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Abstract

Graph data is ubiquitous in real world applications, as the relationship among en-
tities in the applications can be naturally captured by the graph model. Finding
cohesive subgraphs is a fundamental problem in graph mining with diverse appli-
cations. Given the important roles of cohesive subgraphs, this thesis focuses on
cohesive subgraph identification in large graphs.

Firstly, we study the size-bounded community search problem that aims to find
a subgraph with the largest min-degree among all connected subgraphs that con-
tain the query vertex ¢ and have at least ¢ and at most h vertices, where ¢, ¢, h are
specified by the query. As the problem is NP-hard, we propose a branch-reduce-
and-bound algorithm SC-BRB by developing nontrivial reducing techniques, upper
bounding techniques, and branching techniques. Specifically, we develop three re-
duction rules, degree-based reduction, distance-based reduction, and inclusion-based
reduction, to reduce the size of an instance before generating new branches/recursions.
We design three upper bounds, degree-based upper bound, neighbor reconstruction-
based upper bound, and degree classification-based upper bound, for pruning branches.
We devise domination-based branching to reduce the number of branches. In ad-
dition, we also extend our techniques to enumerate all size-bounded communities
efficiently.

Secondly, we formulate the notion of similar-biclique in bipartite graphs which
is a special kind of biclique where all vertices from a designated side are similar
to each other, and aim to enumerate all maximal similar-bicliques. The naive ap-
proach of first enumerating all maximal bicliques and then extracting all maximal
similar-bicliques from them is inefficient, as enumerating maximal bicliques is time
consuming. We propose a backtracking algorithm MSBE to directly enumerate max-
imal similar-bicliques, and power it by vertex reduction and optimization techniques.
In addition, we design a novel index structure to speed up a time-critical operation
of MSBE, as well as to speed up vertex reduction. Efficient index construction al-
gorithms are developed. To handle dynamic graph updates, we propose algorithms
and optimization techniques for maintaining our index. We also parallelize our index
construction algorithms to exploit multiple CPU cores.

Thirdly, we consider balanced cliques in signed graphs — a clique is balanced if its
vertex set can be partitioned into C';, and Cg such that all negative edges are between
C, and C'r — and study the problem of maximum balanced clique computation that
aims to find the balanced clique C* such that min{|C}|, |C%|} > 7 for a user-given
threshold 7 and |C*| is the largest possible. Our main idea is a novel graph reduction
that transforms a balanced clique problem over a signed graph G to problems over
small subgraphs of G. Specifically, for each vertex u in G, we extract the subgraph
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G, of G induced by Vi, U Vg; Vp, is v and u’s positive neighbors while Vg is u’s
negative neighbors. Then, we remove from G, all positive edges between V} and
Vxr and all negative edges between vertices of the same set; denote the resulting
graph of discarding edge signs as g,. We show that all balanced cliques containing
u in G can be found by processing g,. Due to the small size and no edge signs,
large cliques containing u in g, can be efficiently identified. Furthermore, we extend
our techniques to the large balanced clique enumeration problem that aims to find
maximal balanced cliques whose size is near the largest, to the polarization factor
problem which aims to find the largest 7 such that there is a balanced clique C' with
min{|Cy|,|Cg|} > 7, and to the generalized maximum balanced clique problem that
reports a maximum balanced clique for each 7 > 0.
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Chapter 1

Introduction

Graph is a fundamental type of data structure to represent entities and their re-
lationships in the real-world. Given a graph G = (V, E), vertices in V' represent
the entities of interest and edges in E represent the relationships between the enti-
ties. Cohesive subgraph identification is an important problem in graph mining with
diverse applications such as recommendation (Bedi and Sharma, 2016), anomaly de-
tection in financial networks (Ahmed et al., 2016) and protein complexes detection
in protein-to-protein networks (Suratanee et al., 2014). Generally speaking, cohesive
subgraph identification can be roughly classified into two categories. The first one is
query-dependent that aims to find cohesive subgraphs that contain the pre-specified
query vertex (Fang et al., 2020a), and another one is non-query-dependent that
aims to find all the cohesive subgraphs that satisfy particular criteria (Lee et al.,
2010). To better reflect the relationships among entities, cohesive subgraph has been
formulated and extensively studied on different types of graphs such as ordinary
graphs, bipartite graphs, signed graphs, attributed graphs and so on. For example,
suspicious groups and illegal financial activities in customer-product networks can
be modeled as cohesive subgraphs in bipartite graphs (Yu et al., 2021). Polarized
communities on modern social-media platforms (e.g., Reddit) can be modeled as
cohesive subgraphs in signed graphs (Bonchi et al., 2019). With all the applications
above, this thesis focuses on the cohesive subgraph identification problem. We study
the size-bounded community search problem in ordinary graphs, which belongs to
the query-dependent cohesive subgraph identification problem. Besides, we also
study two non-query-dependent cohesive subgraph identification problems. One is
similar-biclique computation in bipartite graphs and another one is balanced clique
computation in signed graphs.

1.1 Size-Bounded Community Search

Graph is widely used to model the relationships among entities in the real-world.
Graph-based data analytics, as a result, has become increasingly popular, among
which cohesive subgraph computation is a fundamental problem (Chang and Qin,
2019). Much of the recent focus of cohesive subgraph computation is on query-
dependent cohesive subgraph search, also known as community search, which aims
to find cohesive subgraphs that contain user-specified query vertices and possibly



1.2. SIMILAR-BICLIQUE IDENTIFICATION 2

satisfy some other constraints (Fang et al., 2020a; Huang et al., 2019). Community
search has a wide range of applications, such as event organization (She et al.,
2016, 2017), social marketing (Manchanda et al., 2015), task scheduling (Sinnen
and Sousa, 2005), and social network analysis (Knoke and Yang, 2019; Scott, 1988).

The basic setting is as follows: given a large graph G = (V, E) and a query vertex
q € V, community search aims to find a subgraph of GG that contains ¢ and is most
cohesive (e.g., densest). One of the most popular cohesiveness measures adopted in
the literature is the minimum degree (Bi et al., 2018; Cui et al., 2014; Sozio and
Gionis, 2010), which is also the one we adopt in this thesis. That is, it aims to
find the one with the largest min-degree among all subgraphs of G that contain
q. As there could exist many subgraphs having the same min-degree, the existing
studies return either a maximal one (Bi et al., 2018) or an arbitrary one (Cui et al.,
2014; Sozio and Gionis, 2010) among all subgraphs with the largest min-degree. The
maximal subgraph with the largest min-degree can be computed in linear time (Sozio
and Gionis, 2010), by iteratively peeling the vertex with the smallest degree; the
optimal result is among these n (i.e., |V|) subgraphs. However, the result could be
extremely large which may overwhelm end-users (Chang and Qin, 2019).

It is observed in (Sozio and Gionis, 2010) that limiting the size of the returned
community, to accommodate resource limitations, is natural and interesting from
application point of view: for example, organize a hiking trip with up to 15 atten-
dees, assemble a team of up to 10 workers for a project (Ma et al., 2019). Motivated
by this, we investigate the general size-bounded community search (SCS) problem.
Formally speaking, given a large graph G, a query vertex ¢ and a size constraint
[¢, h], the SCS problem aims to find a subgraph with the largest min-degree among
all connected subgraphs of GG that contain ¢ and have at least ¢ and at most h ver-
tices. As the problem is NP-hard, we propose a branch-reduce-and-bound algorithm
SC-BRB by developing nontrivial reducing techniques, upper bounding techniques,
and branching techniques. Specifically, we develop three reduction rules, degree-
based reduction, distance-based reduction, and inclusion-based reduction, to reduce
the size of an instance before generating new branches/recursions. We also de-
sign three upper bounds, degree-based upper bound, neighbor reconstruction-based
upper bound, and degree classification-based upper bound, for pruning branches.
In addition, we also devise domination-based branching to reduce the number of
branches. Finally, we extend our techniques to enumerate all size-bounded commu-
nities efficiently.

1.2 Similar-Biclique Identification

Bipartite graphs have been widely used in real-world applications to model relation-
ships between entities of different types, such as customer-product networks (Wang
et al., 2006), author-paper networks (Ley, 2002) and user-event networks (EL BACHA
and Zin, 2018). A bipartite graph is denoted by G = (V, Vg, E), where the vertex
set is partitioned into two disjoint subsets V; and Vx which are referred to as the
L-side and R-side vertices of the bipartite graph, respectively; each edge e € F can
only connect vertices from different sides. Finding dense subgraphs in a bipartite
graph is of great significance and encompasses many applications, such as community
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detection (Abidi et al., 2021; Lehmann et al., 2008), anomaly detection (Gangireddy
et al., 2020; Sariyiice and Pinar, 2018), and group recommendation (Lyu et al., 2020;
Su and Khoshgoftaar, 2009).

One classic notion of dense bipartite subgraph is biclique (Peeters, 2003), which
requires every pair of vertices from different sides of the subgraph to be connected
by an edge. In the literature, many algorithms have been proposed to enumerate
all maximal bicliques (Abidi et al., 2021; Alexe et al., 2004; Eppstein, 1994; Li
et al., 2007; Liu et al., 2006; Uno et al., 2004; Zhang et al., 2014) and to identify a
biclique of the maximum size (Lyu et al., 2020). However, the biclique model has
a fundamental limitation: vertices in a biclique are not necessarily similar to each
other, despite that they share a set of common neighbors (i.e., vertices on the other
side of the biclique).

Motivated by this, we formulate the notion of similar-biclique by requiring all
vertices from one side of the biclique to be similar to each other. Formally speaking,
given a similarity threshold 0 < ¢ <1 and a size constraint 7 > 0, a vertex subset
C' C VL, U Vg in a bipartite graph G = (V, Vg, ) is a similar-biclique if (1) C' is
a biclique (i.e., Cp, x Cr C E), (2) all vertices of C}, are similar to each other (i.e.,
sim(u,v) > ¢,Yu,v € C), and (3) C satisfies the size constraint (i.e., |C| > 7 and
|Cr| > 7). Here, C, denotes C' NV, and Cg denotes C' N Vig; sim(u, v) measures the
structural similarity between v and v, which is computed based on their neighbors
N(u) and N(v) and will be formally defined in Section 4.2; the size constraint 7
is introduced to avoid generating too small or too skewed results. We propose a
backtracking algorithm MSBE to directly enumerate maximal similar-bicliques, and
power it by vertex reduction and optimization techniques. In addition, we design a
novel index structure to speed up a time-critical operation of MSBE, as well as to
speed up vertex reduction. Efficient index construction algorithms are developed.
To handle dynamic graph updates, we also propose algorithms and optimization
techniques for maintaining our index. Finally, we parallelize our index construction
algorithms to exploit multiple CPU cores.

1.3 Structural Balanced Clique Identification

Signed graphs enhance the representation capability of traditional graphs, by cap-
turing the polarity of relationships between entities/vertices through positive and
negative edge signs (Tang et al., 2016b). For example, signed graphs capture the
friend-foe relationship in social networks (Easley and Kleinberg, 2010), support-
dissent opinions in opinion networks (Kunegis et al., 2009) and activation-inhibition
in protein-protein interaction networks (Ou-Yang et al., 2015). One prominent and
fundamental theory in signed graph analysis is the structural balance theory (Harary
et al., 1953), which states that a signed (sub)graph is structural balanced if its ver-
tices can be partitioned into two sets such that all edges inside each partition have
positive signs and all cross-partition edges have negative signs. Many interesting
problems, such as community detection (Chu et al., 2016; Ordozgoiti et al., 2020),
link prediction (Leskovec et al., 2010; Ye et al., 2013) and recommendation sys-
tems (Chen et al., 2013; Tang et al., 2016a), have been formulated and studied for
signed graphs based on the structural balance theory.
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Recently, the problem of enumerating all maximal structural balanced cliques in
a signed graph is formulated and studied in (Chen et al., 2020). A vertex set C
is a structural balanced clique if (1) it is a clique (i.e., every pair of its vertices is
connected by an edge), and (2) it is structural balanced according to the structural
balance theory (i.e., C' can be partitioned into two sets C, and Cr such that all
negative edges are between Cp and Cg). For presentation simplicity, we refer to
structural balanced cliques as balanced cliques. However, signed graphs may have an
enormous number of maximal balanced cliques, of varying sizes. Enumerating all of
them may overwhelm end-users. To remedy this, a threshold 7 is adopted in (Chen
et al., 2020) such that only maximal balanced cliques C satisfying |Cr| > 7 and
|Cr| > 7 are enumerated. Nevertheless, the number of such cliques could still be
large, and the efficiency of the algorithms in (Chen et al., 2020) is not satisfactory.

Motivated by this, we investigate both the maximum balanced clique computation
problem and the large balanced clique enumeration problem. Given a signed graph
G = (V,ET,E~) and a threshold 7, the maximum balanced clique computation
problem aims to find the largest balanced clique C* in G that satisfies |C}| > 7
and |Cg| > 7. Let w,(G) be the size of C*, ie., w.(G) = |C*. Given G and
two thresholds 7 and «, the large balanced clique enumeration problem aims to
enumerate all maximal balanced cliques C' C V' that satisfy |C| > 7, |Cr| > 7 and
|C| > w-(G) — a. We propose branch and bound algorithms to solve the above two
problems efficiently. Our main technique is a novel graph reduction that transforms
a balanced clique problem over a signed graph G to problems over small subgraphs
of G.

Both our maximum balanced clique computation problem and the maximal bal-
anced clique enumeration problem studied in (Chen et al., 2020) require a user-given
threshold 7. However, it is unclear how to choose the appropriate 7 for an applica-
tion. Choosing a too large 7 may lead to no result, while a too small 7 may lead
to skewed results as well as an enormous number of results for the enumeration
problem of (Chen et al., 2020). We provide two alternative ways to resolve this
issue. Firstly, we investigate the polarization factor problem, which computes the
largest 7* such that G has a balanced clique C satisfying |Cr| > 7* and |Cg| > 7*.
We call this 7* the polarization factor of G, denoted 5(G). It is immediate that
there is no balanced clique for 7 > 3(G). Secondly, we investigate the generalized
maximum balanced clique problem, which computes a maximum balanced clique for
every 7 > 0.

1.4 Owur Contributions

Our main contributions are summarized as follows.

o Formulation of size-bounded community and efficient algorithms for size-bounded
community search (Chapter 3). We formulate a new community model by
putting size constraints on the extracted community, i.e., size-bounded com-
munity. However, detecting the size-bounded community is NP-hard. We
propose a branch and bound algorithm to solve this problem. We also design
novel reducing techniques, upper bounding rules and branching rules to facili-
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tate the computation. Experimental studies on large real graphs demonstrate
the efficiency and effectiveness of our algorithms.

o Formulation of similar-biclique model and efficient algorithms for the maximal
similar-biclique enumeration (Chapter /). We formulate a novel cohesive sub-
graph model in bipartite graphs called similar-biclique, which is a special kind
of biclique where all vertices from a designated side are similar to each other.
However, detecting all maximal similar-bicliques is #P-complete. We propose
a backtracking algorithm to solve this problem and improve the efficiency by
designing a novel index structure. Experimental studies on large real bipartite
graphs demonstrate the efficiency of our algorithms and the effectiveness of
our similar-biclique model.

e FEfficient algorithms for the maximum balanced clique computation problem
and its variants (Chapter 5). We propose an efficient algorithm for the maxi-
mum balanced clique computation in signed graphs. A novel graph reduction
technique is proposed to facilitate the computation. We also extend our tech-
niques to the large balanced clique enumeration problem, the polarization
factor problem and the generalized maximum balanced clique problem. Ex-
perimental studies on large real signed graphs demonstrate the efficiency and
effectiveness of our techniques.

1.5 Organization

Chapter 2 reviews the related works. Chapter 3 studies the size-bounded community
search problem in ordinary graphs. Chapter 4 studies the similar-biclique identifica-
tion problem in bipartite graphs. Chapter 5 studies the structural balanced clique
identification problem in signed graphs. Chapter 6 concludes the thesis.



Chapter 2

Literature Review

In this chapter, we first review the cohesive subgraph computation in ordinary graphs
in Section 2.1. Secondly, we review the cohesive subgraph computation in bipartite
graphs in Section 2.2. Thirdly, we review the cohesive subgraph computation in
signed graphs in Section 2.3. Lastly, we review the community search in Section 2.4.

2.1 Cohesive Subgraph Computation in Ordinary
Graphs

Cohesive subgraph computation is a fundamental research topic in graph mining,
which aims to find subgraphs that are densely linked internally in the graph. Clique
is a classical cohesive subgraph model that requires each vertex is adjacent to ev-
ery other vertex. The maximal clique enumeration problem (Bron and Kerbosch,
1973; Chang et al., 2013a; Eppstein et al., 2013; Tomita et al., 2006) and the maxi-
mum clique computation problem (Chang, 2019; Li et al., 2013, 2017; Tomita, 2017;
Tomita et al., 2010) have been extensively studied in the literature. However, the
clique model may be overly restrictive for many application scenarios. Many other
relaxed forms of clique are proposed. k-plex (Seidman and Foster, 1978) relaxes the
degree constraint of the clique by allowing each vertex to miss up to k vertices. -
quasi-clique (Abello et al., 2002) relaxes the edge density of the clique by allowing the
edge density to be 7. n-clique (Mokken et al., 1979) relaxes the distance constraint
between any two vertices from 1 to n. n-clan (Mokken et al., 1979) is an n-clique
in which the diameter should be no larger than n. n-club (Mokken et al., 1979) is
a subgraph whose diameter should be no larger than n without n-clique restriction.
However, cohesive subgraph computation based on these definitions usually leads to
NP-hard problems.

Other cohesive subgraph models are also proposed in the literature, such as densest
subgraph (Goldberg, 1984), k-core (Batagelj and Zaversnik, 2003), k-truss (Cohen,
2008) and k-edge connected component (Chang et al., 2013b; Zhou et al., 2012).
Densest subgraph is the subgraph with the largest average degree. k-core is the
maximal subgraph whose minimum degree is at least k. k-truss is the maximal
subgraph in which each edge is involved in at least k triangles within the subgraph.
k-edge connect component is the subgraph which is still connected after removing
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any k edges.

2.2 Cohesive Subgraph Computation in Bipartite
Graphs

As a counterpart of the clique model in unipartite graphs, biclique model is formu-
lated to capture the cohesive subgraphs in bipartite graphs (Hochbaum, 1998). A
lot of literature investigated the problem of enumerating maximal bicliques (Abidi
et al., 2021; Li et al., 2005, 2007; Sanderson et al., 2003; Uno et al., 2004; Zaki
and Hsiao, 2002; Zhang et al., 2014). The existing studies can be classified into
two categories, depending on whether the input graph is bipartite or not. When
the input graph is bipartite, the existing algorithms (Abidi et al., 2021; Sanderson
et al., 2003; Zhang et al., 2014) generally enumerate subsets of vertices from one
side, and then the intersection of their neighbors form the other side of the biclique.
Besides, frequent item-set mining techniques have also been utilized to enumerate
maximal bicliques (Li et al., 2005, 2007; Uno et al., 2004; Zaki and Hsiao, 2002),
as these two problems are highly related to each other. The state-of-the-art algo-
rithm for maximal biclique enumeration over bipartite graphs is ooMBEA proposed
in (Chen et al., 2022), which is a backtracking algorithm equipped with a novel
batch-pivots technique. There are also studies that aim at enumerating all maximal
(non-induced) bicliques from a general graph, i.e., the input graph is not bipartite.
For example, it is studied from a theoretical viewpoint in (Eppstein, 1994), con-
sensus algorithms are proposed in (Alexe et al., 2004), and a divide-and-conquer
algorithm is proposed in (Liu et al., 2006). However, these algorithms are generally
slower than the algorithms that specifically handle bipartite graphs. The maximum
biclique problem (i.e., the biclique with the largest number of edges) and its variants
(i.e., the maximum vertex biclique and the maximum balanced biclique) have also
been studied in the literature (Chen et al., 2021a; Dawande et al., 2001; Lyu et al.,
2020; Shaham et al., 2016; Shahinpour et al., 2017; Zhou et al., 2018).

Besides biclique, other models have also been proposed for dense bipartite sub-
graph identification, such as quasi-biclique (Liu et al., 2008), k-biplex (Yu et al.,
2021), («, f)-core (Kumar et al., 1999), k-bitruss (Zou, 2016), and k-wing (Sariyiice
and Pinar, 2018). Quasi-biclique and k-biplex relax the biclique model by allowing
each vertex in one side of the result to miss a certain number of neighbors from the
other side. On the other hand, («, §)-core requires each vertex from one side to be
connected to a certain number of vertices from the other side, and k-bitruss and
k-wing require each edge to be involved in a certain number of (2, 2)-bicliques.

2.3 Cohesive Subgraph Computation in Signed
Graphs
Signed graph was firstly studied by Harary et al. (1953), where the notion of struc-

tural balanced is introduced. The problem of finding the largest (in terms of ver-
tex number) vertex-induced subgraph that is structural balanced, known as the
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maximum balanced subgraph problem, is studied in (Figueiredo and Frota, 2014;
Ordozgoiti et al., 2020). The problem is NP-hard. A branch-and-cut exact algo-
rithm, which only works for graphs with up-to a few thousand vertices, is proposed
in (Figueiredo and Frota, 2014). Heuristic algorithms without any guarantee on
the solution optimality are investigated in (Figueiredo and Frota, 2014; Ordozgoiti
et al., 2020). Hao et al. (2014) introduced the notion of k-balanced trusted clique
for signed graphs, which is a clique with k vertices such that all its edges are positive
edges. This is essentially the same problem as the traditional k-clique problem over
unsigned graphs, i.e., by removing all negative edges. The notion of (a, k)-clique
is defined in (Li et al., 2018a) for signed graphs, which is a clique such that each
vertex has at most k negative neighbors and at least ak positive neighbors in the
clique. However, it does not require the extracted clique to be structural balanced.
Recently, the problem of polarized community detection is studied in (Bonchi et al.,
2019; Chu et al., 2016; Ordozgoiti et al., 2020), which aims to find multiple com-
munities (i.e., subgraphs) where within communities there are mostly positive edges
while across communities there are mostly negative edges. Chen et al. (2020) formu-
late the notion of (structural) balanced clique, which is a complete subgraph that
can be partitioned into two sets such that all negative edges are between two sets.
Motivated by the work in (Chen et al., 2020), Sun et al. (2022) study the problem
of maximal balanced signed biclique enumeration in signed bipartite graphs.

2.4 Community Search

The community search problem was first proposed by Sozio and Gionis (2010). The
basic setting is as follows: given a large graph G = (V, F) and a query vertex g € V/,
community search aims to find a connected subgraph of G' that contains ¢ and is
cohesive. The cohesiveness is often evaluated by the classical cohesive subgraph
metrics such as k-core and k-truss. In (Sozio and Gionis, 2010), k-core is used to
evaluate the community cohesiveness. They design a global-search based algorithm
which iteratively removes the vertex with the minimum degree. Later, Cui et al.
(2014) improve the search efficiency by designing a local-search based algorithm,
which incrementally expands the community from the query vertex. Many commu-
nity search problems are also formulated based on k-truss. For example, Huang et al.
(2014) formulate the concept of k-truss community in which each edge is involved
in at least k triangles and every two edges are triangle connected. To avoid the free-
rider-effect, Huang et al. (2015) formulate the closest truss community, which aims
to detect a connected k-truss with the largest &£ that contains query vertices, and
has the minimum diameter among such subgraphs. Other cohesive subgraph metrics
are also used in community search problem. For example, clique-based community
search is studied in (Cui et al., 2013; Yuan et al., 2017), k-edge-connected compo-
nent based community search is studied in (Chang et al., 2015), modularity-based
community search is studied in (Clauset, 2005; Kim et al., 2022).

Besides ordinary graphs, community search problem has also been studied on
other types of graphs. Fang et al. (2017) and Chen et al. (2018) studied the spatial-
aware community search problem on spatial graph, which aims to find the subgraph
whose vertices are structurally cohesive and spatially close. Fang et al. (2016) and
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Huang and Lakshmanan (2017) studied the community search problem on attributed
graph, i.e., vertices are associated with textual descriptions. The general target
is to find the cohesive subgraph whose vertices have similar textual descriptions.
Community search problem on directed graphs (Chen et al., 2021b; Fang et al., 2018;
Liu et al., 2020), weighted graphs (Bi et al., 2018; Li et al., 2015), temporal graphs (Li
et al., 2022, 2018b) and heterogeneous information graphs (Fang et al., 2020b) has
also been extensively studied. For more details, please see the survey (Fang et al.,
2020a).



Chapter 3

Size-Bounded Community Search

In this chapter, we study the size-bounded community search problem in large
graphs. The work is published in (Yao and Chang, 2021). This chapter is orga-
nized as follows. Section 3.1 provides the introduction to this work. Section 3.2
provides the preliminaries and the problem statement. Section 3.3 introduces a
baseline algorithm. Section 3.4 introduces our branch-reduce-and-bound algorithm.
Section 3.5 presents our heuristic algorithm. Section 3.6 studies the size-bounded
community enumeration problem. Experimental results are reported in Section 3.7.
Section 3.8 concludes the chapter.

3.1 Introduction

Graph data is ubiquitous in real world applications, as the relationship among enti-
ties in the applications can be naturally captured by the graph model. Graph-based
data analytics, as a result, has become increasingly popular, among which cohesive
subgraph computation is a fundamental problem (Chang and Qin, 2019). Many of
the recent focus of cohesive subgraph computation is on cohesive subgraph search,
also known as community search, which aims to find cohesive subgraphs that contain
user-specified query vertices and possibly satisfy some other constraints (Fang et al.,
2020a; Huang et al., 2019). Community search has a wide range of applications, such
as event organization (She et al., 2016, 2017), social marketing (Manchanda et al.,
2015), task scheduling (Sinnen and Sousa, 2005), and social network analysis (Knoke
and Yang, 2019; Scott, 1988).

The basic setting is as follows: given a large graph G = (V, E') and a query vertex
g € V, community search aims to find a subgraph of GG that contains ¢ and is most
cohesive (e.g., densest). One of the most popular cohesiveness measures adopted
in the literature is the minimum degree (Bi et al., 2018; Cui et al., 2014; Sozio and
Gionis, 2010), which is also the one we adopt in this chapter. That is, it aims to
find the one with the largest min-degree among all subgraphs of G' that contain
q. As there could exist many subgraphs having the same min-degree, the existing
studies return either a maximal one (Bi et al., 2018) or an arbitrary one (Cui et al.,
2014; Sozio and Gionis, 2010) among all subgraphs with the largest min-degree. The
maximal subgraph with the largest min-degree can be computed in linear time (Sozio
and Gionis, 2010), by iteratively peeling the vertex with the smallest degree; the

10
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optimal result is among these n (i.e., |V|) subgraphs. However, the result could be
extremely large which may overwhelm end-users (Chang and Qin, 2019).

It is observed in (Sozio and Gionis, 2010) that limiting the size of the returned
community, to accommodate resource limitations, is natural and interesting from
application point of view: for example, organize a hiking trip with up to 15 attendees,
assemble a team of up to 10 workers for a project (Ma et al., 2019). Motivated by
this, the problem of community search with size restriction is formulated and studied
in (Sozio and Gionis, 2010), which restricts the consideration to subgraphs with at
most h vertices for a user-given h. The problem with size restriction becomes NP-
hard, and two heuristic algorithms, GreedyD and GreedyF, are proposed in (Sozio and
Gionis, 2010). Both algorithms involve solving the problem without size restriction
(i.e., compute the maximal subgraph with the largest min-degree) on subgraphs of
(. Specifically, GreedyD iteratively solves the problem without size restriction on
the subgraphs of G induced by V<4 for different d values, where V<4 is the set of
vertices that are within d hops from ¢ in G. It returns the solution of V<4 where d*
is the largest d such that the solution size of V<, is at most h; if there is no such d,
then it returns the solution of V<. For time efficiency consideration, GreedyF simply
extracts the set S C V of h vertices that are closest to ¢ in G, and then returns
the solution of the problem without size restriction on the subgraph of G induced
by S.! Both algorithms have no guarantee on the minimum degree of the returned
community compared with the optimal one (i.e., largest min-degree). We observe
in our experiments that the communities returned by GreedyD and GreedyF are far
from being optimal. We also observe that GreedyD usually returns a community
with larger min-degree than GreedyF, but the size of the community returned by
GreedyD may exceed h.

Figure 3.1: A toy graph

In this chapter, we aim to develop exact algorithms for the general size-bounded
community search (SCS) problem, which in addition to the size upper bound h, also
imposes a size lower bound ¢. This is because some applications may also require
the size of the identified community to be not too small. For example, consider the
toy social network in Figure 3.1 of an event organization platform (e.g., Meetup).
Suppose user v; is planning to organize a group trip, and (s)he is deciding whom
to invite. There are several considerations. Firstly, to enjoy a friendly atmosphere
during the trip, it is desirable that every attendee has as many friends in the group
as possible. Secondly, due to the limitation of accommodation, there can be at most

Note that our descriptions here for GreedyD and GreedyF are simplified for the case that there
is only one query vertex.
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eight attendees. Thirdly, to be qualified for an air-ticket discount, the group should
not be smaller than four. Thus, v; may issue an SCS query with size constraint
¢ =4 and h = 8, and find that {wvg, v1, v, vs,v4}, which has minimum degree 3,
is the best group. Note that, the existing approaches without size constraint may
recommend the entire graph which also has minimum degree 3; however, this exceeds
the accommodation capacity.

Formally speaking, given a large graph G, a query vertex g and a size constraint
[¢, h], the SCS problem aims to find a subgraph with the largest min-degree among
all connected subgraphs of G that contain ¢ and have at least ¢ and at most h
vertices. As expected, the SCS problem is NP-hard. A straightforward approach is
to enumerate all subgraphs of G whose sizes are between ¢ and h and then identify
the one with the largest min-degree. However, the time complexity would be ©(n")
which is too high to be practical. Note that, we cannot exploit the apriori-based
pruning which has been demonstrated to be very successful for reducing the search
space of frequent subgraph mining that also enumerates subgraphs of size up to a
threshold (Inokuchi et al., 2000). This is because the property of minimum degree
is not hereditary; that is, a graph can have subgraphs with smaller min-degree than
itself, and may also have subgraphs with larger min-degree than itself.

In order to efficiently solve the SCS problem for large real graphs, we propose
a branch-reduce-and-bound algorithm SC-BRB by developing nontrivial reducing
techniques, upper bounding techniques, and branching techniques. Specifically, we
develop three reduction rules, degree-based reduction, distance-based reduction, and
inclusion-based reduction, to reduce the size of an instance before generating new
branches/recursions. We also design three upper bounds, degree-based upper bound,
neighbor reconstruction-based upper bound, and degree classification-based upper
bound, for pruning branches. In addition, we also devise domination-based branch-
ing to reduce the number of branches. We rigorously proved the correctness of our
techniques. For the SCS problem, we observe that the size-bounded community is
not unique. Identifying all such communities can provide users with more choices.
Motivated by this, we also extend our techniques to enumerate all size-bounded
communities.

Contributions. Our main contributions are as follows.

e To the best of our knowledge, we are the first to study the general size-bounded
community search (SCS) problem that has both a size lower bound and a size
upper bound.

e We propose a branch-reduce-and-bound algorithm SC-BRB for solving the SCS
problem exactly over large real graphs.

e We develop nontrivial reducing techniques, upper bounding techniques, and
branching techniques for the SCS problem.

e We extend our techniques to enumerate all size-bounded communities.

e We conduct extensive experiments on large real graphs to demonstrate the
effectiveness and efficiency of our algorihtms.
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3.2 Preliminaries

We focus on a large undirected and unweighted graph G = (V| E'), where V is the
set of vertices and E is the set of edges. We denote the number of vertices and the
number of edges in G' by n and m, respectively. The set of neighbors of v in G is
Ne(u) ={v € V| (u,v) € E}, and the degree of u in G is dg(u) = |[Ng(u)|. When
the context is clear, N¢(u) and dg(u) are simplified to N(u) and d(u), respectively.
Given a vertex subset S of G, we use G[S] to denote the subgraph of G induced by
S, i.e., G[S] = (S, {(u,v) € E|u e S,v € S}). Given an arbitrary graph g, we use
V(g) and E(g) to denote its set of vertices and its set of edges, respectively.

We measure the cohesiveness of a subgraph by its minimum degree. Minimum
degree is a widely adopted cohesiveness measure in the literature (Bi et al., 2018;
Cui et al., 2014; Li et al., 2019; Sozio and Gionis, 2010), due to its simplicity and
easy computability. A related concept is k-core. Given a graph G and an integer
k, the k-core of G is the mazximal subgraph g of G such that dy;,(g) > k, where
duin(g) denotes the minimum degree of g. Note that, the k-core of G is unique for
any k > 0, and is a vertex induced subgraph of G. The core number of a vertex v in
G, denoted cn(v), is defined as the largest & such that the k-core of G contains v. It
is well-known that computing the core number for all vertices in a graph, called the
core decomposition problem, can be achieved in linear time (Batagelj and Zaversnik,
2003; Seidman, 1983).

Problem 1 (Size-Bounded Community Search). Given a graph G = (V, E), a query
vertex ¢ € V, and a size constraint [¢, ], the Size-Bounded Community Search
(SCS) problem aims to find a subgraph H of G such that it satisfies all of the three
conditions:

1) Connected: H is connected and contains g;
2) Size Bounded: H satisfies the size constraint, i.e., ¢ < |V (H)| < h;

3) Cohesive: The minimum degree of H is maximized among all subgraphs of G
satisfying the above two conditions.

An SCS query consists of a query vertex ¢, size lower bound ¢, and size upper
bound h. Note that, the aim of SCS query is not to recover the ground-truth com-
munities, but to find densely-connected subgraphs that are of a certain size (i.e.,
between ¢ and h). The parameters ¢ and h should be specified based on the resource
limitations of the applications as illustrated in Introduction. For presentation sim-
plicity, we assume there is only a single query vertex; nevertheless, our techniques
can be extended to handle multiple query vertices. We call a subgraph of G that
satisfies the first two conditions (i.e., connected, and size bounded) a feasible com-
munity (or feasible solution), and a subgraph satisfying all the three conditions an
optimal community (or optimal solution). We call the minimum degree of an opti-
mal community the optimal min-degree. Note that, the optimal community is not
unique, but the optimal min-degree is unique. It is easy to see that if H is an
optimal community to the SCS problem, then the subgraph of G induced by V(H)
is also an optimal community. Thus, we consider only vertex-induced subgraphs in
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the remainder of the chapter, and we denote a subgraph simply by its set of vertices.
The notations that are frequently used in this chapter are summarized in Table 3.1.

Table 3.1: Frequently used notations

Notation | Definition
Ng(u) the set of neighbors of w in the subgraph S
ds(v) the degree of vertex v in the subgraph S
dmax(S) | maximum degree of the subgraph S
dmin(S) minimum degree of the subgraph S
cn(v) core number of vertex v in G
dists(u,v) | the shortest distance between u and v in the subgraph S
Cc.r the set of all feasible communities X s.t. C C X CCUR
k and k lower bound and upper bound of the optimal min-degree
C=T the set of vertices of degree < 7, i.e., {u € C: dc(u) < T}

Example 1. Consider the graph in Figure 3.1, and suppose the SCS query is ¢ =
vy and [0;h] = [3,5]. Then, Hy = {vg,v1,v2} is a feasible community which has
minimum degree 2, while Hy = {vg,v1,v9,v3,04} is an optimal community which
has minimum degree 3.

We prove in the theorem below that the SCS problem is NP-hard.
Theorem 1. The SCS problem is NP-hard. >

Proof. We prove that the decision version of the SCS problem is NP-complete, by
reducing from the k-clique problem which is NP-complete (Lewis, 1983). The deci-
sion SCS problem is as follows: given a graph G = (V, E), a query vertex ¢ € V, a
size constraint [¢, h| and an integer k, determine whether G has a subgraph g such
that (1) g is connected and contains ¢, (2) ¢ < |V (g)| < h, and (3) the minimum
degree of ¢ is at least k. It is obvious that the decision problem is in NP.

Now, given an instance of the k-clique problem which takes a graph G = (V, E)
and an integer k as input and aims to determine whether G has a k-clique (i.e., a
complete subgraph with k vertices), we reduce it into a decision SCS problem as
follows. We add a dummy vertex v,, and an edge between v, and every vertex of V.
Denote the resulting graph as G', i.e., V(G') = VU {v,} and E(G') = EU{(vy,v) |
v € V}. The query of our decision SCS problem consists of a query vertex v,, size
constraint [k + 1, k + 1], and minimum-degree threshold k. It is easy to verify that
C C Vis a k-clique if and only if C'U{wv,} is a solution to the decision SCS problem.
Thus, the decision SCS problem is NP-complete, and the (optimization version of)
SCS problem is NP-hard. O]

3.3 A Baseline Approach

In this section, we present a baseline approach for the SCS problem. It computes
an optimal community by enumerating all feasible communities and identifying the
one with the largest min-degree.

2Note that the proof in (Sozio and Gionis, 2010) reduces from the Steiner tree problem, and
thus does not work for the special case that there is only one query vertex.
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Algorithm 1: SC-Enum(G, q, [¢, h])

1 Heuristically compute a feasible community H; /* e.g., invoke GreedyF */;
2 k < minimum degree of G[H]; /* Lower bound of optimal min-degree */;
3 Compute core number cn(-) for all vertices in G;

4 l%%min{cn(q),h— 1} /* Upper bound of optimal min-degree */;

5 if k < k then

6 L Remove from G all vertices v satisfying cn(v) < k;

7 | Enum({vg}, V(G) \ {vg});

8 return H;

Procedure Enum(C, R) }
9 if |C| € [¢,h] and dwin(C) > k then
10 L k< dmin(C); H < C;

11 if |C| < h and R # 0 then
12 v < a vertex from R;

13 Enum(C U {v}, R\ {v});
14 Enum(C, R\ {v});

The pseudocode of the enumeration procedure Enum is shown in Lines 9-14 of
Algorithm 1. Given a partial solution C' and a candidate set R of vertices such
that C N R = @, Enum aims to enumerate all feasible communities X such that
C C X C C U R; denote the set of all such feasible communities by Ccgr. Enum
in addition maintains H, the currently found best community (i.e., the one with
the largest min-degree among all enumerated feasible communities), and k, the
minimum degree of G[H]|, which is a lower bound of the optimal min-degree. If
C' is a feasible community (i.e., |C| € [¢,h]) and the minimum degree of G[C] is
larger than k (Line 9), then Enum updates H and k (Line 10); note that, C' is
assumed to always contain ¢, and for presentation simplicity, we also assume that
C' is connected. Then, to enumerate all feasible communities C¢ r for the instance
(C, R), Enum partitions the enumeration space into (CU{v}, R\{v}) and (C, R\{v})
for an arbitrarily chosen vertex v € R and conducts a recursion on each of the two
enumeration subspaces (Lines 12-14); note that, Cougy,r\fv} N Cor\fo} = (0 and
Cougoy, o U Co,r\fvy = Cc,r- Moreover, as the feasible communities have a size
upper bound h, we can stop the recursion if |C| > h (Line 11). It can be verified
by induction that invoking Enum with C' = {¢} and R = V(G) \ {¢} successfully
enumerates all feasible communities of G.

Example 2. For the graph and query in Example 1, Figure 3.2 illustrates a part of
the search tree of the enumeration procedure Enum, where the root is the query vertex
v1. Initially, C = {v1} and R = V(G) \ {v1}. In the first level, vy is selected from
R and two branches/recursions are generated: the left branch moves vy from R to
C', and the right branch discards vy. For the first branch, we have C = {vy,v0} and
R =V(G) \ {v1,v}, and we proceed forward by selecting the next unvisited vertex
in R, i.e., va. By moving ve from R to C, we get C' = {vy,vq,v2}, which is a feasible
community with minimum degree 2. Thus we update k as 2 and H as {v1,v0,v2}.
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Figure 3.2: An example search tree

The search continues in a similar way until all the feasible communities are explored.
Finally, we get the optimal solution H = {vy,vq, va,v3,v4} with minimum degree 3.

The time complexity of Enum is in the order of n”, where n is the number of
vertices in G and h is the size upper bound. To reduce n, we preprocess the graph
G before invoking Enum. The pseudocode is given in Lines 1-8 of Algorithm 1. We
first heuristically compute a feasible community H, e.g., by invoking the heuristic
algorithm GreedyF (Sozio and Gionis, 2010) (Line 1), and set the lower bound k of
the optimal min-degree as the minimum degree of G[H| (Line 2). We also compute
the upper bound % of the optimal min-degree as min{cn(q), h — 1} (Line 3-4); it is
easy to see that the optimal min-degree cannot be larger than h —1 and also cannot
be larger than cn(q). If k = k, then H is already the optimal community. Otherwise,
we shrink the graph G by removing all unpromising vertices (i.e., the vertices v with
cn(v) < k), and then invoke Enum on the reduced graph (Lines 5-6). The overall
algorithm is denoted SC-Enum. Note that, to extend SC-Enum to handle multiple
query vertices, we would need to (1) initially put all query vertices into the partial
solution C' at Line 7 and (2) check at Line 9 whether G[C] is connected (if G[C] is
not connected, then we do not update k and H at Line 10).

Limitations of the Baseline Approach. Despite the preprocessing of SC-Enum
which reduces the input graph size, SC-Enum is still inefficient in processing large
graphs. This is mainly due to the following three limitations of Enum.

(1) Large Candidate Set. Enum considers all vertices of R one by one, and in each
recursion, it reduces the size of R only by one. Thus, the size of the candidate set R
remains large during the recursion. However, given the current lower bound k of the
optimal min-degree, many vertices of R will not be part of any feasible community
of C¢ r that has min-degree larger than k: thus, these vertices can be removed from
R to reduce the search space.

(2) No Pruning based on Upper Bounds. For a given instance (C, R), Enum needs to
enumerate all feasible communities of C¢ g, i.e., all subgraphs X such that C C X C
CUR and ¢ < |X| < h. However, if we can compute an upper bound on the largest
min-degree among all feasible communities in C¢ g, then we can terminate/prune
this instance if the upper bound is no larger than k. In this way, the search space
will be significantly reduced.

(3) Naive Branching Rule. Enum arbitrarily selects one vertex v € R and then
generates two recursions/branches, (C' U {v}, R\ {v}) and (C, R\ {v}). This may
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generate a large number of recursions. Also, the ordering of generating the subin-
stances of Enum (i.e., via selecting the vertex of R to branch) may affect the speed
of tightening the lower bound k, and thus affect the search tree size.

3.4 A Branch-Reduce-and-Bound Approach

In this section, we propose a branch-reduce-and-bound algorithm SC-BRB for solv-
ing the SCS problem. SC-BRB specifically addresses the three limitations of Enum
by proposing branching techniques, reducing techniques, and upper bounding tech-
niques. Note that designing branching, reducing, and bounding techniques is the
standard approach (and usually the only approach) for exactly solving NP-hard
problems (Woeginger, 2003).

In the following, we present reducing techniques in Section 3.4.1, upper bounding
techniques in Section 3.4.2, and branching techniques in Section 3.4.3. Finally,
Section 3.4.4 presents the overall algorithm SC-BRB.

3.4.1 Reducing Techniques

Given an instance (C, R) of Enum, we propose reduction rules to reduce the size
of R by either removing unpromising vertices from R or greedily moving promising
vertices from R to C. Recall that, given an instance (C, R), we aim to find the
feasible community in C¢ g that has the largest min-degree if this min-degree is larger
than %. That is, among all feasible communities in Cc g, we are only interested in
the ones that have min-degree larger than k, as the currently found best community
has min-degree k.

The first reduction rule prunes a vertex v from R based on its degree in C'U R or
its degree in C'U {v}.

Reduction Rule 1 (Degree-based Reduction). Given an instance (C, R) and any

vertex v € R, if min{dcur(v), dougy(v) +h —|C| =1} < k, then we can discard v
from R, where deygr(v) is the degree of v in the subgraph G[C' U R].

Proof. As the degree of a vertex is a monotonically increasing property, it holds
that dx(v) < deugr(v) for all feasible communities X of Co g that contain v, i.e.,
CU{v} C X CCUR. Thus, if deyr(v) < k, then all feasible communities of Cor
that contain v have min-degree at most k, and hence v can be safely discarded.
Similarly, for any feasible community X € C¢ g that contains v, the degree dx(v)
of v in X is upper bounded by dcugwy(v) + h — |C] — 1 even if we further add, to
C U{v}, h —|C| — 1 vertices that are all adjacent to v. Thus if this upper bound
is no larger than k, then all such feasible communities X € Cc r that contain v will
have minimum degree at most %, and hence v can be discarded. O

The next reduction rule is based on a lower bound, as shown in the lemma be-
low, on the size (i.e., number of vertices) of a graph that has minimum degree k
and diameter D. The diameter of a graph is the largest value among all pair-wise
shortest distances, i.e., max{distg(u,v) | u,v € V(G)}, where dists(u,v) denotes
the shortest distance between v and v in G.
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Lemma 1. Any graph of minimum degree k > 1 and diameter D > 1 must have at
least n(k, D) wvertices, where

k+ D if 1<D<2 or k=1 (3.1a)
n(k,D) = D _
k+D+1+|5](k—2) otherwise (3.1b)

Moreover, this bound is tight; that is, for every k > 1 and every D > 1, there exists
a graph with n(k, D) vertices that has minimum degree k and diameter D.

Proof. Let g be a graph of minimum degree k > 1 and diameter D > 1. Let
P = (vo,v1,...,vp) be a path in the graph such that the shortest distance between
vp and vp is D. Note that, such a path P must exist as the diameter of the graph
is D.

We first consider the case that D > 3 and £ > 2. Let N; be the set of v3;’s
neighbors that are not in P for j = 0,...,[2] — 1, and Nip) be the set of vp’s

neighbors that are not in P. Then, it holds that N; N N; = 0,Vj # j/; this is
because the shortest distance between vy and vp would otherwise be smaller than
D. In addition, as the minimum degree of the graph is k, we have the following
facts (see Figure 3.3).

o INj|>k—2for0<j<|[Z]

D
As a result, the number of vertices in the graph is at least D + 1 + Z}ig |N;| >
k+ D+ 1+ [Z2](k—2) = n(k,D); note that for the case that D < 2, this is

D
D+1+Y55 [N = D+1+|Ny| > k+D.

No I N,

Vg V2 V4 U3r+1
U1 U3 CRYS

(a) Case 1 (D mod 3 # 0)

No Ny N,

V2 V4 U3
U, T
0 U1 U3 U3r—1

(b) Case 2 (D mod 3 =0)
Figure 3.3: Proof of Lemma 1 (r = [2])

Note that, the bound n(k,D) = k+ D + 1+ |2](k — 2) is also tight; that is,
there exists a graph with n(k, D) vertices and of minimum degree k and diameter
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D. Specifically, the graph consists of the path P and sets of vertices {Nj}}ﬁé of
minimum sizes as defined above, each NN; is a clique, and there are no crossing edges
between N; and N for j # j'. In addition, vertices in N; are connected to vertices
in P as follows.

e If (D mod 3) # 0, all vertices in N, are connected to all vertices in {v; | 35 <
i <min(3j 4 2, D)}, for each 0 < j < | 2] (see Figure 3.3(a));

e Otherwise, Ny is connected to {vg,v1}, NL%J is connected to {vp_1,vp}, and
Nj is connected to {v; | 3j—1 <4 < 3j+1} for 0 < j < [ 2] (see Figure 3.3(b)).

It is easy to verify that for each of the above two cases, the constructed graph has
exactly n(k, D) vertices, and has minimum degree k and diameter D.

The cases where D =1 or D = 2 are special cases of the above, and can be easily
verified. For the case k = 1, it suffices to verify that the graph consisting of the
path P is a tight lower bound. We omit the details. O]

Note that, the lower bound of Equation (3.1b) was stated in (Erdés et al., 1989)
for the case D > 2 and k > 2, but without detailed proof. Our proof shows that
the lower bound of Equation (3.1b) only holds for D > 3 and k& > 2. Specifically,
consider the graph that is a (k+2)-vertex clique missing one edge which has minimum
degree k and diameter D = 2; however, Equation (3.1b) would imply a lower bound
of k 4+ 3 for D = 2 which is incorrect. Thus, we provide a correct and tight lower
bound of k + D for the special case 1 < D <2 or k= 1.

Moreover, instead of using a closed formula to upper bound the diameter given h
and k (i.e., Lf—flj —1in (Erd6s et al., 1989)) which is not tight, we obtain the upper
bound numerically. That is, the diameter is upper bounded by the largest D such
that n(k, D) < h, which can be computed by binary search on D. This is because,
n(k, D) monotonically increases with both & and D. For example, for h = 11 and
k = 5, the closed formula of (Erdés et al., 1989) gives an upper bound of 4 for D,
while our approach computes the upper bound as 2. Also note that, for a given
size upper bound A, the maximum possible diameter D of a feasible community
monotonically decreases when k increases. Computing the diameter, however, is
computationally expensive. We use the following distance-based reduction, as the
shortest distance between any pair of vertices is a lower bound of the diameter.

Reduction Rule 2 (Distance-based Reduction). Given an instance (C, R) and any
v € R, if n(k + 1,distcyr(u,v)) > h, then we can discard v from R, where u is a
vertex in C' and n(-,-) is the function defined in Lemma 1.

Proof. As the shortest distance is a monotonically decreasing property, it holds that
distx(u,v) > distcyr(u,v) for every feasible community X € C¢ g that contains v.
Thus, the diameter of every feasible community in C¢ r that contains v must be at
least distcug(u,v). According to Lemma 1, if n(k + 1, distcug(u,v)) > h, then all
feasible communities in C¢ z that contain v must have minimum degree at most I%,
and thus v can be discarded. O]

Besides discarding unpromising vertices from R, we can also greedily move promis-
ing vertices from R to C. The next reduction rule formulates such a condition.
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Figure 3.4: A running example for illustrating reduction rules

Reduction Rule 3 (Inclusion-based Reduction). Given an instance (C, R) and any
u € C,if doyg(u) = k+ 1, then we can greedily move to C' all the vertices in R that
are neighbors of u.

Proof. Recall that, for the instance (C, R), our aim is to find a feasible community
in Cc g with minimum degree at least k+1. Thus, if u € C has only k+ 1 neighbors
in C'U R, then any feasible community in C¢ z with minimum degree at least k+1
must include all of u’s neighbors. O

Example 3. Consider the graph in Figure 3.4, and suppose [(,h] = [5,7], C' =
{vs, v4,v5,06} (grey-shadowed nodes) and R = {vgy, vy, v, v7,vs,v9} (white nodes),
and k = 2. Recall that our aim is to find a feasible community in Co. r with minimum
degree at least k+1=3. According to Reduction Rule 1, vy can be discarded because
deur(v)) = 2 < l;;; similarly, ve can be discarded. From Lemma 1, we derive that
the diameter of any feasible community with min-degree at least 3 is at most 2; this
is because n(3,3) = 8 > h. Thus, vs can be discarded by Reduction Rule 2, since
distg(vs,vs) = 3. At last, as doyr(vs) = k + 1, we move all neighbors of vs in R
(i.e., vo and vy) to C. Similarly, we move the neighbors of vg in R (i.e., v7) to C.
As a result, we obtain a feasible community with min-degree 3 by the reduction rules,
i.e., {vg, v, v3, vy, Vs, Vg, U7}

3.4.2 Upper Bounding Techniques

Let OptMD(C, R) denote the largest min-degree among all feasible communities of
Cc.r- In this subsection, we aim to compute upper bounds of OptMD(C, R) such
that the instance (C, R) can be entirely pruned if this upper bound is no larger than
k. In the following, we first present the general idea of upper bound computation in
Section 3.4.2.1, and then present three approaches to computing the upper bound
in Sections 3.4.2.2-3.4.2.4. Finally, we put the three upper bounds together in
Section 3.4.2.5.

3.4.2.1 General Idea of Upper Bounding

The reduction rules presented in Section 3.4.1 reduce the size of R by either discard-
ing vertices from R or greedily moving vertices from R to C. This is achieved by
inspecting individual vertices of C' or R, and making local decisions based on prop-
erties of the individual vertices. Upper bounding OptMD(C, R) in contrast aims to
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prune the entire instance (C, R), by considering all vertices of C' and R altogether.
Recall that computing OptMD(C| R) is to identify the X such that

Condition (1) C C X CCUR,
Condition (2) ¢ < |X| < h, and
Condition (3) min,cx dx(u) is maximized.

Let X* be the best community in Co g, i.e., satisfying the above three conditions.
Note that, computing OptMD(C, R) is NP-hard, as OptMD({¢}, V(G) \ {¢}) is
the optimal min-degree of the SCS problem. Thus, we compute an upper bound
of OptMD(C, R) by relaxing condition (2) and/or using upper bounds of dy«(u).
Specifically, we will compute an upper bound of min,ec dy+(u) by only considering
the degrees of vertices of C', which obviously is an upper bound of min,¢ x+ dx«(u).

It is worth mentioning that, for our algorithm, it suffices to check whether the
minimum degree of X* is at least k+1. Nevertheless, we present our techniques
for computing upper bounds, as computing upper bounds is more general in the
sense that it could also be potentially used in other search paradigms (e.g., best-
first search). We will show in Section 3.4.2.5 that, with simple modifications, the
upper bounding techniques can be used to efficiently check whether the minimum
degree of X* is at least k& + 1. Thus, we do not utilize k in the following upper
bounding techniques.

3.4.2.2 Degree-based Upper Bound

Firstly, we introduce the degree-based upper bound, denoted by Uy, by considering
each vertex u € C individually and by upper bounding dx(u).

Lemma 2 (Degree-based Upper Bound).
Uy = mingec min{dcug(u), do(u) + h — |C|}
is an upper bound of OptMD(C| R).

Proof. 1t is easy to verify that for any vertex u € C, the degree of u in X* is at most
de(w) +min{h —|C|, druuy (u) }, where de(u) + druuy (v) = dour(u). Specifically, if

—|C| < druguy(u), then we consider the best hypothetical scenario that all vertices
of X*\ C, whose quantity is at most h—|C/, are adjacent to u; otherwise, we consider
the best hypothetical scenario that all of u’s neighbors in R are included in X*\ C.
Thus, OptMD(C, R) = ming,ex« dx+(u) < mingec dx+(u) < Uy. O

The degree-based upper bound is in analogous to the degree-based reduction rule
presented in Section 3.4.1. But the degree-based upper bound considers degrees of
vertices of C', while the degree-based reduction rule considers degrees of vertices of
R.

Example 4. Consider the graph in Figure 5.5, and suppose [(,h] = [5,8], C' =
{va,v3,v5, 06,07} and R = {wg, vy, v4,vs,09,v10}. We use d(u) to denote de(u) +
min{h — |C|, drpuguy(w)}, where h — |C| = 3. The maximum possible degree of va in
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Figure 3.5: A running example for illustrating upper bounds

X* is 4, ie., cZ(vz) =14+ min{3,3} = 4. For vs, as it has only 2 neighbors outside
C, ie., dpufu(vs) = 2, we have d(vs) = 34 min{3,2} = 5. Similarly, we derive
d(vs) = 3+ min{3,3} =6, d(v) = 2+min{3,2} = 4 and d(v;) = 1+min{3,3} = 4.
Finally, we get Uy = 4.

Time Complexity. In the implementation, we incrementally maintain the de-
grees deyr(u) and deoygyy(u) for each vertex v € C. Thus, the time complexity of
computing Uy is O(|CY).

3.4.2.3 Neighbor Reconstruction-based Upper Bound

The degree-based upper bound U, ignored the degrees of vertices of R and assumed
that the degrees of vertices of X*\ C' C R could be arbitrarily large. Here, we design
the neighbor reconstruction-based upper bound, by explicitly considering the degrees
of vertices of R. Specifically, we define the neighbor reconstruction problem: given a
graph g, b vertices vy,...,v, ¢ V(g), and b non-negative integers dy, . .., d,, how to
add edges between V' (g) and {vy, ..., v,} without parallel edges, such that degrees of
V1,...,0 are dy,...,dy € [0,|V(g)|], respectively, and the minimum degree among
vertices of g in the resulting graph is maximized. Intuitively, by letting g = G|[C],
b=h—|C|,{v1,...,u} be the b vertices of R with the most number of neighbors in
C, and d; be the number of v;’s neighbors in C, then the minimum degree obtained
by neighbor reconstruction is an upper bound of OptMD(C, R).

We propose a greedy approach to solve the neighbor reconstruction problem.
As the objective is to maximize the minimum degree among vertices of ¢ in the
reconstructed graph, v; intuitively should be connected to vertices of g that have
the smallest degrees. Thus, we process vertices {vi,...,v,} in an arbitrary order,
and when processing v;, we connect v; to the d; vertices in V(g) that currently have
the smallest degrees; note that, the degrees of V'(g) dynamically increase when new
edges are added.

The pseudocode of neighbor reconstruction-based upper bound is shown in Algo-
rithm 2, which is self-explanatory by following the above discussions.

Lemma 3 (Neighbor Reconstruction-based Upper Bound). Algorithm 2 returns a
valid upper bound of OptMD(C, R).

Proof. Let b = h — |C|, {v1,..., v} be the b vertices in R' and d; = deoyg,y(vi)
for 1 < ¢ < b. We first prove that Lines 2-5 of Algorithm 2 solves the neighbor
reconstruction problem for C' and R'. Let’s consider an arbitrary configuration C
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Algorithm 2: UB-NeighborReconstruct(C, R)

1 R’ < the h — |C| vertices in R that have the largest {dcyy(v) : v € R};
2 for each u € C do d,, < d¢(u);

3 for each v € R’ do

4 L C'" < the deygyy(v) vertices in C' that have the smallest {d, : u € C};
5 for each u € C' do d,, < d, + 1;

6 Upnr < mingeco dy;
7 return U, ;

of connecting R’ with C' that does not follow the strategy in Algorithm 2. Without
loss of generality, we assume that the vertices of R’ are processed in the order of
v1,...,0 at Line 3. Let v; be the first vertex in this order such that C processes
v; differently than Algorithm 2. Let {d, : u € C'} be the degrees of vertices of C
immediately before processing v;; we simply refer to d, as the degree of u. Let C’
be the d; vertices in C' with the smallest degrees. Then, there must exist a vertex
v € (" and a vertex u € C'\ C’ such that (v;,v') ¢ C, (v;,u) € C, and d < d,.
Note that, we do not distinguish vertices of the same degree; that is, if d,, = d,,
then we consider (C\ {(v;,u)}) U {(v;, ')} to be the same as C. Let d, and d},
respectively, be the final degrees of v’ and u obtained by C. We consider two cases.

o If df, < df, then (C\ {(v;,u)}) U{(v;, ')} must have a no smaller min-degree
than C.

o If d¥, > d7, then there must exist another vertex v; € R’ with j > i such that
(vj,u') € C and (vj,u) ¢ C. Thus, (C\ {(v;,u), (vj,u)}) U {(v;, o), (vj,u)}
must have the same min-degree as C.

In either case, we can resolve all the inconsistencies between C and the strategy
of Algorithm 2 for v;’s edges, while not introducing any inconsistencies for {v; :
Jj < i}’s edges. So on so forth, we can resolve all the inconsistencies between C
and the strategy of Algorithm 2 while not decreasing the minimum degree. Thus,
Algorithm 2 computes a configuration with the largest min-degree.

Let R" = {v},...,v.} be the vertices of X*\ C where a < b. Obviously, running
Lines 3-5 of Algorithm 2 by replacing R’ with R”, we obtain a valid upper bound
of OptMD(C, R) based on the above arguments. As the degrees (i.e., dougw)(v)) of
vertices of R’ are no smaller than that of R”, Algorithm 2 returns a valid, albeit
maybe larger, upper bound of OptMD(C, R). ]

Example 5. Consider the same setting as Example 4, Figure 3.6 illustrates the
steps of computing U, by Algorithm 2. The initial degrees d, of vertices of C are
{vg : 1,us : 3,u5 : 3,v6 : 2,07 : 1} and the vertices of R with their numbers of
neighbors to be reconstructed are {vg : 2,01 : 2,04 : 3,08 : L,vg : 3,010 : 2}. The
first step is to select the h — |C| = 3 wertices of R that have the largest number
of neighbors to be reconstructed, and R' = {vg,v9,v0}. Then, we process the three
vertices of R’ sequentially. In the first iteration, we process vy by connecting it
to the douguy(va) = 3 vertices of C that currently have the smallest degrees, and
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Figure 3.6: Neighbor reconstruction-based upper bound

C" = {vq, v6,v7}; after processing vy, the degrees of vertices of C' become {vy : 2, v3 :
3,05 : 3,06 : 3,v7 : 2}. In second iteration, we process vy similarly and the degrees
of C" = {vq,v6,v7} increase by one each. In the third iteration, we process vy and
the degrees of C' = {vs,v;7} increase by one each. Finally, the minimum degree of
vertices of C' is 3, which s returned as the upper bound U,,.

Time Complexity. Firstly, in our implementation of selecting R’ at Line 1 of
Algorithm 2, instead of considering all vertices of R which can be of large quantity,
we only consider the vertices of R that is adjacent to some vertex of C'. Thus,
the time complexity of selecting R’ is O(dc r) where dog = >, cc druguy(u); note
that, selecting top-k£ numbers from a list of unsorted numbers can be achieved in
linear time regardless of k& (Cormen et al., 2022). Secondly, each vertex v € R’ can
be processed in O(|C|) time. Thus, the total time complexity of Algorithm 2 is
Ode,n+ (h — |C])[C).

3.4.2.4 Degree Classification-based Upper Bound

In the computation of Uy, we utilized the count of all v;’s neighbors in C, dcyge,} (vi),
to decide the number of edges to be reconstructed between v; and C. Let C” = {u €
C : dc(u) > U, } be the set of vertices of C' whose degrees in C' are already no smaller
than U,,. Even if we remove all the edges between R and C” before the neighbor
reconstruction (equivalently, decrease the number of edges to be reconstructed be-
tween v; and C'), we intuitively will still get a valid (and likely smaller) upper bound
of OptMD(C, R).

Formally, let dyin(C) and dpax(C) be the minimum degree and maximum degree
of G[C], respectively, and let C=T be the set of vertices of C' whose degrees in C' are
at most T, i.e., C=" = {u € C : dc(u) < t}. We prove a more general lemma in
below.

Lemma 4. For any T € [duwin(C), dmax(C)], let U}, be the result of running Algo-
rithm 2 with the following modifications: remove all edges between R and C'\ C=",

and replace C with C=" at Lines 4 and 6. Then, UY,. is a valid upper bound of
OptMD(C, R).
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Proof. Let R' = {v},...,v.} be the vertices of X* \ C' where a < h — |C|. Then,
by running Lines 2-6 of Algorithm 2 with the modifications in the statement of the
lemma, we actually reconstruct the edges between C<* and R’ = X*\ C. Following
the proof of Lemma 3, it holds that at Line 6, U%, = min,co<< d,, > min,co<e dx-(u),
and thus U?, > OptMD(C, R). Note that, C=" does not change during the execution
of the algorithm, despite that d, increases for some vertices. O

Following Lemma 4, we can compute an upper bound U, for each T € [dyin(C),
dmax(C)], and then return the minimum one mine(q, ;. (€),dmac(C)] Uy Which is also
a valid upper bound of OptMD(C, R). We call this upper bound as the degree
classification-based upper bound. Its pseudocode is shown in Algorithm 3, where
Lines 4-9 correspond to Lines 1-6 of Algorithm 2 with the modifications as described
in Lemma 4; note that Line 11 should be ignored at the moment.

Algorithm 3: UB-DegreeClassification(C, R)

1 Uge o0

2 for T < dmin(C) to dmax(C) do

3 C<" <+ {ueC :do(u) <t}

4 R’ « the h —|C| vertices in R that have the largest {dc<<_)(v) 1 v € R};
5 for each u € C<" do d,, < d¢(u);

6 for each v € R’ do

7 C" « the do<x g,y (v) vertices in C=" that have the smallest

{d, :u € C="};

8 for each u € C' do d,, < d, + 1;

9 Uy, <= min,co<r dy;
10 Udc — min{UdC, U;fr};
11 if Uj. < 1+ 1 then break;

12 return Uy;

Corollary 2. The degree classification-based upper bound is tighter than the neigh-
bor reconstruction-based upper bound, i.e., Uy. < U, for any instance (C, R).

This directly follows from Lemma 4 and Algorithm 3, as C=" = C when T =
ynax (C).

Example 6. Let’s reconsider Example 5. We have dpin(C) = 1, dpax(C) = 3,
C=t = {vy,v7}, C=2 = {wg,v9,v7} and C=3 = {v3,v5,v6, 2,07}, as shown in Fig-
ure 3.7. For each T € [1,3], the numbers of edges to be reconstructed for vertices of
R (i.e., the number of neighbors in C=") are shown below the vertices in Figure 3.7.
For 7 =1, the top-3 vertices of R are R’ = {vg,v1,v4}. After the neighbor recon-
struction operations as done by Lines 5-8 of Algorithm 3, d,,, increases to 3 and d,,
increases to 2, and thus UL = 2. Similarly, we will obtain U2, = 3 and U3, = 3;
note that, the computation of U3 is exactly the same as in Example 5, as C=3 = C.
Finally, we get Ug. = min{2, 3,3} = 2.

Optimization. To compute U, we may need to run neighbor reconstruction (i.e.,
Lines 3-10 of Algorithm 3) for dyax(C) times, which in the worst case is |C| — 1.
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Figure 3.7: Degree classification-based upper bound

Thus, the computation of Uy, is costly. In the lemma below, we propose an early
stop condition for computing Uy., which corresponds to Line 11 of Algorithm 3.

Lemma 5. For any T € [duin(C), dmax(C)], of minj_, o Uy, < T+ 1, then
min?m;"m(mc()c Ut = =ming_; U:..

Proof. We prove that if minj_, U, < T+ 1, then Uj. > minj_, Uy, VT <
J < dmax(C), which thus implies the lemma. There are two cases dependlng on
whether U < 74 1. Firstly, let’s consider the case that U}, < T+ 1. Let R"
be the h — |C] vertices in R that are selected for computing U}, and d7, be the
final degree of vertex u € C=7 after the neighbor reconstruction for C<% and R* by
Algorithm 3. Then, min,cc<-d;, = Uy, < T+ 1. Now, if we further reconstruct
do<ingey(v) — dozeygy (v) edges between v and C=/ while avoiding parallel edges,
for each v € R", and let d,, be the final degree of vertex u, then min,cc<; d, >
min{T + 1, min,cc<« d,} > min,cc<- dl, = UF,.. Note that, up to now, this actually
corresponds to a two-stage neighbor reconstruction between C'<7 and R* where each
v € RT has de<ijygy(v) edges to be reconstructed. Now, let’s consider a direct
(one-stage) approach, and let d! be the final degree of vertex w after reconstruction,
then min,co<; d!) > min,co<; d, > UF,. due to the optimality of reconstruction by
Algorithm 3 for each T (or 7). Moreover, let R’ be the h —|C| vertices in R that are
selected for computing U7 | then the degrees {de<ivgm(v) 1 v € R’} are no smaller
than {dc<iyugy(v) : v € R}, and thus Uj, > min,co<; d) > UJ,.

Secondly, let’s consider the case that U, > t+1. By following the same argument
as above, we can prove that U, > T+ 1 which implies UJ > min]_ . U for all

J € [T+ 1,dmax(C)]. Thus, the lemma holds. O

Example 7. Let’s continue Example 6. After computing U} = 2, it satisfies that
Ul <2 =r71+41. Thus, we can terminate the computation and return Uy = 2
directly, without computing U2, nor U2, .

Time Complexity. As Algorithm 3 in the worst-case runs a modification of Algo-
rithm 2 for |C| — 1 times, it is easy to see that the time complexity of Algorithm 3 is
O (|C| (de,r + (h—|C])|C]|)). Note that, by the optimization at Line 11, the number
of iterations could be much smaller than |C'| — 1 in practice.
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3.4.2.5 Putting the Upper Bounds Together

To maximally utilize the pruning power, we use all the three upper bounding tech-
niques together and select the minimum one as UB, i.e., UB = min{Uy, Uy, Uge }-
In the implementation, we first compute Uy, then U,,, and finally U, in increasing
order of their time complexities. Once a computed upper bound is enough to prune
the instance (C, R), we terminate the upper bound computation immediately.

3.4.3 Branching Techniques

In this subsection, we propose two branching techniques, one for selecting which
vertex to branch on, and another for how to generate the different branches.

Branching Vertex Selection. The lower bound k of the optimal min-degree is
critical to the search space size. Thus, we aim to identify feasible communities with
large min-degree as early as possible. With this goal in mind, the vertex on which
to branch intuitively should satisfy the following two conditions: (1) it should be
connected to C'; and (2) it should be adjacent to many low-degree vertices in C'. To
quantify this, we define the connection score for vertices of R.

Definition 1 (Connection Score). Given an instance (C, R), the connection score
of a vertex v € R is defined as

_ 1
i(v) = ZUENCU{U}(U) dc (u)
Note that, if there is no edge between v and C, then é(v) = 0.

We choose the vertex of R that has the highest connection score, denoted v*, to
generate branches. Note that this naturally guarantees that C' is always a connected
subgraph during the recursions.

Domination-based Branching. After choosing v* as described above, instead
of generating two branches (C'U {v*}, R\ {v*}) and (C, R\ {v*}), we propose a
domination-based strategy to reduce the number of generated branches.

Definition 2 (Vertex Domination). Given an instance (C, R), vertex v € R domi-
nates v' € R, denoted v = v/, if every neighbor of v’ (in C'U R) is either a neighbor
of v or is v itself.

For instance, for the graph in Figure 3.5, v4 dominates vy and vy, and vg dominates
vg and vyg.

Lemma 6. Given an instance (C, R) and two vertices v,v" € R, if v dominates v’
(ie., v = V'), then there is either a best community in Cor (i.e., with minimum
degree OptMD(C, R)) that contains both v and v', or a best community in Cc g that
does not contain v'.

Proof. If there is a best community H € Ccp that contains v' but not v, then
H' = (H U{v})\ {v'} is also a feasible community in C¢ z. Moreover, the minimum
degree of H' is no smaller than that of H, as every neighbor of v' in H is also a
neighbor of v. Thus, H' is a best community that does not contain v/, and the
lemma holds. O
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Following Lemma 6, after choosing v* that has the highest connection score, we
generate branches as follows. If there is a vertex v’ that is dominated by v*, then
we generate three branches (C' U {v*,v'}, R\ {v*,v'}), (C U {v*}, R\ {v*,v'}) and
(C, R\ {v*,v'}), which reduces the number of branches from 4, as generated by the
naive approach in Algorithm 1, to 3. Moreover, we generalize this idea to the case
that v* dominates multiple vertices. Let ® = {vy,...,v;} be the set of vertices of R
that are dominated by v*. Then, we generate the following branches:

o (CU{v* v}, R\ {v* v, ...,u}) for 1 <i <.
o (CU{v*}, R\ {v*v1,...,u}).
o (C,R\ {v*,v1,...,u}).

3.4.4 The SC-BRB Algorithm

Based on the techniques developed in the previous subsections, we propose the BRB
algorithm for solving an instance (C, R). The pseudocode is shown in Algorithm 4,
which is similar to Enum in Algorithm 1, but incorporates our newly proposed
techniques. We first apply our reduction rules to reduce the size (C, R) (Line 1).
If C' is a feasible community and its min-degree is larger than k, then we update
k and H by C (Lines 2-3). Next, if the instance is not pruned by our upper
bounding technique (Line 4), then we generate branches as follows. We select the
vertex v* from R that has the highest connection score (Line 5), identify the set
® C R of vertices that are dominated by v* (Line 6), and order the vertices in @
in decreasing order based on their connections cores (Line 7). Finally, we generate
|®| + 2 branches/recursions.

Algorithm 4: BRB(C, R)
Reduce (C, R) by our reduction rules;
if £ <|C| < h and dpin(C) > k then
|k dmin(C); H « C;

[SU R

4 if |C| < h and R # 0 and UB(C, R)> k then

5 v* < the vertex in R with the highest connection score;

6 ® <+ the vertices of R that are dominated by v*;

7 Order the vertices of ® based on their connection scores, and let the ordered

vertices be v1,...,vy;

8 fori<+<1,...,ldo

9 L BRB(C U {v*,v;}, R\ {v*,v1,...,0});
10 BRB(C U{v*}, R\ {v*,v1,...,u});
11 BRB(C, R\ {v*,v1,...,v});

By replacing the invocation of Enum at Line 7 of Algorithm 1 with BRB, we have
our branch-reduce-and-bound algorithm SC-BRB for the SCS problem.
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3.5 A Heuristic Approach

In this section, we propose a heuristic algorithm SC-Heu for the SCS problem, which
enforces that the size of the returned community is between ¢ and h. We replace
GreedyF with SC-Heu in Algorithm 1 for efficiently computing an initial feasible
community.

Algorithm 5: SC-Heu(G, ¢, ¢, h)

1 H 0 k0

2 if dg(q) > h — 1 then

3 S < the ego-network of g¢;

4 while |S| > ¢ do

5 if |S| < h and dpin(S) > k then

6 L l%(—dmin(S);H%S;

7 Delete from S the vertex with the minimum degree;
8 else

S+ {q};

10 while |S| < h do
11 v* < the vertex with the highest connection score to S;
12 S Su{v*}
13 if |S| > ¢ and diin(S) > k then

14 L l~c<—dmin(S);H<—S;

15 return H;

The pseudocode of SC-Heu is shown in Algorithm 5. We consider two cases. If
the degree of ¢ in G is no smaller than h — 1 (Line 2), then we adopt the shrinking
approach. It starts with the ego-network of ¢ (Line 3) and then iteratively shrinks
the graph by removing the vertex with the minimum degree (Line 7); the one with
the largest min-degree among all generated feasible communities is returned as the
result (Lines 5-6). Here, the ego-network of ¢ in GG is the subgraph of G induced by
{q} UN(q). If the degree of ¢ in G is smaller than h — 1 (Line 8), then we use the
expanding approach. It starts with the subgraph {g} (Line 9) and then iteratively
expands the subgraph by including the vertex with the highest connection score into
the subgraph (Line 11-12); the one with the largest min-degree among all generated
feasible communities is returned as the result (Lines 13-14).

The time complexity of Algorithm 5 is O(m-+nlogn). Lines 27 run in O(m) time
similar to the peeling-based core decomposition algorithm (Batagelj and Zaversnik,
2003). Lines 9-14 run in O(m + nlogn) time similar to Dijkstra’s algorithm for
computing single-source shortest paths (Cormen et al., 2022).

3.6 Enumerating All Size-Bounded Communities

In this section, we extend our techniques to the size-bounded community enumer-
ation problem, i.e., enumerating all subgraphs with the largest min-degree that
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contain the query vertex ¢ and have at least ¢ and at most h vertices.

Motivation. In the previous sections, we study the problem of size-bounded com-
munity search, which only returns one community. However, given a query instance,
the size-bounded community may be not unique. Users may have different prefer-
ences to different size-bounded communities. For example, when organizing a hiking
trip, the owner may hope the attendees to be as more as possible to make more new
friends (i.e., the community size should be close to h). When assembling a team
for a project, the boss may hope the number of workers to be as less as possible to
reduce the cost (i.e., the community size should be close to ¢). Thus, identifying all
size-bounded communities can provide users with more choices.

The pseudo code of our size-bounded community enumeration algorithm is shown
in Algorithm 6. Firstly, we compute the optimal min-degree k by invoking SC-BRB
(Line 1). Then, we reduce the graph to its k-core (Line 2), since each community
must have the minimum degree of k. Next, we enumerate all communities by in-
voking the procedure BRB. In BRB, we first apply our reduction rules to reduce the
size (C, R) (Line 6). If C' is a feasible community and its min-degree equals to k,
we add it into C. Next, if the instance is not pruned by our upper bounding tech-
nique (Line 9), we select the vertex v* from R that has the highest connection score
(Line 10). Then, BRB partitions the enumeration space into (C'U {v*}, R\ {v*})
and (C, R\ {v*}) for the vertex v* and conducts a recursion on each of the two
enumeration subspaces (Lines 11-12). Note that the domination-based branching
technique used in SC-BRB cannot be applied in SCE-BRB since Lemma 6 does not
hold for the community enumeration problem. Besides, our reduction rules proposed
in Section 3.4.1 need minor modifications. For the Reduction Rule 1, “<” should
be changed to “<”. For the Reduction Rule 2 and the Reduction Rule 3,
“k + 17 should be changed to “R.

Algorithm 6: SCE-BRB (G, q, ¢, h)
k + the optimal min-degree by invoking SC-BRB;

Reduce G to its l;:—core;
C «+ 0;

Enum({vg}, V(G) \ {vg});

return C;

(S N

Procedure BRB (C, R)
6 Reduce (C, R) by our reduction rules;

7 if £ <|C| < h and dyin(C) = k then

L C«+ Ccu{C}
9 if |C| < h and R # 0 and UB(C,R)> k then
10 v* < the vertex in R with the highest connection score;

11 Enum(C U {v*}, R\ {v*});
12 Enum(C, R\ {v*});
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3.7 Experiments

In this section, we evaluate the effectiveness and efficiency of the proposed algo-
rithms.

Algorithms. For the size-bounded community search problem, we compare the
following algorithms.

e GreedyF and GreedyD: the two heuristic algorithms proposed in (Sozio and
Gionis, 2010). Note that, it is straightforward to extend these two algorithms
to consider the size lower bound /.

e BS: the algorithm proposed in (Ma et al., 2019) for computing the size-
constrained k-core over edge-weighted graphs. We adapt BS to our SCS prob-
lem by enumerating k& and h.

e PSA: the progressive algorithm proposed in (Li et al., 2019) for (approxi-
mately) computing a minimum k-core. We will describe how to adapt PSA in
Section 3.7.3.

e SC-Enum: our baseline algorithm presented in Algorithm 1.
e SC-BRB: our algorithm proposed in Section 3.4.4.

For the size-bounded community enumeration problem, we compare the following
algorithms.

e SCE-Enum: the baseline algorithm of enumerating all size-bounded communi-
ties without applying reduction rules and upper bounding techniques.

e SCE-BRB: our algorithm proposed in Section 3.6.
All algorithms are implemented in C++ and run in main memory.

Table 3.2: Statistics of real datasets

Dataset n m|  dayvg Amax | Emax
Email 36,692 183,831 | 10.02| 1,383 43
HepPh 34,546 420,877| 24.36 846 30
DBLP 317,080 1,049,866| 6.62 343| 113

YouTube| 1,134,890 2,987,624 5.26| 28,754 51
Google 875,713 4,322,051 9.87| 6,332 44

BerkStan 685, 230 6,649,470 19.40| 84,230| 201
Gplus 107,614 12,238,285|227.44| 20,127 752
Flickr 1,715,254 15,551,249 | 18.13| 27,224| 568
UK2002 | 18,459,128 | 261,556,721 | 28.33|194,955| 943

Webbase | 118, 142,155|1,019,903,190| 17.26|816,127|1,506

Datasets. We evaluate the algorithms on ten real graphs. UK2002 and Webbase are
downloaded from WebGraph (Boldi and Vigna, 2004), while all the other graphs are
downloaded from SNAP (Leskovec and Krevl, 2014). For each graph, we removed
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self-loops, parallel edges, as well as the direction of edges. Statistics of the graphs
are shown in Table 3.2, where the graphs are listed in increasing order regarding
their numbers of edges; ky.. is the maximum £ such that the graph contains a
non-empty k-core.

Besides real graphs, we also generate synthetic graphs to evaluate the efficiency
of the algorithms. Specifically, we generated four power-law graphs PL1, PL2, PL3,
PL4 by GTgraph (Bader and Madduri, 2006), and four graphs SBM1, SBM2, SBM3,
SBM4 by the stochastic block model (Decelle et al., 2011). All the synthetic graphs
have 108 vertices, and we vary the number of edges from 10° (i.e., PL1 and SBM1)
to 107 (i.e., PL4 and SBM4) with an increasing factor of 10. For the stochastic block
model graphs, the number of communities is set as 10, and thus each community
contains 100 vertices.
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Parameters and Query Generation. We vary the size upper bound A from 6 to
18 with increment 3. For each h, we set the size lower bound ¢ to be h — 3. That
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is, the size constraint [¢, h| is selected from {[3, 6], [6,9],[9, 12], [12, 15], [15, 18]}. For
each size constraint [, h], we randomly generate 100 queries, where the query vertex
of each query is randomly selected from the set of vertices with core number larger
than 5; this is similar to previous studies (Fang et al., 2020b) and is to ensure that
there is a meaningful community containing the query vertex. Besides these queries,
we also fix one of £ and h and vary the other (see Sections 3.7.2 and 3.7.3 for details),
and we randomly select query vertices from different parts of the graph (i.e., Dense
and Sparse queries in Section 3.7.2).

For each [¢, h], the average result quality and processing time of the 100 queries are
reported. For each testing, we set a time limit of two hours, and if an algorithm does
not finish within the time limit, we record its running time as inf. All experiments
are conducted on a machine with an Intel Core-i7 3.20GHz CPU and Ubuntu system.

3.7.1 Effectiveness of Our Algorithms

In this subsection, we evaluate the effectiveness of our exact algorithm SC-BRB
against the existing heuristic algorithms GreedyF and GreedyD. We exclude BS, as it
is an exact algorithm and thus the minimum degrees of its reported communities are
the same as that of SC-BRB. We also compared the minimum degree, edge density,
and overlap ratio between the ground truth communities and that returned by our
algorithm SC-BRB, despite that the goal of SC-BRB is not to recover the ground
truth communities.

Result Size. Figure 3.8 reports the sizes of the communities returned by GreedyF,
GreedyD, SC-Heu and SC-BRB, where the size constraint [¢, h| varies from [3,6] to
[15,18]. We can see that the result sizes of GreedyF and both of our algorithms fall
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within the range [¢, h], but GreedyD reports communities with more than h vertices.
This is because GreedyF and our algorithms deliberately enforce the size constraint,
while GreedyD does not enforce that.

Result Quality. To evaluate the result quality, we report the minimum degree and
edge density (i.e., %) of the extracted communities. For both metrics, the larger
the value, the better the quality. The results on Email and DBLP by varying [/, A
are shown in Figure 3.9. We can see that GreedyD has a slightly higher result quality
than GreedyF, but at the cost of violating the size constraint. Nevertheless, both
of our algorithms significantly improve the result quality compared with GreedyD,
and our exact algorithm SC-BRB has the highest result quality. The results on all
the graphs by fixing [¢,h] = [9,12] are shown in Figure 3.10, which have similar
trends as in Figure 3.9. Compared with GreedyF, SC-BRB on average increases the
minimum degree by a factor of 2.41 (by absolute value 5.05), and improves the edge
density by a factor of 2.2.

Evaluate Average Degree for SC-BRB. The average degrees of the communities
obtained by the algorithms GreedyD, GreedyF, SC-Heu and SC-BRB are shown in
Figure 3.11 and Figure 3.12. We can see that both of our algorithms obtain a much
higher average degree than GreedyD and GreedyF, and the results are similar to that
for minimum degree and edge density.

Compare with Ground-Truth Communities. Despite that the goal of SCS
is not to recover the ground-truth communities, we in this testing compare the
communities obtained by SC-BRB with the ground-truth communities that the query
vertices belong to. To do that, we use the two graphs email-Eu-core and DBLP that
have ground-truth communities. email-Eu-core is a new dataset that is downloaded
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Figure 3.13: Result quality compared with ground-truth communities

from SNAP, while DBLP has already been tested in our other experiments. email-
Eu-core has 1,005 users (i.e., vertices) in a large European institution, and contains
42 ground-truth communities corresponding to the 42 departments at the research
institute. Note that each individual belongs to exactly one department. DBLP is a
co-authorship network of researchers in computer science, which contains 317,080
researchers and 13,477 communities. Each publication venue defines a ground-truth
community, and the authors who published papers in the same journal or conference
form a community.

The minimum degree, edge density, and average degree of the communities identi-
fied by SC-BRB and that by the ground-truth communities are shown in Figure 3.13.
Note that each reported value is the average of 100 random query vertices. We can
see that no matter minimum degree, or edge density, or average degree, the quality
of the communities identified by our algorithm SC-BRB is much higher than the
ground-truth communities. One possible reason is that the ground-truth commu-
nities are actually defined in an ad-hoc way as described above, and thus may not
correspond to true communities. One exception is the average degree on email-Eu-
core for h < 9. This is because the ground-truth communities are much larger than
9 and thus have an average degree > 9, while the average degree of the communities
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identified by SC-BRB cannot be larger than 8 due to the size constraint of h < 9.

In addition, we also evaluated the overlap ratio (specifically, the percentage of ver-
tices that are in the ground-truth community) between the communities identified by
SC-BRB with the ground-truth communities. The results are shown in Figure 3.14.
We can see that on average, at least 60% of the vertices in the communities identified
by SC-BRB are in the ground-truth communities.

Case Study. We construct another coauthor graph, denoted DBLP, from the raw
DBLP dataset ® for case study. Each vertex corresponds to an author, and two
vertices are connected by an edge if the two authors have coauthored at least five
papers. The DBLP. graph contains 424,784 vertices and 888,392 edges. In the
case study, we search for the size-bounded community for “Jiawei Han”, a renowned
researcher in Data Mining. Firstly, the results returned by GreedyF and SC-BRB
for size constraint [5,10] are shown in Figure 3.15(a) and 3.15(b). We can see that
the result by GreedyF is sparse and has minimum degree 2 and edge density 0.48,
while the result by our algorithm SC-BRB has minimum degree 7 and edge density
0.91. Figure 3.15(c) and 3.15(d) illustrate the results for size constraint [15, 20]. The
result by GreedyF has minimum degree 1 and edge density 0.15, while the result by
SC-BRB has minimum degree 5 and edge density 0.37.

Suppose Jiawei Han would like to assemble a team to identify and tackle a grand
problem in data mining. Then he can issue an SCS query with ¢ and h being
specified based on the team size. If the ideal team size is between 5 and 10, then
the best team could be the one in Figure 3.15(b) as each member has collaborated
with at least 7 other members in the team. If the ideal team size is between 15 and
20, then the best team could be the one in Figure 3.15(d); note that, with the size
constraint [15,20], there is no team such that every member has collaborated with
> 6 or > 7 other members.

3.7.2 Efficiency Testings

Against Baseline Algorithms. We first evaluate SC-BRB against baseline algo-
rithms SC-Enum and BS. We adapted BS proposed in (Ma et al., 2019) to solve the
SCS problem by enumerating k& and x € [, h] to find the largest k such that there
is a k-core of size x. The running time of these algorithms on DBLP and Google by

3https://dblp.uni-trier.de/xml/
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varying [¢, h] is shown in Figure 3.16. We can see that SC-BRB significantly out-
performs SC-Enum and BS due to our powerful pruning and bounding techniques.
Moreover, BS due to lack of pruning and bounding techniques is also outperformed
by SC-Enum. Thus, we exclude SC-Enum and BS from the remaining testings.

In Figure 3.16, we also include the running time of SC-Heu, GreedyD, GreedyF, and
community search w/o size constraint. These heuristic algorithms run much faster
than the exact algorithms. However, as demonstrated in Section 3.7.1, the result
quality of GreedyD and GreedyF are not satisfactory. On the other hand, community
search w/o size constraint will return extremely large communities (e.g., almost the
entire graph) (Chang and Qin, 2019). Consider the significant improvements on
the result quality, it is cost-effective to apply SC-BRB. On the other hand, if time
efficiency is critical, then our heuristic algorithm SC-Heu is recommended as it is
superior than other alternatives.

Reducing, Upper Bounding, and Branching Technique. To evaluate our
different techniques, we also implemented SC-BRB/R which is SC-BRB without our
reduction rules, SC-BRB/U which is SC-BRB without our upper bounding tech-
niques, and SC-BRB/D which is SC-BRB without our domination-based branching.
Note that, SC-BRB/D still uses our connection score-based branching vertex selec-
tion. The running time of these algorithms on DBLP and Google by varying [/, h] is
shown in Figure 3.17. We can see that the running time of all algorithms increases
when the size constraint increases, this is because the search space becomes larger.
Nevertheless, SC-BRB consistently outperforms all other algorithms. We can also
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Figure 3.16: Against baseline algorithms (vary [, h])
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Figure 3.17: Evaluate our different techniques (vary [¢, h])

see that the running time increases, whenever any of the reducing, upper bounding,
and branching techniques is removed. This confirms that all our techniques make a
contribution to the performance of SC-BRB.

The running time of the algorithms on all real and synthetic graphs for [¢, h] =
9, 12] is shown in Figure 3.18. The trends are similar to Figure 3.17. For synthetic
graphs, we also observe that the running time increases when the number of edges
(correspondingly, density) of the graph increases. Nevertheless, the increase is sub-
linear; recall that the number of edges of PL4 (resp. SBM4) is 10% times that of PL1
(resp. SBM1).

Evaluate Different Reduction Rules. We evaluate the effectiveness of the dif-
ferent reduction rules in reducing the running time. For simplicity, we use R1, R2
and R3 to represent our three reduction rules. We incrementally integrate these
reduction rules into SC-BRB/R. The results in Figure 3.19 show that each of the
three reduction rules reduces the running time.

Evaluate Different Upper Bounds. Figure 3.20 demonstrates the effective-
ness of the three upper bounds, Uy, U,, and U,., by incrementally adding them
to SC-BRB/U. Each of the upper bounds reduces the running time. Thanks to
the degree classification strategy, U,. produces a tighter upper bound and is most
powerful.

Evaluate Different Branching Vertex Selection. Figure 3.21 evaluates the
effectiveness of the branching vertex selection. All our algorithms adopt connection
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Figure 3.19: Evaluate different reduction rules

score-based vertex selection, denoted 6(-). Besides d(-), we also implement two other
strategies: Random, and #Link, which selects the vertex of R that has the most
number of links to C'. The results demonstrate that the connection score-based
strategy improves the efficiency significantly.

Evaluate Different Query-Range Sizes. We now evaluate the performance of
SC-BRB under different query-range sizes. We fix h = 15 and increase ¢ from 3 to
15. Figure 3.22 shows that the running time increases along with the increasing of /.
This is because, when ¢ increases, it becomes harder to find a high-quality solution
at early stages. Nevertheless, the influence of £ on the running time is not as strong
as that of h (e.g., as shown in Figure 3.16), as the running time of SC-BRB is upper
bounded by n”.

Evaluate Different Query Types. We evaluate the efficiency of SC-BRB for
different query types: Dense, Sparse and Random. Random queries are generated
as described at the beginning of this section. Dense query vertices are uniformly
selected from the last 10% of the degeneracy ordering of all vertices (i.e., from
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Figure 3.21: Evaluate different branching vertex selection

dense parts of the graph), while Sparse query vertices are uniformly selected from
the first 10% of the degeneracy ordering with core number at least 5 (i.e., from sparse
parts of the graph). The running time on all graphs for [¢, h] = [9, 12] is shown in
Figure 3.23. We can see that Dense queries are the easiest to process, because we
are more likely to find a high quality heuristic solution for Dense queries. Thus, our
reduction rules and upper bounding techniques can significantly reduce the search
space. Due to opposite reasons, Sparse queries are the hardest to process. Random
queries are in between because they contain both Dense and Sparse queries.

3.7.3 SCS without Size Lower Bound

In this subsection, we evaluate SC-BRB against PSA for the problem of SCS without
size lower bound. PSA was originally proposed for (approximately) computing the
minimum k-core for a user-given integer k and query vertex ¢ (Li et al., 2019), i.e.,
the smallest one among all subgraphs that contain ¢ and have minimum degree at
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Figure 3.22: Evaluate different query-range sizes
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Figure 3.24: Comparison with PSA by varying [/, h]

least k. In addition, PSA accepts a parameter ¢ > 1 to strike a balance between the
result quality and running time. Specifically, PSA returns a subgraph that is at most
cx (the optimal size), instead of the optimal one. Intuitively, the smaller the value
of ¢, the longer the running time. We adapt PSA for SCS without size lower bound,
by computing an approximate minimum k-core for an iteratively increasing k until
the size of the identified subgraph is larger than h. We report the penultimate k
value as the result quality of PSA. The source code of PSA is obtained from the
authors of (Li et al., 2019).

The running time and result quality of PSA(1.01), PSA(1.2) and SC-BRB on Email
and HepPh by varying h are shown in Figure 3.24, where PSA(1.01) and PSA(1.2),
respectively, represent PSA with ¢ = 1.01 and ¢ = 1.2. We can see that PSA(1.01)
has the same result quality as SC-BRB due to the small value of ¢ = 1.01, but is
much slower than PSA(1.2) and SC-BRB and thus is not practical for large graphs.
SC-BRB outperforms PSA(1.2) in terms of both result quality and running time.

Figure 3.25 shows the minimum degrees of the communities returned by PSA(1.2)
and SC-BRB on all the graphs for h = 10. We can see that SC-BRB consistently
outperforms PSA(1.2).
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3.7.4 Size-Bounded Community Enumeration Problem

In this subsection, we evaluate SCE-BRB against SCE-Enum for the size-bounded
community enumeration problem. The running time of the algorithms on all graphs
for [¢, h] = [9,12] is shown in Figure 3.26. We can see that SCE-BRB consistently
outperforms SCE-Enum. The speed up of SCE-BRB against SCE-Enum can be over 2
orders of magnitude. For example, on BerkStan, SCE-BRB enumerates all the size-
bounded communities in 2 seconds while SCE-Enum uses 238 seconds to complete
this task.

The running time of these algorithms on DBLP and Google by varying [¢, h] is
shown in Figure 3.27. We can see that the running time of all algorithms increases
when the size constraint increases, this is because the search space becomes larger.
Nevertheless, SCE-BRB consistently outperforms SCE-Enum in all cases and the gap
becomes larger when the size constraint increases. For example, on DBLP, SCE-BRB
is slightly faster than SCE-Enum when the size constraint is [3, 6] (i.e., 3.6 seconds
v.s. 3.8 seconds). When the size constraint increases to [9,12], SCE-BRB is two
orders of magnitude faster than SCE-Enum (i.e., 6 seconds v.s. 656 seconds). This
experiment demonstrates the effectiveness of our optimization techniques in solving
the size-bounded community enumeration problem.

Figure 3.28 reports the number of size-bounded communities on DBLP and Google
by varying [¢,h]. We can see that a large number of communities are detected in
all cases. For example, on DBLP, the number of communities is 4,248,533 when
[¢, h] is [15,18]. Thus, our algorithm can provide users with more choices. Another
interesting phenomenon is that the number of results is not monotonically changed
when the size constraint changes. For example, on DBLP, the number of communities
increases from 120,110 to 1,977,781 when the size constraint increases from [3, 6]
to [6,9], while this number decreases to 768,208 when we continue to increase the
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Figure 3.28: Number of communities (vary [¢, h])

size constraint to [9, 12].

3.8 Chapter Summary

In this chapter, we studied the problem of size-bounded community search which
has both size lower bound and size upper bound, and aims to maximize the min-
imum degree of the returned subgraph. We proposed a branch-reduce-and-bound
algorithm SC-BRB for solving the problem over large real graphs. SC-BRB outputs
the optimal results. The efficiency of SC-BRB is due to our newly developed reduc-
ing techniques, upper bound techniques, and branching techniques. We extended
our techniques to enumerate all optimal communities. Extensive experiments on
large real graphs demonstrate the effectiveness and efficiency of our algorithms. As
a possible direction of future work, it will be interesting to adapt our techniques
to speed up the computation for the problems studied in (Li et al., 2019) and (Ma
et al., 2019).



Chapter 4

Similar-Biclique Identification

In this chapter, we study the similar-biclique identification problem in bipartite
graphs. The work is published in (Yao et al., 2022b). This chapter is organized as
follows. Section 4.1 provides the introduction to this work. Section 4.2 provides the
preliminaries including the definition of similar-biclique and the problem statement.
Section 4.3 introduces a baseline algorithm and our MSBE algorithm. Section 4.4
presents our index structure, index-based algorithms and index construction algo-
rithms. Section 4.5 introduces the index maintenance algorithms. Section 4.6 paral-
lelizes our index construction algorithms. Section 4.7 reports experimental results.
Section 4.8 concludes the chapter.

4.1 Introduction

Bipartite graphs have been widely used in real-world applications to model relation-
ships between entities of different types, such as customer-product networks (Wang
et al., 2006), author-paper networks (Ley, 2002) and user-event networks (EL BACHA
and Zin, 2018). A bipartite graph is denoted by G = (V, Vg, E), where the vertex
set is partitioned into two disjoint subsets V;, and Vi which are referred to as the
L-side and R-side vertices of the bipartite graph, respectively; each edge e € F can
only connect vertices from different sides. Finding dense subgraphs in a bipartite
graph is of great significance and encompasses many applications, such as community
detection (Abidi et al., 2021; Lehmann et al., 2008), anomaly detection (Gangireddy
et al., 2020; Sariyiice and Pinar, 2018), and group recommendation (Lyu et al., 2020;
Su and Khoshgoftaar, 2009).

One classic notion of dense bipartite subgraph is biclique (Peeters, 2003), which
requires every pair of vertices from different sides of the subgraph to be connected
by an edge. For example, for the bipartite graph in Figure 4.1 which represents
researchers publishing in conference venues, the subgraph in the shadowed area is
a biclique. In the literature, many algorithms have been proposed to enumerate
all maximal bicliques (Abidi et al., 2021; Alexe et al., 2004; Eppstein, 1994; Li
et al., 2007; Liu et al., 2006; Uno et al., 2004; Zhang et al., 2014) and to identify a
biclique of the maximum size (Lyu et al., 2020). However, the biclique model has
a fundamental limitation: vertices in a biclique are not necessarily similar to each
other, despite that they share a set of common neighbors (i.e., vertices on the other

44



4.1. INTRODUCTION 45

Researchers

licML] (ko]

Machine Learning Database High Performance Computing

Figure 4.1: Example of researcher-venue bipartite graph

side of the biclique). Consider the six researchers in the biclique in Figure 4.1, all
of them publish in database conferences. Besides, researchers rq, 9, r3 also publish
in machine learning (ML) conferences, while 74, r5, 76 publish in high-performance
computing (HPC) conferences. Thus, the two groups of researchers, {ry,ro, 73}
and {r4, 5,76}, are likely from different backgrounds and communities, i.e., ML vs.
HPC.

Motivated by this, we formulate the notion of similar-biclique by requiring all ver-
tices from one side of the biclique to be similar to each other. Our empirical studies
show that similar-bicliques can be detected much more efficiently than bicliques.
Thus, identifying similar-bicliques is useful for the following applications.

e Community detection. Similar-biclique satisfies all the key requirements
of community structure for bipartite graphs (Lehmann et al., 2008; Wang and
Liu, 2018; Zhang and Ahn, 2015), and thus can be used to detect commu-
nities in interaction-type bipartite graphs such as user-rate-movie, customer-
buy-product, and author-write-paper. Firstly, being a biclique, interactions
between vertices from the two sides are intensive. Secondly, by enforcing the
similarity constraint, users in a similar-biclique are similar to each other, e.g.,
having similar behaviours or interests.

e Anomaly detection. Similar-biclique can also be used for anomaly detec-
tion, which is a common task in e-commerce (Allahbakhsh et al., 2013; Ding
et al., 2017; Lyu et al., 2020). Here, the transactions of customers purchasing
products form a customer-product bipartite graph. To improve the ranking of
certain products, fraudsters may create fake accounts to purchase the prod-
ucts, i.e., click farming (Dave et al., 2013). These fake accounts and the prod-
ucts they promote inevitably form a closely connected group, and meanwhile,
these fake accounts will display a high level of synchronized behavior with each
other (Jiang et al., 2014). Thus, suspicious groups (i.e., both the fraudulent
accounts and the products they promote) can be captured by similar-bicliques.

Formally speaking, given a similarity threshold 0 < ¢ < 1 and a size constraint
T > 0, a vertex subset C' C V; U Vg in a bipartite graph G = (V, Vg, E) is a
similar-biclique if (1) C is a biclique (i.e., Cp x Cr C FE), (2) all vertices of Cf,
are similar to each other (i.e., sim(u,v) > ¢,Vu,v € Cp), and (3) C satisfies the
size constraint (i.e., |CL| > 7 and |Cg| > 7). Here, Cf denotes C' NV, and Ckg
denotes C'N Vg; sim(u, v) measures the structural similarity between u and v, which
is computed based on their neighbors N(u) and N(v) and will be formally defined
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in Section 4.2; the size constraint 7 is introduced to avoid generating too small or
too skewed results. Note that, we only apply the similarity constraint to one side
of the vertices (either V, or Vg as they are interchangeable), since in applications
we are usually only interested in the similarity between “users”. Nevertheless, the
general technical ideas presented in this chapter can also be applied to the variant
of similar-biclique that imposes the similarity constraint on both sides of vertices.

We in this chapter aim to enumerate all mazimal similar-bicliques in a bipartite
graph. We prove that this problem is #P-complete. As each (maximal) similar-
biclique is contained in a maximal biclique, we could first enumerate all maximal
bicliques, then extract maximal similar-bicliques from maximal bicliques, and finally
eliminate all similar-bicliques that are either duplicates or not maximal. However,
this approach is inefficient, as enumerating all maximal bicliques by the state-of-
the-art algorithm ooMBEA (Chen et al., 2022) is still time consuming for large
graphs. Thus, we propose the MSBE algorithm to directly enumerate maximal
similar-bicliques, without first enumerating maximal bicliques.

MSBE follows the general backtracking framework of the Bron-Kerbosch algo-
rithm (Bron and Kerbosch, 1973) that enumerates all maximal cliques in a unipartite
graph. Our observation is that once the set of L-side vertices C, of a similar-biclique
C' is determined, its R-side vertices can be simply obtained as Cr = [,¢¢, N(u).
Nevertheless, it is worth pointing out that we cannot ignore C'r during the enumer-
ation process, since (1) the size of Cg will be used for pruning and (2) both Cf,
and Cg are needed for determining the maximality of the similar-biclique. MSBE
iteratively builds up a partial solution (C,Cg), maintains a candidate set Pj, that
is used to grow Cp, and maintains an exclusive set (Q; that is used for checking
the maximality of (Cr,Cg). In each recursion, a vertex u € Pp is added to C,
to grow the solution; after coming back from the recursion, u is moved from P,
to @1, to avoid duplicates. To prune the search space, we propose the concept of
dominating: v € Pp dominates v € Py, if sim(u,v) > ¢ and Ng,(u) 2 Ne,,(v),
where N¢, (u) = N(u) N Cg. We prove that if v dominates v, then we can prune
the recursion of adding v to Cp when u is moved from P; to (J;. Furthermore,
according to the definition, (1) each vertex w in a similar-biclique C' must have at
least 7 neighbors in C' (i.e., |[N¢(u)| > 7), and (2) each L-side vertex u € Cf, must
have at least 7 — 1 vertices that are similar to it; we call the vertices that are similar
to u the similar neighbors of u, denoted I'(u). Thus, we propose to first prune all
vertices that violate either of these two conditions, in a preprocess referred to as
vertex reduction; our empirical studies show that a large portion of the input graph
is pruned by vertex reduction.

We observe that a time-critical operation, in both vertex reduction and the recur-
sion of backtracking, is computing I'(u) which would take O(3_,cy ) [N (v)]) time,
for a vertex u € V. Note that, I'(u) is not stored in the graph representation, and
it is also not affordable to store I'(u) (either in main memory or on disk) after it is
computed as this would require a prohibitively large space. For example, it would
take over 400GB on Bibsonomy, one of the graphs tested in our experiments. In
view of this, we propose an offline-constructed index to speed up the computation
of T'(u); note that, our index can be used to process maximal similar-biclique enu-
meration queries with different ¢ and 7 values. This is based on the fact that for
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any similarity threshold €, I'(u) is always a subset of ®, = [J,cy(,) N(v), the 2-hop
structural neighbors of u. Thus, we propose to first compute the similarity between
u and every vertex of @, in an offline process, and then compress them into a few
segments which are stored in the index. Specifically, each segment is represented
by seg = (Vinin, Viax, Smax, €} Where vy < Vyay are two vertices of @y, syay is the
largest similarity between u and vertices of @, that are in the range [Vimin, Vimax)s
and c¢ is the number of vertices of ®, that are in [Viin, Vmax|; here, the comparison
between vertices is based on their ids. To obtain I'(u), we go through each segment
seg of &, that satisfies seg.sy.x > €, and compute the similarity between v and each
U € [S€g.Vinin, S€€-Vmax; NOte that, segments with s, < ¢ are skipped. Furthermore,
we also use the index to speed up vertex reduction by first pruning vertices based on
upper bounds of I'(u), which can be efficiently obtained based on the index without
computing similarities.
Our main contributions are summarized as follows:

e We formulate the concept of similar-biclique, which can be used to detect
interesting dense subgraphs from a bipartite graph. To the best of our knowl-
edge, this is the first work investigating structural similarity between vertices
in dense bipartite subgraph mining.

e We develop a backtracking algorithm MSBE to enumerate all maximal similar-
bicliques in a bipartite graph. Vertex reduction and optimization techniques
are proposed.

e We design a novel index structure to facilitate the computation of similar
neighbors and propose a two-phase algorithm for efficient vertex reduction
based on the index.

e We propose effective and efficient index construction algorithms by investigat-
ing two different strategies.

e We propose index maintenance algorithms to handle dynamic graph updates.

e We parallelize our index construction algorithms by utilizing multiple CPU
cores.

e We conduct extensive experiments on 17 real bipartite graphs to demonstrate
the efficiency of our algorithms and the effectiveness of our similar-biclique
model. Our algorithm is up to 6 orders of magnitude faster than ocoMBEA.

4.2 Preliminaries

We consider an unweighted and undirected bipartite graph G' = (Vi, Vg, E), where
V1, and Vg denote the two disjoint vertex sets (i.e., L-side vertices and R-side vertices)
and E C Vp x Vi denotes the edge set. Without loss of generality, we assume that
vertices of V, take (integer) ids from {1,2,...,|Vz|}, and vertices of Vi take ids
from {1+ |V.],2+ |VL|,...,|Vr| + |VL|}. For any vertex v € V, (resp. v € Vg), we
say it is an L-side vertex (resp. R-side vertex). For any vertex subset C' C Vi, U Vg,
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we use C, and Cg to denote the subsets of vertices of C' that are from V;, and Vj,
respectively, i.e., Cp = C NV, and Cr = C'N Vg, We call the set of neighbors
of u in G, the structural neighbors of u, denoted Ng(u) = {v | (u,v) € E}, and
denote the structural degree of u by dg(u) = |Ng(u)|. Besides structural neighbor
and structural degree, we will also define similar neighbor and similar degree based
on structural similarity.

Definition 3 (Structural Similarity). Given two vertices u and v in G, their struc-
— INe(@)nNg()|

tural similarity is defined as sim(u,v) = Ne(@UNe (o)

The structural similarity sim(u,v) is between 0 and 1. It measures the Jaccard
similarity between the set of structural neighbors of v and that of v. Given a
similarity threshold € > 0, we say u and v are similar if sim(u,v) > . The set of
vertices that are similar to w is called the similar neighbors of u, denoted I'g . (u),
e, Ige(u) ={ve VouVg |sim(u,v) > e}. Accordingly, denote d¢ . (u) = [T'g(u)]
the similar degree of u. Note that, as the structural similarity between vertices from
different sides is always 0, similar neighbors only contain vertices from the same
side. For presentation simplicity, we call structural similarity simply as similarity,
and omit the subscripts G' and/or € from the notations.

Definition 4 (Similar-Biclique). Given a bipartite graph G = (V, Vg, F) and a
similarity threshold € > 0, a vertex subset C' C V;, U Vy is a similar-biclique if

e (is a biclique, i.e., Cp, x Cr C F, and

e all vertices from the L-side are similar to each other, i.e., sim(u,v) > €,Vu,v €

Cr.

We also denote C' as (C, Cg). A similar-biclique is maximal if it is not a subset of
any larger similar-biclique.

Note that for presentation simplicity, the similarity constraint is assumed to be
considered for the L-side vertices. To apply the similarity constraint for R-side
vertices in applications, we can simply swap the roles of V;, and Vj in G.

(a) A maximal biclique (b) Two maximal similar-bicliques

Figure 4.2: Maximal biclique vs. maximal similar-biclique

Example 8. Figure 4.2(a) shows a bipartite graph G with Vi, = {vo,...,v3} and
Vi = {v4, ..., vz}, in which the subgraph C in the gray area is a mazximal biclique.
However, vy and vy in the L-side of C' are not similar to each other for e = 0.6,
since sim(vy,vy) = 0.5. Subgraphs Cy and Cy as shown in Figure 4.2(b) are two
maximal similar-bicliques, in each of which all vertices on the L-side are similar to
each other.
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Problem 2 (Maximal Similar-Biclique Enumeration). Given a bipartite graph G =
(V, Vg, E), a similarity threshold € > 0 and a size constraint 7 > 0, we study the
problem of enumerating all maximal similar-bicliques C' in G that satisfy the size
constraint 7 (i.e., |Cr| > 7 and |Cg| > 7).

The size constraint 7 is adopted here to avoid generating too small or too skewed
similar-bicliques (i.e., with very few or no vertices in one side). For presentation
simplicity, we assume the same size constraint 7 for both sides. Note that, the
techniques that we are going to present in this chapter can be straightforwardly
extended to handle different size constraints on the two sides.

Theorem 3. The problem of enumerating all maximal similar-bicliques is #P-
complete.

Proof. The #P-completeness of our problem directly follows from the facts that
(1) the problem of enumerating all maximal bicliques is #P-complete (Kloster et al.,
2019; Kuznetsov, 2001), and (2) it is a special case of our problem, i.e., by setting
€= ﬁ Note that, for this small €, two vertices of V7, are similar if and only if they
have at least one common neighbors in Vz. Thus, every maximal similar-biclique is

also a maximal biclique, and vice versa. O

Remark about Strctural Similarity. In Definition 3, we use the Jaccard similar-
ity to measure the structural similarity since it has been widely used and shown great
success in many graph analysis tasks, such as structural graph clustering (Chang
et al., 2017; Tseng et al., 2021), link prediction (Liben-Nowell and Kleinberg, 2007;
Martinez et al., 2016), and local graph sparsification (Satuluri et al., 2011). Nev-
ertheless, other local-topology-based similarity measures, such as cosine similarity:

%, hub promoted index: %, can be easily plugged into our

model and algorithms. We will point out the changes that need to be made to
adopt these measures, when presenting our algorithms.

4.3 Our Algorithms

In this section, we propose an MSBE algorithm to enumerate all maximal similar-
bicliques. Before that, we first in Section 4.3.1 present a baseline algorithm based
on the existing maximal biclique enumeration algorithms.

4.3.1 A Baseline Algorithm

It is easy to observe that maximal similar-bicliques must be contained in maximal bi-
cliques, since every similar-biclique is also a biclique. Thus, a naive approach is first
enumerating all maximal bicliques by invoking one of the existing maximal biclique
enumeration algorithms, and then post-process the detected maximal bicliques to
obtain maximal similar-bicliques. Specifically, for each maximal biclique, we extract
maximal similar-bicliques by imposing the similarity constraint on L-side vertices,
and then eliminate all similar-bicliques that are either duplicates or non-maximal.
We omit the details, since our empirical study in Section 4.7 shows that enumerating
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Algorithm 7: MSBE(G = (V, Vg, E), &, T)

for each u € V, U Vg do del(u) = false;
VReduce(G, g, T, del(+));
for each u € V, s.t. del(u) = false do
Cp, + {u}; Cr < {v € N(u) | del(v) = false};
P+ (Z), Qp @,
Obtain T'(u);
for each v € T'(u) do
if v > u then Pp <« PrU{v};
L else Qr < Qr U {v};

| Enum(CL,Cr, Pr,QL);

© 0 N O oA~ W N

=
[=]

Procedure Enum(Cy,Cgr, Pr, Q1)
1 if Aue PLUQr s.t. N(u) D Cr then
12 L if |Cr| > 7 and |Cg| > 7 then output (Cr,CR) ;

13 for each u € P, do

14 C}l(—CLU{U}; C%FCRQN(U);

15 Obtain I'(u);

16 Pﬁ(—PLﬂF(u), Qi(—QLmF(U),

17 if |C|+|P;| > 7 and |Cg| > 7 then Enum(C},Ch, P;, Q%) ;
18 PL(—PL\{U}; QL%QLU{U};

all maximal bicliques by the state-of-the-art algorithm ooMBEA (Chen et al., 2022)
is already time consuming for large graphs.

4.3.2 Our MSBE Algorithm

According to the definition of similar-biclique, if we build a similarity graph G for V,
where two vertices of V7, are connected by an edge if their similarity is at least e, then
for every (maximal) similar-biclique C, its L-side vertices Cf, form a clique in Gj.
Moreover, once the L-side vertices C, of a maximal similar-biclique are determined,
the R-side vertices C'r can be easily obtained as the set of common neighbors of
Cp, ie., Cgp = ﬂueC’L N(u). In view of this, we propose to adopt the general
backtracking framework of the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973)
to enumerate all maximal similar-bicliques. However, there are two issues. (1) The
similarity graph Gy is not available in the input. (2) The set of L-side vertices C},
of a maximal similar-biclique C' is not necessarily a mazimal clique in G, though
Cp, is a clique in G,. This is because, a too large C';, may result in a too small Cf,
violating the size constraint 7 on Ck.

We propose techniques to address the above issues, and the pseudocode of our
algorithm is shown in Algorithm 7, denoted MSBE. We first prune unpromising
vertices by invoking VReduce (Lines 1-2), which will be introduced shortly in Algo-
rithm 8; a vertex u is pruned if del(u) = true. For each remaining vertex u € V,
with del(u) = false, we enumerate all maximal similar-bicliques containing u (Lines
3-10). To do so, we iteratively grow a partial solution (C,Cg) where C is initial-
ized as {u} (Line 4). Besides Cf, and Cg, we also maintain P, and @), in a similar
fashion to the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973). Specifically, Py,
is a set of candidate vertices that is used to grow Cp, and @), is a set of previously
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Algorithm 8: VReduce(G = (V1,, Vg, E), e, 7,del(+))
1 for each v € Vi, UVR do d(u) < |N(u)l;
2 for each u € V, do Obtain I'(u) and set d(u) < |T'(u)l;
s while (Ju € V, UV s.t. del(u) = false and d(u) < 7) or (Ju € V s.t. del(u) = false
and §(u) <7 —1) do

for each v € N(u) do d(v) + d(v) — 1;

if u € V;, then

Obtain T'(u);
L for each v € I'(u) do §(v) < 6(v) — 1;

del(u) = true;

RS

4]

considered candidate vertices that is used for checking the maximality of (Cr, Cg);
note that, each vertex of P,UQ); must be similar to all vertices of C'. P and ), are
initialized at Lines 5-9, after which we invoke the procedure Enum for enumeration
(Line 10); to avoid duplicates, the similar neighbors of u with larger vertex id than
u are put in Pp, and those with smaller vertex id are put in Q.

In Enum, if the current similar-biclique (Cf,Cg) is maximal, we report it (Lines
11-12); note that (Cr, Cr) is maximal if and only if there is no vertex u € PL U@y
such that N(u) O Cg. Next, Enum iteratively adds a vertex of P, to Cp, updates
the corresponding Cg, P, and ()1, and recursively invokes itself to enumerate more
similar-bicliques (Lines 14-17). After processing u € P, we remove u from Pj and
add it to @ (Line 18).

Vertex Reduction. As a similar-biclique needs to have at least 7 vertices on each
side, each vertex u in a similar-biclique C' must have at least 7 structural neighbors
in C (i.e., |No(u)| > 7). Furthermore, as all L-side vertices in a similar-biclique
C are similar to each other, each L-side vertex u must have at least 7 — 1 similar
neighbors in C' (i.e., [I'e(u)] > 7 —1). As a result, we can exclude all vertices
that violate either of these two conditions from being considered in the enumeration
procedure Enum, i.e., mark them as deleted; we call this process as vertex reduction.

We propose an algorithm VReduce to conduct vertex reduction, whose pseudocode
is shown in Algorithm 8. Firstly, we obtain the structural degree d(u) for each vertex
u € VL,UVg (Line 1), and obtain the similar degree §(u) for each L-side vertex u € V7,
(Line 2). Then, as long as there is a non-deleted vertex u with d(u) < 7 or a non-
deleted L-side vertex u with 6(u) < 7—1, we mark u as deleted (Line 8), decrease the
structure degree of u’s structural neighbors by 1 (Line 4), and decrease the similar
degree of u’s similar neighbors by 1 if u is an L-side vertex (Lines 5-7).

Compute Similar Neighbors I'(u). One fundamental operation in both Algo-
rithm 7 and Algorithm 8 is computing I'(u) for an L-side vertex u; note that I'(u)
is not stored with the graph G. A straightforward method to collect I'(u) is com-
puting sim(u, v) for each vertex v € V. The time complexity would be O(|E|), as
it needs to visit every edge of G. This is inefficient, by noting that Algorithm 7 and
Algorithm 8 need to compute I'(u) for many vertices u and for multiple times.

We propose a more efficient algorithm in Algorithm 9, denoted SimNei. Instead
of blindly computing sim(u, v) for each v € V7, we only compute sim(u, v) for those
v with sim(u,v) > 0. Our main idea is to first compute the number of common
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Algorithm 9: SimNei(G = (Vy, Vg, E), u, e, del(+))
Output: I'(u)
1 T(u) < 0;
2 for each v € V;, do c(v) + 0;
3 for each v € N(u) do
L for each w € N(v) and w # u do c(w) + c(w) + 1;
5 for each v € Vj, s.t. ¢(v) # 0 and del(v) = false do

7 return I'(u);

neighbors ¢(v) between v and v for each 2-hop structural neighbor v of u (Lines 3-
4). Then, sim(u,v) can be calculated as d)¢ (Line 6).! Note that, in
our implementation, to make the time compiexfay of glmNe| to be independent of
|VL| which may be large, we only initialize ¢(-) once at the beginning of the entire
algorithm execution (e.g., in MSBE), and after using ¢(-) at Line 4-6 of Algorithm 9
we reset those updated ¢(+) to be 0. In addition, we also collect at Line 4 the set of
vertices with non-zero ¢(+) into a set S, such that Line 5 as well as the resetting of

¢(+) can be conducted in O(|S]) time. As a result, the time complexity of SimNei is
O(X - en(u) d(v)), which is lower than O(|El).

Optimizations for Enum. We further propose two optimization techniques to
speed up the Enum procedure. Recall that, an instance of Enum is represented by
(CL, Cr, Pr,Qr) where Cr = (¢, N(u) and [Cg| > 7,* and aims to enumerate all
maximal similar-bicliques C* satisfying C;, C C; C CL,UP;. Firstly, an enumeration
instance can be terminated once we know that it will not generate any maximal
similar-biclique. That is, by including any subset of vertices of P, into Cp, the
resulting similar-biclique is not maximal. This is formulated in the lemma below.

Lemma 7 (Early Termination). If there exists a vertex u € Qr, such that u is similar
to all vertices of Py, and N(u) D Cg, then there is no mazimal similar-biclique C*
with Cp, C C7 C Cp U P, and thus we can terminate this enumeration instance.

Proof. Suppose there is such a maximal similar-biclique C* with C;, C C} C CLUP.
Then, we must have Cj, € Cg and thus N(u) O Cr D Cj. Since u € @y, is similar
to all vertices of P, (and also note that all vertices of @, including u, are similar
to all vertices of C', according to the construction of Q)1), u is similar to all vertices
of C7. Consequently, C* U {u} is also a similar-biclique, contradicting that C* is a
maximal similar-biclique. [

Secondly, we can reduce the number of instances generated at Line 17 of Algo-
rithm 7, based on the concept of dominating set.

Definition 5 (Dominating Set). Given an instance (Cf,Cg, P, Q) of Enum, for
two distinct vertices u,v € P U @, we say that u dominates v if sim(u,v) > ¢

c(®)

!The formula should be changed to ——22—
d(u)xd(v)

sne similar c(v)
for cosine similarity, and to () A0 for

hub promoted index.
2To be more precise, we should exclude from Cg all vertices that are marked as deleted.
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and Ne¢,(u) O Neg(v), where Nop(u) = N(u) N Cg. The dominating set of u,
denoted DomSet(u), is the subset of vertices of P, that are dominated by u, i.e.,
DomSet(u) = {v € Py, | sim(u,v) > e A N¢,(u) D Neop(v)}.

Note that, a vertex does not dominate itself.

Lemma 8. Given an instance (Cr,Cr, Pr,Qr) of Enum and a vertez u* € PLUQ),
any maximal similar-biclique C* with C, C C; C CL, U P, must contain a vertex of
P \DomSet(u*).

Proof. Suppose there is such a maximal similar-biclique C* with C, € C; C CLUP,
that contains no vertex of P \DomSet(u*). That is, C;\C, C DomSet(u*). Then, it
is easy to verify that C*U{u*} is also a similar-biclique, contradicting the maximality
of C*. O

Figure 4.3: Example of domination

Example 9. Consider the instance in Figure 4.3 where Qr = 0. For e = 0.6, v, €
Py, is similar to both vy and vs. Moreover, we can see that Ney,(v1) O Ngy,(ve) and
Ney(v1) 2 Ney(vs). Thus, DomSet(vq) = {vq, v3}, and we know that every mazimal
similar-biclique C* with Cy, C C} C CLUPL, must contain vy since Pr,\DomSet(v,) =

{1}

To apply Lemma 8, we revise Line 13 of Algorithm 7 as follows: we first choose
a vertex u* from Pr U @ before the “for loop”, and then replace “u € P;” with
“u € Pr\DomSet(u*)” in the “for loop” statement. This means that we do not gen-
erate enumeration instances, at Line 17 of Algorithm 7, for vertices u € DomSet(u*).
To maximize the benefit of Lemma 8 u* is chosen as the one that minimizes
| P\DomSet(u*)| among all vertices of P, UQy.

Theorem 4. The time complexity of Algorithm 7 is O(|Vy| - |E| - 2IV21).

Proof. Firstly, we prove that the time complexity of VReduce (i.e., Algorithm &)
is O3 ,ev,(d(v))?). In Algorithm 8, Line 1 runs in O(|E[) time. Line 2 runs in
O(> " e, (d(v))?) time, since computing T'(u) by Algorithm 9 takes O venu) dv))
as discussed above; note that » .. ZveN(u) d(v) = Z(w)eE d(v) = ZveVR ZueN(v)
d(v) = 3 ,e,,(d(v))?. Since each vertex u € Vi, U Vi is removed at most once at
Lines 4-8, the total cost of running Line 4 for all deleted vertices is O(|E|), and the
total cost of running Lines 6-7 for all deleted vertices is O(3,y, (d(v))?), the same
as that of Line 2. In addition, we use a queue to store the vertices that should be
deleted (i.e., satisfying the conditions at Line 3) such that finding a vertex at Line 3
takes constant time. Thus, the time complexity of VReduce is O(3- . (d(v))?).
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Now, we prove that the time complexity of MSBE (Algorithm 7) is O(|Vz]| - |E| -
2IVel). Firstly, it is easy to see that the time complexity of Algorithm 7 excluding
Line 10 (i.e., the recursion) is O(3 . (d(v))?), by following the analysis of the time
complexity of VReduce. Secondly, invoking Enum with input (Cp, Cg, P, Q1) takes
time O(|E|-2/7:1), since the recursion builds a complete binary search tree with each
instance (Cr, Cg, Pr, Q) has two children: one including v into C7,, one excluding u
from C'r. The time for generating the first child (Lines 14-17) is O(3_,c () d(v)) €
O(|E]), and the time for generating the second child is O(1) (Line 18). In addition,
the total number of leaf instances is 272. Thus, each invocation to Enum at Line 10
of Algorithm 7 takes time O(|E|-2172l) € O(|E|-2V:1), and the total time complexity
follows. [l

Discussions. MSBE is different from both maximal clique enumeration algorithms
for unipartite graphs and maximal biclique enumeration algoirthms for bipartie
graphs, as follows. Firstly, MSBE needs to compute the similar neighbors for L-
side vertices, which are not required by any of the existing algorithms. Secondly,
compared with maximal clique enumeration algorithms, MSBE needs to consider
common structural neighbors C'r of (', in addition to common similar neighbors.
Thirdly, compared with the state-of-the-art algorithm ooMBEA for maximal biclique
enumeration, MSBE needs to maintain the set Q1 for checking maximality of similar-
bicliques. Forthly, our optimization techniques for Enum are also different.

In MSBE, we need to obtain the similar neighbors I'(+) of an L-side vertex multiple
times, e.g., at Lines 6 and 15 of Algorithm 7 and Lines 2 and 6 of Algorithm 8. We
can either invoke SimNei to compute I'(u) every time when it is needed, or store I'(u)
in main memory after it is computed for the first time and then directly retrieve it
for all subsequent requests. We use MSBE to denote the algorithm that uses the
first strategy, and mat-MSBE the algorithm that uses the second strategy (here, mat
stands for materialization).

4.4 Speeding Up Similar Neighbor Computation
and Vertex Reduction

MSBE has the disadvantage of repeatedly computing the similar neighbors from
scratch which is time consuming, while mat-MSBE may demand an extremely large
main memory to store the similar neighbors. For example, it would take more than
400GB main memory for the graph bibsonomy used in our experiments even for a
moderate € = 0.5. In this section, we propose an offline-constructed index to speed
up the computation of I'(u) as well as vertex reduction. We give an overview of the
index structure in Section 4.4.1, present our index-based algorithms in Section 4.4.2,
and discuss index construction in Section 4.4.3.

4.4.1 Overview of Index Structure

Let @, be the set of 2-hop structural neighbors of u, i.e., ®, = J, ¢y, N (v). Firstly,
we have the following lemma.
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Figure 4.4: Overview of index structure

Lemma 9. For any similarity threshold € > 0, the set of similar neighbors of u is
a subset of @, i.e., I'c(u) C P,.

Proof. The correctness of the lemma directly follows from the fact that any vertex
v ¢ &, U {u} has no common neighbor with u and thus sim(u,v) = 0. O

Based on Lemma 9, one possible indexing strategy is pre-computing and storing
sim(u,v) for each u € V, U Vg and each v € ®,.> However, the space complexity
of this strategy would be O(|Vz|? 4+ |Vg|?), which is prohibitively high even for
moderate-sized graphs since the space requirement is essentially the same as the
case of mat-MSBE when ¢ is very small. For example, even for a moderate-sized
graph with 10° vertices, the storage space would be over 2TB.

Instead of storing @, and the structural similarities in their raw format, we sum-
marize them into a few segments.

Definition 6 (Segment). A segment, denoted seg, of ®,, is a four-tuple (Vinin, Vinax, Smax, €)
where Viin < Vimax are two vertices of @, Spax = MaXyea, v, <o<vima, SIM(U, V), and
c=NHv € Py | Vimin < v < Vpaxf|. Here, vertex comparison is based on vertex id.

Given a segment seg = (Vinin, Vimax, Smax, ¢} Of @, we use V(seg) to denote {v €
Dy | Vinin < v < Vppax }- It is immediate from the definition that ¢ = |V (seg)| and

® Viin (T€SP. Vmay) is the smallest (resp. largest) vertex id in V(seg);

® Sp.x is the largest similarity between u and a vertex of V' (seg), and thus syax
provides an upper bound of sim(u,v) for all v € V'(seg).

Thus, we say that seg covers vertices V (seg). A set of segments S, = {segy, ... ,seg;}
covers ®,, if UsegeSu V(seg) = ®,. In this chapter, we only consider disjoint segments,
ie., V(seg;) NV (seg;) = for i # j. Our index structure, denoted Z, covers ®,, by
a set of segments, for all u € V;, U Vi. That is, Z consists of S, such that S, covers
®,, for all uw € Vi, U Vi.

Example 10. Figure 4.4 shows the 2-hop structural neighbors ®,, of w, which are
sorted in increasing order regarding vertex id. The decimal below each vertex is the
similarity w.r.t. u. @, is covered by three segments seg,, seg,, segs. Take seg, as
an example, the two numbers in the first row (i.e., 1 and 3) represent Vi, and Viax,
and the two numbers in the second row (i.e., 0.5 and 3) represent syax and c.

3Note that, we also need to index ®,, for u € Vi, since in practice the similarity constraint can
be put on either L-side or R-side vertices.
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Algorithm 10: indexedSN(u, e, G,Z, del(-))

1 T(u) < 0;
2 for each seg € S, s.t. seg.spax > € do
for each v € [seg.Vimin, S€€-Vimax] dO
if del(v) = false and v # u then
L if ub(u,v) > ¢ and sim(u,v) > ¢ then

o o A

| T(w) < T(u) U{v}s

7 return I'(u);

4.4.2 Index-based Algorithms

In this subsection, we present index-based algorithms for similar neighbor compu-
tation and for vertex reduction.

Index-based Similar Neighbor Computation. The pseudocode of using the
index Z to efficiently obtain the similar neighbors I'(u) for a vertex w is shown
in Algorithm 10, denoted indexedSN. We go through each segment seg € S, with
seg.Smax > € (Line 2), and compute sim(u, v) for each v € [seg.Vinin, S€g.Vimax] (Line 3);
recall that (1) seg.smax upper bounds sim(u,v) for each v € V(seg), and (2) V(seg)
is not stored in the index structure Z. As computing sim(u,v) needs to intersect
two sets N(u) and N (v) which is costly, we propose to first apply a filtering for the
pair v and v based on an upper bound ub(u, v) of sim(u, v) (Line 5); if ub(u,v) < &,
then we have sim(u,v) < ub(u,v) < ¢ and thus v ¢ I'(u). For the similarity in
%; we set this as ub(u, v),
which can be calculated in constant time.* indexedSN is expected to run faster than
SimNei (Algorithm 9) as the former can skip an entire segment if its sy is smaller
than e.

Definition 3, it is easy to verify that sim(u,v) <

Index-based Two-Phase Vertex Reduction. Based on indexedSN, we can speed
up VReduce (Algorithm 8) by invoking indexedSN to compute I'(u). However, this
is still inefficient, as VReduce needs to compute I'(u) for all u € Vi, (see Line 2 of
Algorithm 8). We propose to utilize the index Z to first obtain an upper bound of
the similar degree for vertex reduction, as proved in the lemma below.

Lemma 10 (Upper Bound of Similar Degree). Let S, be the set of segments that

cover ®,,. Then, the similar degree 0.(u) of u is upper bounded by ZsegeSu e sman>e SEB-C-

Proof. This lemma directly follows from the fact that sim(u,v) < ¢ for all v €
V (seg). O

UsegGSu 1Seg.Smax <&

Consider the part of the index in Figure 4.4 and suppose € = 0.4. By scanning
S., we obtain an upper bound of u’s similar degree as 6, i.e., seg;.c + segs.c = 6;
seg, is omitted since its sy, is only 0.2.

Furthermore, we also observe that the structural degree can be obtained effi-
ciently. Thus, we propose a two-phase approach for vertex reduction, which first

4The upper bound for cosine similarity is W, while the upper bound for hub promoted

index is 1 and thus not useful.
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Algorithm 11: indexedVR(G,Z, ¢, 7, del(-))
/* Phase-I: vertex reduction based on structural degree and upper bound of similar degree */
1 for each v € Vi, UVR do d(u) < |N(u)l;
2 for each u € V7, do §(u) « D segeS, : seg.smax >c S8
s while (Ju € V, UV s.t. del(u) = false and d(u) < 7) or (Ju € V s.t. del(u) = false
and 6(u) <7 —1) do
4 for each v € N(u) do d(v) + d(v) — 1;
del(u) « true;

/* Phase-II: vertex reduction based on structural degree and similar degree */

6 for each u € Vi, UVg do del2(u) < del(u);
7 for each u € Vi, s.t. del(u) = false do
s | (6p(u),idx(u))  progressiveSN(u,e, G, Z,del2(-),7 — 1,1);

o while (Ju € V, UV s.t. del(u) = false and d(u) < 7) or (Ju € V, s.t. del(u) = false
and 6,(u) <7 —1) do

10 for each v € N(u) do d(v) « d(v) — 1;

11 if u € Vi, then

12 I (u) « indexedSN(u, e, G, Z, del(+));

13 for each v € T'(u) do

14 0p(v) = p(v) — 1;

15 if 0,(v) =7 —2 and d(v) > 7 then

16 (r,idx(v)) « progressiveSN(v, e, G, Z, del2(-), 1,idx(v));
17 L 0p(v) < 6p(v) + 73

18 del(u) + true;

Procedure progressiveSN(u, e, G, Z, del2(+), ¢, )

/* Let S, be {seg;,seg,,...,segs, |} */
19 1 0;
20 for each i € {b,b+1,...,[Sy|} s.t. seg;.Smax > € do
21 for each v € [seg;.Vimin, S€8;-Vmax] dO
22 if del2(v) = false and v # u then
23 if ub(u,v) > ¢ and sim(u,v) > ¢ then
24 L L r<r+1;
25 if » > ¢ then return (r,i+ 1);

26 return (7, [S,|+ 1);

conducts vertex reduction by using structural degree and upper bound of similar
degree in Phase-I, and then using structural degree and similar degree in Phase-II.
The pseudocode of our two-phase vertex reduction is shown in Algorithm 11, de-
noted indexedVR. In Phase-I, we first obtain the structural degree d(u) for each
u € VUV (Line 1), and an upper bound d(u) of the similar degree for each vertex
u € Vp, (Line 2). Then, as long as there is a non-deleted vertex u € V;,UVy satisfying
d(u) < 7 or a non-deleted vertex u € V7, satisfying §(u) < 7 — 1 (Line 3), we mark u
as deleted and update the structural degree of its structural neighbors (Lines 4-5);
note that, we do not update 0(-) in Phase-I. In Phase-II, we first compute a progres-
sive similar degree, denoted d,(-), for each non-deleted L-side vertex, by invoking
progressiveSN (Lines 7-8). Here, d,(u) is a lower bound of u’s similar degree §(u),
and it records the number of similar neighbors that have been computed for u; our
computation of ,(u) ensures that 6,(u) > 7—1 if and only if §(u) > 7—1. Then, as
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long as there is a non-deleted vertex u € V;,UVp satisfying d(u) < 7 or a non-deleted
vertex u € Vy, satisfying 0,(u) < 7 — 1, we mark u as deleted (Line 18) and update
the structural degree of its structural neighbors (Line 10). Furthermore, if u is an
L-side vertex, we also obtain the set I'(u) of similar neighbors of w (Line 12), and
update the progressive similar degree d,(v) to satisfy the invariant that d,(v) > 7—1
if and only if §(v) > 7 — 1 for each v € I'(u) (Lines 13-17). Note that, in our im-
plementation, we use a queue to maintain the vertices that satisfy the condition at
Line 3 or Line 9; as a result, we do not need to loop through all non-deleted vertices
to find the unpromising vertices.

In Algorithm 11, for an L-side vertex u, we compute J,(u) instead of §(u). Our
main motivation is that for an L-side vertex u satisfying d(u) > 7, we only need
to compute 7 — 1 of its similar neighbors to certify that it is a promising vertex.
That is, we stop the computation of I'(u) once d,(u) > 7 — 1; however, if some
of the computed similar neighbors of u are later removed (i.e., marked as deleted),
then we need to update d,(u) by computing more similar neighbors of u (Lines 15~
17 of Algorithm 11). As a result, for vertices with high similar degrees in the
remaining graph (i.e., obtained by removing all unpromising vertices), we only need
to compute a small portion of their similar neighbors to prevent them from being
removed and thus save unnecessary similar neighbor computations. The pseudocode
of computing §,(u) is shown in Lines 19-26 of Algorithm 11, denoted progressiveSN.
It is invoked only when d,(u) < 7 — 1 and there are still unchecked segments of @,.
In progressiveSN, we check the segments of S, one by one (Line 20-24), and stop
once we have found enough similar neighbors for u (Line 25). We record the index
of the first unchecked segment in idx(u) (Line 8).

indexedVR is better than VReduce (Algorithm 8), since (1) Phase-I of indexedVR is
lightweight but very effective at pruning vertices as demonstrated by our empirical
studies, and (2) indexedVR uses indexedSN and progressiveSN to compute the similar
neighbors.

Overall Algorithm. Our index-based MSBE improves upon Algorithm 7 by re-
placing the invocation to VReduce at Line 2 with invoking indexedVR for vertex
reduction, and invokes indexedSN to compute I'(u) at Lines 6 and 15. Nevertheless,
the time complexity of index-based MSBE remains O(|V;| - |E| - 2IV2l) as proved in
Theorem 4, by noting that the time complexity of indexedSN remains O(|E|). De-
spite of having the same time complexity, our empirical studies in Section 4.7 show
that the index-based approach can improve the efficiency of MSBE by several orders
of magnitude.

4.4.3 Index Construction

In this subsection, we present two algorithms to construct the index based on the
ideas of largest gap and steady segment, respectively. Note that, the indexes are
constructed offline, and once constructed, they can be used to process maximal
similar-biclique enumeration queries with different ¢ and 7 values.

Largest Gap (LG) Index. Recall that, our index structure summarizes a sub-
set of vertices of @, and their similarities to a vertex u by four numbers seg =
{(Vinins Vmax, Smax, C), where sy, is an upper bound of the similarity between u and
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each v € ¢, such that vy, < v < vy To obtain the similar neighbors of u that
are in the range [Vimin, Vmax], We need to go through each vertex v € [Viin, Vimax] and
test its similarity with u (e.g., see Line 3 of Algorithm 10) even if v ¢ V (seg). We
call a vertex v that is in the range [Viin, Vimax] but not in V(seg) a fake vertex.

Intuitively, we should minimize the number of fake vertices when constructing the
index. We call the index built by this strategy the largest gap (LG) index. It is
constructed as follows. Suppose we are going to cover ®, by k segments. This is
equivalent to find k — 1 cut points in the sequence of vertices of ®, that are ordered
in increasing vertex id order; denoted the sequence of vertices as {vi,va, ..., vj,}-
Note that, the vertex ids are not consecutive, i.e., it is possible that v, — v; > 1.
We represent the & — 1 cut points by k& — 1 index values {¢y,--- ,¢;_1} such that
1 <ty <ty <-r < Ly < |y, ie., the i-th cut point is between vertex vy, _;
and vertex vy,. Define ¢y = 1 and ¢, = |®,| 4+ 1. Then, segment seg; covers vertices
{ve, |, - 00,1}, for 1 < i < k. Let f; be the number of fake vertices if we cover
®, by only one segment, i.e., fi = vjo,| —v1 + 1 — |®,| where v, — vy + 1 is the
total number of vertices in the range [v1,v}s,|]. It is easy to verify that the number
of fake Vertices of covering ®,, by k segments with the k —1 cut points {¢1,...,lx_1}
is f1— Zl 1 ( vg, —vg,—1+1). As fj is a fixed number for ®,,, minimizing the number
of fake vertices is equivalent to maximizing S5 (vs, — v, 1 + 1).

Definition 7 (Gap). Given the sequence of vertices {vi,va,...,vje,} of ®, that
are ordered in increasing vertex id order, the gap of vertex v; for ¢ > 1 is defined as
v; — v;_1 + 1; the gap of vy is defined as 0.

Thus, the LG index constructs k segments to cover ®,, where the £ — 1 cut
points are the £ — 1 vertices with the largest gaps. We omit the details, since it is
outperformed by our steady segment index as introduced next.

%@@@o@ogoo

0.2
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seg1 segy  Segs
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Figure 4.5: Example of consLG

Example 11. Figure 4.5 shows the three segments constructed by the largest gap
strategy for the same ®, as Fxample 10.

Choosing the number of segments to cover ®,. It is easy to see that the more the
number of segments, the fewer the number of fake vertices introduced by the seg-
ments. In the extreme case of covering ®, by |®,| segments, there will be no fake
vertices introduced. However, the space complexity would be too high to be practi-
cal, as discussed in Section 4.4.1. Thus, we set the number of segments for covering
o, as a-log |P,| where « is a user defined parameter, in viewing that a fixed number
for different ®, will not work as |®,| varies a lot across different vertices u.
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Steady Segment (SS) Index. The LG index ignores the similarities (between u
and different vertices) in a segment, and thus may result in a very wide range of
similarity values for a segment. This is not good for indexedSN and progressiveSN,
as they need to check all vertices covered by a segment seg even if there is only one
vertex in seg whose similarity to u is no lower than €. Motivated by this, we aim
to construct steady segments such that all similarities in a segment are close to each
other.

Definition 8 (Steady Segment). Given a steady threshold 0 < v < 1, a segment
seg = (Vimin, Vimax, Smax, C) Of @, is steady if max,cv (seg) SIM(u, v) —Min,cy (seg) SiM(u, v) <
7.

The first term, max,cy (seg) SiM(u, v), is exactly seg.smax. For ease of presentation,
we denote the second term, min,cy (seg) SiM(u, v), by seg.smin, the smallest similarity
value. A segment seg is steady if seg.spax — S€g.Smin < 7. The main advantage of
a steady segment is that if seg is steady and satisfies seg.spax > €, then it is likely
that many vertices of V' (seg) have similarity values to u no lower than ¢, and thus
most of the computation will not be wasted.

Ideally, we would like to find the minimum number of steady segments to cover
®,. However, the number of required steady segments could be very large. For
example, if the steady threshold « is very close to 0 and all vertices of ®, have
different similarity values to u, then the number of required steady segments to
cover @, is |®,|. Thus, we instead construct a fixed number of steady segments to
cover as many vertices of ®, as possible, and then cover the remaining uncovered
vertices of @, by as few segments as possible by ignoring the difference between the
similarity values.

Given v and k, our problem is to find k steady segments to cover as many vertices
of ®, as possible. We first construct, for each vertex v € ®,,, a maximal steady seg-
ment seg, that starts at v (i.e. seg,.vmin = v), and then select k segments S* from
{seg, | v € ®,} such that ||J s V(seg,)| is maximized. This is an instance of the
maximum k-coverage problem which is NP-hard (Megiddo et al., 1983). We select
the k segments in a greedy manner. That is, the k£ segments are selected one-by-one.
Let S be the starting vertices of the currently selected segments. Then, the next

segment to be added to S is arg max,ecq,

Uwesuge V(segv,)‘ . As this function is sub-

modular, the greedy approach achieves an approximation ratio of 1 — % (Hochbaum,
1996).

The pseudocode is shown in Algorithm 12, denoted consSS. For each vertex u, we
first compute its 2-hop structural neighbors ®,, and their similarities to u (Line 2),
and sort ®, in increasing vertex id order (Line 3). Then, for each v; € ®, we
compute the maximal steady segment seg, that starts at v;, by iteratively trying
to add the next vertex to the segment (Lines 7-12). Next, we iteratively add to
S, the segment of C that covers the largest number of uncovered vertices of &,
(Lines 14-22). Note that, after adding a segment into S,, we also need to update
the remaining segments of C to be disjoint from the segments of S, (Lines 18-22).
During this process, for time efficiency consideration, we do not maintain seg.syay;
instead, we compute seg.Syay for each segment seg € S, later (Line 23). Finally,
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Algorithm 12: consSS(G = (Vy,, Vg, E), a, )
1 for each v € V;, UVRx do

2 ®,, + SimNei(G, u, m),

3 Let {v1,v2,...,vj0,} be vertices of ®, in increasing vertex id order;
4 C «+ @;

5 for i < 1 to |®,| do

6 Smin 1, Smax < 07

7 for j < i to |P,| do

8 if sim(u,v;) < Smin then sy, < sim(u,v;);
9 if sim(u,v;) > Smax then spax « sim(u, vj);
10 if Syax — Smin > Y then

11 L seg,.  (vi,vj_1,null, j —i);

12 break;
13 C+ CU{seg,. };

14 Sy < 0; k<« min{|P,|, - log |P,|};
15 while |S,| < k and C # () do

16 seg™ ¢— arg maxXsegeC S€g.C;

17 Sy + S, U {seg*};

18 for each seg € C do

19 if seg™ .Viin < S€g.Viin < seg*.vimax then

20 L Remove seg from C

21 else if seg.viyin < seg*.Vmin < seg.Vmax then

22 Let v be the vertex that immedidately precedes seg*.viin in @, change

L seg.Vmax to be v, and update seg.c accordingly in C;

23 for each seg € S,, do Compute seg.syax;

24 for each mazimal consecutive sequence of vertices v;,viy1,...,v; of ®, that are not
covered by S, do

25 L Add to S, the segment that covers {v;,...,v;};

26 return Z = {S, | u € VL UVR};

we create the minimum number of segments to cover all vertices of ®, that are not
covered by S, (Lines 24-25).

Example 12. Figure 4.6 shows the three steady segments constructed for the same
&, in Examples 10 and 11, where v = 0.1.

Stmilarity Tree. Lines 5-12 of Algorithm 12, which constructs the initial maximal
steady segments for each vertex, has a high time complexity of O(|®,|?), and may
dominate the total running time of Algorithm 12. In view of this, we build a
similarity tree data structure 7, for each ®, to speed up the process. 7, is similar
to a range tree or segment tree (de Berg et al., 2008). Each tree node t of T,
represents a range of vertices of ®, — specifically, the vertices corresponding to the
leaf nodes of the subtree rooted at ¢ — and records two values ¢.5,i, and t.S,.x Which
are, respectively, the smallest similarity and the largest similarity among the vertices
represented by ¢. An example similarity tree is shown in Figure 4.7. t; represents
the third vertex and the forth vertex, while t3 represents the last four vertices of ®,,.
Let {v1, vy, ... ,v|¢u|} be the vertices of ®, sorted in increasing id order. We first
create one leaf node t for each vertex v € ®,, with t.sp1, = t.Spax = sim(u, v). Then,
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Figure 4.6: Example of consSS

we construct the tree layer-by-layer in a bottom-up manner. Let T; be the list of tree
nodes at the current layer. We go through 7; by accessing two tree nodes each time.
For each pair of tree nodes ¢t and #', we create a new tree node ¢, as their parent and
put t, into list T;44; if there is only one node in the last step, we directly put it into
Ti11. Note that, t,.Smin = min{t.Spin, t’'.Smin} and similarly ¢,.sp.x. The construction
finishes when a layer has only one node, which is the root of the similarity tree. It
is easy to see that tree construction takes O(|®,|) time, as the tree is a complete
binary tree.

1 2 3 4 5 6 7 8
s 0.4 0.5 2 0.1 0.2 0.1 0.8

0.4 0.

Figure 4.7: Similarity tree data structure

To compute the maximal steady segment of v, we first traverse the similarity
tree upwards, starting from the leaf node that corresponds to v, and then go down-
wards. During the process, we maintain s,;, and s,.., which are initialized by
sim(u,v). In the upward phase, if the current tree node t is a right child of its
parent, then we directly go to its parent. Otherwise, let " be the right-sibling of
t. If max{smax,t -Smax} — Min{Smin, ¥’ .Smin} < 7 which means that we can include
all vertices represented by t' into the segment, then we update sy, and sy.c by
Min{Smin, ¥’ .Smin} and max{Smax, t'-Smax }, respectively, and go to its parent. Other-
wise, we go to ' and move into the downward phase. In the downward phase, let ¢,
be the left child of the current node t. If max{smax, t;-Smax } — Min{Smin, t7-Smin} < ¥,
then we update s, and sy and go to t’s right child. Otherwise, we go to t’s
left child. Finally, when we arrive at a leaf node, we can decide whether the corre-
sponding vertex should be included into the segment or not. It is easy to see that
this process takes O(log|®,|) time which is the height of the similarity tree. Thus,
constructing the maximal steady segment for all vertices of @, takes O(|®,|log |P,|)
time.
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Example 13. Suppose we are going to construct the mazximal steady segment for the
second vertex of ®, as shown in Figure 4.7 with v = 0.3. Initially, smin = Smax = 0.5
and t is the second leaf node. As t is a right child of its parent ty, we directly
go to ty. Now, ty is a left child of its parent to, and ty’s right sibling is t5. As
max{Smax; t5-Smax } — MIN{Smin, t5.Smin} = 0.5 — 0.2 = 0.3 < v, we include all vertices
represented by ts (i.e., the third and forth vertices) into the segment, update Spin
to be max{smin, t5-Smin} = 0.2 and spax to be 0.5, and then go to its parent to.
to is a left child of its parent and its right sibling is tz. As max{Smax,t3-Smax} —
Min{Syin, t3-Smin} = 0.8 — 0.1 > =y, we go to t3 and move into the downward phase.
t3’s left child is tg and max{Smax, t6-Smax } —MIN{Smin, t6-Smin } = 0.5—0.1 > 7, we go to
its left child tg. Similarly, we go to tg’s left child, which is a leaf node corresponding
to the fifth vertex of ®,. We find that the first vertex cannot be included into the
segment. Thus, the mazximal steady segment consists of three vertices, the second,
third, and forth vertices.

Computing mazimal steady segments in linear time. Although similarity tree can fa-
cilitate the computation of maximal steady segment, we observe in experiments that
this process is still very time-consuming. To further improve the efficiency, we pro-
pose a two-pointers based method to construct the initial maximal steady segments
for each vertex in ®,,, whose time complexity is linear to the size of ®,,, i.e., O(|D,]).
In this subsection, we denote the maximal steady segment of a vertex u by seg,.
Firstly, we have the following observation.

Observation 1. Suppose @, is sorted in increasing order of vertex id, i.e., {vy, va, . . .,
Vja,|}- For two vertices v;,v; € @, s.t. ¢ < j, the largest vertex id in the maximal
steady segment of v; is larger than that of v;, i.e., ségvj.vmax > $€g, Vmax-

Suppose vertices in @, are sorted in increasing order of vertex id and we process
each vertex one by one. Starting from v, we create two pointers ¢ and j that both
point to vy initially. Then, we move j to the next vertex along this order until the
segment formed by ¢ and j is not steady or j reaches the last vertex in ®,. Here, the
segment formed by ¢ and j means this segment covers vertices in the range from ¢
to j in ®,. To check if the segment formed by ¢ and j is steady or not, we maintain
two queues ()7 and ()2 which record the smallest similarity and the largest similarity
between u and the vertices in the range from ¢ to j. The maintenance of ); and
(> will be introduced later. When j reaches at a vertex that makes the segment
formed by 7 and j not steady or j reaches the last vertex in ®,, we stop moving j
and construct the maximal steady segment for v; according to i and j. Then, we
start to process vy by making i point to vy. According to Observation 1, we can
safely continue to move j if it has not reached the last vertex. Note that during
the movement of 7 and 7, it is easy to check if the segment formed by i and j is
steady or not by maintaining ); and )5. When j reaches at a vertex that makes
the segment formed by 7 and j not steady once again or j reaches the last vertex in
®,,, we stop moving j and construct the maximal steady segment for vy according
to ¢ and 7. We construct the maximal steady segments for remaining vertices in a
similar way. According to the definition of maximal steady segment, it is easy to see
that the above procedure can construct maximal steady segments for each vertex in
®,, correctly.
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Generally speaking, ()1 and () are double-ended queues whose element is sim-
ilarity. Elements in @)y (resp. (2) obey a non-increasing (resp. non-decreasing)
order and the head element is the smallest (resp. largest) similarity between u and
a vertex in the range from ¢ to j. Initially, both ¢ and j point to v; and we insert
the similarity between u and v; into @)1 and ()2. When j moves to the next vertex,
we do the following operations:

e For ()1, remove the element from the end of @); until the last queue element
is smaller than the similarity between u and the vertex pointed by j, or @
becomes empty.

e For ()5, remove the element from the end of ()5 until the last queue element is
lager than the similarity between u and the vertex pointed by j, or ()2 becomes
empty.

e Add the similarity between u and the vertex pointed by j to the end of @,
and Qs.

When i moves to the next vertex, we remove the first element in Q; (as well as Q3)
if its corresponding vertex in ®, precedes the vertex pointed by 1.

In this way, we always guarantee that the first element in @)y (resp. Q) is the
maximum (resp. minimum) similarity between u and a vertex in the range from ¢
to j. It is easy to check if the current segment formed by ¢ and j is steady or not
by comparing the gap between the first element from @), and Q)5 with ~.

The pseudo code is shown in Algorithm 13. The input of TPA consists of u’s
2-hop neighbors @, and a steady threshold . Note that vertices in ®, are in the
increasing order of vertex id. Firstly, we create two pointers ¢ and j, which are both
initialized as 1. We also create two empty queues )7 and ()5, in which each element
is a pair of variables, in the form of (s,p). Here, s records the similarity and p
records the position of the corresponding vertex in ®,. Then, we start to construct
maximal steady segment for each vertex one by one (Lines 4-13). Specifically, i
points to the vertex that is processed in the current iteration and j keeps moving
to the next vertex until it reaches the end vertex of ®, or the segment formed by
i and j is not steady (Line 5). Each time j moves to the next vertex (Line 8), we
invoke procedure update to modify @; (Line 6) and Q2 (Line 7). Procedure update
will be introduced later. Once we find that the segment formed by ¢ and j is no
longer steady by checking the head elements of )1 and @y (Line 5), we terminate
the movement of j and construct the maximal steady segment of v; (Lines 9-10).
Then we increase i by 1 to process next vertex (Line 11). Then we update the head
element of (J; and ()3 to make sure that they are both in the range from 7 to j.
That is, we remove the head element from the queue if its position is smaller than
i (Lines 12-13).

The input of procedure update consists of the queue @, the similarity (i.e., s) and
its position in ®, (i.e., j), and a boolean variable flag to indicate how to maintain
Q. If flag is 0, we maintain elements in () in a decreasing order with respect to the
similarity (Lines 15-18). Specifically, we remove elements from the tail of the queue
until the similarity of the last element is larger than s, or the queue becomes empty
(Lines 16-17). Then, we add the new element (s, j) to the tail of the queue (Line
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18). If flag is 1, we maintain elements in @) in an increasing order with respect to
the similarity in a similar way (Lines 19-22).

Algorithm 13: TPA(®,, )

1141, 5+ 1

2 Q1+ 0, Q2 < 0

3 C <« 0;

4 while i < |®,| do

5 while j < |®,| and Q;.head. first — Qs.head.first < v do

6 update(Q1,sim(u, v;), j,0); /* decreasing order */;
7 update(Q2,sim(u, v;), j, 1); /* increasing order */;
8 J—J+1L

9 seg,, < (vi,vj_1,Q1.head. first, j — i);
10 C <+ CuU{seg,. };

11 i1+ 1;
12 if Q1.head.second < i then Remove the head element of Qq;
13 if QQ5.head.second < i then Remove the head element of (Qo;

14 return C;

Procedure update(Q, s, 7, flag)
15 if flag = 0 then

16 while Q.tail.first < s do

17 | Remove the tail element of Q;
18 | Add (s,j) to the tail of Q;

19 else

20 while Q.tail. first > s do

21 L Remove the tail element of Q;
22 | Add (s,j) to the tail of Q;

To apply TPA, we replace Lines 4-13 of Algorithm 12 by Algorithm 13. It is easy
to see that the time complexity of Algorithm 13 is linear to the size of ®,. This is
because each vertex in @, is added into @1 (resp. ()2) at most once and removed
from @ (resp. @Q)2) at most once. Thus, the time complexity of Algorithm 13 is
O(|®.,|), which is better than similarity tree based algorithm whose time complexity

is O(|®,| log |Dy]).
N N I I
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(a) Processing vertex vy (b) Processing vertex vs

Figure 4.8: Two pointers algorithm

Example 14. Suppose we are going to construct the maximal steady segments for
each vertex in ®, as shown in Figure 4.8 with v = 0.3. Firstly, we process vi. We
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make i and j both point to vy initially, and then we move j. When j reaches at vs (see
Figure 4.8(a)), we find that the segment formed by i and j is not steady. This can be
verified by checking the head elements of Q1 and o, which are colored as grey, i.e.,
0.6 — 0.2 > 0.3. Thus, we construct the mazimal steady segment for vy according
to i and j, i.e., (v1,v2,0.6,2). Next, we start to process vy by making i point to
vy. At this stage, the head element in ()1 will be removed since its corresponding
verter in ®, precedes the vertex pointed by i. Now the segment formed by i and j
(recall that j is pointing to vs) becomes steady since the head element in Q1 now
is 0.5 and 0.5 — 0.2 < 0.3. We continue to move j. When j reaches at vy (see
Figure 4.8(b)), we find that the segment formed by i and j is not steady once again,
1.e., 0.7—0.2 > 0.3. Thus, we construct the mazximal steady segment for vy according
toi and j, i.e., (ve,v8,0.5,3). We construct mazimal steady segments for remaining
vertices in a similar way.

Analysis of consSS. For each vertex u € Vi U Vg, Line 2 of Algorithm 12 takes
O ven()d(v)) time, Line 3 as well as Lines 5-12 take O(|®y[log|®,|) time;
Lines 5-12 use the similarity tree data structure as discussed above. The while
loop at Line 15 runs for at most « - log|®,| iterations, and each iteration takes
O(|®,|) time. Lines 23-25 take O(|®,|) time. Thus, the total time complexity of

consSS is O(ZueVLUVR (a]@ul10g [Pu| + X e nw) d(v))) time.

4.5 Index Maintenance

In the previous section, we introduced a novel index and index construction algo-
rithms. However, most of real-world graphs are frequently updated. Motivated by
this issue, in this section we discuss algorithms for maintaining our proposed index
structure when graphs update. Note that the update algorithms introduced in this
section can both be applied to LG index and SS index.

Here, we mainly focus on the edge insertion and deletion, as the vertex updates
can be handled by performing several edge updates. Note that our index is relevant
to the vertex id. When deleting a vertex, we preserve its id and do not assign it
to the later new vertices. When inserting a new vertex, its id is set as the current
largest id plus 1, (i.e., n + 1, where n is the current largest id in the graph).

4.5.1 Edge Insertion

Let (u,v) be an edge inserted into G. W.l.o.g., assume u is an R-side vertex and v
is an L-side vertex. Then, we have the following observation.

Observation 2. Suppose a new edge (u, v) is inserted, then only the index structure
(ie., Sy,) for w € &, U P, U {u,v} will change.

Firstly, let us discuss the index maintenance for R-side vertices, i.e., ®, and u. For
vertices w € ®,, S, needs to be updated since the similarity between v and w may
change. In this case, we find out the segment in S, that covers u (i.e., seg, € S,
s.t. seg; Vmin < u < seg;.Vmax) and update seg;.Syax as max{sim(u,w), seg;.Smax }-
At the same time, we need to increase seg;.c by 1 if u is a new 2-hop neighbor of
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w, which can be verified by checking whether ComNei(u,w) = 1 and (v,w) € E
or not. However, if we cannot find the segment in S, that covers u, this means
u must be a new 2-hop neighbor of w. We create a new segment of u and insert
this new segment into S,,. The above update process is correct, since we always
guarantee that segments in S,, cover all w’s 2-hop neighbors and each segment has
correct spax and c. For vertex u, S, can be updated in a similar way. For each
vertex w € ®,, we find out the segment in S, that covers w (i.e., seg;, € S, s.t.
Seg; Vmin < W < Seg;.Vmax) and update seg;.Smax as max{sim(u,w), seg; Smax}. At
the same time, we need to increase seg,.c by 1 if w is a new 2-hop neighbor of u.
However, if we cannot find the segment in S, that covers w, we create a new segment
of w and insert this new segment into S,,.

Optimization. In the above process, for each w € &, we need to compute sim(u, w).
If sim(u, w) is larger than their original similarity before the edge insertion, then the
Smax Of the segment in S, that covers w and of the segment in S,, that covers u may
be updated. However, if we know in advance that sim(u,w) will not increase after
edge insertion, we do not need to compute sim(u, w) and update the segments. The
following lemma describes this optimization.

Lemma 11. Suppose w and u are 2-hop neighbors with each other in the original
graph. After inserting (u,v), the similarity between w and u increases if (w,v) € E,
decreases otherwise.

Proof. Assume the degrees of u and w in the original graph are d(u) and d(w),
respectively. The number of common neighbors between u and w is C' in the original
graph. After inserting (u,v), the degree of u will increase by 1. If (w,v) € FE,
the number of common neighbors between u and w will increase by 1. Thus, the

similarity between u and w is sim(u,w) = d(u)fd%’ which is larger than their

: m. If (w,v) ¢ E, the élumber of common neighbors

between u and w will be same and sim(u, w) = @y Tdiw)—c1: Which is smaller than
their original similarity. O]

original similarity, i.e.

According to Lemma 11, before we compute the similarity between v and w € ®,,,
we can firstly check if (w,v) € E in constant time. If (w,v) ¢ E, we know the
similarity between u and w decreases and thus do not need to compute their exact
similarity.

By now, we have discussed the index maintenance of edge insertion for R-side
vertices. Since the two sides of a bipartite graph are interchangeable, the index
maintenance for L-side vertices, i.e., w € &, and v, is same. We omit the details.

The pseudo code of edge insertion update is shown in Algorithm 14, which takes
input the bipartite graph G, two end nodes u, v of the inserted edge and the index
Z. W.lo.g., we assume u € Vi and v € V. Firstly, we compute u’s 2-hop neighbors
®,, (Line 2). Then, for each vertex w € @, if (w,v) ¢ E we know that sim(w, u)
must decrease (according to Lemma 11) and we do nothing (Lines 4-5); otherwise
we update the index S,, (Lines 6-11) and index S, (Lines 12-17). Specifically, we
search for the segment in S,, that covers u and update seg;.Spax if necessary (Lines
6-7). At the same time, we can know if u is w’s new 2-hop neighbor by checking
the number of common neighbors between u and w. Here, the number of common
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neighbors between u and w can be computed in SimNei(-) (i.e., Line 2). Thus, if the
number of common neighbors between v and w is 1, we increase seg,.c by 1 (Line 8).
Note that even if we can find out a segment covering u, u may still be w’s new
2-hop neighbor because segment contains fake vertices. If we cannot find a segment
covering u, this means u is w’s new 2-hop neighbor. We create a segment for v and
add this segment to S, directly (Lines 10-11). Next, we search for the segment in
S. that covers w and update its sp.x and ¢ in a similar way (Lines 13-14). If there
is no segment covering w, we create a new segment for w and add it into S, (Lines
16-17). The index maintenance for L-side side vertices (i.e., ®, U {v}) is same, we
just apply Lines 2-17 of Algorithm 14 by switching u and v.

Algorithm 14: Edgelnsert*(G = (V,, Vg, E),u,v,T)

1 Inserting the new edge (u,v) into G; /* Suppose u € Vg and v € V */;
/* Index maintenance for R-side vertices */
. . 1 .
2 q)u < SlmNel(G, u, m),

s for each w € &, do

4 if (w,v) ¢ E then
5 L continue; /* sim(u,w) must decrease */;
6 if Jseg, € Sy s.t. seg;.Vmin < u < seg;.Vimax then
7 Seg;-Smax < Max{sim(u,w), seg; .Smax };
8 if |ComNei(u,w)| =1 then seg,.c + seg,.c+ 1;
9 else
10 seg + (u,u,sim(u,w), 1);
11 Sw ¢ Sy U {seg};
12 if dseg; € Sy, s.t. seg; .Vmin < W < seg;.Vmax then
13 S, -Smax < Mmax{sim(u,w), seg, Smax };
14 if |ComNei(u,w)| =1 then seg;.c + seg,.c + 1;
15 else
16 seg < (w,w,sim(u,w), 1);
17 | Su Sy U {seg};
/* Index maintenance for L-side vertices */

18 Lines 2-17 by switching v and v;

4.5.2 Edge Deletion

Let (u,v) be an edge that will be deleted from G. W.lo.g., assume u is an R-side
vertex and v is an L-side vertex. Then, we have the following observation.

Observation 3. Suppose an edge (u,v) is deleted, then only the index structure
(ie., Sy,) for w € &, U P, U {u,v} will change.

Firstly, let us discuss the index maintenance for R-side vertices, i.e., ®, and u. For
vertices w € ®,,, there must be a segment seg, € S,, that covers u, i.e., seg;.Vpyin <
u < seg;.Vmax. This is because deleting edge (u, v) will not bring a new 2-hop neigh-
bor to w. Thus, we only need to update seg;.Spax as max{sim(u, w), seg;.Smax }. For
vertex u, S, can be updated in a similar way. That is, for each vertex w € ®,,, we find
the segment seg; € S, that covers w and update seg;.Spmax as max{sim(u, w), seg;.Smax }-
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Note that in the index maintenance of edge deletion, we do not update ¢ value in
each segment.

In the above process, for each w € ®,, we need to compute sim(u, w). If sim(u, w)
is larger than their original similarity after the edge deletion, then the s, of the
segment in S, that covers w and of the segment in S,, that covers u may be updated.
However, if we know in advance that sim(u,w) will not increase after the edge
deletion, we do not need to compute sim(u,w) and update the segments. The
following lemma describes this optimization.

Lemma 12. Suppose w and u are still 2-hop neighbors with each other after deleting
edge (u,v). The similarity between w and u decreases if (w,v) € E, increases
otherwise.

Proof. Assume the degrees of u and w in the original graph are d(u) and d(w),
respectively. The number of common neighbors between u and w is C' in the original
graph. After deleting (u,v), the degree of u will decrease by 1. If (w,v) € E,
the number of common neighbors between u and w will decrease by 1. Thus, the

similarity between w and w is sim(u,w) = d(u)fdﬁ, which is smaller than their
original similarity, i.e., m. If (w,v) ¢ F, the number of common neighbors
between u and w will be same and sim(u, w) = m, which is larger than
their original similarity. ]

According to Lemma 12, before we compute the similarity between v and w € ®,,,
we can firstly check if (w,v) € E in constant time. If (w,v) € E, we know the
similarity between u and w decreases and thus do not need to compute their exact
similarity.

By now, we have discussed index maintenance of edge deletion for R-side vertices.
Since the two sides of a bipartite graph are interchangeable, the index maintenance
for L-side vertices, i.e., w € &, and v, is same. We omit the details.

The pseudo code is shown in Algorithm 15. Firstly, we compute u’s 2-hop neigh-
bors ®, (Line 2). Then, for each vertex w € ®,,, if (w,v) € E we know that sim(w, u)
must decrease (according to Lemma 12) and we do nothing (Lines 4-5); otherwise
we update the index S, and index S, (Lines 6-9). Specifically, we search for the
segment in S, that covers u and update its sy.x (Lines 6-7). Then, we search for
the segment in S, that covers w and update its syax (Lines 8-9). The index main-
tenance for L-side side vertices (i.e., ®, U {v}) is same, we just apply Lines 2-9 of
Algorithm 15 by switching u and v.

Discussion. To achieve high efficiency, our index maintenance strategy does not
guarantee that the updated index is exactly same as the index constructed from
scratch. For example, after inserting an edge (u,v), when we cannot find a segment
in S, that covers u’s new 2-hop neighbor w, we directly create a new segment for w
and insert this segment into S,. After deleting an edge, we do not update ¢ value
in each segment. The effectiveness of our index may deteriorate with the increasing
number of updates, e.g., the tightness of the upper bound of similar degree. Thus,
we propose to thoroughly rebuild the index from scratch when enough number of
updates has occurred. To achieve this goal, we create a counter for each index to
record how many updates have been occurred, including vertex insertion/deletion
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Algorithm 15: EdgeDelete*(G = (V,, Vg, E), u,v,7)

1 Deleting the edge (u,v) from G; /* Suppose u € Vi and v € V, */;
/* Index maintenance for R-side vertices */
. . 1 .
2 q)u < SImNeI(G, u, m),

s for each w € &, do

4 if (w,v) € E then

5 L continue; /* sim(u,w) must decrease */;
6 Obtain the seg; € S, s.t. seg;.Vmin < U < Seg;.Vmax ;

7 Seg;.Smax < max{sim(u,w), seg;.Smax |;

8 Obtain the seg, € S, s.t. seg;.Vmin < W < S€g; .Vmax ;

9 Seg;.Smax < Max{sim(u,w), seg;.Smax };

/* Index maintenance for L-side vertices */
10 Lines 2-9 by switching v and v;

and edge insertion/deletion. We rebuild the index from scratch if this number is
larger than ¢ x |E|, where (¢ is the parameter to control the frequency of index
rebuilding and |E| is the number of edges in the corresponding bipartite graph. In
experiments (i.e., Section 4.7.3), we will explain how to choose an appropriate value
of (. Note that, when we rebuild the index from scratch, we reassign the vertex id
to make sure that vertices of V, take (integer) ids from {1,2,...,|V.|}, and vertices
of Vg take ids from {1+ |Vz|,2+ |VL|,...,|Vr| + |VL|}.

4.6 Parallelization

In this section, we parallelize our index construction algorithm consSS**. Note that
other index construction algorithms can also be parallelized in a similar way. In
consSS**, the most time-consuming part is computing the set of segments, which
is an independent procedure for each vertex u € Vi, U Vz. Motivated by this,
we propose to speed up the index construction with shared-memory parallelization
(i.e., handling different vertices simultaneously with multiple threads). Specifically,
the “for loop” at Line 1 of Algorithm 12 can be parallelized. We use openMP to
parallelize this “for loops” in our parallel implementation.
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SS-MSBE  mmmm

Proom_ ! ! ! 2 oon]

\
AM wuU CU

lwl
>
-
7]
&
0

Figure 4.9: Running time on all graphs (¢ = 0.5, 7 = 3)

4.7 Experiments

In this section, we evaluate the efficiency of our algorithms as well as the effectiveness
of our similar-biclique model.

Algorithms. We compare the following algorithms.
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Table 4.1: Statistics of graphs

Abbreviation| Graph VL] A% |E| Type
YT YouTube 94,238 30,087 293,360 | Membership
GH GitHub 56,519 120, 867 440,237 | Membership
LX Linux 42,045 337,509 599, 858 Post
BS Bibsonomy | 767,447 5,794 801,784 | Assignment
BC BookCross | 105,278 340, 523 1,149,739 Rating
AM ActorMovie | 127,823 383,640 1,470,404 | Appearance
WU WebUni 6,202 200, 148 1,948,004 | Appearance
Cu CiteULike | 731,769 153,277 2,338,554 | Assignment
TV TVTropes 64,415 87,678 3,232,134 | HasFeature
IM IMDB 303,617 896, 302 3,782,463 | Appearance
AZ Amazon |1,879,572| 1,162,941 | 4,955,492 Rating
DI Discogs |1,754,823| 270,771 5,302,276 | Affiliation
FL Flickr 395,979 103,631 8,545,307 | Membership
DB DBLP 1,953,085 5,624,219 | 12,282,059 | Authorship
NY NYTimes 299, 752 101,636 | 69,679,427 | Appearance
DE Delicious 833,081 |33,778,221|101, 798,957 | Interaction
OR Orkut 2,783,196 | 8,730,857 |327,037,487| Affiliation

71

e 00MBEA: the state-of-the-art algorithm proposed in (Chen et al., 2022) for
enumerating all maximal bicliques.

e MSBE: our Algorithm 7 equipped with all the optimizations in Section 4.3.2.

e mat-MSBE: the materialized version of MSBE, as discussed at the end of
Section 4.3.2.

e LG-MSBE and SS-MSBE: our index-based algorithms that use the largest gap
and steady segment index, respectively.

The source code of 0oMBEA is obtained from the authors of (Chen et al., 2022).

All our algorithms are implemented in C4++ and run in main memory. Without
a further explanation, experiments are conducted on a machine with an Intel(R)
3.2GHz CPU and 64GB main memory running Ubuntu 18.04.5. We set a timeout
of 10 hours for running an algorithm on a graph.

Datasets. We evaluate the algorithms on 17 real bipartite graphs, all of which are
publicly available on KONECT °. Statistics of the graphs are shown in Table 4.1,
where the graphs are listed in increasing order regarding the number of edges.

Query Parameters. A maximal similar-biclique enumeration query consists of
two parameters, € and 7. ¢ is chosen from {0.4,0.5,0.6,0.7, 0.8}, and is set as 0.5
by default. 7 is chosen from {3,4,5,6,7}, and is set as 3 by default. In addition, we
also have parameters a and « in index construction; we set « = 1 and v = 0.3 by
default.

Shttp://konect.cc/networks/
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Figure 4.10: Running time by varying € and 7

4.7.1 Efficiency Evaluations

In this subsection, we evaluate the efficiency of the algorithms. Note that, we also
implemented a version of MSBE without the optimizations of Enum proposed in
Section 4.3.2; it is omitted from the experiments since it times out in almost all the
testings.

Running time on all graphs. The running time of the five algorithms on all
graphs with default € and 7 is illustrated in Figure 4.9. We can see that mat-MSBE
slightly improves upon MSBE when it is feasible to store the similar neighbors of
all vertices in main memory. However, mat-MSBE runs out-of-memory on BS, CU,
and DI, as marked by “oom” in Figure 4.9; for example, the memory consumption
on BS would be over 400GB. Note that the memory consumption of mat-MSBE
mainly depends on the structure, rather than the size, of the input graph, and thus
mat-MSBE does not run out-of-memory on other larger graphs. Our two index-based
algorithms, LG-MSBE and SS-MSBE, are the fastest and they outperform the other
two algorithms that do not use index by up to 5 orders of magnitude. SS-MSBE
is generally faster than LG-MSBE. Compared with the state-of-the-art maximal
biclique enumeration algorithm ooMBEA, SS-MSBE is up to 6 orders of magnitude
faster. Thus, we exclude ooMBEA from our remaining evaluations.

Running time by varying ¢ and 7. The running time of our four algorithms
on IM and FL by varying € and 7 are shown in Figure 4.10. We can see that the
running time of LG-MSBE and SS-MSBE decreases when either £ or 7 increases.
This is because, more vertices will be pruned by indexedVR when either € or 7
increases, and thus the enumeration process of LG-MSBE and SS-MSBE run faster.
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Also, indexedVR runs faster when ¢ or 7 increases, as can be seen from Figure 4.11.
In contrast, the running time of MSBE and mat-MSBE is not so sensitive to € or 7,
as the dominating part of these two algorithms is computing similar neighbors for
vertices.

LG Phase-1 & SS Phase-1 LG Phase-II &2 SS Phase-11 =

10°

Times (Sec)

H
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(c) IM (# of reduced vertices) (d) FL (# of reduced vertices)

Figure 4.11: Efficiency of indexedVR (7 = 3)

Efficiency of indexedVR. In this experiment, we evaluate the efficiency of indexedVR
for our two index structures. Recall that indexedVR (Algorithm 11) has two phases.
Thus, we separately report the results of each phase. The running time on IM
and FL are shown in Figures 4.11(a) and 4.11(b). We can see that the two index
structures take almost the same time for the first phase, while the second phase of
SS index-based indexedVR is much faster than LG index-based. This can partially
be explained by the number of vertices that need to be pruned in the second phase,
as reported in Figures 4.11(c) and 4.11(d). We remark that, for a fixed ¢ and 7,
the total number of pruned vertices by different indexes are the same, and also the
same as that pruned by the index-free approach VReduce. Thus, from the number
of vertices that are pruned in Phase-II as shown in Figure 4.11, we can conclude
that SS index prunes much more vertices than LG index in Phase-I. For example,
for dataset FL and € = 0.4, SS index prunes 467, 329 vertices in Phase-I and 9, 691
vertices in Phase-II, while LG index prunes 449,195 vertices in Phase-I and 27, 825
vertices in Phase-II. As the second phase dominates the running time, SS index is
superior.

Evaluate the optimizations for Enum. In this experiment, we evaluate the
performance of our two optimization techniques (i.e., Lemma 7 and Lemma 8) on
the Enum procedure. The results are reported in Figure 4.12. Specifically, we use
our fastest algorithm SS-MSBE to evaluate these two optimization techniques. Note
that SS-MSBE applies both optimizations. For this testing, we also implement
SS-MSBE-vl that adopts neither of the two optimizations and SS-MSBE-v2 that
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Table 4.2: Index size and construction time

. Largest gap index Steady segment index
Graph | Size consLG (s)| Size |consSS (s)|consSS* (s)|consSS*™ (s)| Size
YT | 4.6M 3 6.7M 21 8 6 8.3M
GH ™M 1.1 6.6 M 90 4.9 1.5 6.2M
LX |9.2M 48 31M | 9,485 588 99 50M
BS |124M 506 T5M | 49,685 6,975 805 59M
BC | 18M 16 2TM 1,200 130 28 30M
AM 24M 1.5 24 M 81 7 2.1 20M
WU | 30M 11 15M 656 40 15 16 M
Cu 36 M 1,130 73M | 296,094 12,547 1,510 103M
TV 50M 11 4.4M 110 14 12 2.3M
IM | 58M 10 56 M 420 28 13 56 M
AZ 6 M 22 122M 2,220 152 37 124M
Dl 82M 549 132M | 45,967 5,187 863 146 M
FL 132M 106 30M 3,102 235 122 23M
DB | 188M 29 299 M 1,905 177 45 324M
NY | 1.1G 2,623 35M | 20,934 4,397 2,708 14M
DE | 1.5G 3,071 2.3G | 129,304 13,435 3,910 3.1G
OR | 5G | 21,874 |690M | 246,045 | 23,872 93,164 | 459M

adopts only early termination (i.e., Lemma 7). From Figure 4.12 we can see that
SS-MSBE-v1 cannot finish in a reasonable time due to lacking of these optimization
techniques. SS-MSBE-v2 finishes successfully, while SS-MSBE is the most efficient
algorithm on all datasets. This demonstrates that both of these two optimizations
for Enum contribute to the efficiency.

SS-MSBE-vl =3 SS-MSBE-v2 SS-MSBE mm

YT GH LX BS BC AM WU CU TV IM AZ DI FL DB NY DE OR

Figure 4.12: Evaluation of the optimizations for Enum

Index size and construction time on all graphs. The size of the two indexes
on all graphs are shown in the fourth column and last column of Table 4.2. As a
comparison, we also report the graph size in the second column of Table 4.2. We
can see that in most cases, the sizes of the two indexes are similar to each other and
are at the same level as the graph size, and thus they are affordable to be stored in
main memory.

The running time of our index construction algorithms consLG, consSS, and
consSS* are reported in the third, fifth, and sixth columns of Table 4.2, respec-
tively. consLG runs the fastest due to its simplicity. Nevertheless, consSS*, which
optimizes consSS by the similarity tree data structure, is only slightly slower than
consLG.

Index performance by varying «. In this experiment, we evaluate the effect of
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Figure 4.14: Efficiency of SS-MSBE by varying

« on the index size, index construction time and efficiency of MSBE. The results are
shown in Figure 4.13. Recall that a controls the number of segments constructed for
®,. As expected, the index size and index construction time increase along with the
increasing of a, as shown in Figures 4.13(a) and 4.13(b). When « is no larger than 1,
the index size is at most at the same level as the graph size, but when « reaches 100,
the index size can be much larger than the graph size. As shown in Figures 4.13(c)
and 4.13(d), the running time of both LG-MSBE and SS-MSBE decreases when «
increases. This is because the more the number of segments, the fewer the number
of fake vertices. To strike a balance between index size and efficiency of MSBE, we
recommend to set o € [0.1,10].

Efficiency of SS-MSBE by varying . In this experiment, we evaluate the per-
formance of SS-MSBE for different v values. Note that, the index size and index
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Figure 4.16: Number of maximal similar-bicliques

construction time of consSS are almost not affected by ~; thus we omit these results.
This is because consSS selects a fixed number of steady segments (i.e., alog|®,]|) to
cover as many vertices of ®,, as possible, and then it covers all remaining uncovered
vertices of @, by using the fewest number of disjoint segments. Thus, the total num-
ber of segments generated for @, is at most 2a/log |®,| + 1, which is independent of
~. Figure 4.14 shows the running time of SS-MSBE by varying ~ from 0.1 to 0.9.
We can see that when ~ is small (e.g., v < 0.3), the performance of SS-MSBE is not
good. The main reason is that when ~ is small, a steady segment will cover fewer
vertices due to the tighter constraint. As a result, more vertices need to be covered
by the ordinary segments, which then results in introducing more fake vertices. Also,
when ~ is large, the performance of SS-MSBE becomes worse. This is because for
large v (e.g., v = 1), a steady segment is no longer steady and degenerates to the
ordinary segment. This motivates us to introduce steady segment. We recommend
the value of  to be in [0.3,0.5].

4.7.2 Effectiveness Evaluations

Average Jaccard similarity. We compare the average Jaccard similarity be-
tween L-side vertices in a maximal (similar-)biclique. Specifically, for each maxi-
mal (similar-)biclique C, we compute the average of the Jaccard similarity between
all pairs of vertices from Cp, and then the average result of all maximal (similar-
)bicliques is reported in Figure 4.15. We can see that vertices in a similar-biclique
are much more similar to each other than in a biclique.

Number of maximal similar-bicliques. The number of maximal similar-bicliques
for different € and 7 values are shown in Figure 4.16. We can see that the number
of maximal similar-bicliques decreases with the increase of either € or 7, which is
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Figure 4.17: Case study 1: anomaly detection

as expected. This is because the number of similar neighbors for a vertex decreases
with the increase of . Thus, more and more similar-bicliques disappear under a
larger €. It is worth mentioning that even under a high ¢ value of 0.7, there is
still quite a few similar-bicliques, which exhibit a high level of consistence among
members from the same side.

Case study 1: anomaly detection. We compare similar-biclique with other
dense bipartite subgraph models, biclique, (a, f)-core (Kumar et al., 1999) and k-
biplex (Yu et al., 2021), on anomaly detection in e-commerce applications. As men-
tioned in the Introduction, to improve the ranking of certain products, e-business
owners may employ a set of fraudulent users to purchase a set of designated products.
The fraudsters will also purchase other honest products trying to look “normal”; this
is called “camouflage” in the literature. We consider a camouflage attack in the same
way as (Hooi et al., 2016) on “Amazon Review Data” (Magazine Subscriptions) 9,
which contains 65,546 reviews on 2,316 magazines by 53,617 users, by injecting
100 fraudulent users and 100 fraudulent products with various edge densities. The
amount of camouflage (i.e., edges linking to honest products) added per fraudulent
user is equal to the amount of fraudulent edges for that user. We adopt F-score,

2 isi 11 . . .
SXPIETSIONXICCel "t evaluate the accuracy of detecting suspicious users and products.
precision+recall ?

We apply the size constraint 7 to all the models, where a = § = 7 for the (o, 5)-
core model; for our similar-biclique model, ¢ is set as 0.2. The results by varying
7 and varying the density of the injected subgraph are shown in Figure 4.17. We
can see that similar-biclique always achieves the highest accuracy. This is due to
the similarity constraint imposed on users by similar-biclique, which naturally cap-
tures the reality that fraudulent users usually display a high level of synchronized
behavior with each other. In contrast, biclique, 1-biplex, and (a, §)-core all have a
low precision and thus low F-score. It is worth noting that the accuracy exhibits
a peculiar trend where it increases initially and then decreases as 7 ranges from
3 to 7. This phenomenon can be attributed to the detection of numerous trivial
similar-bicliques with small sizes at lower 7 values, such as 7 = 3, which ultimately
results in a reduction of accuracy. Conversely, when 7 is set to a larger value, such
as 7 = 7, only a limited number of similar-bicliques are detected due to the size
constraint, leading to a decrease in accuracy.

Shttps://nijianmo.github.io/amazon /index.html
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Figure 4.18: Case study 2: similar-bicliques in Unicode (7 = 2)

Table 4.3: Case study 3: similar-bicliques in DBLP

Researchers Research Groups

Albert Reuther, Andrew Prout, Antonio Rosa, Bill Berg- | High performance comput-
eron, Chansup Byun, David Bestor, Julie Mullen, Matthew | ing@MIT Lincoln Laboratory
Hubbell, Peter Michaleas, William Arcand
Christian Menolfi, Lukas Kull, Marcel A. Kossel, Matthias | CMOS integrated cir-
Braendli, Pier Andrea Francese, Thomas Morf cuits@QIBM Research—Zurich
Calvin Yu-Chian Chen, Chang-Hai Tsai, Chien-Yu Chen | Molecular biophysics @QTai-
0002, Da-Tian Bau, Fuu-Jen Tsai, Hung-Jin Huang, Ming- | wan

Hsui Tsai, Tin-Yun Ho, Yea-Huey Chang, Yuan-Man Hsu

Case study 2: interesting pattern detection on Unicode. We also conduct
a case study on the Unicode dataset (Kunegis, 2013) to illustrate the hierarchical
structure of similar-bicliques by varying the similarity threshold . Unicode captures
the languages that are spoken in a country. The three similar-bicliques detected for
e = 0.7, 0.4, 0.01 are reported in Figure 4.18, where the entire result corresponds
to ¢ = 0.01; the similarity constraint is imposed on the countries and 7 = 2. We
have the following observations. Firstly, the five countries in the similar-biclique for
e = 0.7 are all located in the Caribbean Sea Area with English and Spanish being
their main language (around 90% population speak English and Spanish). Secondly,
more countries from Latin America, e.g. Argentina and Chile, are included in the
similar-biclique for € = 0.4, and the newly added four countries speak more diverse
languages. For example, in Sint Maarten, besides English and Spanish, around 8%
population speak Virgin Islands Creole English and 4% population speak Dutch 7.
Lastly, when ¢ is 0.01, similar-biclique degenerates to biclique, and more countries
are included, e.g., America and Germany. This demonstrates that similar-biclique
can detect interesting patterns.

Case study 3: research group identification in DBLP. Our similar-biclique
model also supports the case that not all vertices in a side share a common neighbor.
In this case study, we show the similar-bicliques in a researcher-write-paper bipartite
graph DBLP ® by using different size constraints 7;, and 7z on the two sides. The
results for ¢ = 0.6, 7, = 6 and 75 = 0 are illustrated in Table 4.3; thus, researchers

Thttps://www.unicode.org/cldr/cldr-aux/charts /25 /summary /root.html
8https://dblp.uni-trier.de/xml/
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in a similar-biclique are not necessarily co-authors of the same paper. We find that
the detected similar-bicliques corresponds to research groups in different institutes.

4.7.3 Index Maintenance Evaluations

Efficiency of Edgelnsert® and EdgeDelete*. In this experiment, we evaluate the
performance of our index maintenance algorithms Edgelnsert* and EdgeDelete*. For
comparison, we also report the performance of Edgelnsert and EdgeDelete, which do
not apply the optimization techniques, i.e., Lemma 11 and Lemma 12. For edge
insertion evaluation, we randomly insert 1,000 new edges into the graph one by
one and report the average processing time. For edge deletion evaluation, we ran-
domly delete 1,000 current edges from the graph one by one and report the average
processing time. As shown in Figure 4.19, the running time of Edgelnsert* is at
millisecond-level. For example, when adding a new edge into DB, the maintenance
of the index can be completed less than 0.01 ms. Besides, we can see Edgelnsert*
is faster than Edgelnsert by 1 order of magnitude on almost all datasets, which
demonstrates the effectiveness of our optimization technique. We also evaluate the
efficiency of EdgeDelete* in Figure 4.20. We can see the running time of EdgeDelete*
is also at millisecond-level. An interesting phenomenon is that the effectiveness of op-
timization technique used in EdgeDelete* is as obvious as the one used in Edgelnsert®.
The reason is that, for two random vertices from different sides, they are less likely
to be connected due to the sparsity of the bipartite graphs in the real-world. Thus,
the pruning power of Lemma 12 is not as strong as Lemma 11.

Index performance by increasing the number of updates. In this experiment,
we evaluate the performance of the index by increasing the number of updates.
Specifically, we evaluate the index size and query time by inserting more and more
new edges into the graph, as well as deleting more and more current edges from the
graph. Here, the query time is the running time of SS-MSBE with default setting
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(i.e., e = 0.5 and 7 = 3). As shown in Figure 4.21(a), the index size and query
time start increasing when the number of inserted edges is over 10%. This is because
more segments will be created in our index and SS-MSBE will spend more time
on these new created segments. Figure 4.21(b) reports the case of edge deletion.
We can see the index size keeps steady since deleting edges will not bring new
segments to our index. The query time increase when the number of updates is over
10°. This is because the number of results (i.e., maximal similar-bicliques) increases
significantly in this case, which needs more computation. Similar phenomenon can
also be observed on other datasets. In this experiment, we observed that the index
size and query time deteriorate when the number of updates reaches the scale of
the number of edges in the graph. For example, the number of edges of IM is of
million-scale (i.e., 3.7 million). The index performance deteriorates when the number
of updates reaches 1 million as shown in Figure 4.21(a) and Figure 4.21(b). This
experiment demonstrates the strategy to rebuild the index from scratch is reasonable
and we recommend the value of ¢ to be less than 1.
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Figure 4.21: Index performance w.r.t the number of updates

4.7.4 Parallel Algorithm Evaluations

In this subsection, we evaluate the parallelized version of algorithm consSS** by
varying the number of CPU cores from 1 to 16 on our largest datasets DE and OR.
This experiment was conducted on a machine with an Intel(R) 2.6GHz CPU and
16 cores. As shown in Figure 4.22, consSS** has a near-linear speedup by using
multiple CPU cores. For example, on OR, the running time of consSS** decreases
from 21,101 seconds (around 6 hours) to 2,084 seconds (around 0.5 hour) when we
increase the core number from 1 to 16. This experiment demonstrates that the index
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construction can be easily parallelized. Our index can be constructed more efficiently
with the help of multiple CPU cores, which makes our index more attractive.
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Figure 4.22: Speeding up consSS** by using multi-core

4.8 Chapter Summary

In this chapter, we formulated the notion of similar-biclique, and proposed algo-
rithms as well as optimization techniques to enumerate all similar-bicliques in a
bipartite graph. Besides, index structures are also designed to speed up the com-
putation. We also proposed effective and efficient index construction algorithms
by investigating two different strategies. In addition, we proposed index mainte-
nance algorithms to handle dynamic graph updates. Finally, we parallelized our
index construction algorithms. Extensive empirical studies on real bipartite graphs
demonstrated the effectiveness of our similar-biclique model and the efficiency of
our algorithms. Case studies show that the similar-biclique model can be used to
detect anomalies as well as interesting dense subgraph patterns. Our work initiates
the study of integrating similarity constraint into dense bipartite subgraph mining,
by taking the biclique model. For future studies, it will be interesting to integrate
similarity constraints into other dense bipartite subgraph models, such as quasi-
biclique, k-biplex, (a, B)-core, k-bitruss and k-wing. We believe that our proposed
index structures will also be useful for these extensions.



Chapter 5

Structural Balanced Clique
Identification

In this chapter, we study the structural balanced clique identification problem in
signed graphs. The work is published in (Yao et al., 2022a). This chapter is or-
ganized as follows. Section 5.1 provides the introduction to this work. Section 5.2
provides the preliminaries. Section 5.3 studies the maximum balanced clique compu-
tation problem. Section 5.4 studies the large balanced clique enumeration problem.
Section 5.5 studies the polarization factor computation problem. Section 5.6 stud-
ies the generalized maximum balanced clique problem. Experimental results are
reported in Section 5.7. Finally, Section 5.8 concludes the chapter.

5.1 Introduction

Signed graphs enhance the representation capability of traditional graphs, by captur-
ing the polarity of relationships between entities/vertices through positive and nega-
tive edge signs (Tang et al., 2016b). For example, signed graphs capture the friend-
foe relationship in social networks (Easley and Kleinberg, 2010), support-dissent
opinions in opinion networks (Kunegis et al., 2009), trust-distrust relationship in
trust networks (Giatsidis et al., 2014), and activation-inhibition in protein-protein
interaction networks (Ou-Yang et al., 2015). One prominent and fundamental the-
ory in signed graph analysis is the structural balance theory (Harary et al., 1953),
which states that a signed (sub)graph is structural balanced if its vertices can be
partitioned into two sets such that all edges inside each partition have positive signs
and all cross-partition edges have negative signs. That is, “the friend of my friend is
my friend”, and “the friend of my enemy is my enemy”. Many interesting problems,
such as community detection (Chu et al., 2016; Ordozgoiti et al., 2020), link pre-
diction (Leskovec et al., 2010; Ye et al., 2013) and recommendation systems (Chen
et al., 2013; Tang et al., 2016a), have been formulated and studied for signed graphs
based on the structural balance theory.

Recently, the problem of enumerating all maximal structural balanced cliques in
a signed graph is formulated and studied in (Chen et al., 2020). A vertex set C
is a structural balanced clique if (1) it is a clique (i.e., every pair of its vertices is
connected by an edge), and (2) it is structural balanced according to the structural

82
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balance theory (i.e., C' can be partitioned into two sets Cf and Cg such that all
negative edges are between C and Cg). For presentation simplicity, we refer to
structural balanced cliques as balanced cliques. For example, for the toy signed graph
in Figure 5.1 that captures the sentiment among different subreddits on Reddit, the
three “Apple” groups (in red) and the two “Android” groups (in blue) together form
a balanced clique; here, solid (resp. dashed) lines represent positive (resp. negative)
sentiment. However, signed graphs may have an enormous number of maximal
balanced cliques, of varying sizes. For example, the Douban dataset used in our
experiments has more than 10° maximal balanced cliques. Enumerating all of them
may overwhelm end-users. To remedy this, a threshold 7 is adopted in (Chen et al.,
2020) such that only maximal balanced cliques C satisfying |C| > 7 and |Cg| > 7
are enumerated. Nevertheless, the number of such cliques could still be large, and
the efficiency of the algorithms in (Chen et al., 2020) is not satisfactory.

Apple
Android

-~ AskAndroid
iPad

Figure 5.1: A toy signed graph of Reddit

Motivated by this, we in this chapter investigate both the mazimum balanced
clique computation problem and the large balanced clique enumeration problem.
Given a signed graph G = (V, E™, E7) and a threshold 7, the maximum balanced
clique computation problem aims to find the largest balanced clique C* in G that
satisfies |Cf| > 7 and |C}| > 7. Let w,(G) be the size of C*, ie., w.(G) = |C*|.
Given G and two thresholds 7 and «, the large balanced clique enumeration problem
aims to enumerate all maximal balanced cliques C' C V that satisty |Cp| > 7,
|Cr| > 7 and |C| > w,(G) — o. By tuning «, end-users can make a trade-off
between the size and the number of identified balanced cliques: the larger the value
of «, the smaller the size and the more the number of reported balanced cliques.
For example, by setting a = 0, only mazimum balanced cliques will be reported;
by setting a = |V/|, all maximal balanced cliques will be reported. Note that, the
maximum balanced clique in a signed graph is not unique. The maximum balanced
clique computation problem reports an arbitrary maximum balanced clique, while
the large balanced clique enumeration problem with @ = 0 reports all maximum
balanced cliques. Detecting large balanced cliques has many applications.

e Conflict Discovery. Users actively interact with each other (both positively
and negatively) on online platforms such as Facebook and Reddit, and these
interactions can be modeled as a signed graph (Bonchi et al., 2019; Kumar
et al., 2018; Xiao et al., 2020). Users in a large balanced clique are actively
involved in conflicting groups, who have clear and firm standpoints on each
other. Thus, they may represent core members of two polarized structures,
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and detecting actively involved core members could help discover and prevent
potential conflicts on the web.

e Protein Complexes Detection. Protein-protein interaction (PPI) networks
can be modeled as signed networks to capture the activation-inhibition rela-
tions between proteins (Suratanee et al., 2014; Yim et al., 2018). As argued
in (Ou-Yang et al., 2015; Vinayagam et al., 2014), protein complexes are ide-
ally defined as groups of proteins within which are densely positively interacted
(i.e., activation), and between which are densely negatively interacted (i.e., in-
hibition). Thus, detecting balanced cliques can help find protein complexes in
signed PPI networks.

e Synonym and Antonym Groups Discovery. The synonyms and antonyms
relationships between words can be naturally captured by a signed graph (Miller,
1995). Thus, we can use large balanced cliques to identify significant synonym
groups that are antonymous with each other, which can be further used in ap-
plications such as semantic expansion (Krishnan et al., 2018) and automatic
question generation (Kumar et al., 2019).

We propose an efficient branch-and-bound algorithm MBC* to compute a maxi-
mum balanced clique C*. MBC* is based on the following observation. Suppose we
know that C* contains a vertex u, i.e., u € C*. Then, according to the structural
balance theory, it must satisfy C; C {u}UN (u) and Cj, C N (u), and therefore C*
can be found in the subgraph G,, of G induced by {u}UN{ (u)UNg (u) = {u}UNg(u);
here, NZ (u) (resp. Ng(u)) is the set of positive (resp. negative) neighbors of u in
G. Moreover, based on the information of C} and C, we can sparsify G, by remov-
ing all conflicting edges: negative edges between vertices of N (u), negative edges
between vertices of N (u), and positive edges between a vertex of N (u) and a
vertex of Ng (u). In addition, after removing the conflicting edges from G, we no
longer need to explicitly consider the structural balance theory and thus edge signs,
as every clique of GG, will now be structural balanced. Let g, be the resulting graph
of G, by discarding edge signs, and define V;, = {u} U NZ(u) and Vg = Ng(u).
We call a clique in g, that has at least 7 vertices from each of V;, and Vi as a
dichromatic clique. We show that C* must be a maximum dichromatic clique in g,
that includes u. However, we do not know which vertex is in C*. Thus, we need to
enumerate each vertex u of G and suppose that u is in C*. That is, we transform
the maximum balanced clique computation problem over G to a series of maximum
dichromatic clique computation problems over small subgraphs of GG. As a result of
the small size and no edge signs in g,, the maximum dichromatic clique containing
u in g, can be efficiently computed by exploiting the existing pruning and bound-
ing techniques that are originally designed for the classic maximum clique problem
on unsigned graphs. Also, our empirical study shows that most, if not all, of the
instances of maximum dichromatic clique computation problem are directly pruned
by the bounding techniques.

In our problem formulation of enumerating large maximal balanced cliques, we
require the end-user to specify a relative size threshold « for C (i.e., |C| > w,(G)—a),
instead of an absolute threshold A (i.e., |C| > A). This is because a relative size
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threshold « is much easier to specify than an absolute threshold A: a too large A may
lead to no results, while a too small A may lead to an enormous number of results.
We propose a two-stage approach BCE* for enumerating large maximal balanced
cliques. We first compute the maximum balanced clique size w,(G) by invoking
MBC* in Stage-I, and then enumerate all large maximal balanced cliques by using
the size threshold A = max{w.(G) — a, 27} in Stage-II. Our enumeration algorithm
follows a similar idea to MBC*, i.e., we transform the enumeration problem over G
into a series of enumeration problems over dichromatic-networks g, for u € V(G).
It is worth mentioning that when o > w,(G) — 27, our problem becomes the same
as the maximal balanced clique enumeration problem studied in (Chen et al., 2020).
Our empirical studies show that BCE* is up to two orders of magnitude faster than
the algorithm of (Chen et al., 2020) for this special case, i.e., for large a values.
Note also that, our algorithm BCE* will run faster when o become smaller, while
the algorithm of (Chen et al., 2020) does not consider a.

Both our maximum balanced clique problem and the maximal balanced clique
enumeration problem studied in (Chen et al., 2020) require a user-given threshold 7.
However, it is unclear how to choose the appropriate 7 for an application. Choosing
a too large 7 may lead to no result, while a too small 7 may lead to skewed results
as well as an enormous number of results for the enumeration problem of (Chen
et al., 2020). We provide two alternative ways to resolve this issue. Firstly, we
formulate the polarization factor problem, which computes the largest 7* such that
G has a balanced clique C satisfying |Cp| > 7" and |Cg| > 7*. We call this 7 the
polarization factor of G, denoted S(G). It is immediate that there is no balanced
clique for 7 > (G). Our empirical study shows that §(G) varies from 3 to 201 for
the graphs tested in our experiments. Thus, it would be interesting to know the
polarization factor of a graph. We show that we can directly adapt our techniques
of MBC* for computing 5(G). Secondly, instead of requiring users to input 7, we
report a maximum balanced clique for every 7 > 0; we term this problem as the
generalized maximum balanced clique problem. It is easy to see that the maximum
balanced clique for 7 must be no smaller than that for 7+1, since an optimal solution
to the latter is a feasible solution to the former. Thus, we vary 7 from G(G) to 0,
and use the optimal solution to the problem for 7 + 1 as an initial solution to the
problem for 7, for the purpose of computation sharing.

Our main contributions are summarized as follows.

e We propose an efficient branch-and-bound algorithm MBC* to solve the max-
imum balanced clique computation problem. Our main idea is based on a
novel graph reduction technique that transforms the problem over a large
signed graph G to a series of maximum dichromatic clique computation prob-
lems over small subgraphs of G, which not only removes edge signs but also
sparsifies the edge set.

e We formulate the large balanced clique enumeration problem for a relative
size threshold «, which captures the maximal balanced clique enumeration
problem studied in (Chen et al., 2020) as a special case. We also propose an
efficient algorithm BCE* to enumerate all large maximal balanced cliques.

e We formulate the polarization factor problem, and modify MBC* to efficiently
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solve the polarization factor problem. The polarization factor §(G) provides a
rough guidance for choosing the threshold 7 for our maximum balanced clique
problem as well as the maximal balanced clique enumeration problem of (Chen
et al., 2020).

e We also extend our techniques for the generalized maximum balanced clique
problem that reports a maximum balanced clique for each 7 > 0.

e We conduct extensive empirical studies on large real signed graphs to demon-
strate the effectiveness of our models and the efficiency of our algorithms. In
particular, for the problem of enumerating all maximal balanced cliques that
is studied in (Chen et al., 2020), our algorithm BCE* is up to two orders of
magnitude faster than the algorithm proposed in (Chen et al., 2020).

5.2 Preliminaries

In this chapter, we focus on an undirected and signed graph G = (V, E), where V
is the set of vertices and E is the set of signed edges that is further partitioned
into positive edges ET and negative edges E~. We also denote a signed graph as
G = (V,Et,E~). We assume that the signed graph G is simple, i.e., EYNE~ =)
and there is no self-loops. We denote the number of vertices and the number of
edges by n and m, respectively, i.e., n = |V| and m = |E| = |E*| + |E~|. For
each vertex v € V, let N/ (v) = {u | (v,u) € ET} be the set of positive neighbors
of v and Ng (v) = {u | (v,u) € E~} be the set of negative neighbors of v. We use
db(v) = |NZ(v)| and dg(v) = |Ng(v)| to denote the positive degree and negative
degree of v, respectively. We also use Ng(v) and dg(v) to denote the (entire set
of) neighbors and (total) degree of v, i.e., Ng(v) = N (v) U Ng(v) and dg(v) =
|NG(v)| = df(v) 4+ dg(v). For ease of presentation, we omit the subscript G in the
notations when the context is clear. Given a vertex subset S C V', we use G[5] to
denote the vertez-induced subgraph of G that consists of all edges between vertices

of S, ie., G[S] = (S, {(u,v) € E|ue S,veS}.

Definition 9 (Structural Balanced Group (Harary et al., 1953)). Given a signed
graph G = (V,E™,E™), a group of vertices C' C V is structural balanced if it can
be split into two subgroups C';, and Cg such that all edges between vertices in the
same subgroup are positive and all edges between vertices from different subgroups
are negative.

Definition 10 (Structural Balanced Clique (Chen et al., 2020)). Given a signed
graph G, a group of vertices C' C V is a structural balanced clique if (1) it is
structural balanced and (2) it induces a clique, i.e., (u,v) € E* U E~,VYu,v € C
with u # v.

Example 15. Consider the signed graph in Figure 5.2 where positive (resp. neg-
ative) edges are represented by solid (resp. dashed) lines. C' = {vy,v9,v3,04} is a
structural balanced clique with Cp, = {v1,v2} and Cr = {vs,vs}, or Cp = {vs,v4}
and Cr = {v1,v2}.
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—— positive edges
ffffff negative edges

Figure 5.2: A toy signed graph

For simplicity, we refer to a structural balanced clique as a balanced clique. We
call C, and Cg the two sides (e.g., left and right) of the balanced clique C. 1t is
easy to verify that the splitting of C' into C, and Cg is unique; nevertheless, the
roles of C, and Cr can be swapped. Thus, in the following, we directly use Cp,
and C to denote the two sides without formally defining them. Note that if all
edges between vertices of C' are positive edges, then C' is also regarded as structural
balanced. That is, one of C, and Cr can be empty.

5.3 Maximum Balanced Clique Computation

In this section, we study the maximum balanced clique problem.

Problem 3 (Maximum Balanced Clique Problem). Given a signed graph G and a
non-negative polarization threshold 7, the maximum balanced clique problem aims
to find the largest balanced clique C* in G that satisfies the polarization constraint
T (ie., |Cf| > 7 and |C}| > 7).

In the problem definition, the polarization constraint 7 requires each side (i.e.,
Cr, and CR) to be of size at least 7, in the same way as (Chen et al., 2020). This
is to make sure that the sides are not extremely small, and to avoid reporting too
skewed results. Consider the signed graph in Figure 5.2 and suppose 7 = 2. Both
C = {v1,v9,v3,v4} and C* = {ws, vy, vs,v6,v7,vs} (also some subsets of C*) are
balanced cliques and satisfy the polarization constraint 7, while C* is the largest
one.

Theorem 5. The maximum balanced clique computation problem is NP-hard.

Proof. We prove the NP-hardness of the problem by reducing from the classic maxi-
mum clique problem over unsigned graphs which is NP-hard (Karp, 1972). Given an
unsigned graph instance G = (V, E) of the maximum clique problem and any thresh-
old 7 < |V, we construct the signed graph instance G* for the maximum balanced
clique problem as follows. We first set G* as G with all edges being positive edges.
Then, we add into G* a complete graph with 7 vertices {uy, ..., u,} where all edges
are positive edges. Finally, we add into G* a negative edge between each vertex of
{uy,...,u,} and each vertex of V. It is easy to verify that G has a clique of size at
least 7 if and only if G* has a balanced clique satisfying the polarization constraint
7. Thus, the maximum balanced clique computation problem is NP-hard. O



5.3. MAXIMUM BALANCED CLIQUE COMPUTATION 88

5.3.1 An Enumeration-based Baseline Approach MBC

The problem of enumerating all maximal balanced cliques has been studied in (Chen
et al., 2020), and the enumeration algorithm MBCEnum proposed in (Chen et al.,
2020) can be easily modified to find the maximum balanced clique. In the follow-
ing, we first describe MBCEnum, and then present our enumeration-based baseline
algorithm MBC for the maximum balanced clique problem.

MBCEnum is an adaptation of the classic BK algorithm, proposed in (Bron and
Kerbosch, 1973) for enumerating all maximal cliques in unsigned graphs, to enu-
merating all maximal balanced cliques. The general idea is to iteratively build up
two sets C'f, and Cr such that C, U Cy is always a balanced clique. In addition, it
maintains two candidate sets P, and Pg of vertices that can be used to grow Cf,
and Cpg, respectively. Specifically, P, (resp. Pg) is the set of vertices that are di-
rectly connected to every vertex of C, (resp. Cr) via positive edges and are directly
connected to every vertex of Cg (resp. Cp) via negative edges. Then, it tries each
vertex of P to be added to Cf, and each vertex of Pr to be added to Cg, to grow
the solution by one vertex and then conducts the recursion. Note that, MBCEnum
also maintains two exclusive sets X and Xg of vertices that are used for certifying
whether a solution C'p U Cg is maximal or not; we do not discuss them here as they
are not needed when computing the maximum balanced clique.

To improve the efficiency, MBCEnum (Chen et al., 2020) also proposed a vertex
reduction method VertexReduction and an edge reduction method EdgeReduction to
reduce the input graph based on the polarization threshold 7. The general idea of
VertexReduction is that every vertex in a balanced clique satisfying the polarization
constraint must have a positive degree at least 7—1 and a negative degree at least 7;
thus, all vertices violating these degree constraints can be removed. The general idea
of EdgeReduction is that every edge in a balanced clique satisfying the polarization
constraint must participate in a certain number of triangles of each type; we omit
the details, which can be found in (Chen et al., 2020). VertexReduction can be
conducted in O(n + m) time, while EdgeReduction takes O(m?/?) time.

Based on MBCEnum, we have a baseline algorithm MBC for the maximum bal-
anced clique problem. The pseudocode of MBC is shown in Algorithm 16, which
is self-explanatory. It can be easily verified that all calls to Enum(Cyp, Cr, Pr, Pg),
except the first one, guarantee that C;, NCr = 0, PLNPr = () and (CLUCR)N(PLU
Pgr) = (). Note that at Line 11, we swap the roles of Cy, (resp. Pr) and Cg (resp.
Pr) such that we are adding vertices to the two sides of the growing balanced clique
in alternating order; this is to avoid generating too skewed intermediate results.

5.3.2 A Maximum Dichromatic Clique-based Approach MBC*

Our empirical studies in Section 5.7 show that the MBC algorithm is inefficient, due
to lack of advanced pruning and bounding techniques. That is, only size-based upper
bound is used for pruning (see Line 10 of Algorithm 16). To improve efficiency, we
aim to utilize (some of) the advanced pruning and bounding techniques that have
been shown to be successful for the classic maximum clique problem in unsigned
graphs (Chang, 2019, 2020; Maslov et al., 2014; Tomita, 2017). Specifically, we
aim to utilize the degree-based pruning and graph coloring-based upper bounding for
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Algorithm 16: MBC
Input: A signed graph G = (V,E™, E~) and a threshold 7
Output: The maximum balanced clique C*
Reduce G by VertexReduction and EdgeReduction of (Chen et al., 2020);
C* + 0
Enum(0,0,V(G),V(G));
return C*;

Procedure Enum(Cy, Cg, Pr, Pr)
if |Cr| > 7 and |Cg| > 7 and |CL| + |Cg| > |C*| then
L C* + Cr, UCg;

7 for each v € P;, do

C/L +~—CrLu {’U}; C}% +— Cg;

P} < N*t(v)N Pr; Py < N~ (v) N Pg;

1w | if |C}|+|P| = 7 and |Cy| + |P| = 7 and |C}| + |Py| + |Ck| + | Pyl > [C7]
then

11 if Py, # () then Enum(C%, C, Pp,, P});

12 L else Enum(C},Chy, P;, Pp);

13 PL — PL \ {U};

N S e

[= IS

computing maximum balanced clique. To illustrate, let’s consider an unsigned graph,
and let [b be a lower bound of the maximum clique size which is set as the largest
size of the enumerated cliques. The degree-based pruning is as follows.

Lemma 13 (Degree-based pruning). If the degree of a vertezx u is less than lb, then
we can remove u from the graph without affecting the mazimum clique computation.

Degree-based pruning is correct because we have already found a clique of size [b,
and we are now searching for cliques of size larger than [b. A coloring of a graph is
to assign a color to each vertex of the graph such that no two adjacent vertices have
the same color. The smallest number of colors needed to color a graph is called its
chromatic number.

Lemma 14 (Graph coloring-based upper bounding). The mazimum clique size of
a graph is at most its chromatic number.

The correctness is easy to see as each vertex of a clique requires a different color.
However, computing the chromatic number is an NP-hard problem (Karp, 1972).
Thus, heuristic techniques (e.g., see (Chang, 2019)) are usually used in practice to
compute an upper bound of the chromatic number, which then is also an upper
bound of the maximum clique size.

Ineffectiveness of A Naive Strategy. However, it is nontrivial to effectively
apply these pruning and bounding techniques to balanced clique computation on
signed graphs. This is because we now have both positive edges and negative edges,
and we also need to satisfy the structural balanced constraint. One possible way to
utilize these techniques for signed graphs is ignoring the edge signs and the structural
balanced constraint when conducting pruning and bounding. This is correct, but is
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ineffective as verified by our experiments. First, the structural balanced constraint is
not considered due to ignoring edge signs. Second, the number of edges is abundant
which makes the pruning and bounding ineffective. Consider the signed graph in
Figure 5.3 as an example. The number of colors needed to color its vertices after
ignoring edge signs is 6 as there is an edge between every pair of vertices, and
thus the coloring-based upper bound is 6. But it is easy to see that the maximum
balanced clique size is 3 for 7 = 0, and is 2 for 7 = 1.

Figure 5.3: Ineffective of coloring-based upper bound by ignoring edge signs

A Novel Graph Reduction Technique. To resolve the above drawbacks, we
propose a novel graph reduction technique. The general idea is based on the following
observation that removes edges from a subgraph. Suppose we know that vertex u
is in the maximum balanced clique C*. Then, according to the structural balance
theory, it must satisfy C; C {u} U NZ(u) and C}, C Ng (u); here, without loss of
generality, we assume u € C}. This is because by the structural balance theory, each
vertex of NZ (u) has a positive edge to u and thus cannot be on the opposite side of
u, and similarly vertices of N (u) cannot be on the same side as u. Therefore, C*
can be found in the subgraph G, of G induced by vertices {u} U N (u) U N5 (u).
Moreover, based on the information of C} and C},, we can sparsify the subgraph G,
by removing all conflicting edges:

e negative edges between vertices of NJ (u),
e negative edges between vertices of N (u), and
e positive edges between a vertex of N (u) and a vertex of Ng (u).

This is because, if v,v" € NZ(u) are connected by a negative edge, then v and v/
cannot be both in C*; recall that C; C {u} U N} (u). Similarly, if v € NJ (u) and
v" € Ng(u) are connected by a positive edge, then v and v” cannot be both in
C*. As a result, all the conflicting edges are not in G[C*] and thus can be safely
removed. In addition, after removing the conflicting edges from G,, we no longer
need to explicitly consider the structural balance theory and thus edge signs; this
is because every clique of G, will now be structural balanced in GG. Let g, be the
resulting graph of G, by discarding edge signs, and define V;, = {u} U N/ (u) and
Vr = N (u). It is easy to verify that C* is the maximum clique in g, that includes
u and has at least 7 vertices from each of V;, and V. Thus, our problem becomes
finding such a maximum clique in g,; we term this problem as maximum dichromatic
clique problem, which is formally defined as follows.
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Problem 4 (Maximum Dichromatic Clique Problem). The input of the maximum
dichromatic clique problem consists of a dichromatic graph g = (V(g), E(g)) —
where the vertices V' (g) is further partitioned into the set of L-vertices Vy, and the
set of R-vertices Vi with V;, N Vz = ) — and a non-negative threshold 7. It aims
to find the largest clique C* C V(g) such that [C* NV,| > 7 and |[C* N Vg| > 7.
We call a clique C satisfying |[C NVz| > 7 and |C N Vg| > 7 a dichromatic clique
satisfying the constraint 7.

The above discussion is based on the assumption that we know a vertex w in the
maximum balanced clique. However, in practice, we do not know such a vertex.
To remedy this, we enumerate each vertex u € V(G) and compute a maximum
balanced clique containing wu; the largest one among all the enumerated balanced
cliques then is the result. Actually, we can do better by giving a total ordering
< to the vertices, and only considering higher-ranked neighbors in constructing G,
and g,. In summary, we transform the maximum balanced clique problem over a
large signed graph G to a series of maximum dichromatic clique problems over small
subgraphs of G, as follows. Given a signed graph G = (V, E*, E~) and any total
ordering < of V, for each vertex u € V,

1. We first extract the ego-network of u, denoted G, which is the subgraph of G
induced by w and u’s higher-ranked neighbors according to the total ordering
<.

2. We then transform G, into a dichromatic-network of u, denoted g,, which not
only removes edge signs but also sparsifies the edge set. Specifically,
let V;, be the union of u and u’s positive neighbors in GG, and Vi be the set
of u’s negative neighbors in G,. We label vertices of V, as L-vertices, and
vertices of Vi as R-vertices. Then, we remove all conflicting edges from G,,: all
negative edges between L-vertices, all negative edges between R-vertices, and
all positive edges between L-vertices and R-vertices. The resulting graph after
discarding edge signs is a dichromatic graph g,.

Example 16. For example, consider the signed graph in Figure 5.4 (a) and assume
vo has the lowest rank according to the total ordering <. Figure 5.4(b) illustrates
the ego-network G, of vo which does not include vertices {vq, vs}, and Figure 5.4(c)
shows the dichromatic-network g,, of vy which removes edges {(v1, v4), (v1,vs), (vs,v5),
(v4,v5), (v3,v7), (v4,v7)}. Note that, in our implementation, we actually exclude u
and its adjacent edges from G, and g,. Then, the effect of edge reduction becomes
more evident; for example, G, has 12 edges while g,, only has 6 edges, after exclud-
ing vo.

We prove in the theorem below that the maximum balanced clique in G' can be
obtained by computing maximum dichromatic cliques in the dichromatic networks
g, forallu e V.

Theorem 6. The size of the mazimum balanced clique in G = (V, EtY E~) that
satisfies the constraint T is equal to max,ecy 0(gy, T), where 6(g,, T) denotes the size
of the maximum dichromatic clique in g, satisfying the constraint 7.
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(a) A signed graph (b) Ego-network G, (¢) Dichromatic-network gy,

Figure 5.4: Ilustration of our transformation

Proof. Let w(G,T) be the size of the maximum balanced clique in G that satisfies
the polarization constraint 7. First, for any dichromatic clique C' in the dichromatic
network g, for u € V', C is a balanced clique in G satisfying the polarization con-
straint 7. This is because, let C;, = C NV (g,) and Cr = C N Vg(gy), then all
edges between C' and all edges between Cg in g, correspond to positive edges in
the ego-network G, and all edges between C'; and Cj in g, correspond to nega-
tive edges in G,. Thus, Cp U Cg is a balanced clique in GG, and thus in G, and
w(G,7) > max,ey 0(gy, 7). Second, let C* be a maximum balanced clique in G
satisfying the polarization constraint 7, and let u* be the lowest-ranked vertex in
C*. Then C* is a dichromatic clique in g,«, as C (that contains u*) are L-vertices
and C}, are R-vertices. Thus, w(G, 7) < max,ecy 6(gu, 7), and the lemma holds. [

There are two main benefits of transforming the maximum balanced clique prob-
lem over G to a series of maximum dichromatic clique problems over dichromatic
networks of G.

e Firstly, each dichromatic network is small as discussed above. Although we
need to solve n instances of the maximum dichromatic clique problem in the
worst case, our empirical studies in Section 5.7 show that we only need to solve
a small number of such instances (e.g., at most hundreds) in practice. This is
because most of the instances are directly pruned by the degree-based pruning
and coloring-based upper bounding.

e Secondly, by transforming the maximum balanced clique searching on signed
graphs to maximum dichromatic clique searching on dichromatic graphs, degree-
based pruning and graph coloring-based upper bounding come into effect,
which can significantly reduce the search space and thus speed up the compu-
tation.

Pseudocode of MBC*. Based on the above discussions, the pseudocode of our
dichromatic clique-based algorithm for the maximum balanced clique problem is
shown in Algorithm 17, denoted MBC*. We first apply the VertexReduction of (Chen
et al., 2020) to reduce the input signed graph G (Line 1). Note that, we do not apply
EdgeReduction of (Chen et al., 2020); this is because it has a high time complexity
and incurs a large overhead for our efficient algorithm MBC*, as verified by our
experiments in Section 5.7. Next, we heuristically compute a balanced clique by
invoking MBC-Heu (Line 2), which will be presented in Section 5.3.3. Then, we
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Algorithm 17: MBC*

Input: A signed graph G = (V, ET, E7), and a threshold 7
Output: The maximum balanced clique C*

1 Reduce G by VertexReduction of (Chen et al., 2020);

2 C* <~ MBC-Heu(G, 7);

3 Reduce G to its |C*|-core;

4 DOrder(-) < degeneracy ordering of vertices;

5 for each vertex u in reverse order w.r.t. DOrder(-) do

6 gu  the dichromatic-network of w;

7 g < the |C*|-core of gy;

8 if colorUB(g) > |C*| then MDC({u}, g \ {u},7 —1,7);
9 return C*;

Procedure MDC(C, g = (V1, Vg, E), T, TR)
10 if |C| > |C*| and 7, < 0 and 7 < 0 then C* «+ C;
11 Reduce g to its (|C*| — |C|)-core;
12 if |Vi(g9)| < 71 or |Vr(g)| < Tr or colorUB(g) < |C*| — |C| then
13 L return ;

14 if 77, > 0 and 7r < 0 then B« Vi(g);

15 else if 77, <0 and 75 > 0 then B + Vi(9);
16 else B+ Vi(g) U Vg(g);

17 while B # () do

18 v < the vertex of B with the minimum degree in g;
19 if v € Vi(g) then 7] < 71, — 1; 73 < Tr;

20 else 7 < 71, Tp < TR — 1;

21 | MDC(CU{v}, g[Ng(v)], 77, 7);

22 Remove v from B and g;

reduce G to its |C*|-core and obtain the degeneracy ordering of vertices (Lines 3—
4), by ignoring edge signs. Here, the k-core is the maximal subgraph that has
minimum degree at least & (Matula and Beck, 1983), which can be obtained by
iteratively removing vertices of degree smaller than k. The degeneracy ordering
(aka smallest-first ordering) is defined recursively as follows: the first vertex has
the smallest degree in the graph, the second vertex has the smallest degree in the
resulting graph after removing all preceding vertices, and so on (Matula and Beck,
1983). Based on the degeneracy ordering DOrder, we process vertices in the reverse
order according to DOrder (Line 5); we say a vertex ranks higher if it appears later
in DOrder. For each vertex u, we extract the dichromatic-network g, of u (Line 6),
and then compute the maximum dichromatic clique in g, (Lines 7-8). The intuition
of using the degeneracy ordering is that the ego-networks as well as the dichromatic
networks then will have fewer vertices.

Efficiently computing the maximum dichromatic clique in the dichromatic network
gy 1s critical to the performance of our algorithm MBC*. We propose a branch-and-
bound algorithm, MDC, to solve this problem efficiently, whose pseudocode is also
given in Algorithm 17. The input of MDC consists of a clique C, a dichromatic
graph g = (V, Vg, E), and two thresholds 7;, and 75. It aims to find the largest
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dichromatic clique C” in g such that |C"'N V| > 77 and |C" N V| > 7g; then CUC’
is used to update C* (Line 10). Note that, the existing maximum clique solvers
for unsigned graphs cannot be directly applied here due to the existence of the two
thresholds 7, and 7z. We first reduce g to its (|C*| —|C/|)-core at Line 11 by ignoring
vertex labels (i.e., L and R); this is because we are looking for a dichromatic clique
C" such that |C' U C'| > |C*|. We prune the instance (i.e., g) if there is no feasible
dichromatic clique (i.e., |Vi(g)| < 7 or |Vr(g)| < 7g) or a computed coloring-
based upper bound of the maximum clique size by ignoring vertex labels is no larger
than |C*| — |C| (Lines 12-13). If the instance is not pruned, then we generate new
branches. First, the branching vertices B are selected based on 7, and 75 as follows.
If 7, > 0 and 7 < 0, the next vertex to be included into C' (i.e., B) should be
ideally from Vi (g) (Line 14). Similarly, if 7, < 0 and 7z > 0, the next vertex to
be included into C' should be from Vg(g) (Line 15). Otherwise, we can choose any
vertex from Vi(g) U Vg(g) (Line 16). Then, while B is not empty (Line 17), we
choose the vertex v of B that has the smallest degree in g (Line 18), to generate a
new branch at Line 21 by including v into C' and then recursively solve the problem
on the subgraph of ¢ induced by v’s neighbors (i.e., g[N,(v)]). After processing v,
we remove v from both B and ¢ (Line 22).

To reduce the number of MDC instances to be generated at Line 8 of Algorithm 17,
we conduct the following prunings for g,. We first reduce g, to its |C*|-core, denoted
by g, by ignoring vertex labels (Line 7); this is because we are now searching for a
clique of size at least |C*| 4+ 1. Then, we compute a coloring-based upper bound for
the maximum clique size of g after ignoring vertex labels. If this upper bound is no
larger than |C*|, then we prune the graph g without calling MDC (Line 8).

Theorem 7. The time complexity of MBC* (Algorithm 17) is O(n - m -2°%) and the
space complezity is O(m), where & is the degeneracy of G.

Proof. Firstly, each of Lines 1-4 runs in O(m) time. Specifically, VertexReduction,
degree-based pruning and degeneracy ordering can all be computed in O(m) time.
The time complexity of MBC-Heu (i.e., Line 2) is also O(m), which will be dis-
cussed in Section 5.3.3. Secondly, the for loop at Line 5 processes each vertex wu,
by constructing the dichromatic network g, of u and then computing the maximum
dichromatic clique in g,. The maximum dichromatic clique in g, is computed by
invoking MDC, which then recursively invokes itself (Line 21). Note that, the num-
ber of vertices in g, is bounded by ¢ (Chang, 2019). Thus, for a fixed dichromatic
network g, the total number of invocations to MDC is at most 2°, since each invoca-
tion to MDC has a different input C'. It is easy to see that each invocation to MDC
(excluding Line 21) takes O(|E(g)|) = O(m) time; note that, the coloring-based
upper bound can be computed in linear time to the number of edges. Therefore, the
time complexity of Algorithm 17 is O(n - m - 29).

For the space complexity, the input graph G takes O(m) space and the dichromatic
network g, takes O(m) space. Note that, although MDC takes a graph ¢ as input,
we do not store a separate copy of ¢ for each invocation to MDC. Instead, we only
store g, in the main memory and modify g, before going to the recursion of Line 21,
and after returning from the recursion, we restore the graph g,, in the same way
as (Eppstein et al., 2013). Moreover, after processing a dichromatic network, we



5.3. MAXIMUM BALANCED CLIQUE COMPUTATION 95

release its memory, and thus there will be at most one dichromatic network stored
in the main memory through out the execution of Algorithm 17. Thus, the space
complexity is O(m). O

5.3.3 A Heuristic Algorithm MBC-Heu

In this subsection, we present a heuristic algorithm MBC-Heu for the maximum
balanced clique problem, which is invoked at Line 2 of Algorithm 17 for initialization.
Let u be the vertex of maximum degree in the input graph G. We extract the
dichromatic network g, of u, and then iteratively grow a clique C' in ¢,. That is, C'
is initialized as {u}. Let g be the subgraph of g, induced by the set of vertices that
are adjacent to all vertices of C'. We greedily include into C' the vertex that has the
maximum degree in g, and then update g; we repeat this process until g is empty.
To balance the sizes of |C'N V| and |C' N Vx|, we add vertices into C' from V;, and
from Vg in an alternating order.

Algorithm 18: MBC-Heu

Input: A signed graph G = (V, E*, E™), and a threshold 7
Output: A balanced clique C' satisfying the constraint 7 or ()
u <— maximum-degree vertex in Gj
g < the dichromatic network g, of u;
C <+ {u};
while V7, (g) # 0 or Vr(g) # 0 do

if V.(9) =0 or (Vg(g) # 0 and |Cr| > |Cg|) then

v < maximum-degree vertex of Vz(g) in g;

o LA W N =

3

else v + maximum-degree vertex of Vi (g) in g;
C = CU{v}; g < glNg(v)];

if |Cr| > 7 and |Cr| > 7 then return C;
10 else return (;

0]

©

The pseudocode of our heuristic algorithm MBC-Heu is shown in Algorithm 18,
which is self-explanatory. Note that, we return the clique C' only when it satisfies the
polarization constraint 7 (Lines 9-10). In our implementation, we run the heuristic
algorithm for the vertex u with the largest value of min{d*(u),d™(u)}.

Theorem 8. The time complexity and space complexity of MBC-Heu (Algorithm 18)
are both O(m).

Proof. Line 1 takes O(m) time to obtain the maximum-degree vertex u. Line 2
takes O(m) time to construct the dichromatic network g,. The while loop is the
most time-critical. To efficiently obtain the maximum-degree vertex v in the while
loop (i.e., Lines 6,7), we maintain the degree in g for each vertex of g. Without loss
of generality, assume vy, ..., v; are the maximum-degree vertices that are iteratively
obtained in the while loop. It is easy to see that the total time complexity of
Lines 6,7 for the entire execution of while loop is O(n + Y'_, da(v;)) = O(m); note
that the number of vertices in g is at most dg(v;) after v; is added to C, see Line 8.
Also, the total time complexity of maintaining the degree information for vertices of
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g is O(m), as each vertex is removed from g at most once at Line 8. As a result, the
time complexity of Algorithm 18 is O(m). For the space complexity, it is immediate
that it is O(m), as we iteratively modify g; that is, there is only one copy of g during
the execution. O]

5.4 Large Balanced Clique Enumeration

In this section, we study the large balanced clique enumeration problem, which aims
to enumerate all maximal balanced cliques C satisfying the constraint 7 such that
|C| > w-(G) — «a for user-given thresholds 7 and «.

Problem 5 (Large Balanced Clique Enumeration). Given a signed graph G and
two non-negative thresholds 7 and «, the large balanced clique enumeration problem
aims to enumerate all maximal balanced cliques C' C V satisfying the constraint 7
such that |C] > w,(G) — a. A balanced clique is maximal if none of its proper
supersets is balanced.

Theorem 9. The large balanced clique enumeration problem is #P-complete.

Proof. This theorem directly follows from the facts that (1) the problem of enumer-
ating all maximal balanced cliques is #P-complete (Chen et al., 2020), and (2) it
is a special case of our problem, i.e., by setting a to be a very large value (e.g.,
a=|V]|). O

5.4.1 A Baseline Approach BCE

Recall that the MBCEnum algorithm proposed in (Chen et al., 2020) enumerates all
maximal balanced cliques satisfying the constraint 7. A baseline algorithm can be
designed by adapting MBCEnum to enumerate all large balanced cliques. A straight-
forward adaptation would be first invoking MBCEnum to enumerate all maximal
balanced cliques and then reporting those of size at least |C*| — a;, where C* is the
largest one among all identified maximal balanced cliques. It is easy to observe that
much computation is wasted on detecting small maximal balanced cliques in this
straightforward adaptation.

To improve the efficiency, we incorporate pruning techniques into the enumeration
process such that small maximal balanced cliques are not enumerated. That is, let
C* be the largest balanced clique found so far, then we use |C*| -« as a lower bound
to prune search branches that will not generate large balanced cliques; note that C*
keeps updating during the enumeration process and is a maximum balanced clique
when the algorithm terminates. Recall from Section 5.3.1 that MBCEnum grows a
balanced clique C'p UC'g by iteratively adding candidate vertices from P to C';, and
adding candidate vertices from Pr to Cr. Thus, in a search branch with inputs
(Cp,CRr, P, Pgr), the size of the largest balanced clique that can be found through
recursions of this search branch is at most |Cr|+|Cr|+|PL|+|Pr|. Consequently, we
can safely terminate this search branch if its upper bound |Cp| + |Cg| + |PL| + | Pg|
is smaller than |C*| — a. We denote this baseline algorithm as BCE.
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5.4.2 A Dichromatic Clique-based Approach BCE*

Due to the same drawbacks as MBC for computing a maximum balanced clique,
BCE is still inefficient for enumerating all large balanced cliques. In this subsection,
we propose a dichromatic clique-based approach BCE* for efficiently enumerating all
large balanced cliques, by following the general idea of MBC* that is introduced in
Section 5.3.2.

Following the arguments in Section 5.3.2, we know that for any balanced clique C'
containing wu, it must satisfy C, C {u} UN{ (u) and Cr C N (u); here, without loss
of generality, we assume u € C'p. Therefore, all large balanced cliques containing u
can be found in the subgraph G,, of G induced by vertices {u} U N} (u) U Ng (u) =
{u}UNg(u). In addition, all conflicting edges can be removed from G,, such that we
can ignore edge signs and transform G, into a dichromatic-network g,, in the same
way as in Section 5.3.2. Let V, = {u} UNZ (u) be the L-vertices and Vi = N (u) be
the R-vertices. It is easy to verify that each balanced clique C' containing v in G is a
dichromatic clique containing u in g, where C, = CNVy, and Cr = CNVg, and vice
versa. Consequently, our problem becomes enumerating large maximal dichromatic
cliques in g,; note that every maximal clique in g, must contain u, due to the way
of constructing g,. We term this problem as large dichromatic clique enumeration
problem, formally defined as follows.

Problem 6 (Large Dichromatic Clique Enumeration). Given a dichromatic graph
g=(V(g), E(g)) where V(g) =V, UVg with V;, N Vg = (), and non-negative thresh-
olds 7 and A, the large dichromatic clique enumeration problem aims to enumerate
all maximal cliques C' in g such that |[C| > A\, |[C NV, | > 7, and [CNVg| > 7.

To obtain all large balanced cliques in GG, we can enumerate all large dichromatic
cliques in the dichromatic-network g, for each u € V(G). However, an obvious issue
is that a maximal dichromatic clique C' will be reported multiple times. That is, C'
will be reported when processing the dichromatic-network g, for each u € C. This
also means that a lot of computations are wasted. To avoid duplication and to speed
up the computation, we define a total ordering < for all vertices of G — without
loss of generality, assume the ordering is {vy,vs, ..., v,} — and revise the definition
of dichromatic-network g,, to be the subgraph of G induced by v; and v;’s higher-
ranked neighbors, i.e., induced by {v;} U (Ng(v;) N {wvit1, ..., v,}). Still, conflicting
edges are removed from g,, and its vertices are labeled as L-vertices and R-vertices.
Then, when processing g,,, we only aim to enumerate all maximal balanced cliques
C of G such that v; € C' and v; ranks the lowest among all vertices of C' according
to <. Note however that, due to the revised definition of g,,, a maximal clique C' in
gy, may not be maximal in G; specifically, some of v;’s lower-ranked neighbors, i.e.,
Ne(v;)N{vy,ve,...,v;_1}, may be able to be added to enlarge C. To check whether
a maximal clique C' in g, is also maximal in G, we maintain the set of common
neighbors of C' in G, denoted Agx. To be precise, Ag is the set of vertices of G such
that each vertex € A (i) either has a positive edge to every vertex of C' NV, and
a negative edge to every vertex of C'N Vg, (ii) or has a positive edge to every vertex
of C'N Vg and a negative edge to every vertex of C'"Vy. As a result, C' is maximal
if and only if Ac = 0.
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Based on the above discussions, we transform the large balanced clique enumera-
tion problem over a signed graph to a series of large dichromatic clique enumeration
problems over unsigned dichromatic-networks. The pseudocode of our algorithm for
enumerating all large balanced cliques is given in Algorithm 19, denoted BCE*. We
first compute the maximum balanced clique C* in G by invoking MBC* (Line 1),
and derive the size threshold of large balanced cliques as the larger one between
|C*| — @ and 27, denoted as A (Line 2); note that, a balanced clique satisfying the
constraint 7 must be of size at least 27. Then, we prune unqualified vertices from
G based on A and 7 (Line 3). That is, any vertex in a large balanced clique must
have at least 7 — 1 positive neighbors, at least 7 negative neighbors and at least
A — 1 neighbors in total; thus, any vertex violating either of these three conditions
can be safely removed from G. Next, we compute a degeneracy ordering for ver-
tices of G (Line 4) — without loss of generality, we assume the degeneracy ordering
is {v1,v2,...,v,} — and process vertices in this order (Line 5). When processing
vertex v;, we construct the dichromatic-network ¢,, (Line 6), which is the subgraph
of G induced by {v;} U (Ng(v;) N {vit1,...,v,}) after removing conflicting edges
and discarding edge signs, and enumerate all maximal balanced cliques of G that
have v; as the lowest-ranked vertex, by invoking the procedure DCE (Line 9). Before
invoking DCE, we first reduce the size of ¢,, based on A and 7 (Line 7), and compute
a coloring-based upper bound for the maximum clique size in g,, (Line 8); if the
upper bound is smaller than A, then g,, will contain no large balanced cliques. The
reduction at Line 7 is similar to that at Line 3, with subtle differences. Specifically,
a vertex in Vy (resp. Vi) can be removed from g,, if it has either less than 7 — 1
neighbors in Vy, (resp. Vg), or less than 7 neighbors in Vg (resp. V1), or less than
A — 1 total neighbors in V;, U V.

The pseudocode of DCE is also given in Algorithm 19. The input of DCE consists
of vertex subsets C' C V(g,,) and X C V, a subgraph g, and three thresholds
71, Try A. The algorithm maintains the invariants that (1) C, V(g), and X are
disjoint, (2) V(g) U X is the set of common neighbors of C, i.e., V(g) UX = A¢ as
defined above, such that C' is maximal if and only if V(g) UX =0, and (3) C U C’
for C" C V(g) is a large maximal dichromatic clique in g,, if and only if C” is a
maximal dichromatic clique in ¢ such that |C' N V(g)| > 7z, |C' N Vr(9)| > Tr,
|C’| > A\. DCE works as follows. Firstly, C' is a large maximal balanced clique in G
if V(g)UX =0, and 7, < 0,75 < 0 and A <0 (Lines 10-11). If C' is not maximal,
then we reduce g based on 77,7, A and conduct upper bound-based pruning by
using the coloring-based upper bound (Lines 12-13), in a similar way to Lines 7-8.
After that, we pick a pivot vertex from V' (g) U X, which is the vertex that has the
largest number of neighbors in ¢g (Line 14). Note that g is a subgraph of g,,. For a
vertex that is in g,,, its set of neighbors in g is trivially defined based on g,,. For a
vertex v that is not in g,,, i.e., v € Ng(v;) N {vy,...,v;—1} that is passed to DCE at
Line 9, its neighbors in g,, and thus in g are defined as follows where conflicting edges
between Ng(v;) N{vy,...,v;—1} and V(g,,) are removed: if v is a positive neighbor
v; in G, then v’s neighbors in g,, are defined as the positive neighbors in V7,(g.,)
and negative neighbors in Vz(g,,); otherwise, v’s neighbors in g,, are defined as the
positive neighbors in Vg(g,,) and negative neighbors in Vi (g,,). Let v* € V(g)UX be
the pivot vertex. Then, it is easy to see that any maximal clique in ¢ must contain a
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Algorithm 19: BCE*

Input: A signed graph G, and thresholds 7 and «
Output: All large maximal balanced cliques in G
C* +— MBC* (@G, 7);
A« max{|C*| — a, 27};
Reduce G based on A\ and T;
Compute a degeneracy ordering for vertices of G; w.l.o.g., assume the ordering is
{vi,v9,...,0n};
for each vertex v; € {vi,ve,...,v,} do
6 gy, < the dichromatic-network of v; induced by
{’UZ'} U (NG(’UZ') N {’Uz'-',-l, - ,’Un});
Reduce g,, based on A and T;
if v; ¢ V(gy,) or colorUB(g,;) < A then continue;
DCE({v;}, gv, \{vi}, Ng(vi) N {v1,...,vic1 ), 7= 1,7, A = 1);

Procedure DCE(C,g = (V, Vg, E), X, 71, TR, \)
10 if g=0and X =0 and 7, <0 and 7 <0 and X <0 then
11 L report C as a large maximal balanced clique;

N S

(S}

12 Reduce g based on A, 7, and 7g;

13 if colorUB(g) < A then return;

14 v argmax,e xuy(g) [ No(®)];

15 for each vertex v € V(g) \ Ny(v*) do

16 if v € Vi.(g) then 7} < 71, — 1; 73 + Tr;

17 else 7] < 71, TR < TR — 1;

18 DCE(C U {v}, g[Ng(v)], X N N(v), 77, TR, A — 1);
19 g g\{vh X « X U{v}

non-neighbor of v*. Thus, we only need to generate new branches for each vertex of
V(g)\Ny(v*) (Line 15). Note that, although DCE shares similar spirit to the pivoted
version of the BronKerbosch algorithm (Bron and Kerbosch, 1973) that enumerates
all maximal cliques in an unsigned graph, DCE is different by considering dichromatic
cliques and incorporating pruning techniques at Lines 12-13. Moreover, our idea of
transforming the large balanced clique enumeration problem to large dichromatic
clique enumeration problems that do not need to consider edge signs is new.

Example 17. A snippet of the search tree of running BCE* on the signed graph in
Figure 5.5(a) with T = 2 and o = 0 is shown in Figure 5.5(b), where each rectangle
is a search state s; represented by (C,V(g), X, Tr,Tr, \). Firstly, we invoke MBC*
to compute the maximum balanced clique C* = {vg, v1,vq,v3}, and derive the size
threshold X as max{|C*| — «,27} = 4. Then we reduce the graph based on \ and
T, in this step, vg will be pruned since its negative degree is less than 2. Next, the
degeneracy ordering for the remaining vertices is computed as {vo, vy, v1, Vs, V2, V3 },
and we process them in this order.

Now, let us see the enumeration process for vy. We construct the dichromatic-
network g,,, which is the subgraph of G induced by {vo,v1,v2,v3} by discarding the
conflicting edges and edge signs. Then, we start to find large dichromatic cliques
in gy, by invoking DCE. As shown in state sy, C' is initialized as {vo} and V(g) is
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+1g vy
51[ {vo}, {v1,v2,v3},0, 1¢273] 55[ {va}, {ve,v3,v5},0,1,2,3 ] Sg[{vl}, {v2,v3}, {vo}, 1,2.3]
+v \+v2
52[ {vo, v1}, {v2,v3},0,0,2,2 ] SG[ {vg,v2}, {vs,v5},0,1,1,2 ] ......
+’L"2/ \:r’t«':z
93[ {vo, v1,v2}, {vs},0,0,1,1 ] 87[ {va,v2,v3},{v5},0,1,0,1 ]
o3/ s
54[ {vo, v1,v2,03},0,0,0,0,0 ] 83[ {v4, v2,v3,05},0,0,0,0,0 ]
(a) A signed graph (b) A snippet of the search tree of BCE* (7 =2 and a = 1)

Figure 5.5: Illustration of BCE*

initialized as {vy,vq,v3}. Note that vy is an L-vertex since it is a positive neighbor
of vy, vo and v3 are R-vertices since they are negative neighbors of vg. X is empty
since vy 1S the lowest-ranked vertex. 1, Tr and X are 1, 2 and 3, respectively. For
s1, vertex vy is chosen as the pivot. Since both vy and vs are adjacent to the pivot
vy, only one new branching is generated for sy, i.e., v1 is added into C' and we reach
state sy. After adding v to C, both 1, and \ are decreased by 1 since vy is an
L-vertex. For so, vertex vy is selected as the pivot and we only generate one new
branching by adding vy into C' (i.e., state s3). Similarly, we continue the expansion
by adding vs into C' and reach the mazimal balanced clique C' = {vg, v, v9,v3} at
state s4. In a similar way, we enumerate large balanced cliques for other vertices.
Finally, we find two large balanced cliques in this graph: Cy = {vg,v1,v2,v3} (at
state s4) and Cy = {v9,v3, 04,05} (at state sg).

Theorem 10. The time complexity of BCE* (Algorithm 19) excluding Line 1 is
O(d - n-3%3) and the space complexity is O(m), where § is the degeneracy of G.

Proof. Line 2 runs in constant time, and each of Line 3 and Line 4 runs in O(m)
time. Then, we enumerate all large balanced cliques for each vertex v; by invok-
ing DCE (Lines 5-9). As each dichromatic-network g,, contains at most ¢ vertices
(i.e., |[Ng(vi) N {vis1,..., v} < §), Lines 6-8 run in O(§?) time. Also note that
Lines 11-13 run in O(]V (g)|?) time. Thus, the total time complexity of Algorithm 19
excluding Line 1 is O(§ - n - 3%/3) by following the arguements of (Eppstein et al.,
2013). In addition, the space complexity of Algorithm 19 is O(m) which can be
shown in the same way as the proof of Theorem 7. m

5.5 Polarization Factor Computation

In this section, we study the polarization factor computation problem.

Problem 7 (Polarization Factor Problem). Given a signed graph G = (V, E*, E7),
the polarization factor problem aims to compute the largest 7* such that G has a
balanced clique satisfying the polarization constraint 7*.

We call this largest 7% the polarization factor of G, and denote it as S(G). For
example, the polarization factor of the signed graph in Figure 5.2 is 3.



5.5. POLARIZATION FACTOR COMPUTATION 101

Based on f(G), we also extend our techniques to solve the maximum balanced
clique problem for every 0 < 7 < (@), and thus do not require end-users to input
a threshold 7. Note that, there will be no result for 7 > 3(G).

Theorem 11. The polarization factor computation problem is NP-hard.

Proof. We can prove the NP-hardness by reducing from the classic maximum clique
problem over unsigned graphs which is NP-hard (Karp, 1972), which is same as
the proof of the maximum balanced clique computation problem (i.e., Theorem 5).
Thus, we omit the details. O

5.5.1 An Enumeration-based Baseline Algorithm PF-E

Recall that the polarization factor of a signed graph G = (V,E*, E~), denoted
B(G), is the largest 7 such that G has a balanced clique C satisfying |C| > 7 and
|Cr| > 7. Similar to Section 5.3.1, we can modify the maximal balanced clique
enumeration algorithm MBCEnum (Chen et al., 2020) to compute S(G). We denote
this enumeration-based algorithm as PF-E. The correctness of PF-E is immediate.
However, the time cost of PF-E is expensive as one would expect.

5.5.2 A Binary Search Algorithm PF-BS

It is obvious that for any 7 < S(G), we can always find a balanced clique in G
satisfying the constraint 7, and for any 7 > S(G), we will not be able to find any.
Thus, we can iteratively invoke our algorithm MBC* proposed in Section 5.3.2 for
increasing 7 to compute 3(G). That is, we stop when MBC* is not able to find any
balanced clique satisfying the constraint 7, and then 7 — 1 is the result.

A better approach is binary searching the value of 3(G), which also invokes MBC*
for each guessing 7 of 5(G). The lower bound of 3(G) is 0, and the upper bound
can be set as max,cy{min{d*(v) +1,d"(v)}}. We denote our binary search-based
algorithm as PF-BS, and we omit the pseudocode. The correctness of PF-BS is
immediate.

Optimization. MBC* was designed to find the maximum balanced clique satisfying
the polarization constraint 7. However, for the polarization factor problem, we only
need to know whether there exists a balanced clique satisfying the polarization
constraint 7 or not, i.e., the balanced clique does not need to be mazimum. Thus,
in each invocation of MBC*, we can terminate the execution of MBC* once both 7,
and Tx (see Algorithm 17) decrease to 0.

5.5.3 A Dichromatic Clique Checking-based Algorithm PF*

The PF-BS algorithm invokes MBC* as a black box, and needs to invoke MBC*
O(logn) times in the worst case. In this subsection, we look into the algorithm
MBC*, and directly adapt MBC* for computing the polarization factor S(G).
Firstly, similar to Theorem 6, we have the lemma below that transforms the po-
larization factor problem over GG to a series of another problem over small subgraphs
of G. Here, for each dichromatic network g,, we compute the largest 7 such that
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g, has a dichromatic clique satisfying the constraint 7, instead of computing the
maximum dichromatic clique for a given 7.

Lemma 15. For any signed graph G = (V, EY, E™) and a total ordering < of V,
we have f(G) = max,ev Y(gu), where g, = (Vi, Vg, E) is the dichromatic network
of u as defined in Section 5.5.2, and v(g,) denotes the largest T such that g, has a
dichromatic clique satisfying the constraint 7.

Proof. This lemma can be proved in a similar way to the proof of Theorem 6. We
omit the details. O

Let (v1,va,...,v,) be any total ordering of V. We process vertices in the reverse
order according to the total ordering. Following Lemma 15, when processing vertex
v;, we need to compute the largest 7 such that g,, has a dichromatic clique satistying
the constraint 7. Actually, we can do better. The general idea is that let 7 =
max;j_, . 7(gv,), then we only need to verify whether g,, has a dichromatic clique
satisfying the constraint 7 + 1; we call this problem the dichromatic clique checking
problem. This is because (g,,) cannot be larger than 7+ 1, as proved in the lemma
below.

Lemma 16. Let (v1, v, ..., v,) be a total ordering of V.. We have ¥(gy,) < max_,
’V(gvj) +1 foralli>1.

Proof. Let C be a dichromatic clique in g,, = (Vy, Vg, E) satisfying |C N VL (gy,)| >
v(gv,) and |C N Vr(gw,)| > v(gv,;). Let C" = C \ {u}, and suppose v; is the lowest-
ranked vertex in C’. It is easy to verify that j > i and C’ is a dichromatic clique in
v, satisfying |[C" N VL(gy,)| > 7(gs,) — 1 and |C" N Vg(gu;)| > 7(gs;) — 1. Thus, the
lemma holds. O

The pseudocode of our algorithm is given in Algorithm 20, denoted PF*. First,
we heuristically compute a polarization value by invoking MBC-Heu(G, 0) (Line 1).
Note that, MBC-Heu(G, 0) actually returns a balanced clique C; we set 7* = min{|C/|,
|Cr|}. Based on 7%, we reduce the input graph G by applying VertexReduction
of (Chen et al., 2020) (Line 2). Next, we compute a total ordering POrder of V' by
invoking PDecompose (Line 3). Based on the total ordering POrder, we process ver-
tices in reverse order according to POrder (Line 4). For each vertex u, we extract the
dichromatic-network g, of u (Line 5), and then reduce g, to its (7% + 1,7* 4+ 1)-core
(Line 6), denoted g. If u is not pruned (Line 7), then we invoke DCC to check whether
g has a dichromatic clique C' satisfying [CNV.(g)| > 7" +1 and |[CNVg(g)| > 7+ 1;
if the answer is yes, then we increase 7* by 1 (Line 8). Here, the (71, 7x)-core for
non-negative integers 77, and 7g is the (unique) maximal subgraph g = (V, Vg, F)
such that every vertex of Vi, (resp. Vz) has at least 7, — 1 (resp. 71) neighbors in
V1, and at least 7g (resp. 7g — 1) neighbors in V. The motivation of computing the
(71, Tr)-core is that every vertex participating in a dichromatic clique C' satisfying
|CNVL(gu)| > 7 and |CNVg(gy)| > Tr must be in the (7, 7g)-core. Note that, the
(11, Tr)-core can be computed in linear time by iteratively removing vertices that
violate the conditions.

The pseudocode of DCC is also given in Algorithm 20. It is similar to MDC in
Algorithm 17, except that (1) we now do not need to keep track of the growing
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Algorithm 20: PF*
Input: A signed graph G = (V,ET,E™)
Output: The polarization factor S(G)

1 7% + MBC-Heu(G,0);

2 Reduce G by VertexReduction of (Chen et al., 2020) based on 7* + 1;
3 POrder(-) < PDecompose(G);

4 for each wvertex u in reverse order w.r.t. POrder(:) do

5 gu < the dichromatic-network of w;

6 g < the (7% + 1,7* + 1)-core of gy;

7 if u € Vi(g) then

8 L if DCC(g \ {u},7*,7* +1) then 7" < 7" + 1;

9 return 7%;

Procedure DCC(g = (V1,, Vg, E), 11, TR)
Output: true if g contains a valid dichromatic clique for thresholds 77, and 7g;
false otherwise
10 if 77, = 0 and 7 = 0 then return true;
11 Reduce g to its (71, TR)-core;
12 if 77, > 0 and 7r = 0 then B+ V(g);
13 else if 7, =0 and 7z > 0 then B+ Vi(9);
14 else B+ Vi.(g9) U VR(9);
15 while B # () do

16 v < the vertex of B with the minimum degree in g;
17 if v € Vi(g) then 7] < 71, — 1; 73 < Tr;

18 else 7 < 71, Tp < TR — 1;

19 if DCC(g[Ny(v)], 71, 7) then return true;

20 Remove v from B and g;

21 return false;

clique C, and (2) we can stop the execution (Lines 10 and 20) once both 77, and 7x
become 0; note that, in DCC, 7, and 75 will not go below 0, while it is possible in
MDC. It is worth pointing out that we first greedily add u to the clique C at Line 8
before invoking DCC; this is because if u is not in the clique, then invoking DCC
definitely will return false according to Lemma 16.

Theorem 12. The time complezity of PF* (Algorithm 20) is O(n-m - 2°) if we use
the degeneracy ordering at Line 3. The space complexity is O(m).

Proof. The time and space complexity of Algorithm 20 follows in the same way as
that of Algorithm 17, if we use the degeneracy ordering at Line 3 of Algorithm 20.
Note that, although we do not explicitly pass the growing clique C' as the input to
DCC, such a growing clique C' is implicitly maintained (i.e., by adding v obtained
at Line 16 of Algorithm 20). Thus, the total number of invocations to DCC for each
fixed dichromatic network g, is bounded by 2°. O]

Polarization Order. Any total ordering of V' can be used at Line 4 of Algorithm 20
for correctly computing 5(G). One possibility is to use the degeneracy ordering as
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used in Algorithm 17. In the following, we propose a new total ordering, called
polarization order, to improve the time efficiency. First, we define the polarization
core.

Definition 11 (Polarization Core). Given a signed graph G = (V, Et, E7) and an
integer k, the k-polarization core (abbreviated as k-polar-core) of G is the maximal
subgraph g of G such that min{d} (u) +1,d; (u)} >k, Yu € V(g).

We define the polar-core number of a vertex u, denoted pn(u), as the largest k
such that u is contained in the k-polar-core. The reason of defining these concepts is
that pn(u) provides an upper bound of v(g,) for any total ordering <, as provided in
the lemma below. Consequently, if we process vertices in non-increasing polar-core
number, we are likely to obtain a large lower bound of S(G) by processing the first

few ego-networks (or dichromatic networks), and thus prune a lot of invocations to
DCC based on the lower bound of 5(G).

Lemma 17. For any vertez u in G, we have pn(u) > v(gy) for any total ordering
<.

Proof. Recall that g, is the dichromatic-network of u as defined in Section 5.3.2, and
v(gu) is the largest 7 such that g, has a dichromatic clique satisfying the constraint
7. Let C be a dichromatic clique in g, satisfying the constraint v(g,). Then, for
every vertex v € C, we have min{d}(v) + 1,95(v)} > 7(gu); moreover, this also
holds for {u} U C. Consequently, pn(u) > v(g.), and the lemma holds. O

Algorithm 21: PDecompose
Input: A signed graph G = (V, E* E™)
Output: Polarization order POrder
for each v € V do
L d*(v) - the positive degree of v in G;

N o=

3 d~ (v) < the negative degree of v in G;

4 POrder < 0;

5 for i < 1 ton do

6 U <— arg minvGV\POrder min{d+ (U) +1,d” (U)};

7 pn(u) + min{d*(u) + 1,d" (u)};

8 Add u to the tail of POrder;

9 for each positive neighbor v of u that not in POrder do
10 L if d™(v) +1 > pn(u) then d* (v) + d*(v) — 1;
11 for each negative neighbor v of u that not in POrder do
12 L if d~(v) > pn(u) then d~(v) < d~(v) — 1,

13 return POrder;

We call the total ordering that ranks vertices in non-decreasing polar-core number
the polarization order. The polarization order can be computed in a similar way to
the peeling algorithm for computing the degeneracy ordering (Matula and Beck,
1983). The pseudocode code of our algorithm, denoted PDecompose, is shown in
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Algorithm 21, which is self-explanatory. The general idea is to iteratively remove
from G the vertex w that has the smallest min{d*(u) + 1,d (u)} in the current
graph, and add wu to the end of POrder. By using the bin-sort like data structure as
discussed in (Matula and Beck, 1983), PDecompose can be implemented to run in
O(n + m) time and O(m) space; we omit the details.

5.6 Maximum Balanced Clique for Every 7

In this section, we investigate the problem of computing a maximum balanced clique
for each 7 > 0, which then eliminates the need for end-users to specify the threshold
7. We term this problem as the generalized mazximum balanced clique problem.

A straightforward method is to invoke MBC* independently for each 7 from 0 to
B(G) + 1. Note that, as S(G) is not an input to this problem, we need to invoke
MBC* for 7 = B(G) 4+ 1 which would return an empty result and thus indicate that
this 7 is larger than $(G). We denote this algorithm as gMBC. We can do better by
sharing computation among the different invocations to MBC*, based on the lemma
below.

Lemma 18. Given a signed graph G and thresholds 7 and 75 s.t. 0 < 11 < 1 <
B(G), the mazimum balanced clique for threshold 1 is no smaller than that for .

Proof. Let C'™ be the maximum balanced clique for threshold 7. It is obvious
that C'™ also satisfies the threshold 7 since 7 < 7. Consequently, the maximum
balanced clique for threshold 7; will be no smaller than C™. n

Algorithm 22: gMBC*
Input: A signed graph G = (V, ET E™)
Output: A maximum balance clique for each 0 < 7 < 5(G)
Set 7 as S(G) by invoking PF*;
while 7 > 0 do
if 7= B(G) then g < reduce G to (27 — 1)-core;
else g < reduce G to |C™!|-core;
C7 < MBC*(g,7);
if O™ = () then C7 « O+
T—T1—1;

return {C°,... CA)};

B I =>N) S NV R VR

o]

Based on the result in Lemma 18, we propose to compute maximum balanced
cliques for decreasing 7 value order. Suppose we have obtained the maximum bal-
anced clique C7. Then we can use C7 as the initial solution to problem for threshold
7 — 1. In this way, the search space of computing the maximum balanced clique for
7 — 1 will be greatly reduced, since we observe that in practice |C7| = |CT7!| for
many of the 7 values. Note that, however, we need to first invoke PF* to get the
polarization factor S(G) and set the initial 7 as B(G). We denote this approach as
gMBC*. The pseudocode of gMBC* is shown in Algorithm 22. It is immediate that
the time complexity of gMBC* is O(B(G) - n - m - 2°) and the space complexity is
O(m).
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5.7 Experimental Results

In this section, we empirically evaluate the efficiency and effectiveness of our algo-
rithms. For the maximum balanced clique computation problem, we implemented
MBC (Algorithm 16), MBC* (Algorithm 17), as well as three variants of these two
algorithms: (1) MBC-noER which is MBC without EdgeReduction, (2) MBC-Adv
which is the improved version of MBC that applies the degree-based pruning and
coloring-based upper bound by ignoring edge signs, and (3) MBC*-withER which is
the variant of MBC* that also applies EdgeReduction at Line 1 of Algorithm 17.

For the large balanced clique enumeration problem, we implemented the baseline
algorithm BCE and our advanced algorithm BCE* (Algorithm 19). In addition, we
also implemented BCE-Adv, which is an improved version of BCE by (1) invoking
MBC* to compute w,(G) and (2) conducting degree-based pruning and coloring-
based upper bounding via ignoring edge signs.

For the polarization factor problem, we implemented PF-E (Section 5.5.1), PF-BS
(Section 5.5.2) and PF* (Algorithm 20). In addition, we also implemented PF*-DOrder,
which is the variant of PF* that replaces POrder with DOrder.

For the generalized maximum balanced clique problem, we implemented gMBC
and gMBC*.

All the algorithms are implemented in C++, and all the experiments are con-
ducted on a machine with an Intel Core-i7 3.20GHz CPU and Ubuntu system. The
time cost is measured as the amount of wall-clock time elapsed during the program’s
execution. Unless otherwise specified, experiments are conducted with threshold
7 = 3 by default.

Datasets. We evaluate the algorithms on 14 datasets. Bitcoin, Reddit and Epinions
are signed networks downloaded from SNAP . AdjWordNet ? captures the synonym-
and-antonym relation among adjectives in the English language. Referendum and
WikiConflict are signed networks used in (Bonchi et al., 2019) and are obtained from
the authors of (Bonchi et al., 2019). Amazon, BookCross, TripAdvisor and YahooSong
are rating networks downloaded from KONECT 3. We transform them into signed
graphs as follows. For each pair of users, if they have enough number of close (resp.
opposite) rating scores to a set of items, we assign a positive (resp. negative) edge
between them. DBLP is the signed network used in (Li et al., 2018a), which is
downloaded from the dblp database * and processed in the same way as (Li et al.,
2018a), i.e., assign “+” to an edge (u, v) if the number of papers co-authored by w and
v is no less than 2, otherwise assign “—” to (u,v). Douban is a signed network used
in (Chu et al., 2016). It is a movie-rating based social network in which an edge is
negative if two users have very different movie preferences, and is positive otherwise.
In addition, we also evaluate the algorithms on two synthetic datasets, SN1 and SN2,
which are generated by the synthetic signed network generator SRN with default
settings (Su et al., 2017). Statistics of the graphs are shown in Table 5.1, in which
|E~|

A is the ratio of negative edges and ws(G) is the maximum balanced clique size

Thttps://snap.stanford.edu/
Zhttps:/ /wordnet.princeton.edu/
3http:/ /konect.cc/networks/
“https://dblp.uni-trier.de/
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under threshold 7 = 3.

Table 5.1: Statistics of datasets

Dataset V| |E| % |C*] | 8(GQ)| Category
Bitcoin 5,881 21,492 |0.15] 11 5 Trade
AdjWordNet| 16,259 76,845 10.32] 60 | 28 |Language
Reddit 54,075 220,151 |0.08| 8 3 Social
Referendum | 10, 884 251,406 |0.05| 19 5 | Political
Epinions 131, 828 711,210 |0.17| 15 6 Social
WikiConflict| 116,717 | 2,026,646 |0.63| 6 3 | Editing

Amazon 176,816 | 2,685,570 |0.11| 29 7 Rating
BookCross | 63,535 | 3,890,104 |0.07| 550 | 118 | Rating
DBLP  |2,387,365| 11,915,023 |0.72| 73 | 24 |Coauthor
Douban |1,588,455| 18,709,948 [0.25| 116 | 43 Social
TripAdvisor | 145,315 | 20,569,277 [0.14]1,916| 201 | Rating
YahooSong |1,000,990| 30,139,524 {0.18| 127 | 21 | Rating
SN1 2,000,000| 50,154,048 {0.41| 13 5 |Synthetic
SN2 2,000,000(111,573,268(0.39| 19 7 |Synthetic

5.7.1 Effectiveness of Maximum Balanced Clique

Compare with PolarSeeds (Xiao et al., 2020). We first compare the quality
of maximum balanced clique computed by our algorithm MBC* with the polarized
community computed by PolarSeeds (Xiao et al., 2020). As PolarSeeds has query
vertices (i.e., seeds), we randomly pick 100 pairs of good seeds in the same way
as (Xiao et al., 2020) and report the average result quality. Specifically, vertices u
and v are considered to be seeds if (u,v) € E~, d5(u) >t and df(v) > t, where t is
a pre-defined positive integer. The other parameters are set as their default values
(i.e., € = 1073 and x = 0.9). The result for the quality metric Polarity (Bonchi
et al., 2019; Xiao et al., 2020) is shown in Figure 5.6. Polarity counts the number
of edges that agree with the polarized structure and penalizes it by its size. That
is, a polarized community of (Xiao et al., 2020) is represented as (Cy, Cs) which is
similar to our Oy, and Cg, and Polarity(Cy, Cy) = |E+(Cl)UEJr'gﬂg;lQ‘Ef(Cl’CQ)l
E*(C) means the set of positive edges in C' and E~(C}, Cy) means the set of negative
edges between ('] and C5. We can see that MBC* produces higher-quality results
compared with PolarSeeds on all datasets. This is mainly because balanced cliques
ensure that all edges agree with the polarized structure, and maximum balanced
clique makes the Polarity even larger. Note that, besides Polarity, there are also
other two quality metrics used in (Xiao et al., 2020), i.e., signed bipartiteness ratio
(SBR) and harmonic mean of cohesion and opposition measures (HAM). It can be
proved that the HAM of balanced cliques is always 1, the highest possible HAM
value. Thus, MBC* also outperforms PolarSeeds regarding HAM. In terms of SBR
which penalizes the edges going outside C U (s, PolarSeeds performs better than
MBC*, since MBC* does not penalize the edges going outside C7, U Ck.

, Where

Case Studies. We conduct case studies for the maximum balaned cliques on
datasets Reddit and AdjWordNet. In Reddit, each vertex represents a subreddit,
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Figure 5.6: Polarity (the larger, the better)

Table 5.2: Case study on Reddit

C L CR
videos, gaming, mma, thepop- | subredditdrama, truereddit-
cornstand, canada drama, drama

and positive and negative edges are created according to the sentiment between
subreddits. The maximum balanced clique for 7 = 5(G) = 3 as computed by MBC*
is shown in Table 5.2. Subreddits in C'; usually interact with each other and share
interesting posts about videos, games and pictures. All of them show negative sen-
timents to the subreddits drama in Cz. This shows that maximum balanced clique
detects conflict groups in Reddit.

In AdjWordNet, each vertex represents an adjective, and a positive (resp. nega-
tive) edge indicates synonymous (resp. antonymous) relationship. The maximum
balanced clique for 7 = B(G) = 28 has 60 vertices with |C| = 28 and |Cg| = 32,
where a snippt is shown in Table 5.3. We can see that words in the same group, i.e.,
Cp, or Cg, have similar meaning and words in different groups are mostly antony-
mous with each other. This case study shows that maximum balanced clique reveals
interesting patterns in AdjWordNet.

We also run the MBCEnum algorithm of (Chen et al., 2020) to enumerate all max-
imal balanced cliques. For the above settings of 7, MBCEnum reports 197 cliques
for Reddit and 1 clique for AdjWordNet. For Reddit, this huge number of results may
overwhelm end-users, and moreover, most of the enumerated cliques (i.e., 93%) are
of size only 6 and they heavily overlap with each other. In contrast, our algorithm
efficiently detects the largest balanced clique, which can be regarded as the domi-
nating polarized group. For AdjWordNet, the sole clique enumerated by MBCEnum
is the same as the one computed by our algorithm MBC*, as one would expect. On
the other hand, MBC* runs significantly faster than MBCEnum, e.g., 50 x and 200 x
faster on Reddit and AdjWordNet, respectively.

5.7.2 Efficiency for Maximum Balanced Clique Computa-
tion

Against Enumeration-based Baseline Algorithm MBC. We first evaluate our
algorithm MBC* against the enumeration-based baseline algorithm MBC. The re-
sults on all datasets for 7 = 3 are reported in Figure 5.7. We can clearly see that



5.7. EXPERIMENTAL RESULTS 109

Table 5.3: Case study on AdjWordNet

CL CR

good, better, best, wonderful, | bad, worse, worst, terrible,
excellent, great, superior, awe- | poor, awful, inferior, unwell,
some, correct, well, sound, re- | weak, contemptible, dreadful,
spectable, right, superb, honor- | unsound, wrong, dishonorable,
able, optimum, terrific.... incorrect, unrespectable, hor-
rific....

MBC* significantly outperforms MBC on all datasets, and the improvement is up-to
three orders of magnitude (e.g., on Douban). This is due to our strategy of trans-
forming the maximum balanced clique problem to a series of maximum dichromatic
clique problems which remove edge signs and sparsify the graph. In Figure 5.7,
we also report the running time of MBC-noER and MBC*-withER. We can see that
EdgeReduction improves the efficiency for MBC (compared with MBC-noER), but de-
grades the performance for MBC*-withER (compared with MBC*). This is because
MBC is very slow and thus EdgeReduction can improve the efficiency by reducing the
graph instance. In contrast, MBC* runs very fast, and thus EdgeReduction incurs
a large overhead for MBC* due to having a high time complexity. Thus, we omit
MBC-noER and MBC*-withER in the remaining testings.

inf & MBC |

100 F —— MBC-noER
~ 10" = memmm MBC*
E EREEd MBC*-withER

\; ]01 1 .|

E 10° 3

Bl L 1

102 [ 3

10° —:§: 3
Bitcoin AdjWordNet Reddit Referendum Epinions WikiConflict Amazon BookCross DBLP Douban TripAdvisorYahooSong  SNI SN2

Figure 5.7: Running time on all graphs for maximum balanced clique compu-
tation (7 = 3)

The results of evaluating MBC* against MBC by varying 7 from 3 to 7 are shown
in Figure 5.8. MBC* consistently outperforms MBC for different 7 values. We also
observe that the running time of MBC decreases as 7 increases, while that of MBC*
is almost insensitive to 7. This is because for larger 7 values, the pruning power of
EdgeReduction that is used in MBC strengthens. Nevertheless, MBC is still orders of
magnitude slower than MBC* for 7 = 7.

Evaluate the Influence of Our MDC Transformation. In this experiment, we
evaluate the influence of our MDC transformation — i.e., transform a maximum
balanced clique problem to a series of maximum dichromatic clique problems —
on the performance of our algorithm MBC*. We compare MBC* against MBC-Adv
that does not apply the transformation but conducts the degree-based pruning and
coloring-based bounding by simply discarding edge signs. From Figure 5.9, we can
see that MBC* outperforms MBC-Adv by more than one order of magnitude. Thus,
our MDC transformation improves the performance.

To get a deeper insight, we also evaluate the average size reduction brought by
our MDC transformation. Recall that for each ego-network G,, we first reduce it
to g, by removing all conflicting edges, and then reduce g, to g by degree-based
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Figure 5.9: Influence of our MDC transformation

pruning (Line 7 of Algorithm 17). We use SR1 to denote the average size reduction

ratio after stage 1 (i.e., SR1 = 1 — |‘§<(§Z)>‘|) and use SR2 to denote the average
|E(9)]

size reduction ratio after stage 2 (i.e., SR2 =1 — i) ) The results of SR1 and
SR2 are shown in the fourth and ﬁfth columns of Table 5.4, respectively. We see
that around 50% edges are removed on average after stage 1, and almost 80% edges
are removed on average after the two stages. This demonstrates that the subgraph
sizes are significantly reduced before passing to MDC. We also report the number
of MDC instances that are generated by our algorithm MBC* in the third column
of Table 5.4. We see that the number of MDC instances is very small compared
with n = |V/|. This confirms the superiority of our MDC transformation. Note that
for Bitcoin, AdjWordNet and TripAdvisor, the number of MDC instances is 0. This is
because the heuristic solution found by MBC-Heu is guaranteed to be optimal, and
thus no MDC instance is generated.

Scalability Testing. We now test the scalability of MBC, MBC-Adv and MBC*
on two large datasets DBLP and Douban. We randomly sample vertices from 20%
to 100% in the original graph. For each sampled vertex set, we obtain the induced
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Table 5.4: Running statistics of MBC* and PF* for 7 = 3 (SR1 and SR2 are size
reduction ratios, the larger the better)

Graphs MBC* PF*
Heu #MDC SR1 SR2|Heu #DCC SR1 SR2
Bitcoin 11 0 - - 4 1 20% 20%
AdjWordNet | 60 0 - - |28 0

Reddit 6 96 41% 86%| 2 14 40% 92%

Referendum | 19 20 6% 31%| 3 2 22% 22%
Epinions 11 82 30% 70%| 5 10 35% 66%
WikiConflict| 0 43 48% 94%| 2 1 54% 80%
Amazon 15 952  64% 81%| 6 825 73% 89%
BookCross | 150 3 61% 85%| 4 150  56% 90%
DBLP 31 26 49% 80%| 2 23 51% 82%
Douban 83 10 73% 98% | 27 6 2% 95%

138 63 39% 49%

TripAdvisor | 1916 0 3
7 563  29% 39%
4
5

YahooSong | 36 575 23% 31%
SN1 10 19 45% 90%
SN2 12 28  42% 85%

16 49% 92%
23 46% 89%

subgraph of the vertex set as the input data. As shown in Figure 5.10, the running
time of all algorithms increases as the graph size increases. This is because a larger
graph means a larger search space and thus a higher running time. Nevertheless,
MBC* outperforms MBC and MBC-Adv in all the settings and scales better to the
graph size.

F Tx— MBC ] 10°F = MBC
102 —E— MBC-Ady K] (0L —= MBC-Adv i)
~ = ES B ~ E ES il
3.0 —5— MBC 58 N —5— MBC 3//@/
£ 100 / 5 IR ﬂ//E
= F / S T U by /E o——=
101 L C 0'15 e
i 1

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

(a) DBLP (b) Douban

Figure 5.10: Scalability testing (7 = 3, vary graph size)

Evaluate Our Heuristic Algorithm. We now evaluate our heuristic algorithm
MBC-Heu. The size of the balanced clique found by MBC-Heu, which is used as
the initial clique in MBC*, is shown in the second column of Table 5.4. On Bitcoin,
AdjWordNet, Referendum and TripAdvisor, MBC-Heu finds the optimal solution. On
some of the graphs, the balanced clique found by MBC-Heu is far from optimal. For
example, on BookCross, the balanced clique found by MBC-Heu is of size 150 while
the maximum balanced clique size is 550. In the extreme case, MBC-Heu fails to
find a valid initial solution on WikiConflict due to the constraint 7.
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5.7.3 Efficiency for Large Balanced Clique Enumeration

Enumerating All Maximal Balanced Cliques. We first compare our algo-
rithm BCE* with the maximal balanced clique enumeration algorithm MBCEnum
proposed in (Chen et al., 2020), i.e., we set a = oo for our problem. The results on
all graphs are shown in Figure 5.11. Our algorithm BCE* consistently runs faster
than MBCEnum, and the improvement can be up to two orders of magnitude, e.g.,
on graphs BookCross, Douban, TripAdvisor, YahooSong, SN1 and SN2. This demon-
strates the superiority of our novel graph reduction technique that transforms maxi-
mal balanced clique enumeration over GG to maximal dichromatic clique enumeration
over small dichromatic networks of G.
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Figure 5.11: Compare with MBCEnum (Chen et al., 2020) for a = oo (7 = 3)

Against Baseline Algorithm BCE. In this evaluation, we compare our algorithm
BCE* against the baseline algorithm BCE for enumerating large balanced cliques.
The results on all datasets for 7 = 3 and o = 1 are reported in Figure 5.12. We
can clearly see that BCE* significantly outperforms BCE on all datasets, and the
improvement is up-to four orders of magnitude (e.g., on BookCross). The efficiency
of BCE* over BCE is mainly due to two reasons. Firstly, BCE* invokes our algorithm
MBC* to efficiently obtain the maximum balanced clique C*, based on which a large
portion of the input graph can be pruned by Line 3 of Algorithm 19. Secondly,
our novel graph reduction technique transforms large balanced clique enumeration
problem over G to a series of large dichromatic clique enumeration problems over
small dichromatic networks of G. The dichromatic networks are generally small
after removing conflicting edges and pruning unpromising vertices based on A and
T.

To separately evaluate the advantage of our graph reduction technique, we com-
pare BCE* against BCE-Adv that also invokes MBC* for computing w,(G) but does
not apply our graph reduction technique. In contrast, BCE-Adv conducts the degree-
based pruning and coloring-based upper bounding by simply discarding edge signs.
The results are also shown in Figure 5.12. We can see that BCE* consistently out-
performs BCE-Adv, and the improvement is up to one order of magnitude, e.g., on
graphs Amazon, BookCross, DBLP and Douban. This demonstrates the advantage of
our graph reduction technique.

Evaluate the Algorithms by Varying a. In this experiment, we evaluate the
algorithms BCE*, BCE and BCE-Adv by varying a. The results on graphs Epinions,
Amazon, BookCross, and Douban are shown in Figure 5.13. Note that the values
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Figure 5.12: Running time on all graphs for large balanced clique enumeration
(tT=3and a =1)

of a are selected according to w,(G) and thus are different for different graphs;
please refer to Table 5.1 for the values of w,(G) for these graphs. We can see
that as expected, the running time of all the three algorithms increase, since more
results will be reported. For example, on BookCross, the number of large maximal
balanced cliques increases from 384 to 19,841,800 when « increases from 1 to 400.
Nevertheless, BCE* consistently outperforms both BCE and BCE-Adv. In Figure 5.13
we also report the running time of MBC* which is invoked by BCE* and BCE-Adv to
compute w,(G) and is irrelevant to a. We can see that the running time of MBC* is
not significant compared with that of BCE*; this is more evident for large «. Thus,
it makes sense to invoke MBC* for computing w,(G) in BCE*.
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Figure 5.13: Running time by varying o (7 = 3)

Scalability Testing. In this experiment, we test the scalability of BCE, BCE-Adv
and BCE* on BookCross and Douban by varying the graph size to be {20%, ..., 100%}
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of the input graph. The results are shown in Figure 5.14. We can see that when
the graph size increases, the processing time of all algorithms increases which is as

expected. Nevertheless, BCE* outperforms BCE and BCE-Adv in all cases and scales
better than BCE.
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Figure 5.14: Scalability testing (vary graph size)

The Number of Large Maximal Balanced Cliques by Varying «. In this
experiment, we vary « from 0 to 9, and report the number of large maximal balanced
cliques that are of size at least w,(G) — a. We also report the number of large max-
imal balanced cliques when o = |V|. In this case, all maximal balanced cliques will
be enumerated. The results on all graphs are shown in Table 5.5. As expected, the
number of reported balanced cliques increases when a becomes larger. We can also
see that the number of maximal balanced cliques of size w,(G) — « is already very
large for a« = 9, e.g., on Referendum, Epinions, Amazon, Douban, and YahooSong;
the number of all maximal balanced cliques will be even larger when o = |V/|. This
demonstrates the usefulness of our model which only enumerates large maximal bal-
anced cliques: by varying «, end-users can control the number of reported balanced
cliques; also, we guarantee that all non-reported maximal balanced cliques will be
of smaller size than the reported ones.

Table 5.5: Number of large balanced cliques by varying a (7 = 3)

«
Graphs G773 5 7 9 V]
Bitcoin | 6 | 31| 87 | 133 | 133 | 133 133
AdjWordNet| 2 | 4 4 4 4 4 858
Reddit | 2 14| 197 | 197 | 197 | 197 197
Referendum | 2 | 27 | 585 | 2,661 | 4,773 | 5,958 | 6,773
Epinions | 9 | 86 | 767 | 3,182 | 9,717 | 17,574 | 17,574

WikiConflict | 37 | 37 | 37 37 37 37 37
Amazon | 43 |572(5,471|22,268|66,611|155,155| 1,556, 500
BookCross {192(384| 384 | 384 384 384 120,643,998

DBLP 2|4 5 5 5 5 32,213
Douban | 83 |210| 773 | 1,298 | 3,768 | 6,293 93,275
TripAdvisor | 2 | 2 2 2 2 2 8,570
YahooSong | 3 [ 17| 83 312 767 | 1,563 195,964
SN1 115 14 29 56 56 56
SN2 11 7] 18 35 65 133 397
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5.7.4 Efficiency for the Polarization Factor Problem

Against PF-E, PF-BS and PF*-DOrder. Figure 5.15 reports the running time of
PF-E, PF-BS, PF*-DOrder and PF* on all the graphs. We can see that PF* outper-
forms the enumeration-based baseline algorithm PF-E by several orders of magnitude
on all the graphs. For example, on Douban, PF* computes the polarization factor in
5 seconds, while PF-E takes more than 4 hours. Our binary search-based algorithm
PF-BS is significantly faster than PF-E, due to our efficient algorithm MBC* for ver-
ifying 7. However, as PF-BS needs to invoke MBC* multiple times, it is almost one
order of magnitude slower than PF*. This demonstrates the superiority of PF* that
transforms the polarization factor problem to a series of dichromatic clique checking
problems.

In Figure 5.15, we also report the running time of PF*-DOrder, which is the variant
of PF* that uses the degeneracy ordering DOrder instead of the polarization ordering.
We see that PF*-DOrder is slower than PF*. This demonstrates the superiority of
the polarization ordering for computing the polarization factor.

1n£ F == prE '
10; = PF-BS
10] £ wemmm PF*

3 10° E e=mga PF*-DOrder

RO \

Bitcoin AdjWordNet Reddit Referendum Epinions WikiConflict Amazon BookCross DBLP

Douban TripAdvisorYahooSong ~ SN1

Figure 5.15: Running time on all graphs for polarization factor

Evaluate the Heuristic Algorithm and DCC Transformation. In this ex-
periment, we report the running statistics of PF*. The initial lower bound of the
polarization factor 5(G) computed by MBC-Heu is shown in the sixth column of
Table 5.4. We see that MBC-Heu obtains the exact value of 5(G) on AdjWordNet.
On some of the graphs, the initial lower bound of B(G) is much smaller than the
exact value. For example, on BookCross, the initial lower bound is 4 while the exact
B(G) is 118.

The number of DCC instances generated by PF* and the average instance size
reduction ratio are shown in last three columns of Table 5.4, which exhibit similar
phenomenon as MBC*. That is, the number of DCC instances is very small com-
pared with n = |V|, and the transformation leads to a significant reduction on each
dichromatic-network. This confirms the superiority of our DCC transformation.

Scalability Testing. In this experiment, we test the scalability of PF-E, PF-BS and
PF* on DBLP and Douban by varying their vertices from 20% to 100%. As shown
in Figure 5.16, when the graph scales up, the processing time of all algorithms
increases as well because of the increasing search space. However, PF* outperforms
other algorithms in all cases and scales well to the graph size.

5.7.5 The Generalized Maximum Balanced Clique Problem

In this subsection, we evaluate the algorithms for computing a maximum balanced
clique for each 0 < 7 < B(G). Firstly, we observe that the number of distinct max-
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Figure 5.16: Scalability testing (vary graph size)

imum balanced clique in {C°, C*,... C5@} where C? is the maximum balanced
clique for constraint 7 = 7, is much smaller than 5(G)+ 1. For example, the number
is 39 for BookCross which has 5(G) = 118, and the number is 14 for TripAdvisor
which has 5(G) = 201; the number of such cliques for all datasets is shown in the
second column of Table 5.6, denoted by |C|. This is because the maximum balanced
clique is the same for many of the different 7 values. In the third column of Ta-
ble 5.6, we also report the size of the maximum balanced clique for 7 = 5(G) and
that for 7 = 0; the two numbers in the subscripts represent the sizes of the two
sides of the clique, i.e., |C| and |Cg|. For example, for the dataset BookCross, the
maximum balanced clique for 7 = B(G) = 118 has 240 vertices with |C| = 118
and |Cg| = 122, and the maximum balanced clique for 7 = 0 has 614 vertices with
|C| = 1 and |Cg| = 613. We can see that C° is highly skewed while C#(@) is well
balanced, in terms of the sizes of Cf, and Cr. As the number of distinct maximum
balanced cliques for all possible values of the threshold 7 is not large, end-users can
easily go through all these maximum balanced cliques to find the ones that suit their
needs.

Table 5.6: Distinct number of maximum balanced cliques for different 7 values

(e, [Cl={C°,CY,...,CPY)

Graph IC| Size Range of the Cliques
Bitcoin 2 0¢pi5 — 1y
AdjWordNet | 1 6028132y — 6028)32)
Reddit 4 85y — 17017
Referendum | 6 175129 = 35(0)35)
Epinions 7 12616y — 93(0)93)
WikiConflict | 4 633y —  16¢0/16)
Amazon 8 gy —  42(0)42)
BookCross | 39 | 240118122y — 614(1j613)
DBLP | 7 | 49045 — 24701210
Douban 13 88143145y —  139(0)139)

TripAdvisor | 14 | 448501247y — 1916(45/1871)

YahooSong | 10 43211220 = 353(0/353)
SN1 6 10¢15 = 190
SN2 8 5zisy = 24(0)24

The running time of algorithms gMBC and gMBC* on all the datasets is shown
in Figure 5.17. Recall that both algorithms invoke MBC*. The increasing factor of
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Figure 5.17: Running time of gMBC and gMBC* on all graphs

gMBC and gMBC* over MBC* is generally related to the polarization factor 3(G)
of the graph, since the larger 5(G), the more rounds they need to invoke MBC*.
Nevertheless, gMBC* consistently runs faster than gMBC due to the computation
sharing in the former.

5.8 Chapter Summary

In this chapter, we first studied the maximum balanced clique problem in signed
graphs. We proposed techniques to transform the maximum balanced clique prob-
lem over G to a series of maximum dichromatic clique problems over small subgraphs
of G. The transformation not only removes edge signs (and thus the structural bal-
anced constraint) but also sparsifies the edge set. In addition, we also extended our
techniques to the large balanced clique enumeration problem, the polarization factor
problem, and the problem of reporting a maximum balanced clique for each 7 > 0.
Experimental results on real datasets demonstrated the efficiency, effectiveness and
scalability of our algorithms.



Chapter 6
Epilogue

In this thesis, we focus on cohesive subgraph identification in large graphs. The
main contributions of this thesis are:

o Formulation of size-bounded community and efficient algorithms for size-bounded
community search. We formulated and studied the size-bounded community
search problem, which has many applications in the real-world. We proposed
an efficient branch-reduce-and-bound algorithm for this problem by develop-
ing nontrivial reducing techniques, upper bounding techniques, and branch-
ing techniques. We conducted extensive experiments on large real graphs to
demonstrate the efficiency and effectiveness of our algorithms.

o Formulation of similar-biclique model and efficient algorithms for the maximal
similar-biclique enumeration. We formulated a novel cohesive subgraph model
in bipartite graphs, i.e., similar-biclique, which demonstrated its superiorities
compared with other models (e.g., in the task of anomaly detection). We
developed a backtracking algorithm to enumerate all maximal similar-bicliques
in a bipartite graph. Besides, we designed a novel index structure to facilitate
the computation. We conducted extensive experiments on large real bipartite
graphs to demonstrate the effectiveness of our model and the efficiency of our
algorithms.

o FEfficient algorithms for the mazimum balanced clique computation problem and
its variants. We proposed an efficient algorithm for the maximum balanced
clique computation in signed graphs. A novel graph reduction technique was
proposed to facilitate the computation. We also extended our techniques to
the large balanced clique enumeration problem, the polarization factor problem
and the generalized maximum balanced clique problem. We conducted exten-
sive experiments on large real signed graphs to demonstrate the efficiency of
our algorithms.

There are still some open problems that need further research.

o FEfficiency of size-bounded community search. Due to the NP-hardness of size-
bounded community search, current algorithms can only handle the queries
with a relatively small size upper bound (i.e., h is usually less than 20). It
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is desirable to design more advanced techniques to improve the efficiency of
size-bounded community search.

More cohesiveness metrics. There are many other cohesiveness metrics that
have not been used for cohesive subgraph identification in signed graphs, such
as quasi-clique, k-plex, and k-core. Thus, it would be interesting to combine
structure balance theory with other cohesiveness metrics. Besides, it is also
possible to integrate similarity constraints into other dense bipartite subgraph
models, such as k-biplex and («, )-core, in a similar way to similar-biclique.

Other types of graphs. In recent years, many novel network models have been
developed, such as public-private networks, uncertain graphs and heteroge-
neous information networks. Thus, it would be interesting to formulate novel
cohesive subgraph models in these types of graphs.
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