573 research outputs found

    Cohesive subgraph identification in large graphs

    Get PDF
    Graph data is ubiquitous in real world applications, as the relationship among entities in the applications can be naturally captured by the graph model. Finding cohesive subgraphs is a fundamental problem in graph mining with diverse applications. Given the important roles of cohesive subgraphs, this thesis focuses on cohesive subgraph identification in large graphs. Firstly, we study the size-bounded community search problem that aims to find a subgraph with the largest min-degree among all connected subgraphs that contain the query vertex q and have at least l and at most h vertices, where q, l, h are specified by the query. As the problem is NP-hard, we propose a branch-reduce-and-bound algorithm SC-BRB by developing nontrivial reducing techniques, upper bounding techniques, and branching techniques. Secondly, we formulate the notion of similar-biclique in bipartite graphs which is a special kind of biclique where all vertices from a designated side are similar to each other, and aim to enumerate all maximal similar-bicliques. We propose a backtracking algorithm MSBE to directly enumerate maximal similar-bicliques, and power it by vertex reduction and optimization techniques. In addition, we design a novel index structure to speed up a time-critical operation of MSBE, as well as to speed up vertex reduction. Efficient index construction algorithms are developed. Thirdly, we consider balanced cliques in signed graphs --- a clique is balanced if its vertex set can be partitioned into CL and CR such that all negative edges are between CL and CR --- and study the problem of maximum balanced clique computation. We propose techniques to transform the maximum balanced clique problem over G to a series of maximum dichromatic clique problems over small subgraphs of G. The transformation not only removes edge signs but also sparsifies the edge set

    Analysis of large scale linear programming problems with embedded network structures: Detection and solution algorithms

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Linear programming (LP) models that contain a (substantial) network structure frequently arise in many real life applications. In this thesis, we investigate two main questions; i) how an embedded network structure can be detected, ii) how the network structure can be exploited to create improved sparse simplex solution algorithms. In order to extract an embedded pure network structure from a general LP problem we develop two new heuristics. The first heuristic is an alternative multi-stage generalised upper bounds (GUB) based approach which finds as many GUB subsets as possible. In order to identify a GUB subset two different approaches are introduced; the first is based on the notion of Markowitz merit count and the second exploits an independent set in the corresponding graph. The second heuristic is based on the generalised signed graph of the coefficient matrix. This heuristic determines whether the given LP problem is an entirely pure network; this is in contrast to all previously known heuristics. Using generalised signed graphs, we prove that the problem of detecting the maximum size embedded network structure within an LP problem is NP-hard. The two detection algorithms perform very well computationally and make positive contributions to the known body of results for the embedded network detection. For computational solution a decomposition based approach is presented which solves a network problem with side constraints. In this approach, the original coefficient matrix is partitioned into the network and the non-network parts. For the partitioned problem, we investigate two alternative decomposition techniques namely, Lagrangean relaxation and Benders decomposition. Active variables identified by these procedures are then used to create an advanced basis for the original problem. The computational results of applying these techniques to a selection of Netlib models are encouraging. The development and computational investigation of this solution algorithm constitute further contribution made by the research reported in this thesis.This study is funded by the Turkish Educational Council and Mugla University

    Enabling Scalability: Graph Hierarchies and Fault Tolerance

    Get PDF
    In this dissertation, we explore approaches to two techniques for building scalable algorithms. First, we look at different graph problems. We show how to exploit the input graph\u27s inherent hierarchy for scalable graph algorithms. The second technique takes a step back from concrete algorithmic problems. Here, we consider the case of node failures in large distributed systems and present techniques to quickly recover from these. In the first part of the dissertation, we investigate how hierarchies in graphs can be used to scale algorithms to large inputs. We develop algorithms for three graph problems based on two approaches to build hierarchies. The first approach reduces instance sizes for NP-hard problems by applying so-called reduction rules. These rules can be applied in polynomial time. They either find parts of the input that can be solved in polynomial time, or they identify structures that can be contracted (reduced) into smaller structures without loss of information for the specific problem. After solving the reduced instance using an exponential-time algorithm, these previously contracted structures can be uncontracted to obtain an exact solution for the original input. In addition to a simple preprocessing procedure, reduction rules can also be used in branch-and-reduce algorithms where they are successively applied after each branching step to build a hierarchy of problem kernels of increasing computational hardness. We develop reduction-based algorithms for the classical NP-hard problems Maximum Independent Set and Maximum Cut. The second approach is used for route planning in road networks where we build a hierarchy of road segments based on their importance for long distance shortest paths. By only considering important road segments when we are far away from the source and destination, we can substantially speed up shortest path queries. In the second part of this dissertation, we take a step back from concrete graph problems and look at more general problems in high performance computing (HPC). Here, due to the ever increasing size and complexity of HPC clusters, we expect hardware and software failures to become more common in massively parallel computations. We present two techniques for applications to recover from failures and resume computation. Both techniques are based on in-memory storage of redundant information and a data distribution that enables fast recovery. The first technique can be used for general purpose distributed processing frameworks: We identify data that is redundantly available on multiple machines and only introduce additional work for the remaining data that is only available on one machine. The second technique is a checkpointing library engineered for fast recovery using a data distribution method that achieves balanced communication loads. Both our techniques have in common that they work in settings where computation after a failure is continued with less machines than before. This is in contrast to many previous approaches that---in particular for checkpointing---focus on systems that keep spare resources available to replace failed machines. Overall, we present different techniques that enable scalable algorithms. While some of these techniques are specific to graph problems, we also present tools for fault tolerant algorithms and applications in a distributed setting. To show that those can be helpful in many different domains, we evaluate them for graph problems and other applications like phylogenetic tree inference

    Generalizations of the Multicut Problem for Computer Vision

    Get PDF
    Graph decomposition has always been a very important concept in machine learning and computer vision. Many tasks like image and mesh segmentation, community detection in social networks, as well as object tracking and human pose estimation can be formulated as a graph decomposition problem. The multicut problem in particular is a popular model to optimize for a decomposition of a given graph. Its main advantage is that no prior knowledge about the number of components or their sizes is required. However, it has several limitations, which we address in this thesis: Firstly, the multicut problem allows to specify only cost or reward for putting two direct neighbours into distinct components. This limits the expressibility of the cost function. We introduce special edges into the graph that allow to define cost or reward for putting any two vertices into distinct components, while preserving the original set of feasible solutions. We show that this considerably improves the quality of image and mesh segmentations. Second, multicut is notorious to be NP-hard for general graphs, that limits its applications to small super-pixel graphs. We define and implement two primal feasible heuristics to solve the problem. They do not provide any guarantees on the runtime or quality of solutions, but in practice show good convergence behaviour. We perform an extensive comparison on multiple graphs of different sizes and properties. Third, we extend the multicut framework by introducing node labels, so that we can jointly optimize for graph decomposition and nodes classification by means of exactly the same optimization algorithm, thus eliminating the need to hand-tune optimizers for a particular task. To prove its universality we applied it to diverse computer vision tasks, including human pose estimation, multiple object tracking, and instance-aware semantic segmentation. We show that we can improve the results over the prior art using exactly the same data as in the original works. Finally, we use employ multicuts in two applications: 1) a client-server tool for interactive video segmentation: After the pre-processing of the video a user draws strokes on several frames and a time-coherent segmentation of the entire video is performed on-the-fly. 2) we formulate a method for simultaneous segmentation and tracking of living cells in microscopy data. This task is challenging as cells split and our algorithm accounts for this, creating parental hierarchies. We also present results on multiple model fitting. We find models in data heavily corrupted by noise by finding components defining these models using higher order multicuts. We introduce an interesting extension that allows our optimization to pick better hyperparameters for each discovered model. In summary, this thesis extends the multicut problem in different directions, proposes algorithms for optimization, and applies it to novel data and settings.Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, Kommunitätserkennung in sozialen Netzwerken, sowie Objektverfolgung und Schätzung von menschlichen Posen können als Graphzerlegungsproblem formuliert werden. Der Mehrfachschnitt-Ansatz ist ein populäres Mittel um über die Zerlegungen eines gegebenen Graphen zu optimieren. Sein größter Vorteil ist, dass kein Vorwissen über die Anzahl an Komponenten und deren Größen benötigt wird. Dennoch hat er mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln: Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten oder Belohnungen für die Trennung von zwei Nachbarn in verschiedene Komponenten. Dies schränkt die Ausdrucksfähigkeit der Kostenfunktion ein und führt zu suboptimalen Ergebnissen. Wir fügen dem Graphen spezielle Kanten hinzu, welche es erlauben, Kosten oder Belohnungen für die Trennung von beliebigen Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an zulässigen Lösungen zu verändern. Wir zeigen, dass dies die Qualität von Bild- und Gittersegmentierungen deutlich verbessert. Zweitens ist das Mehrfachschnittproblem berüchtigt dafür NP-schwer für allgemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte Graphen einschränkt. Wir definieren und implementieren zwei primal-zulässige Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezüglich der Laufzeit oder der Qualität der Lösungen, zeigen in der Praxis jedoch gutes Konvergenzverhalten. Wir führen einen ausführlichen Vergleich auf vielen Graphen verschiedener Größen und Eigenschaften durch. Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen, sodass wir gemeinsam über Zerlegungen und Knoten-Klassifikationen mit dem gleichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg geräumt. Um die Allgemeingültigkeit dieses Ansatzes zu überprüfen, haben wir ihn auf verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche Posenschätzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung, angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den gleichen Daten verbessern können. Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein Nutzer-Server-Werkzeug für interaktive Video Segmentierung: Nach der Vorbearbeitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und eine zeit-kohärente Segmentierung des gesamten Videos wird in Echtzeit berechnet. 2) Wir formulieren eine Methode für simultane Segmentierung und Verfolgung von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll, da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-Hierarchien mitberücksichtigen muss. Wir präsentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir führen eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere Hyperparameter für jedes entdeckte Modell auszuwählen. Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unterschiedlichen Richtungen, schlägt Algorithmen zur Inferenz in den resultierenden Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM
    corecore