% accuracy

[115] Ornamental plants
images CNN NA 3 classes water treatment classification: Area

under curve (AUC) = 0.9884

[116] Maize images
Sorghum images BiLSTM CNN, LSTM, RNN 2 classes water stress identification:

Precision = 80%

5. Discussion and Future Perspectives

Deep learning is a powerful and versatile tool that can be applied to solve a wide range
of problems either through regression or classification analysis. The superior performance
compared to conventional ML makes it a suitable method for modelling highly complex
plant water stress conditions. Remote sensing is another advanced method with much
potential in plant water stress assessment, providing high spatial, temporal and spectral
resolution. However, it has been noted that DL application in remote sensing plant water
stress assessment is still at the initial stage of development. This is especially true in the
case of ETc estimation. Many strategies can still be explored and a few studies have started
to pave the way in utilizing DL for solving problems in the remote sensing application in
reference to ET estimation [80,81,117].

Remote sensing thermal and hyperspectral images have been extensively investigated
for plant water stress assessment based on vegetation indices and the crop water stress index
technique. However, challenges remain regarding the effect of plant geometric structure
and image background which could influence the analysis. RGB image has been proposed
for remote sensing estimation of plant water content estimation utilizing morphological
features (Leaf Area) [118,119] and colour [120] to estimate plant physiological response
to water stress. It is preferable due to the low-cost and easy to use sensor [120]. DL has
been successfully used for segmenting plant and background in RGB images for plant water
stress detection with good results [121]. However, lack of spectral bands, with only three
basic colours in the image, limits detailed information about the status of the plant [122].
Khan et al. [123] proposed an innovative approach to using DL for predicting vegetation
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index from an RGB aerial image. The development shows that it is possible to have a low-
cost and efficient method for plant water stress assessment while improving agricultural
production with the help of an advanced algorithm such as DL.

The inherent bottleneck of the DL technique has always been the size and quality of
the datasets available for training and validating the model. Data collected through remote
sensing mostly involves images, and although satellite-based images are commercially
available, data on aerial plant images under water stress is limited leading most of the
studies to use self-collected images while adopting transfer learning in their application.
Transfer learning is a method of using a pre-trained model for other applications which
can be used to train a new model from scratch using available models. It has already been
successfully used for solving the problem of small sample size with improved accuracy.
For a robust model to be developed, large varieties of datasets are required including data
collected from different sensors and plant species.

Despite successful applications and superior performance achieved relative to con-
ventional ML methods, DL utilization in water stress assessment is still at the beginning
phase and there is still a lot to explore. Some of the future prospects are discussed together
with the possible key issues.

5.1. Deep Learning for 3-Dimensional Data

The combination of deep learning and 3D data thus far has been infrequently explored
despite the possibilities of improving assessment. Most studies have only used either one
or two-dimensional data with the DL processing algorithm. Integration of data from soil,
atmospheric and plant-based measurements would create a three-dimensional input that
can improve the accuracy of assessment [14].

Furthermore, there are sensors that can collect three-dimensional data that can gen-
erate more information for plant water stress assessment. For example, a hyperspectral
image which contains spatial and spectral information can simultaneously be utilized for
accurately assessing plant water status. Joint spectral and spatial information from remote
sensing data has been utilized for improved the prediction task using a deep learning
approach [124,125]. The application of 3D digital RGB image data to DL is also foreseeable
in the future as a 3D image can be used to extract features like the bending angle of a leaf
that can be related to water stress [99].

Using advanced data can come with challenges. Firstly, the inaccuracies in 3D image
reconstruction can affect the features extracted by the DL model resulting in subpar per-
formance. Secondly, the high cost of the advanced sensors might limit the adoptability of
such a method. This in turn will reduce the data production which then might further limit
the much-needed data varieties pertinent to the successful learning of the DL model.

5.2. Plant Varieties Challenge

Varieties of plant species have always been a challenge when using ML for plant water
stress detection. A specific model developed for a particular plant species usually does not
hold the same accuracy when trained with other varieties, as the physiological responses of
plants to water stress and their relative importance for crop productivity vary with species,
soil type, nutrients and climate [115].

There is also the need to study the effect of variations that occur within the same
species but cultivated in different locations. Although plants may look similar, they vary
widely in both shape, chemical composition and the concentration of water in the leaf
intercellular spaces due to environmental influences. Thus far no study has been found
to have investigated this case, although the result can be significant for improving the
scalability of the technique. Theoretically, DL’s huge learning capabilities can be used to
cater for plant varieties provided sufficient data is available. Khaki et al. [126] have used
CNN to identify corn hybrids based on tolerance to environmental stress from the inputs
of yield, soil and weather data.
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Unfortunately, unbalanced data can occur due to the fact that isohydric plants have
better control mechanisms for lack of water and can last longer, while anisohydric plants
which have a less effective control mechanism will die within days without water [127],
although the use of a deep learning model of Generative Adversary Network (GAN) may
provide the required dataset through synthetically generated data [128].

6. Conclusions

This paper presents a comprehensive review of plant water stress assessment in which
cutting-edge sensor fusion technologies have been applied at a rapid pace contributing sig-
nificantly towards improving agricultural production, plant breeding, efficient agricultural
water consumption and a fast method for monitoring forest wildfires. Huge and complex
data generated from the sensors require advanced analytical algorithms for processing
data representation. Deep learning sensor fusion as a state-of-the-art technique has been
implemented as model inversion for the estimation of plant water stress parameters and
identification. As seen from the literature, DL’s high learning capability is definitely useful
for fast processing of field data from multisource sensors. DL was also successfully applied
as an advanced tool for image processing with huge potential for fast detection of plant
water stress in the field. However, sufficient datasets and variations of sample are required
for creating a robust method. Combining DL with an advanced data type such as 3D image
can be considered for increasing this accuracy.
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