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ABSTRACT

Graph decomposition has always been a very important concept in machine learning
and computer vision. Many tasks like image and mesh segmentation, community
detection in social networks, as well as object tracking and human pose estimation
can be formulated as a graph decomposition problem. The multicut problem in
particular is a popular model to optimize for a decomposition of a given graph. Its
main advantage is that no prior knowledge about the number of components or
their sizes is required. However, it has several limitations, which we address in this
thesis:

Firstly, the multicut problem allows to specify only cost or reward for putting
two direct neighbours into distinct components. This limits the expressibility of the
cost function. We introduce special edges into the graph that allow to define cost
or reward for putting any two vertices into distinct components, while preserving
the original set of feasible solutions. We show that this considerably improves the
quality of image and mesh segmentations.

Second, multicut is notorious to be NP-hard for general graphs, that limits its
applications to small super-pixel graphs. We define and implement two primal
feasible heuristics to solve the problem. They do not provide any guarantees on the
runtime or quality of solutions, but in practice show good convergence behaviour.
We perform an extensive comparison on multiple graphs of different sizes and
properties.

Third, we extend the multicut framework by introducing node labels, so that we
can jointly optimize for graph decomposition and nodes classification by means of
exactly the same optimization algorithm, thus eliminating the need to hand-tune
optimizers for a particular task. To prove its universality we applied it to diverse
computer vision tasks, including human pose estimation, multiple object tracking,
and instance-aware semantic segmentation. We show that we can improve the results
over the prior art using exactly the same data as in the original works.

Finally, we use employ multicuts in two applications: 1) a client-server tool for
interactive video segmentation: After the pre-processing of the video a user draws
strokes on several frames and a time-coherent segmentation of the entire video is
performed on-the-fly. 2) we formulate a method for simultaneous segmentation and
tracking of living cells in microscopy data. This task is challenging as cells split and
our algorithm accounts for this, creating parental hierarchies.

We also present results on multiple model fitting. We find models in data heavily
corrupted by noise by finding components defining these models using higher order
multicuts. We introduce an interesting extension that allows our optimization to
pick better hyperparameters for each discovered model.

In summary, this thesis extends the multicut problem in different directions,
proposes algorithms for optimization, and applies it to novel data and settings.
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ZUSAMMENFASSUNG

Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen
und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, Kom-
munitätserkennung in sozialen Netzwerken, sowie Objektverfolgung und Schätzung
von menschlichen Posen können als Graphzerlegungsproblem formuliert werden.
Der Mehrfachschnitt-Ansatz ist ein populäres Mittel um über die Zerlegungen eines
gegebenen Graphen zu optimieren. Sein größter Vorteil ist, dass kein Vorwissen
über die Anzahl an Komponenten und deren Größen benötigt wird. Dennoch hat er
mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln:

Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten
oder Belohnungen für die Trennung von zwei Nachbarn in verschiedene Kompo-
nenten. Dies schränkt die Ausdrucksfähigkeit der Kostenfunktion ein und führt
zu suboptimalen Ergebnissen. Wir fügen dem Graphen spezielle Kanten hinzu,
welche es erlauben, Kosten oder Belohnungen für die Trennung von beliebigen
Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an
zulässigen Lösungen zu verändern. Wir zeigen, dass dies die Qualität von Bild- und
Gittersegmentierungen deutlich verbessert.

Zweitens ist das Mehrfachschnittproblem berüchtigt dafür NP-schwer für all-
gemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte
Graphen einschränkt. Wir definieren und implementieren zwei primal-zulässige
Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezüglich
der Laufzeit oder der Qualität der Lösungen, zeigen in der Praxis jedoch gutes
Konvergenzverhalten. Wir führen einen ausführlichen Vergleich auf vielen Graphen
verschiedener Größen und Eigenschaften durch.

Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen,
sodass wir gemeinsam über Zerlegungen und Knoten-Klassifikationen mit dem gle-
ichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf
der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg geräumt.
Um die Allgemeingültigkeit dieses Ansatzes zu überprüfen, haben wir ihn auf
verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche Posen-
schätzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung,
angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den
gleichen Daten verbessern können.

Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein
Nutzer-Server-Werkzeug für interaktive Video Segmentierung: Nach der Vorbear-
beitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und
eine zeit-kohärente Segmentierung des gesamten Videos wird in Echtzeit berechnet.
2) Wir formulieren eine Methode für simultane Segmentierung und Verfolgung
von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll,
da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-
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Hierarchien mitberücksichtigen muss.
Wir präsentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen

Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten
höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir
führen eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere
Hyperparameter für jedes entdeckte Modell auszuwählen.

Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unter-
schiedlichen Richtungen, schlägt Algorithmen zur Inferenz in den resultierenden
Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an.
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1S Y N O P S I S

Graphs, as a data structure, are a convenient and abstract way of expressing
problems consisting of entities and relationships between them. Being a
rather abstract structure, graphs have found applications in a variety of

subfields of mathematics and computer science, including computer vision. The
latter was facilitated by the fact that a large pool of efficient graph algorithms has
been developed, that can be applied straightforwardly to multiple applications. This
is important in practice, because it allows users to solve the tasks they have at hand
without fine-tuning or even modifying the algorithms. Some examples of important
and widely used graph problems are: shortest path, graph matching, and graph
decomposition. In this thesis, we study the latter problem in detail and apply it to
computer vision tasks.

Graph decomposition aims at splitting the node set of a given graph into con-
nected components, according to a certain objective; an example is given in Fig. 1.1 (a).
Turning to computer vision, probably, the first example of a graph that comes to
mind is a regular grid graph of an image. Another example is a graph of vertices or
faces of a 3D mesh. In both cases we can perform image or mesh segmentation by
means of graph decomposition.

Other important examples include:

• multiple object tracking, when a graph has putative detections as vertices
connected inside and across frames of a video

• multiple person pose estimation, when a graph contains possible detections of
body joints that are connected in an image

• community detection in social network graphs, that have people as vertices
and edges represent mutual trust or distrust between users

• segmentation and tracking of living cells in a sequence of microscopy images

• multiple geometric model fitting

Being such an important concept, graph decompositions (sometimes also referred
to as clusterings) have gained a lot of attention over the last decades in computer
vision and, more generally, machine learning communities. Notable approaches
include graph spectral clustering, k-means, (multiway) min-cut and others. What
unites them is the necessary a priori knowledge of the number of clusters (or
assumptions on their sizes) and non-negative edge costs. In this thesis we focus on a
conceptually different framework that we introduce further.

1



2 chapter 1. synopsis

Fe

Ye

Y

e ∈ E

(a) (b)

Figure 1.1: (a) An example of a graph decomposition and its encodings. In
a vertex labeling switching, for example, green and blue labels will encode the
same decomposition. Dashed lines, in turn, constitute a multicut of the graph and
uniquely define its decomposition. (b) Depicted is a Bayesian Network defining a
set of probability measures on multicuts (Andres et al., 2011).

1.1 multicut problem

One way of representing a decomposition of a graph is to assign to each vertex an
identifier of a component it belongs to, i.e., a vertex labeling (Fig. 1.1 (a)). The draw-
back of this encoding is that a permutation of components’ identifiers will result in
a different vertex labeling, while encoding the same decomposition. This ambiguity
hampers the optimization, because the search space of the feasible solutions can
be factorially large and one needs to know in advance (or somehow estimate) the
required number of such identifiers.

A different encoding, that uniquely represents every decomposition of a graph,
is called a multicut of a graph (dashed lines in Fig. 1.1 (a)).

Definition 1 A multicut M of a graph G = (V, E) is a subset of edges E such that
no cycle of the graph intersects with this subset precisely once

multicuts(G) = {M ⊆ E | ∀C ∈ cycles(G) : |M ∩ C| 6= 1} (1.1)

If we assign either 0 or 1 to each edge such that edges labeled 1 straddle distinct
components, then the set of all multicuts YG of a graph can be expressed in terms of
linear, so called cycle, inequalities as follows:

YG =

y : E 7→ {0, 1} | ∀C ∈ cycles(G), ∀e ∈ C : ye ≤ ∑
e′∈C\{e}

ye′

 . (1.2)

Chopra and Rao (1993) showed that it is enough to consider only chordless cycles.
Conventionally, 1 is used for the edges in the multicut, however, it is of course

possible to switch the meaning of 0 and 1. Indeed, we shall do so in Chapter 7, with
a straightforward change of (1.2).
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Definition 2 Given a graph G and a cost function c : E 7→ R that assigns a cost or
reward for putting two vertices into different components, the following integer
linear program is called the minimum cost multicut problem

min
y∈YG

∑
e∈E

ceye (1.3)

It is important to note that unless c contains negative values, zero is a trivial
solution, i.e., all vertices are put into the same component. This fact shows one of the
key difference to other graph decomposition approaches, where costs are required to
be non-negative. The drawback is that (1.3) is np-hard to solve (Bansal et al., 2004).

Another distinctive feature of (1.3) is the fact that there are no further constraints
that would specify the number of components, expected sizes, etc. Instead, the
optimal number of components is deduced automatically from the solution. This is
especially useful in settings where the number of components is not known a priori
and to be estimated from data.

Probabilistic model Multicuts enjoy a probabilistic model. Andres et al. (2011)
define, with respect to a graph G = (V, E) and with respect to the Bayesian Network
depicted in Fig. 1.1 (b), a measure of the conditional probability of a y ∈ {0, 1}E,
given the feasible set YG of the characteristic functions of all multicuts of G and
given, for every edge e ∈ E, a vector fe ∈ Rd of d ∈N edge features. Specifically,

pY|F ,Y ∝ pY |Y ·∏
e∈E

pYe|Fe = pY |Y ·∏
e∈E

pYe|Fe(1, fe)
ye pYe|Fe(0, fe)

1−ye (1.4)

with pY |Y (YG, y) ∝

{
1 if y ∈ YG

0 otherwise
. (1.5)

Now, one can perform a classical maximum a posteriori probability (MAP)
inference (Andres et al., 2011; Kappes et al., 2011) to find the most probable multicut:

arg max
y∈YG

∏
e∈E

pYe|Fe(1, fe)
ye pYe|Fe(0, fe)

1−ye = (1.6)

= arg max
y∈YG

∑
e∈E

ye log pYe|Fe(1, fe) + (1− ye) log pYe|Fe(0, fe) = (1.7)

= arg max
y∈YG

∑
e∈E

ye log
pYe|Fe(1, fe)

pYe|Fe(0, fe)
+ |E| log pYe|Fe(0, fe) = (1.8)

= arg min
y∈YG

∑
e∈E

ye log
pYe|Fe(0, fe)

pYe|Fe(1, fe)
. (1.9)

Hence, if one sets the edge costs ce = log
pYe |Fe (0, fe)

pYe |Fe (1, fe)
in (1.3), then minimizers of

(1.3) and (1.9) coincide. This facilitates interpretation of solutions of (1.3) as MAP
estimates.
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1.2 related work

Theoretical analysis Grötschel and Wakabayashi (1989) cast a complete graph
clustering problem as clique partitioning problem, which can be regarded as a
special case of the multicut problem for a complete graph. They give an integer
linear program for it and devise a cutting plane algorithm to solve it. In a follow
up work, Grötschel and Wakabayashi (1990) provide theoretical description of the
induced polytope, defining its facets, and use these results to further improve their
cutting plane algorithm, so that it can be applied to large real-world instances. Deza
et al. (1991) and Deza et al. (1992) proceeded with studying the geometry of the
multicut polytope of a complete graph. Bansal et al. (2004) stated a binary linear
program known as correlation clustering problem, that was shown by Demaine et al.
(2006) to be analogous to the multicut problem for general weighted graphs.

The seminal work by Chopra and Rao (1993) formulates the multicut problem
also for general graphs and studies their facets. The most important observation,
that has practical implications, is that only chordless cycles in (1.2) are facet defining.
This dramatically decreases the number of inequalities that have to be separated
in each node of branch-and-cut solving algorithms. In Chapter 2 we introduce
an extension called lifted multicut and show its practical importance. Horňáková
et al. (2017) study the lifted multicut polytope and show that it is fully-dimensional
and its facets are highly non-trivial: they describe several classes of facet-defining
inequalities. Lange and Andres (2017) analyse facets of lifted multicut polytope
defined w.r.t. paths and trees.

Classical multicuts allow only for pairwise potentials operating on pair of nodes,
but in certain applications higher order terms are also required. A straightforward
generalization to higher order potentials that operate on sets of mutually connected
nodes is called a higher order multicut problem, as has been proposed by Kappes
et al. (2016) and Kim et al. (2011). Later Keuper (2017) proposed a higher order
multicut model defining not only costs but also graph connectivity in terms of edges
with arbitrary order.

We contribute to the theoretical development by introducing node labels into
the multicut objective. This allows us to jointly optimize for node labeling (node
classification) and graph decomposition, that has several important applications.

Solving algorithms One principled approach to solving instances of the multicut
problem pursued, e.g., in (Kappes et al., 2011; Kim et al., 2011, 2014; Yarkony et al.,
2012; Yarkony, 2014), is by solving the linear program (LP) obtained by an outer
relaxation (Yarkony et al., 2012) of the multicut polytope. In conjunction with suitable
rounding, this yields an O(log n) approximation that was established independently
by Charikar et al. (2005) and Demaine et al. (2006). Lately, Fukunaga (2018) has come
up with an LP-based pivoting algorithm that results in an O(k log n) approximation
for higher-order multicut problem, where k is the order of the problem. Although
solving an LP relaxation is normally quick, separating violated inequalities in a
cutting-plane algorithm takes most of the computation time.
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In an attempt to avoid this separation problem, Andres et al. (2012b) and Kappes
et al. (2015a) separate only integral points by cycle inequalities (by breadth first
search) and resort to general classes of cuts for fractional points. For some instances
of the problem, exact solutions are found in less than the time required to solve the
canonical LP relaxation. For planar graphs, the minimum cost multicut problem
remains np-hard (Bachrach et al., 2013; Voice et al., 2012), but admits a polynomial
time approximation scheme (PTAS) (Klein et al., 2015). Due to a doubly exponential
constant factor, this PTAS has mostly been of theoretical interest.

Partial optimality results for the multicut problem, established in (Alush and
Goldberger, 2012, 2015), imply for some instances, a decomposition into independent
sub-problems that can in principle be exploited by any algorithm. Swoboda and
Andres (2017) proposed a message passing algorithms to compute lower bounds and
re-parametrization of the multicut problem, but applications to large-scale problems
still pose computational challenges. Recent work by Lange et al. (2018) further
establish partial optimality conditions that allow to solve problems for series-parallel
graphs to optimality, in linear time. They also compute faster lower bounds, than by
a canonical LP relaxation, and a re-weighting, that allows local search algorithms to
obtain better solutions.

A separate line of research is concentrated on devising local search algorithms
for the multicut problem, that relate to the pioneering work by Kernighan and Lin
(1970) that propose an efficient algorithm for set partitioning problem; the latter
being essentially a multicut defined w.r.t. a complete graph. The first algorithm
that allowed applications of multicuts to large graphs based on α-expansion was
proposed by Bagon and Galun (2011). Beier et al. (2014) proposed a method that
iteratively updates boundary between neighbouring components by solving MAX-
CUT problem. Beier et al. (2015) proposed a scheme that contracts a graph, solves the
multicut problem on a smaller graph and then expands the solution to the original
graph. In principle, any solver may benefit from this scheme.

We contribute by defining two efficient local search algorithms, that do not
provide any guarantees on the quality of the solution or runtime. In practice, they
converge to good solution in affordable time, that allowed us to apply multicut-based
methods to a variety of novel and large-scale applications.

Applications Image segmentation (Andres et al., 2011; Yarkony et al., 2012) is the
most straightforward application of multicuts in computer vision. However, due
to runtime issues previously it was possible to solve it only on graphs defined
w.r.t. super pixels. In this thesis, we applied it directly to pixel grid graphs of
images. Multicuts have also been shown handy in applications to 3d volume
segmentation (Andres et al., 2012b) and motion segmentation (Keuper et al., 2015;
Keuper, 2017).

Apart from classical problems, multicuts have been applied to less obviously
suitable tasks as well. Insafutdinov et al. (2016) formulate multiple person pose esti-
mation as multicut problem with simultaneous node labeling. Each node represents
a possible body joint detection with scores for each possible body join type and the
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task is to classify the body joints and split them between multiple people. Tang et al.
(2015) formulate multiple object tracking as multicut problem, where each node is a
possible object detection and nodes are connected both inside and across frames of
a video. Interestingly, both these tasks can be expressed in the same node labeling
multicut framework that we propose in this thesis.

Additionally, in this thesis we apply multicuts to communities detection in large
social networks and to multiple model fitting for the first time, to the best of our
knowledge.

1.3 contributions

Our contributions mainly stem from limitations of the multicut problem (Def. 2. One
such limitation is the fact that a cost or reward can be assigned only to the nodes that
are direct neighbours in the graph. However, in practice, it is normally beneficial
to let each node know more about its local neighbourhood. We propose to mitigate
this limitation by introducing additional edges between non-direct neighbours, that
do not change the connectivity. This allows to create more plausible segmentations.

Another limitation is the fact that multicuts can optimize only a decomposition.
However, in many applications it is also necessary to perform node labeling, i.e.,
for each node select exactly one class label. We propose a novel formulation that
jointly optimizes both the node labeling and graph decomposition. We applied this
formulation to three distinct computer vision tasks without any modifications.

One such important application is instance-aware semantic segmentation, that has
attracted significant attention recently. We train a general object boundary detector
and combine it with the output scores of a semantic segmentation network in a joint
optimization framework. This allows us to reason simultaneously about the classes
and objects in an image.

The third limitation rises from the fact the multicut-based approaches are in
general np-hard to solve. This limited their applicability to only relatively small
graphs, e.g., super-pixel graphs of images. In this thesis, we propose two efficient
local search algorithms (heuristics), that allow to obtain good solutions in affordable
time. They do not provide any guarantees on the runtime or quality of the solutions,
but our extensive experiments show that they can be very useful in practice.

Thanks to our efficient heuristics we were able to apply multicut, for the first
time, to grid-graphs of images and come up with several other applications: First,
we developed an online tool for interactive video segmentation. After pre-processing
of a video (computing super-voxels and features) a user draws strokes on the video
frames and a temporally coherent segmentation is computed on-the-fly.

Second, we apply higher-order multicuts (costs are defined on subsets of vertices
of arbitrary cardinality) to the task of multiple model fitting. We fit elementary
hypotheses into subsets of data points and compute their residuals under certain
model assumption. We take then the probability of a point belonging to a model
being inversely proportional to the residuals. Then we cluster data points so that
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the overall probability for all the models is maximized. We also present results on
multiple model fitting with hyperparameter selection. In real data all models might
have a unique noise level, and most conventional algorithms will fit a model with
and average hyperparameter. This might lead to under- and over-assignment of the
data points. Our approach, that is based on node labeling higher order multicuts, is
able to choose a model hyperparameter for each model individually.

Finally, we develop a model for simultaneous segmentation and tracking of living
cells. Challenges in this case include low resolution microscopy images, significant
level of noise, low temporal resolution. Also, cells can divide and the algorithm
should handle these events and not lose the association.

1.4 outline

Here, we summarize each chapter of the thesis. We also mention the respective pub-
lications, that some of the chapters are based on, and specify explicitly contributions
of the authors.

Chapter 2: Lifted Multicut Problem One of the fundamental limitations of the
classical multicut formulation is that the cost or reward can be assigned to only
direct neighbours in a graph. In practice, for example, in case of image segmentation
local estimates between neighbouring pixels are prone to noise. Here, we proposed
an approach that adds additional cost edges (preserving the original feasible set of
decompositions), whose values are computed automatically using geodesic prob-
abilistic lifting. As solving the multicut problem is NP-hard, we developed two
efficient heuristics. Our results show, that using the same data we can improve
results considerably with a bit of extra computations.

The content of this chapter corresponds to the ICCV 2015 publication “Efficient
Decomposition of Image and Mesh Graphs by Lifted Multicuts”. Margret Keuper was
the leading author and contributed probabilistic geodesic lifting and experiments on
images. Evgeny Levinkov contributed two efficient heuristics and their comparison
to other solvers. Nicolas Bonnel contributed experiments on meshes.

Chapter 3: Empirical Comparison of Local Search Algorithms We carried out
an extensive comparison of our proposed heuristics, namely GAEC and KLj, and
existing algorithms on data sets with varying size and properties. Where it was
possible, we computed globally optimal solutions using branch-and-cut and lower
bounds by solving the canonical LP relaxation. We also proposed a generalization of
GAEC, called Greedy Fixation, that fixes variables not only to 0 (join), but to 1 (cut)
as well.

Our results show, that although heuristics do not provide any guarantees on the
quality of solutions, nor any bounds on the runtime, in practice, they converge to
solutions that are not far from the optimal ones in terms of both objective value and
metrics, but do so orders of magnitude faster, than the exact solver.

The content of this chapter corresponds to the GCPR 2017 publication “A Com-
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parative Study of Local Search Algorithms for Correlation Clustering”. Evgeny
Levinkov was the leading author of this paper. Alexander Kirillov contributed by
training a siamese CNN for the MNIST experiment.

Chapter 4: Interactive Multicut Video Segmentation Chapter 4 shows, that our
multicut heuristics are fast and provide good quality solutions. In this chapter we
applied them to the task of interactive video segmentation. The pipeline starts with
preprocessing of the video into super-voxels and computing their features. Then,
user can perform two kinds of operations: 1) draw continuous strokes that specify
super-voxels that belong to the same object, 2) by clicking on distinct super-voxels
user can specify that they belong to different objects. User may also split super-voxels
to refine the segmentation. We learn a logistic regression on-the-fly and compute the
multicut solution in real time.

The content of this chapter corresponds to the Pacific Graphics 2016 short paper
publication “Interactive Multicut Video Segmentation”. Evgeny Levinkov was the
leading author of this paper. James Tompkin and Nicolas Bonnel contributed
developing the client-server application and carried out the user study.

Chapter 5: Moral Lineage Tracing One of the core problems in developmental
biology is lineage tracing, i.e., the problem of establishing parental relationship
of cells as they live, move around, and divide. The task is complicated by the
fact that it is also necessary to segment individual cells in each video frame and
track them throughout the whole video sequence. We proposed a joint formulation
for segmentation and tracking, that is based on the multicut problem, but more
constrained. For example, the cells are constrained to never merge, so that morality
is preserved.

To solve the resulting problem we offered a branch-and-cut algorithm together
with the cutting-plane algorithm for the canonical LP relaxation. The solutions we
obtained compare favourably to others. The runtime of our solver was prohibitive,
but a follow up work by Rempfler et al. (2017) greatly improved on this issue.

The content of this chapter corresponds to the CVPR 2016 publication “Moral
Lineage Tracing”. Evgeny Levinkov was the shared leading author of this paper.
Florian Jug contributed with experimental evaluation of the proposed method.

Chapter 6: Node Labeling Lifted Multicut Problem Multicuts allow to optimize
only a decomposition of graph, however, several important applications require to
also optimize for a node labeling as well. Here, we proposed a joint formulation,
that allows to perform both tasks simultaneously. We applied this formulation to
such important computer vision tasks as multi-person pose estimation, multi-person
tracking, and instance segmentation. We give two heuristics that can be applied to
the above mentioned tasks without any changes. Without additional learning we
improved considerably over the base lines.

The content of this chapter corresponds to the CVPR 2017 publication “Joint
Graph Decomposition & Node Labeling: Problem, Algorithms, Applications”.
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Evgeny Levinkov was the leading author of this paper. Jonas Uhrig contributed
experiments on instance segmentation. Eldar Insafutdinov provided us with the
data for multi-person pose estimation experiments. Siyu Tang provided us with the
data for multi-person tracking.

Sec. 6.4.3 presents our results on instance-aware semantic segmentation and
corresponds to the CVPR 2017 publication “InstanceCut: from Edges to Instances
with MultiCut”. Alexander Kirillov was the leading author of this paper. Evgeny
Levinkov contributed the node labeling multicut formulation and inference code.

Additionally, our inference code has been used as well in the CVPR 2017 publica-
tion “ArtTrack: Articulated Multi-person Tracking in the Wild” (accepted as an oral
presentation, 2.65% acceptance rate, Evgeny Levinkov is a co-author).

Chapter 7: Geometric Multiple Model Fitting with Model Selection Geometric
multiple model fitting is the task of explaining data points by models under certain
assumption, e.g., line fitting. We formulate it as a higher order multicut problem
defined over cliques of data points, that allows us to group points, that are likely to
belong to the same model, together.

Usually, model fitting algorithms fit models with all the hyperparameters fixed
and require an inspection of results. By introducing node labels into the formulation
we can work with a set of possible hyperparameters and let the optimization choose
a better one for each model, i.e., perform model selection. We think that this is much
closer to the real world data.

Chapter 8: Conclusions In this chapter we summarize the thesis and elaborate on
existing limitations and discuss future directions of research. We also elaborate on
possibility of end-to-end learning of decompositions.
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Formulations of the image decomposition problem (Arbeláez et al., 2011) as
a Multicut Problem (MP) w.r.t. a superpixel graph have received considerable
attention. In contrast, instances of the MP w.r.t. a pixel grid graph have

received little attention, firstly, because the MP is NP-hard and instances w.r.t. a
pixel grid graph are hard to solve in practice, and, secondly, due to the lack of
long-range terms in the objective function of the MP. We propose a generalization
of the MP with long-range terms (LMP). We design and implement two efficient
algorithms (primal feasible heuristics) for the MP and LMP which allow us to
study instances of both problems w.r.t. the pixel grid graphs of the images in the
BSDS-500 benchmark (Arbeláez et al., 2011). The decompositions we obtain do not
differ significantly from competitors, suggesting that the LMP provides a useful
formulation of the image decomposition problem. To demonstrate the generality of
the LMP, we apply it also to the mesh decomposition problem posed by the Princeton
benchmark (Chen et al., 2009), obtaining competitive decompositions.

13
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2.1 introduction

Formulations of the Image Decomposition Problem (Arbeláez et al., 2011) as a
Minimum Cost Multicut Problem (MP) (Chopra and Rao, 1993; Deza and Laurent,
1997) have received considerable attention (Alush and Goldberger, 2012; Andres et al.,
2011, 2012b, 2013; Bagon and Galun, 2011; Beier et al., 2015, 2014; Kappes et al., 2011,
2016, 2015b; Kim et al., 2011, 2014; Nowozin and Jegelka, 2009; Yarkony et al., 2012,
2015). Advantages of this formulation are in order: Firstly, the feasible solutions of
the MP relate one-to-one to the decompositions of a graph. In particular, the number
of components is not fixed in advance but is determined by the solution. Secondly,
the MP, unlike balanced cut problems (Shi and Malik, 2000), does not favor one
decomposition over another by definition. Thirdly, multicut algorithms are easy to
use; they take as input a graph, e.g. the pixel grid graph of an image, and, for every
edge, a real-valued cost (reward) of the incident nodes being in distinct components,
e.g. log 1−pe

pe
+ log 1−p∗

p∗ , for an estimated probability pe of boundary (Arbeláez et al.,
2011) at the edge e, and a prior probability p∗ ∈ (0, 1) of cuts. The output is a 01-
labeling of the edges that well-defines a decomposition of the graph by 0 indicating
“join” and 1 indicating “cut”.

One disadvantage is the NP-hardness of the MP (Bansal et al., 2004; Demaine
et al., 2006). Despite significant progress in the design of efficient heuristics (Bagon
and Galun, 2011; Beier et al., 2015, 2014; Kernighan and Lin, 1970), instances of the
MP for image segmentation have so far only been solved w.r.t. superpixel adjacency
graphs and not w.r.t. pixel grid graphs, with the sole and notable exception of (Bagon
and Galun, 2011). A second disadvantage results from the fact that a multicut makes
explicit only for edges whether the incident nodes are in distinct components. It
does not make explicit for pairs of nodes that are not neighbors whether these are
in distinct components. Hence, the linear objective function of the MP w.r.t. a pixel
grid graph cannot assign a cost specifically to all decompositions for which a pair
of pixels that are not neighbors are in distinct components. This limitation, noted
e.g. in (Andres et al., 2013), hampers applications as it is often hard to estimate, for
an image and a pair of neighboring pixels, whether the image is to be cut precisely
between these pixels (only these estimates are used in the MP), and as it is sometimes
easy to estimate for pixels at larger distance whether these are in distinct components
(these estimates are not used in the MP).

An optimization problem whose feasible solutions relate one-to-one to the de-
compositions of a graph and whose objective function can assign, for any pair of
nodes, a cost to all decompositions for which these nodes are in distinct components,
although desirable, has not been proposed before.

Contribution We propose the Minimum Cost Lifted Multicut Problem (LMP),
a generalization of the MP whose feasible solutions relate one-to-one to the de-
compositions of a graph and whose objective function can assign, for any pair of
nodes, a real-valued cost (reward) to all decompositions for which these nodes are
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in distinct components. We design and implement two efficient algorighms for both
the MP and the LMP and evaluate both problem formulations in conjunction with
both algorithms for the Image Decomposition Problem in terms of the BSDS-500

benchmark (Arbeláez et al., 2011) and for the Mesh Decomposition Problem in terms
of the Princeton Mesh Segmentation benchmark (Chen et al., 2009).

2.2 related work

The MP is known as Correlation Clustering in machine learning and theoretical
computer science (Bansal et al., 2004; Demaine et al., 2006). For complete graphs,
which are of special interest in machine learning, the well-known MP and the
proposed LMP coincide.

A generalization of the MP by a higher-order objective function, called the Higher-
Order Multicut Problem (HMP), was proposed in (Kim et al., 2011) and is studied
in detail in (Kappes et al., 2016; Kim et al., 2014). In principle, the HMP subsumes
all optimization problems whose feasible solutions coincide with the multicuts of a
graph, including the LMP we propose. In fact, the HMP is strictly more general than
the LMP; its objective function can assign an objective value to all decompositions
for which any set of edges is cut, unlike the objective function of the LMP which is
limited to single edges. However, the instances of the HMP that are equivalent to the
instances of the LMP we propose have an objective function whose order is equal to
the number of edges in the graph and are hence impractical. Thus, the HMP and
LMP are complementary in practice.

Efficient algorithms (primal feasible heuristics) for the MP are proposed and
analyzed in (Bagon and Galun, 2011; Beier et al., 2014, 2015; Kernighan and Lin,
1970). The algorithms we design and implement are compared here to CGC (Beier
et al., 2014). Our implementation of (an extension of) the Kernighan-Lin Algorithm
(KL) (Kernighan and Lin, 1970) is compared here, in addition, to the implementation
of KL in (Andres et al., 2012a; Kappes et al., 2015a).

Toward image decomposition (Arbeláez et al., 2011), the state of the art in bound-
ary detection, that even exceeds human performance, are UberNet (Kokkinos, 2017),
DeepBoundary (Kokkinos, 2016), and CED (Wang et al., 2017), followed closely
by RDS (Liu and Lew, 2016) and HED (Xie and Tu, 2015). Our experiments are
based on (Dollár and Zitnick, 2015), which is publicly available and only slightly
outperformed by (Bertasius et al., 2015a; Hallman and Fowlkes, 2015). The state
of the art in image decomposition is MCG (Arbeláez et al., 2014), followed closely
by (Arbeláez et al., 2011; Isola et al., 2014). Our results are compared quantitatively
to MCG (Arbeláez et al., 2014).

Toward mesh decomposition (Theologou et al., 2015), the state of the art is
SyncSpecCNN (Yi et al., 2017), followed closely by ACNN (Boscaini et al., 2016) and
Yi et al. (2016). Our experiments are based on (Kalogerakis and Hertzmann, 2010;
Zhang et al., 2012; Kin-Chung Au et al., 2011). In prior work, methods based on
learning mostly rely on a unary term which requires components to be labeled
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semantically (Kalogerakis and Hertzmann, 2010; Xie et al., 2014). One method based
on edge probabilities was introduced previously (Benhabiles et al., 2011). It applies a
complex post-process (contour thinning and completion, snake movement) to obtain
a decomposition. We show the first mesh decompositions based on multicuts.

2.3 problem

2.3.1 Minimum Cost Lifted Multicut Problem

We now define an optimization problem, the Minimum Cost Lifted Multicut Prob-
lem, whose feasible solutions relate one-to-one to the decompositions of a graph
and whose objective function can assign, for any pair of nodes, a cost to all decom-
positions for which these nodes are in distinct components. Here, a component
of a graph is any non-empty subgraph that is node-induced and connected. A
decomposition of a graph is any partition Π of the node set such that, for every
V′ ∈ Π, the subgraph induced by V′ is connected (and hence a component of the
graph). An instance of the problem is defined w.r.t.:

• A simple, undirected graph G = (V, E), e.g., the pixel grid graph of an image
or the triangle adjacency graph of a mesh.

• Additional edges F ⊆ (V
2) \ E connecting nodes that are not neighbors in G. In

practice, we choose F so as to connect any two nodes v, w ∈ V whose distance
dvw in the graph holds 1 < dvw ≤ d∗ for a maximum distance d∗ ∈ R+

0 , fixed
for the experiments in Sec. 2.5.

• For every edge vw ∈ E ∪ F, a cost cvw ∈ R assigned to all feasible solutions for
which v and w are in distinct components. The estimation of cvw from image
and mesh data is discussed in Sections 2.3.3 and 2.5.

With respect to the above, we define a feasible set YEF ⊆ {0, 1}E∪F whose elements
y ∈ YEF are 01-labelings of all edges E ∪ F. The feasible set is defined such that
two conditions hold: Firstly, the feasible solutions y ∈ YEF relate one-to-one to the
decompositions of the graph G. Secondly, for every edge vw ∈ E ∪ F, yvw = 1 if
and only if v and w are in distinct components of G. This is expressed rigorously
by two classes of constraints: The linear inequalities (2.2) below constrain y such
that {e ∈ E | ye = 1} is a multicut of the graph G (Chopra and Rao, 1993). For any
decomposition of a graph, the multicut related to the decomposition is the subset of
those edges that straddle distinct components. In addition, the linear inequalities
(2.3) and (2.4) constrain y such that, for any vw ∈ F, yvw = 0 if and only if there
exists a path in G from v to w, along which all edges are labeled 0.

Definition 3 For any simple, undirected graph G = (V, E), any F ⊆ (V
2) \ E and

any c : E ∪ F → R, the 01 linear program written below is called an instance of the
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Minimum Cost Lifted Multicut Problem (LMP) w.r.t. G, F and c.

min
y∈YEF

∑
e∈E∪F

ceye (2.1)

with YEF ⊆ {0, 1}E∪F the set of all y ∈ {0, 1}E∪F with

∀C ∈ cycles(G) ∀e ∈ C : ye ≤ ∑
e′∈C\{e}

ye′ (2.2)

∀vw ∈ F ∀P ∈ vw-paths(G) : yvw ≤ ∑
e∈P

ye (2.3)

∀vw ∈ F ∀C ∈ vw-cuts(G) : 1− yvw ≤ ∑
e∈C

(1− ye) (2.4)

2.3.2 Properties

We now discuss properties of the LMP (Def. 3):
For F = ∅, the LMP specializes to the MP (Chopra and Rao, 1993; Deza and

Laurent, 1997). Its feasible set YE∅ consists of the characteristic functions of all
multicuts of G (which relate one-to-one to the decompositions of G). Its linear
objective function can be chosen so as to assign, for any edge vw ∈ E, a cost cvw ∈ R

to all decompositions of G for which the nodes v and w are in distinct components.
It cannot be chosen so as to assign, for distinct nodes v and w that are not neighbors
in G, a cost precisely to all decompositions of G for which v and w are in distinct
components.

For F 6= ∅, the LMP is not a MP. Its feasible solutions still relate one-to-one to
the decompositions of the graph G (because ϕ : YEF → YE∅ : y 7→ yE is a bijection).
Its objective function can be chosen so as to assign, for any vw ∈ E ∪ F, a cost to
all decompositions for which the nodes v and w are in distinct components. Thus,
the LMP generalizes the MP. The feasible solutions y ∈ YEF are called lifted multicuts
from (V, E) to (V, E ∪ F) and are studied in (Horňáková et al., 2017).

For some instances of the LMP, notably if cF < 0 (Andres et al., 2013), its solutions
can be identified with the solutions of the instance of the MP w.r.t. the larger graph
G′ := (V, E ∪ F) and c. For the general LMP, this is not true. The feasible solutions
of the MP with respect to G′ and c do not relate one-to-one to the decompositions of
G, unlike the feasible solutions of the LMP which are the characteristic functions of
some multicuts of G′, namely those that are lifted from G (Horňáková et al., 2017).

A cutting plane algorithm for the LMP, based on the canonical LP-relaxation
of the ILP in Def. 3, is impractical for the instances we consider in Sec. 2.5: Al-
though the inequalities (2.2)–(2.4) can be separated efficiently, the number of to-be-
separated inequalities (2.4) is prohibitive, and the facet-defining subset of (2.4) is
unknown (Horňáková et al., 2017). Thus, we propose in Sec. 2.4 two primal feasible
heuristics for the LMP.
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Xe

Ye

Y

Y f

e ∈ E f ∈ F

Figure 2.1: Depicted in black is a Bayesian Network defining a set of probability
measures on multicuts (Andres et al., 2011). Depicted in green is our extension
defining a set of probability measures on lifted multicuts.

2.3.3 Probabilistic Model

We now define a familiy of probability measures on lifted multicuts for which the
maximally probable lifted multicuts are the solutions the LMP (Def. 3). This relates
the coefficients c of the LMP to image and mesh data.

Probability measures on multicuts Andres et al. (2011) define, with respect to a
graph G = (V, E) and with respect to the Bayesian Network depicted in Fig. 2.1 (in
black), a measure of the conditional probability of a y ∈ {0, 1}E, given the feasible
set YE∅ of the characteristic functions of all multicuts of G and given, for every edge
e ∈ E, a vector xe ∈ Rn of n ∈N edge features. Specifically,

pY|X ,Y ∝ pY |Y ·∏
e∈E

pYe|Xe (2.5)

with pY |Y (YE∅, y) ∝

{
1 if y ∈ YE∅

0 otherwise
. (2.6)

They show that y maximizes pY|X ,Y if and only if it is a solution of the instance
of the MP with respect to G and c ∈ RE such that

∀e ∈ E : ce = log
pYe|Xe(0, xe)

pYe|Xe(1, xe)
. (2.7)

Probability measures on lifted multicuts We extend the Bayesian Network of (An-
dres et al., 2011) in order to incorporate estimated probabilities not only for edges
but also for pairs of nodes that are not neighbors.

The extension is depicted in Fig. 2.1 (in green). It contains one additional random
variable Y f for every f ∈ F. The conditional probability measures pY|X ,Y consistent
with the extended Bayesian Network have the form

pY|X ,Y ∝ pY |Y ·∏
e∈E

pYe|Xe ·∏
f∈F

pY f |XE
. (2.8)
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A realization of all random variables Y is a 01-labeling y ∈ {0, 1}E∪F of all edges
vw ∈ E ∪ F. In order to constrain it to the characteristic functions of lifted multicuts,
we consider (2.6) with YEF instead of YE∅.

Probabilistic Geodesic Lifting Estimating, for edges vw = e ∈ E, the probability
pYe|Xe of the nodes v and w being in distinct components, given features xe defined
by image and mesh data, is the classical problem of boundary estimation (Arbeláez
et al., 2011). In our experiments described in Sec. 2.5, we build on recent work (Dollár
and Zitnick, 2015; Kalogerakis and Hertzmann, 2010; Kin-Chung Au et al., 2011;
Zhang et al., 2012) in this field.

Estimating, for pairs vw = f ∈ F of nodes v and w that are not neighbors, the
probability pY f |XE

of v and w being in distinct components is a much harder problem:
As these nodes could be connected by any path in G, this probability depends on
the features xE of all edges. In our experiments, we define, for all vw = f ∈ F:

pY f |XE
(0, xE) := max

P∈vw-paths(G)
∏
e∈P

pYe|Xe(0, xe) . (2.9)

On the one hand, this under-estimates the probability as only one path is con-
sidered. On the other hand, it is the largerst such under-estimate as a maximally
probable such path is considerd. Note also that − log pY f |XE

(0, xE) can be computed
efficiently using, e.g., Dijkstra’s algorithm.

2.4 local search algorithms

We now introduce two efficient algorithms (primal feasible heuristics) which are
applicable to the LMP (Def. 3) and the MP (the special case of the LMP for F = ∅).

Alg. 1 is an adaptation of greedy agglomeration, more specifically, greedy additive
edge contraction. It takes as input an instance of the LMP defined by G = (V, E), F
and c (Def. 3) and constructs as output a decomposition of the graph G. Alg. 2 is
an extension of the Kernighan-Lin Algorithm (Kernighan and Lin, 1970). It takes
as input an instance of the LMP and an initial decomposition of G and constructs
as output a decomposition of G whose lifted multicut has an objective value lower
than or equal to that of the initial decomposition. Both algorithms maintain a
decomposition of G, represented by graph G = (V , E) whose nodes a ∈ V are
components of G and whose edges ab ∈ E connect any components a and b of G
which are neighbors in G. Objective values are computed w.r.t. the larger graph
G′ = (V, E ∪ F) and c. We perform an intensive empirical comparison on various
data sets of our proposed algorithms and competitors in Chapter 3.

2.4.1 Greedy Additive Edge Contraction (GAEC)

Overview Alg. 1 starts from the decomposition into single nodes. In every it-
eration, a pair of neighboring components is joined for which the join decreases
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Algorithm 1: Greedy Additive Edge Contraction (GAEC)

1 while E 6= ∅ do
2 ab := argmax

a′b′∈E
χa′b′

3 if χab < 0 then
4 break

5 contract ab in G and G ′
6 foreach ab 6= ab′ ∈ E ′ do
7 χab′ := χab′ + χbb′

the objective value maximally. If no join strictly decreases the objective value, the
algorithm terminates.

Implementation Our implementation (Andres) uses ordered adjacency lists for the
graph G and for a graph G ′ = (V , E ′) whose edges ab ∈ E ′ connect any components
a and b of G for which there is an edge vw ∈ E ∪ F with v ∈ a and w ∈ b. It
uses a disjoint set data structure for the partition of V and a priority queue for an
ordered sequence of costs χ : E → R of feasible joins. Its worst-case time complexity
O(|V|2 log |V|) is due to a sequence of at most |V| contractions, in each of which at
most degG ′ ≤ |V| edges are removed, each in time O(log degG ′) ∈ O(log |V|).

2.4.2 Kernighan-Lin Algorithm with Joins (KLj)

Overview Alg. 2 starts from an initial decomposition provided as input. In each
iteration, an attempt is made to improve the current decomposition by one of the
following transformations: 1. moving nodes between two neighboring components,
2. moving nodes from one component to an additional, newly introduced component,
3. joining two neighboring components. The main operation “update_bipartition”
is described below. It takes as input the current decomposition and a pair ab ∈ E
of neighboring components of G and assesses Transformations 1 and 3 for this
pair. Transformations 2 are assessed by executing “update_bipartition” for each
component and ∅.

The operation “update_bipartition” constructs a sequence of elementary transfor-
mations of the components a and b and a k ∈ N0 such that the first k elementary
transformations in the sequence, carried out in order, descrease the objective value
maximally. Each elementary transformation consists in either moving a node cur-
rently in the component a which currently has a neighbor in the component b from a
to b, or in moving a node currently in the component b which currently has a neigh-
bor in the component a from b to a. The sequence of elementary transformations is
constructed greedily, always choosing one elementary transformation that decreases
the objective function maximally. If either the first k elementary transformations
together or a complete join of the components a and b strictly decreases the objective
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Algorithm 2: Kernighan-Lin Algorithm with Joins (KLj)

1 repeat
2 foreach ab ∈ E do
3 if has_changed(a) or has_changed(b) then
4 update_bipartition(G, a, b)

5 foreach a ∈ V do
6 if has_changed(a) then
7 repeat
8 update_bipartition(G, a, ∅)
9 until no changes

10 until no changes

value, an optimal among these operations is carried out.

Implementation Our implementation (Andres) of Alg. 2 tags components that
are updated in order to avoid that a pair of components, that is fixed under “up-
date_bipartition”, is processed more than once. In the operation “update_bipartition”,
we maintain the set Ω ⊆ E of edges of G that straddle the components a and b. A
substantial complication in the case of an LMP (F 6= ∅) arises from the fact that
moving a node v ∈ V from a component a ⊆ V to a neighboring component b ⊆ V
might leave the set a \ {v} disconnected. Keeping track of these cut-vertices by the
Hopcroft-Tarjan Algorithm (Hopcroft and Tarjan, 1973) turned out to be impractical
due to excessive absolute runtime. Our implementation allows for elementary trans-
formations that leave components disconnected; we even compute the difference
to the objective value incorrectly in such a case while constructing the sequence
of elementary transformations. However, the first k elementary transformations
are carried out only if the correct difference to the objective value (computed after
the construction of the entire sequence) is optimal. Our implementation of “up-
date_bipartition” has the worst-case time complexity O(|a ∪ b|(|Ω|+ deg G′)). The
number of outer iterations of Alg. 2 is not bounded here by a polynomial but is
typically small (less than 20 for all experiments in Sec. 2.5).

2.5 effectiveness for image and mesh decomposition

2.5.1 Image Decomposition

We now apply both formulations of the graph decomposition problem, the Mini-
mum Cost Multicut Problem (MP) and the Minimum Cost Lifted Multicut Problem
(LMP) defined in Sec. 2.3, in conjunction with both algorithms defined in Sec. 2.4,
GAEC and KLj, to the Image Decomposition Problem posed by the BSDS-500 bench-
mark (Arbeláez et al., 2011).
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Boundary Volume

F-measure Covering RI VI

gPb-owt-ucm (Arbeláez et al., 2011) 0.73 0.59 0.83 1.69

SE+MS+SH (Dollár and Zitnick, 2015)+ucm 0.73 0.59 0.83 1.71

MCG (Arbeláez et al., 2014) 0.75 0.61 0.83 1.57

SE+MP GAEC 0.71 0.50 0.80 2.36

SE+MP GAEC-KLj 0.71 0.50 0.80 2.36

SE+MP 1-KLj 0.71 0.49 0.80 2.41

SE+MP GAEC-CGC 0.71 0.50 0.80 2.23

SE+LMP10 GAEC 0.71 0.51 0.80 2.33

SE+LMP10 GAEC-KLj 0.73 0.58 0.82 1.76

SE+LMP10 1-KLj 0.73 0.58 0.82 1.76

SE+LMP20 GAEC 0.71 0.52 0.80 2.22

SE+LMP20 GAEC-KLj 0.73 0.58 0.82 1.74

SE+LMP20 1-KLj 0.73 0.57 0.82 1.75

Table 2.1: Written above are boundary and volume metrics measuring the distance
between the man-made decompositions of the BSDS-500 benchmark (Arbeláez et al.,
2011) and the decompositions defined by multicuts (MP), lifted multicuts (LMP) and
top-performing competing methods (Arbeláez et al., 2011, 2014; Dollár and Zitnick,
2015). Parameters are fixed for the entire data set (ODS).

For every test image, we define instances of the MP and the LMP as descibed
in Sec. 2.3. For each of these, we compute a feasible solution, firstly, by greedy
additive edge contraction (GAEC, Alg. 1) and, secondly, by applying the extended
Kernighan-Lin Algorithm (KLj, Alg. 2) to the output of GAEC. All decompositions
obtained in this way are compared to the man-made decompositions in the BSDS-500

benchmark in terms of boundary precision and recall (BPR) (Arbeláez et al., 2011)
and variation of information (VI) (Meilă, 2007). The VI is split into a distance due
to false joins, plus a distances due to false cuts, as in (Keuper et al., 2015). Statistics
for the entire BSDS-500 test set are shown in Tab. 2.1 and Fig. 2.2 and are discussed
below, after a specification of the experimental setup.

Setup For every image, instances of the MP are defined w.r.t.: 1. the pixel grid
graph of the image, 2. for every edge in this graph, i.e., for every pair of pixels that
are 4-neighbors, the probability estimated in (Dollár and Zitnick, 2015) of these pixels
being in distinct components, 3. a prior probability p∗ of neighboring pixels being in
distinct components. We vary p∗ ∈ {0.05, 0.10, . . . , 0.95}, constructing one instance
of the MP for every image and every p∗. For each of these instance of the MP, three
instances of the LMP are defined by Probabilistic Geodesic Lifting (Sec. 2.3.3), one
for each d∗ ∈ {5, 10, 20}. Each experiment described in this section is conducted
using one Intel Xeon CPU E5-2680 operating at 2.70 GHz (no parallelization).
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Results It can also be seen from Fig. 2.2 that feasible solutions of the MP found
by GAEC are not improved significantly by either of the local search heuristics
KLj or CGC (Beier et al., 2014). Compared to the man-made decompositions in the
benchmark in terms of BPR and VI, feasbile solutions of the MP found by GAEC,
improved by either CGC or KLj, are significantly worse than MCG (Arbeláez et al.,
2014) for this benchmark (Tab. 2.1).

In contrast, feasible solutions of the LMP found by GAEC are improved effectively
and efficiently by KLj. CGC is not practical for the larger, non-planar graphs of
the instances of the LMP we define; the absolute runtime exceeds 48 hours for
every image and p∗ = 0.5. Compared to the man-made decompositions in the
benchmark, feasible solutions of the LMP found by GAEC and improved by KLj are
not significantly worse than MCG (Arbeláez et al., 2014) for this benchmark. The
effect of changing p∗ is shown for the average over all test images in Fig. 2.2 and for
one image in particular in Fig. 2.5. The best decompositions for this image as well
as for all images on average are obtained for p∗ = 0.5. The effect of changing d∗ is
shown for the average over all test images in Fig. 2.3. It can be seen from this figure
that increasing d∗ from 5 to 10 improves results while further increasing d∗ to 20

does not change results noticeably

2.5.2 Mesh Decomposition

We now apply our formulations and algorithms without any changes to the Mesh
Segmentation Problem (Chen et al., 2009).

Setup The Princeton Segmentation Benchmark (Chen et al., 2009) consists of 19

classes, ranging from humans to man-made objects, each containing 20 meshes.
Manual segmentations of these meshes provide us with a ground truth for evaluation
and supervised learning. We compute informative features known to provide good
results in previous work (Kalogerakis and Hertzmann, 2010; Benhabiles et al., 2011;
Xie et al., 2014): curvatures (minimum, maximum, Gaussian and mean) computed at
two different scales, shape diameter (Shapira et al., 2008) and dihedral angle. Except
the dihedral angle, which is computed for each edge, the curvatures and shape
diameter are computed for each vertex of the mesh. To derive each of these criteria
for an edge, we consider (1) its mean value over the two vertices of the edge, (2) its
difference between the two vertices at each side of the edge and (3) the difference
between its mean values computed on 1-ring neighborhoods at each side of the edge.
This last combination provides additional robustness and multi-resolution behavior.
This way, we obtain a 28-dimensional vector, which is more compact and efficient
than the hundreds of features used in prior work (Kalogerakis and Hertzmann, 2010;
Xie et al., 2014). Probabilities of edges being cut are learned from the ground truth
using a Random Forest classifier, through a leave-one-out experiment similarly to
previous work (Kalogerakis and Hertzmann, 2010; Xie et al., 2014). We apply Alg. 2

on the dual graph of the mesh (one node per triangle), varying the prior probabilities
p∗ of neighboring triangles being in distinct components, and d∗ ∈ {60, 70, 80, 100}.
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Figure 2.2: Depicted above is an assessment of the Multicut Problem (MP) and the
Lifted Multicut Problem with d∗ = 20 (LMP20) in conjunction with Alg. 1 (GAEC)
and Alg. 2 (KLj), in an application to the image decomposition problem posed by the
BSDS-500 benchmark (Arbeláez et al., 2011). Every point in the figures above shows,
for one problem and algorithm, the average over all test images in the benchmark.
Depicted are, on the left, the variation of information (VI), split additively into a
distance due to false cuts and a distance due to false joins, on the right, the accuracy
of boundary detection, split into recall and precision. MCG (Arbeláez et al., 2014)
and SE+MS+SH (Dollár and Zitnick, 2015)+ucm are depicted as solid/dashed gray
lines. Error bars depict the 0.25 and 0.75-quantile.
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Figure 2.3: Depicted is the effect of the lifting distance d∗. It can be seen that
increasing d∗ from 5 to 10 considerably improves the quality of image decompositions
as measured by the VI; further increasing d∗ to 20 does not result in a measurable
improvement.

MP

LMP20

Figure 2.4: Depicted above is a comparison of decompositions defined by feasible
solutions of the MP (top row for, the optimal p∗ = 0.8), with decompositions defined
by feasible solutions of the LMP (bottom row, for the optimal p∗ = 0.5 and d∗ = 20).
All solutions are found by Alg. 2 (KLj), initialized with the output of Alg. 1 (GAEC).
The decompositions defined by feasible solutions of the MP have closed contours
but consist of tiny components on or near the boundary of desired components. This
problem is overcome by feasible solutions of the LMP due to the long-range terms in
the objective function.
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p∗ = 0.3 p∗ = 0.4 p∗ = 0.5 p∗ = 0.6 p∗ = 0.7

Figure 2.5: Depicted is the effect of the prior probability p∗ which establishes a
trade-off between over- and under-segmentation, reasonable in particular at p∗ = 0.5.

ZH KC KH MP LMP70 LMPopt

RI RI RI VI RI VI RI VI RI VI
Human 0.89 0.88 0.88 1.43 0.21 2.93 0.86 1.62 0.87 1.79

Cup 0.80 0.79 0.90 0.35 0.74 0.68 0.89 0.39 0.90 0.39

Glasses 0.91 0.90 0.86 0.68 0.35 1.83 0.84 0.76 0.90 0.68

Airplane 0.89 0.87 0.92 0.67 0.69 1.39 0.92 0.82 0.92 0.83

Ant 0.98 0.96 0.98 0.37 0.93 0.67 0.98 0.42 0.98 0.42

Chair 0.89 0.88 0.95 0.43 0.79 0.98 0.93 0.55 0.93 0.55

Octopus 0.98 0.96 0.98 0.29 0.86 0.80 0.98 0.35 0.98 0.33

Table 0.90 0.94 0.94 0.28 0.76 0.81 0.94 0.28 0.94 0.29

Teddy 0.97 0.95 0.97 0.37 0.69 1.37 0.96 0.51 0.96 0.50

Hand 0.92 0.89 0.90 0.85 0.29 2.36 0.83 1.26 0.85 1.32

Plier 0.91 0.93 0.95 0.57 0.25 2.14 0.91 0.88 0.93 0.84

Fish 0.70 0.76 0.87 0.70 0.64 1.27 0.80 1.09 0.80 1.09

Bird 0.91 0.90 0.91 0.73 0.67 1.36 0.93 0.88 0.93 0.99

Armadillo 0.91 0.89 0.93 1.11 0.21 3.27 0.92 1.60 0.92 1.48

Bust 0.75 0.76 0.76 1.35 0.42 1.67 0.69 2.25 0.69 2.25

Mech 0.87 0.88 0.89 0.46 0.78 0.69 0.84 0.59 0.84 0.59

Bearing 0.83 0.82 0.91 0.45 0.87 0.60 0.84 0.69 0.84 0.69

Vase 0.88 0.83 0.85 0.75 0.55 1.34 0.83 0.90 0.84 0.87

FourLeg 0.86 0.82 0.86 1.34 0.30 2.58 0.84 1.84 0.84 1.72

Average 0.88 0.87 0.91 0.69 0.58 1.51 0.88 0.93 0.89 0.93

Table 2.2: Written above are boundary and volume metrics measuring the distance
between the man-made decompositions of meshes in the Princeton Benchmark
and the decompositions defined by multicuts (MP), lifted multicuts (LMP) and
top-performing competing methods ZH=(Zhang et al., 2012), KC=(Kin-Chung Au
et al., 2011), and KH=(Kalogerakis and Hertzmann, 2010) (statistics obtained from
the respective papers when available). The evaluation is for a fixed parameter set for
the entire database (p∗ = 0.55, d∗ = 70: LMP70), as well as for the best parameter set
we found for each class of meshes (LMPopt). Results for the MP are for the optimal
p∗ = 0.9.
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Figure 2.6: Depicted above is the effect of varying the prior probability p∗ of adjacent
triangles being in distinct components. Here, p∗ ∈ {0.5, 0.55, 0.58, 0.6, 0.62}, from
left to right.

Figure 2.7: Depicted above is a sample of decompositions of images and meshes
found by solving an instance of the Lifted Multicut Problem using Alg. 2. Included
are some cases where this approach fails.
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Results An evaluation in terms of Rand’s index (RI) and the VI is shown in Tab. 2.2.
The results are slightly better than (Zhang et al., 2012; Kin-Chung Au et al., 2011)
and close to those of (Kalogerakis and Hertzmann, 2010). However, (Kalogerakis
and Hertzmann, 2010) require a semantic labeling of the ground-truth, while our
multicut formulation only requires boundary information. The median computation
time per model is resp. 51 seconds for the lifting and 59 seconds for Alg. 2 on an
Intel i7 Pentium laptop computer operating at 2.20 GHz. Graphs have a median
of 18000 nodes and 27000 edges. A sample of our results is shown in Fig. 2.7.
Varying the prior probability p∗ of cuts allows for controlling the amount of over or
under-segmentation, as shown in Fig. 2.6.

2.6 conclusion

We have introduced a generalization of the Minimum Cost Multicut Problem, the
Minimum Cost Lifted Multicut Problem, which overcomes limitations of the MP in
applications to image and mesh segmentation. We have defined and implemented
two efficient algortihms (primal feasible heuristics) applicable to the MP and the
LMP. We have assessed both algorithms in conjunction with both optimization
problems in applications to image decomposition (BSDS-500 benchmark (Arbeláez
et al., 2011)) and mesh decomposition (Princeton benchmark (Chen et al., 2009)).
In both applications, we have found solutions that do not differ significantly from
competing methods. This suggests that the LMP is a useful formulation of graph
decomposition problems in vision.



3
E M P I R I C A L C O M PA R I S O N O F L O C A L S E A R C H
A L G O R I T H M S

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Cut, Glue and Cut (CGC) . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Greedy Fixation (GF) . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Image Segmentation: seg-2d . . . . . . . . . . . . . . . . . . . 34

3.4.2 Volume Image Segmentation: seg-3d-300 and seg-3d-450 . . . 35

3.4.3 Image Collection Clustering: MNIST . . . . . . . . . . . . . . 38

3.4.4 Social Networks Analysis: epinions and slashdot . . . . . . . . 40

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

In previous chapter we introduced two heuristics for the lifted multicut prob-
lem and noted that multicut problem is a special case of the latter. Here, we
empirically compare four local search algorithms for the multicut problem by

applying them to a variety of instances of the multicut problem for the tasks of
image segmentation, hand-written digit classification, and social network analysis.
Although the local search algorithms establish neither lower bounds nor approxi-
mation certificates, they converge monotonously to a fixed point, offering a feasible
solution at any time. For some algorithms, the time of convergence is affordable
for all instances we consider. This finding encourages a broader application of the
multicut problem, especially in settings where the number of clusters is not known
and needs to be estimated from data.

29
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3.1 introduction

Given a finite set and, for any pair of distinct elements, a real-valued cost to be paid
if these elements are put in distinct subsets, partitioning the set optimally, so as
to minimize the sum of costs, is an np-hard problem (Bansal et al., 2004; Grötschel
and Wakabayashi, 1989). Given a graph and, for any of its edges, a cost to be
paid if the incident nodes are put in distinct components, decomposing the graph
optimally, so as to minimize the sum of costs, is a generalization that specializes to
the former problem for complete graphs (Chopra and Rao, 1993; Demaine et al., 2006).
The problem is known as correlation clustering from (Bansal et al., 2004; Demaine
et al., 2006) and is known as the multicut problem stated in (Chopra and Rao, 1993;
Horňáková et al., 2017) in the form of an integer program whose feasible solutions
are binary labelings x ∈ {0, 1}E of the edges E of a graph. For any edge e = {v, w},
the label xe = 1 indicates that this edge e is cut, i.e., that the nodes v and w are in
distinct components:

Let us recall Def. 2 that states, that for any graph G = (V, E) and any c ∈ RE, the
instance of the multicut problem w.r.t. G and c is the binary linear problem

min
y∈{0,1}E

∑
e∈E

ce ye (3.1)

subject to ∀C ∈ chordless-cycles(G) ∀e ∈ C : ye ≤ ∑
e′∈C\{e}

ye′ (3.2)

Correlation clustering differs from clustering based on non-negative distances
such as multi-terminal cut (Dahlhaus et al., 1994), k-cut (Goldschmidt and Hochbaum,
1994), and balanced cut problems. In correlation clustering, no costs or constraints
are put explicitly on the number or sizes of clusters. These properties need not be
known when stating an instance of the problem. Instead, they are defined by any
feasible solution. This is appealing in applications where the number and size of
clusters is to be estimated from data, e.g., image segmentation and social network
analysis.

Contribution We empirically compare local search algorithms for some instances
of the multicut problem. The algorithms we compare are primal feasible heuristics.
They output a sequence of feasible solutions that converges strictly to a fixpoint.
They do not offer bounds or optimality certificates for these fixpoints. We compute
such bounds by polyhedral algorithms where possible. We show that local search
algorithms are practical for relatively large instances of the multicut problem, includ-
ing one for clustering of the MNIST test set of images of hand-written digits (LeCun
et al., 1998) and two for clustering social networks (Leskovec et al., 2010).

3.2 related work

One principled approach to solving instances of the multicut problem, pursued, e.g.,
in (Kappes et al., 2011; Kim et al., 2011, 2014; Yarkony et al., 2012; Yarkony, 2014),
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is by solving the linear program (LP) obtained by an outer relaxation (Chopra and
Rao, 1993; Grötschel and Wakabayashi, 1989; Yarkony et al., 2012) of the multicut
polytope (Chopra and Rao, 1993). In conjunction with suitable rounding, this yields
a logarithmic approximation that was established independently in (Charikar et al.,
2005) and (Demaine et al., 2006). Solving an LP relaxation and rounding the solution
can be efficient in general and practical for small instances. For large and complex
instances, even the LP relaxation consisting of only the cycle inequalities (3.2) can be
prohibitive.

In an attempt to avoid this separation problem,Andres et al. (2012b); Kappes et al.
(2015a) separate only integral points by cycle inequalities (by breadth first search)
and resort to general classes of cuts for fractional points. For some instances of
the problem, exact solutions are found in less than the time required to solve the
canonical LP relaxation. Yet, the absolute running time of both these algorithms is
prohibitive for the large instances we study in Section 3.4.

For planar graphs, the minimum cost multicut problem remains np-hard (Bachrach
et al., 2013; Voice et al., 2012), but admits a polynomial time approximation scheme
(PTAS) (Klein et al., 2015). Due to a doubly exponential constant factor, this PTAS
has mostly been of theoretical interest.

Partial optimality results for the multicut problem, established in (Alush and
Goldberger, 2012, 2015), imply for some instances, a decomposition into independent
sub-problems that can in principle be exploited by any algorithm. Swoboda and
Andres (2017) proposed a message passing algorithms to compute lower bounds and
re-parametrization of the multicut problem, but applications to large-scale problems
still pose computational challenges. Recent work by Lange et al. (2018) further
establish partial optimality conditions that allow to solve problems for series-parallel
graphs to optimality, in linear time. They also compute faster lower bounds, than by
a canonical LP relaxation, and a re-weighting, that allows local search algorithms to
obtain better solutions.

Local search algorithms for the multicut problem, that relate to pioneering work
by Kernighan and Lin (1970) are studied by Beier et al. (2014); Pan et al. (2015).
While these algorithms do not offer lower bounds or approximation certificates, they
output a sequence of feasible solutions that converges strictly to a fixpoint.

3.3 algorithms

This section describes the algorithms for solving instances of multicut problems
used in the comparison. GAEC and KLj were presented in Sec. 2.4. Branch-and-Cut
algorithm converges to a globally optimal solution, while local search algorithms
output a sequence of feasible solutions that converges strictly to a fixpoint. The latter
do not offer any bounds or approximation certificates for these feasible solutions.
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3.3.1 Branch-and-Cut

Solving (3.1) directly is infeasible for any real dataset, because the number of
constraints (3.2) is exponential for general graphs. For complete graphs this number
is exactly (|V|3 ), which is still too large for practical applications.

In order to find the solution of (3.1) we implemented an efficient Branch-and-Cut
(B&C) algorithm similar to way proposed in (Andres et al., 2012b; Kappes et al., 2011).
It iteratively solves a less constrained problem, using Gurobi, and then adds the
constraints (3.2) violated by the current solution. It goes on until no any constraints
are violated. The search of violated constraints can be efficiently implemented by
means of connected components labeling and breadth-first search.

In the experiments (when feasible) we also compute lower bounds (LB) given
by the canonical relaxation of (3.1) that allows y ∈ [0, 1]|E|, which is solved using a
cutting plane approach (Kappes et al., 2015a).

3.3.2 Cut, Glue and Cut (CGC)

Cut, Glue and Cut, defined in (Beier et al., 2014), is a local search algorithm that
consists of two phases. During the cut phase, the graph is recursively bipartitioned.
During the glue and cut phase, pairs of neighboring clusters are visited and, for any
such pair, a two-colorable cut of their union is found by solving a max-cut problem.
If the graph is planar, the max-cut problem is solved exactly and efficiently by the
Blossom Algorithm (Schraudolph and Kamenetsky, 2009). If the graph is non-planar,
the max-cut problem is solved approximately by the QPBO-I Algorithm (Rother et al.,
2007).

We examine here the c++ implementation of (Beier et al., 2014), using the Blos-
som Algorithm for planar graphs. The implementation is shown in (Beier et al.,
2014) to converge faster than Expand-and-Explore (Bagon and Galun, 2011) and
PlanarCC (Yarkony et al., 2012).

3.3.3 Greedy Fixation (GF)

Greedy Fixation, a simple algorithm we propose, is similar in spirit to GAEC. Unlike
GAEC, the treatment of joins (0) and cuts (1) is symmetric. GF starts from the partial
labeling y ∈ {0, 1, ∗}E of edges according to which all edges are undecided (∗). It
proceeds by fixing edge labels ye to 0 (join) or 1 (cut) in the order of their absolute
cost. Whenever an edge is labeled 0, other edges are labeled 0 if this is implied by
transitivity.

We examine here our c++ implementation of GF that is analogous to that of
GAEC. The time complexity of GF is equal to that of GAEC. The absolute running
time is longer by a constant factor.
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Data set # |V| |E| Properties

seg-2d (Andres et al., 2011) 100 156 – 3764 439 – 10970 planar
seg-3d-300 (Andres et al., 2012b) 8 3846 – 5896 23763 – 36221 non planar
seg-3d-450 (Andres et al., 2012b) 8 15150 – 17074 94121 – 107060 non planar

slashdot (Leskovec et al., 2010) 1 82144 500481 unit costs
epinions (Leskovec et al., 2010) 1 131828 711210 unit costs

mnist 1 10000 49995000 complete

Table 3.1: Characteristics of data sets used for evaluation with number of instances
varying from 1 to 100. The sizes of instances vary from hundreds to thousands of
nodes to millions of edges. We also consider graphs of different topologies.

3.4 experiments

We apply the algorithms described in Section 3.3 and GAEC and KLj (Sec. 2.4) to
instances of the multicut problem from the six data sets characterized in Tab. 3.1.
Five of these data sets have been used as a benchmark for multicut algorithms
in (Beier et al., 2015, 2014; Kappes et al., 2015a). The sixth (mnist) is our contribution,
a multicut problem whose feasible solutions define a partition of the MNIST test set
of hand-written digits (LeCun et al., 1998). As initial clusterings (input), we consider
the output of GAEC, the output and GF, the clustering in which all nodes are in one
cluster (y = 0), as well as the clustering in which every node forms a separate cluster
(y = 1).

The data sets of image segmentation (“seg” in Tab. 3.1) come with an estimated
cut probability pe ∈ (0, 1) for every edge e ∈ E. In order to obtain instances of the
multicut problem, we define costs w.r.t. these probabilities according to ce := log 1−pe

pe
and refer to (Kappes et al., 2015b) for a discussion of the probabilistic model. For
the clustering of the MNIST test set of hand-written digits, we estimate the cut
probabilities as described in Section 3.4.3. For the clustering of social networks, we
transform signed directed graphs encoding (dis)trust as described in Section 3.4.4.

We report for each combination of an algorithm and a data set the running time
until termination, the objective value of the output feasible solution, and, where
available, a distance of the output feasible solution form a known true clustering.
This distance is measured by the variation of information (VI) (Meilă, 2007), split
additively (Keuper et al., 2015) into the contribution due to false cuts (VIp) and
false joins (VIr), and is measured also by Rand’s Index (RI). VI is a metric that is
lower-bounded from below by 0. RI is a measure of similarity that is bounded from
above by 1. To put the costs in perspective, we report the lower bounds (LB) on the
minimum cost obtained from the LP relaxation of (Kappes et al., 2015a), and we also
report feasible solutions found by the branch-and-cut (B&C) algorithm.

All c++ implementations are compiled with the same parameters and are exe-
cuted without multi-threading, on the same machine, an Intel R© CoreTMi3-2100 CPU,
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Algorithm T [s] Value VI VIp VIr RI

zeros 0.000 0.00 1.68 0.00 1.68 0.44

ones 0.000 2201.12 5.60 5.39 0.20 0.83

Branch-and-Cut 1.498 -2966.85 2.27 1.64 0.63 0.86

Lower Bound 3.182 -2967.57 – – – –

GAEC 0.019 -2954.40 2.26 1.62 0.65 0.85

GF 0.013 -2950.90 2.28 1.66 0.63 0.85

zeros + KL (Kappes et al., 2015a) 0.328 -2771.95 2.42 1.51 0.90 0.72

zeros + CGC (Beier et al., 2014) 0.427 -2963.77 2.26 1.62 0.64 0.85

zeros + KLj 0.054 -2944.14 2.27 1.65 0.62 0.86

ones + KL (Kappes et al., 2015a) 0.131 -2808.10 2.88 2.39 0.49 0.86

ones + CGC (Beier et al., 2014) 0.990 -2963.94 2.28 1.64 0.65 0.85

ones + KLj 0.057 -2947.37 2.29 1.66 0.63 0.85

GAEC + KL (Nowozin and Jegelka, 2009) 49.948 -2957.84 2.26 1.62 0.64 0.85

GAEC + KL (Kappes et al., 2015a) 0.430 -2957.79 2.26 1.62 0.64 0.85

GAEC + CGC (Beier et al., 2014) 0.393 -2964.20 2.27 1.64 0.63 0.85

GAEC + KLj 0.046 -2959.08 2.27 1.62 0.65 0.85

GF + KL (Nowozin and Jegelka, 2009) 49.380 -2955.39 2.28 1.65 0.63 0.85

GF + KL (Kappes et al., 2015a) 0.406 -2955.34 2.28 1.65 0.63 0.85

GF + CGC (Beier et al., 2014) 0.391 -2963.86 2.27 1.63 0.64 0.85

GF + KLj 0.042 -2958.96 2.27 1.63 0.64 0.85

Table 3.2: Empirical comparison of the algorithms on the problem of segmenting
planar images (seg-2d).

operating at 3.10 GHz and equipped with 8 GB of RAM.

3.4.1 Image Segmentation: seg-2d

Toward the problem of segmenting each of the 100 test images of the Berkeley
Segmentation Data Set (Martin et al., 2001), we consider the instances of the multicut
problem defined in (Andres et al., 2011). These instances are publicly available as
part of the OpenGM benchmark (Kappes et al., 2015a). Results are shown in Fig. 3.1
and Tab. 3.2.

It can be seen form these results that local search algorithms find feasible solutions
which are close in terms of objective value and accuracy to the optimal solutions
found by B&C for these instances. Moreover, local search algorithms find such
solutions one to two orders of magnitude faster than B&C. GF is slightly faster
than GAEC, terminating with feasible solutions that are slightly worse. KLj is an
order of magnitude faster than CGC (Beier et al., 2014) and KL (Kappes et al., 2015a)
and is more stable under with regard to initialization. The implementation of KL
from (Nowozin and Jegelka, 2009) which is not optimized for performance does
not process the data set within 24 hours for “zeros” and “ones” initialization. This
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Algorithm T [s] Value VI VIp VIr RI

zeros 0.000 0.00 4.09 0.00 4.09 0.12

ones 0.000 40478.83 6.77 6.69 0.07 0.88

Branch-and-Cut 68.088 -27302.76 1.64 0.82 0.82 0.88

Lower Bound 631.769 -27304.81 – – – –

GAEC 0.070 -27162.81 1.76 0.85 0.91 0.87

GF 0.054 -27142.13 1.75 0.86 0.89 0.87

zeros + KL (Kappes et al., 2015a) 2.020 -25570.35 3.30 1.13 2.17 0.72

zeros + CGC (Beier et al., 2014) 5.481 -27253.30 1.80 0.83 0.96 0.86

zeros + KLj 0.781 -27275.89 1.68 0.83 0.85 0.88

ones + KL (Kappes et al., 2015a) 45.608 -25217.20 2.22 1.44 0.77 0.87

ones + CGC (Beier et al., 2014) 25.144 -27268.02 1.74 0.84 0.91 0.87

ones + KLj 0.647 -27266.11 1.64 0.80 0.84 0.88

GAEC + KL (Kappes et al., 2015a) 8.543 -27201.47 1.76 0.85 0.91 0.87

GAEC + CGC (Beier et al., 2014) 2.398 -27277.15 1.71 0.84 0.87 0.87

GAEC + KLj 0.406 -27258.25 1.69 0.84 0.85 0.88

GF + KL (Kappes et al., 2015a) 8.628 -27193.11 1.74 0.86 0.88 0.87

GF + CGC (Beier et al., 2014) 2.298 -27277.64 1.69 0.83 0.86 0.88

GF + KLj 0.437 -27251.91 1.70 0.84 0.85 0.88

Table 3.3: Empirical comparison of the algorithms on the problem of segmenting
volume images (seg-3d-300).

shows that attention to constant factors is important at this scale of the problem.

3.4.2 Volume Image Segmentation: seg-3d-300 and seg-3d-450

Toward the problem of segmenting volume images of neuronal processes taken by
an electron microscope (Knott et al., 2008) we consider the instances of the multicut
problem defined in (Andres et al., 2012b). These instances are publicly available as
part of the OpenGM benchmark (Kappes et al., 2015a). Results are shown in Fig. 3.1
and Tab. 3.3 and Tab. 3.4.

These results are comparable to those for image segmentation (Sec. 3.4.1). Yet,
differences between algorithms become more pronounced here, as the instances are
larger. For instance, the time until convergence for GAEC divided by the time until
convergence of B&C is of the orders 10−3 for seg-3d-300 and 10−4 for seg-3d-450.
KLj converges faster than KL (Kappes et al., 2015a), and to better feasible solutions.
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Algorithm T [s] Value VI VIp VIr RI

zeros 0.000 0.00 4.67 0.00 4.67 0.09

ones 0.000 186787.03 7.94 7.87 0.07 0.91

Branch-and-Cut 4130.273 -78474.69 2.02 0.93 1.09 0.87

Lower Bound 10337.771 -78482.98 – – – –

GAEC 0.340 -78281.49 2.11 0.94 1.17 0.85

GF 0.207 -78194.01 2.13 0.97 1.16 0.85

zeros + KL (Kappes et al., 2015a) 16.007 -72984.82 4.16 1.25 2.91 0.67

zeros + CGC (Beier et al., 2014) 64.850 -78252.24 2.32 0.96 1.36 0.83

zeros + KLj 12.687 -78390.69 2.09 0.95 1.14 0.86

ones + KL (Kappes et al., 2015a) 628.895 -61755.28 2.95 2.13 0.82 0.89

ones + CGC (Beier et al., 2014) 375.190 -78369.18 2.17 0.94 1.23 0.85

ones + KLj 12.636 -78388.89 2.08 0.94 1.14 0.86

GAEC + KL (Kappes et al., 2015a) 122.214 -78358.89 2.11 0.95 1.17 0.85

GAEC + CGC (Beier et al., 2014) 22.815 -78403.27 2.09 0.95 1.14 0.86

GAEC + KLj 6.565 -78417.99 2.04 0.94 1.10 0.86

GF + KL (Kappes et al., 2015a) 127.386 -78345.25 2.12 0.96 1.16 0.85

GF + CGC (Beier et al., 2014) 28.497 -78392.97 2.10 0.95 1.15 0.86

GF + KLj 7.109 -78412.11 2.08 0.95 1.13 0.86

Table 3.4: Empirical comparison of the algorithms on the problem of segmenting
volume images (seg-3d-450).
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Figure 3.1: Convergence behaviour of the algorithms (mean objective vs. time),
initialized with “zeros”.
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3.4.3 Image Collection Clustering: MNIST

Toward the problem of partitioning the MNIST test set of images of hand-written
digits (LeCun et al., 1998), we learn from the MNIST training set a Siamese CNN to
predict, for any pair of images, whether they depict the same or distinct digits. The
learning is described in detail below. The probabilities predicted by this Siamese
CNN for the MNIST test set define an instance of the multicut problem for the
complete graph whose nodes are the test images.

Results from applying the local search algorithms described in Section 3.3 to
this instance are shown in Tab. 3.5 and 3.6. It can be seen from these results that
local search algorithms are practical for this large instance. This is in contrast to
the implementations of B&C and LB we have applied, which are impractical for
this instance. Secondly, it can be seen from the VI and RI as well as from the
confusion matrix in Tab. 3.6 that the clustering we obtain as a feasible solution is
exceptionally accurate, defining 14 clusters, 4 of which contain only a single image.
By relating the ten largest clusters to the ten digits optimally, this clustering can be
associated with a misclassification rate of M = 0.82% (see Tab. 3.5) which is lower
than the misclassification rate of LeNet trained for classification (1.1%). This result
is surprising, given that we solve a clustering problem and do not prescribe the
number of clusters. It encourages applications of multicut even in settings where the
number of clusters is known.

Learning a Siamese CNN for relating images We train a Siamese CNN from
scratch, with a cross entropy loss, built on the architecture of LeNet (LeCun et al.,
1998) which has a standard implementation in the Caffe framework (Jia et al., 2014).
We duplicate the convolution part of LeNet with shared weights to take two images.
We feed outputs of these parts to the fully connected layer of the LeNet architecture.
The CNN has two outputs, scores for two images depicting the same and distinct
digits, respectively. We learn the parameters of this network from the MNIST training
set, without any data augmentation. We stick to the solver parameters proposed in
the Caffe example1 in which LeNet is trained for a classification task. Specifically,
we use stochastic gradient descent and an inverse decay learning policy with the
base learning rate 0.01, γ = 0.0001, and power 0.75. The batch size is 64. We carry
out 150000 iterations.

1http://caffe.berkeleyvision.org/gathered/examples/mnist.html
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Algorithm Time [s] Value VI VIp VIr RI M%

zeros 0.000 0.0 3.319 0.000 3.319 0.100 0

ones 0.000 -825928042.4 9.968 9.968 0.000 0.900 99.9

GAEC 369.77 -906355440.5 0.220 0.113 0.108 0.995 1.20

GF 148.33 -906355440.5 0.220 0.113 0.108 0.995 1.20

zeros + KL (Kappes et al., 2015a) 1796.64 -906765155.8 0.162 0.083 0.079 0.997 0.82

zeros + CGC (Beier et al., 2014) – – – – – – –
zeros + KLj 120.66 -906765155.8 0.162 0.083 0.079 0.997 0.82

ones + KL (Kappes et al., 2015a) 50197.41 -906765155.8 0.162 0.083 0.079 0.997 0.82

ones + CGC (Beier et al., 2014) 120418.80 -906765155.8 0.162 0.083 0.079 0.997 0.82

ones + KLj 1403.22 -906765155.8 0.162 0.083 0.079 0.997 0.82

GAEC + KL (Kappes et al., 2015a) 1197.80 -906765155.8 0.162 0.083 0.079 0.997 0.82

GAEC + CGC (Beier et al., 2014) 1898.33 -906585148.4 0.174 0.089 0.085 0.997 0.91

GAEC + KLj 415.93 -906765155.8 0.162 0.083 0.079 0.997 0.82

GF + KL (Kappes et al., 2015a) 896.51 -906765155.8 0.162 0.083 0.079 0.997 0.82

GF + CGC (Beier et al., 2014) 1553.41 -906585148.4 0.174 0.089 0.085 0.997 0.91

GF + KLj 186.45 -906765155.8 0.162 0.083 0.079 0.997 0.82

Table 3.5: Empirical comparison of the algorithms described Section 3.3 on the
problem of clustering the images of hand-written digits in the MNIST test set (LeCun
et al., 1998).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 Σ

0 976 0 0 0 0 0 1 1 1 0 0 0 1 0 980

1 0 1132 1 2 0 0 0 0 0 0 0 0 0 0 1135

2 1 0 1026 0 1 0 0 3 1 0 0 0 0 0 1032

3 0 0 1 1003 0 4 0 0 1 1 0 0 0 0 1010

4 0 0 0 0 976 0 1 0 0 5 0 0 0 0 982

5 2 0 0 8 0 880 1 0 0 1 0 0 0 0 892

6 4 2 0 0 1 1 946 0 2 0 0 1 0 1 958

7 0 2 5 1 0 0 0 1017 1 1 1 0 0 0 1028

8 2 0 2 1 0 1 0 1 965 2 0 0 0 0 974

9 1 0 0 1 2 4 0 4 0 997 0 0 0 0 1009

Σ 986 1136 1035 1016 980 890 949 1026 971 1007 1 1 1 1

Table 3.6: Confusion matrix of the MNIST test images for the best obtained solution,
with the outliers shown below.



40 chapter 3. empirical comparison of local search algorithms

epinions slashdot
Algorithm Time [s] Value Time [s] Value

GAEC 4.54 -70205 2.93 -49071

GF 2.03 -70219 1.33 -49085

zeros + KLj 60219.8 -70702 35038.6 -49273

ones + KL 40368.4 -71170 25261.4 -49468

GAEC + KLj 6363.45 -71288 6259.56 -49476
GF + KLj 11031.16 -71242 5454.17 -49422

Table 3.7: Comparison of performance of different algorithms with different initial-
izations on very large graphs of social networks.

3.4.4 Social Networks Analysis: epinions and slashdot

Toward the clustering of social networks, we consider the directed graphs called
epinions and slashdot (Leskovec et al., 2010). In these directed graphs H = (V, A)
with edge costs c′ : A → {−1, 1}, each node represents a person and every edge
(v, w) = a ∈ A encodes that a person v either trusts (c′a = 1) or distrusts (c′a = −1)
a person w. We define a multicut problem w.r.t. these signed directed graphs by
firstly removing self-loops from H and by then defining a cost matrix C w.r.t. the
cost matrix C′ as C := sgn(C′ + C′T).

Results for those local search algorithms described in Section 3.3 that are practical
for these large instances of the multicut problem are shown in Tab. 3.7 and Fig. 3.2.
To make use of the feasible solution with the lowest cost that we find, we report in
Fig. 3.2 the cumulative distribution of cluster sizes, i.e. the number of clusters N(x)
of size less than or equal to x. For epinions, we observe one large cluster of 93984

people, 6704 clusters of a size between 2 to 1053, and 18842 totally disconnected
individuals. This is consistent with the fraction of edges indicating trust, which is
82.9%. For slashdot, we observe one large cluster of 68993 people, 862 clusters of a
size between 2 to 692, and 8246 totally disconnected individuals. This is consistent
with the fraction of edges indicating trust, which is 76.1%.

3.5 conclusion

We have applied four local search algorithms to a collection of instances of the
multicut problem for the tasks of image segmentation, hand-written digit classi-
fication and social network analysis. A combination of greedy initialization (by
additive edge contraction or fixation) and the Kernihan-Lin Algorithm with joins
has proven practical for all instances. It has allowed us to cluster the MNIST test set
of hand-written digits into 10 significant clusters with an associated misclassification
rate of 0.82%. Moreover, it has allowed us to estimate the distribution of cluster
sizes form social network graphs. The practicality of these local search algorithms
encourages further applications of the multicut problem, especially in settings where
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Figure 3.2: Cumulative distribution of cluster sizes in social networks, as defined by
the best obtained solutions.

the number of clusters is not known a priori and needs to be estimated from data.
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Video segmentation requires separating foreground from background, but
the general problem extends to more complicated scene segmentations of
different objects and their multiple parts. We develop a new approach

to interactive multi-label video segmentation where many objects are segmented
simultaneously with consistent spatio-temporal boundaries, based on intuitive multi-
colored brush scribbles. From these scribbles, we derive constraints to define a
multicut problem, that we can solve efficiently using the heuristics introduced
in Chapter 2. These algorithms are fast enough to allow for a fully interactive
video segmentation scenario. In addition, we developed a client-server web-based
application, so that all the computations are carried out not on the user’s machine,
also allowing collaborative editing. As our solution generalizes typical binary
segmentation tasks, while also improving efficiency in multi-label tasks, our work
shows the promise of multicuts for interactive video segmentation.

43



44 chapter 4. interactive multicut video segmentation

4.1 introduction

Video segmentation is a common task both in computer vision and computer
graphics. In media production, it is key to composite or remove elements in a scene,
or to apply effects to different objects independently. In computer vision, video
segmentation is key to creating ‘ground truth’ sequences from which to train models
for object classification. Professional visual effects (VFX) tools like SilhouetteFX, LLC.
(2004–2018) and Mocha Imagineer Systems, Ltd. (2014) allow artists to segment a
foreground from uncontrolled backgrounds; however, these often require hours of
work for a few seconds of footage. Acceptable results are achievable in simpler tools,
but these can still take time, e.g. Adobe After Effects Rotobrush (Bai et al., 2009), or
be too inflexible, e.g. Power Matte Digital Film Tools, LLC..

We aim to make a fast video segmentation tool which requires just a few user
interactions, but which is still able to produce acceptable results for applications
such as consumer VFX work or ‘ground truth’ labeling of video databases. One
avenue for potential gains is to consider scenes where multiple objects or regions
need to be segmented. Instead of many binary segmentations, it is possible to
take an approach so that user interactions inform the segmentation of all parts
simultaneously—producing a multicut.

To this end, we introduce an approach to quickly solve the video multicut
problem with user constraints, and so create a fast interactive video segmentation
system. We begin with a supervoxel over-segmentation of the video. This over-
segmentation forms a non-planar graph in spacetime, which must be cut into
meaningful segments. The user interactively scribbles onto the video with different
colored brushes, one color per desired segment. From these scribbles, we resolve
split and merge constraints to inform the solution to the multicut problem. If the
constraints conflict with the underlying supervoxel graph, i.e., the over-segmentation
is too coarse, then we automatically refine the graph to resolve the constraints. In
principle, many different multicuts may exist which meet these constraints. To pick
a good multicut, we assign costs to cutting graph edges by dynamically clustering
video features based on user scribbles. With this approach, each added user stroke
takes ≈1 second to resolve, and the solution automatically generalizes to segmenting
any number of regions.

We perform a comparison of time and quality on 4 sequences against two expert
users who took 10–12 hours with professional tools, and against novices who used
RotoBrush. Our method was 50x faster than the experts, though with less output
quality. Against Rotobrush, our tool was 3x faster with comparable quality. Based
on these results, we believe our approach holds a promise as an interactive video
segmentation tool for consumers, and as a quick tool to label ‘ground truth’ datasets
for computer vision.

We state our contributions explicitly:

1. A formulation of the multicut problem that is appropriate for interactive video
segmentation, with an efficient way to provide fast feedback to users.
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(a) Supervoxels (b) User Interactions (c) Segmentation

Figure 4.1: Starting with a supervoxel segmentation of the input (a), the user scrib-
bles different regions to segment with multi-colored brushes (b). These interactive
constraints quickly cut the video into any number of segments, providing a fast and
simple way to accomplish multi-part segmentation tasks (c).

2. A system for interactive video segmentation which demonstrates the speed
and quality achievable with a supervoxel-based multicut solution.

4.2 related work

Interactive segmentation of videos into spatially and temporally connected com-
ponents (Fig. 4.1) is a prerequisite for many video post-production applications,
such as matting (Chuang et al., 2002), color transfer (Bonneel et al., 2013), or white
balancing (Hsu et al., 2008). It is most often performed as a binary segmentation task
where a foreground object is extracted from the background (Wang et al., 2005; Bai
and Sapiro, 2007; Zhong et al., 2012; Fan et al., 2015; Lu et al., 2016; Li et al., 2016).
Prominent examples include the consumer Rotobrush tool in Adobe After Effects,
which is based on the work of (Bai et al., 2009), and professional commercial tools
such as Silhouette, Mocha, and Power Matte. These tools do not guaranteed to create
consistent segment boundaries between different objects.

In the computer vision literature, consistent boundaries can be guaranteed by
multi-label segmentations (Grundmann et al., 2010; Ochs and Brox, 2011; Galasso
et al., 2013). However, existing work in this area has focused on fully automatic
segmentation (Jain et al., 2017). While automatic approaches will work some of the
time, it is currently very difficult to reliably generate semantic-level segmentations.
To complete the task of disambiguating regions and creating meaningful labels, a
user is required, and so interactive segmentation tools are needed.

The closest approach to ours, that also uses user strokes for foreground vs.
background segmentation, is Shankar Nagaraja et al. (2015); they pre-compute point
trajectories that propagate user input in time. An easy and intuitive input from the
user in the form of simple clicks is used in (Wang et al., 2014a; Bearman et al., 2016).
A separate line of work (Khoreva et al., 2017; Perazzi et al., 2017; Jampani et al., 2017;
Caelles et al., 2017) get as input the exact mask of an object in the first frame and
then propagates it throughout the video. Cheng et al. (2017) jointly estimates optical
flow and segmentation of one object in the video.
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4.3 method and system

A block diagram of our system is shown in Fig. 4.2. To begin, we preprocess the video
to compute both supervoxels and an associated feature vector per supervoxel which
describes its appearance. Then, interactively, the user employs a ‘paint by numbers’
approach with multiple colored brushes to scribble coarsely and sparsely over the
video. These multiple labels are automatically resolved into a set of constraints which
specify which supervoxels belong to the same segment and which belong to different
segments. Should any constraints conflict with the underlying supervoxels, we
automatically refine the supervoxel over-segmentation, e.g., to capture fine details.

Then, we solve the constrained multicut problem and find a good segmentation.
To provide graph edge weights with which to score potential multicut solutions,
we cluster all supervoxels by training on the provided user labels and appearance
features. Once a multicut solution is optimized, the presented segmentation respects
both the user constraints and the video appearance. Finally, after the user is satisfied,
we matte the result.

To make this model applicable to video, there are two major challenges to
overcome. The first challenge is making it fast while maintaining segmentation
accuracy. Multicuts are typically computed on the graph of a supervoxel over-
segmentation. Many supervoxels are usually used through a fine over-segmentation,
but this implies a large graph which is slow to solve. In employing a very fast
heuristic—KLj (Chapter 2)—we can start with many supervoxels (5,000) to increase
output accuracy and still maintain interactivity with ≈1 second response.

The second challenge is implementing constraints to split different brush strokes.
Whenever the user wants two pixels to belong to different segments, there must exist
at least one segment boundary on any path between these two pixels. This is a large
space, and many constraints must be added to the optimization problem to constrain
the set of feasible segmentations. As this is expensive, we propose a solution to this
problem in Sec. 4.3.2.

4.3.1 Multicuts of Supervoxel Graphs

We use the multicut framework to model the segmentation problem. Namely, we
define a graph G = (V, E) that connects all the supervoxels and aim at finding
a 01-edge labeling y that gives an optimal decomposition. As not every possible
01-edge labeling defines a proper decomposition, we need to enforce it via the
following set of constraints:

∀C ∈ cycles(G)∀e ∈ C ye ≤ ∑
e′∈C\{e}

ye′ (4.1)

User Interactions Users provides evidence about the correct segmentation via
scribbling over each intended segment with a different colored brush. From these
scribbles, we automatically extract a set of additional constraints:
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Pre-process Interactive Post-process

Compute video 
features

Compute 
supervoxels

Matte 
segmentation

Draw multi-
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Resolve merge/
split constraints
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voxel features
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multicut

Refine 
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Figure 4.2: After an initial pre-process to compute superpixels and aggregated
features, the user interactively refines the segmentation with multiple scribbles.
Finally, the solution is matted.

• A set E0 ⊆ E of edges known to connect adjacent supervoxels of the same
segment, i.e., supervoxels along a single brush stroke.

• A set E1 ⊆ E of edges known to connect adjacent supervoxels of different
segments.

• A set F1 ⊆ (V × V) \ E of pairs of non-adjacent supervoxels known to be in
different segments, i.e., supervoxels along different colored brush strokes.

This evidence constrains the set of feasible segmentations.
We can write these constraints formally as linear inequalities:

∀e ∈ E0 ye = 0 (4.2)
∀e ∈ E1 ye = 1 (4.3)

∀{v, w} ∈ F1 ∀π ∈ pathG(v, w) 1 ≤ ∑
e∈π

ye (4.4)

where path (v, w) denotes the set of all paths in the graph (G) from node v to
node w. The inequalities in (4.4) state that no path exists in the graph that connects
supervoxels v and w. Constraining non-adjacent nodes to the same segment is
possible (Nowozin and Lampert, 2010), but is a substantial complication that is
beyond the scope of this work. This means that, in our solutions, disconnected but
similarly-brush-colored segments are assigned different segment labels in the result.
In practice, this is not a problem as we simply relabel the result segments based
on their intersecting input brush stroke colors. Note that (4.4) is of the same form
as (4.1), with xe = 1, and this facilitates convenient user interactions which will be
described in Section 4.3.5.
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4.3.2 Problem

From the set of all possible segmentations which satisfy these constraints, we wish
to favor segmentations in which similar appearing supervoxels belong to the same
segments, and dissimilar supervoxels belong to different segments. To this end,
we model the similarity between supervoxels by the edge features described below.
Then, the segmentation problem is posed as a minimization over probabilities that
adjacent supervoxels belong to different segments.

The probability pe that an edge between adjacent supervoxels e ∈ E belongs to
a segment boundary with xe = 1 can be modeled by any probabilistic model for
classification. We convert the vector of probabilities p ∈ [0, 1]|E| into a cost vector
c ∈ R|E| by ce = log ((1− pe)/pe). The problem of inferring the most probable
segmentation x given the user-defined constraints (4.2)–(4.4) is an integer linear
program (ILP):

min
y∈{0,1}E

∑
e∈E

ceye (4.5)

subject to (4.1), (4.2)–(4.4) (4.6)

This formulation is similar to the minimum cost multicut problem (Def. 2) with the
exception of additional user-specific constraints (4.2)–(4.4).

We are aiming at creating a real-time system, therefore the speed of inference
is very important for us. We want to use the efficient KLj heuristic, however, it
cannot handle these additional constraints. We circumvent this problem by assigning
very large positive or negative weights to edges which connect supervoxels that,
through resolving constraints derived from the multi-colored brush strokes, were
marked by a user as belonging to the same or different segments correspondingly.
This restricts the search space of the heuristics to the solutions that respect the
user input constraints, because the solutions that violate them will have a much
higher objective values. One benefit of this approach is that if a user specifies
contradicting constraints, we can still arrive at a solution that is feasible w.r.t. the
multicut constraints (4.1), i.e., a valid segmentation. This makes our system more
stable under arbitrary user interactions.

Edge Features and Classification The cost vector c in (4.5) describes the similarity
between neighboring supervoxels. To describe this similarity, we compute the mean
and variance of per pixel grayscale intensity, sum of the squared horizontal, vertical
and temporal gradient magnitudes, Lab color, HSV color, and bi-directional optical
flow (Liu, 2009). This results in a 24-d feature vector of means and variances per
supervoxel.

These costs c depend on the probability that adjacent supervoxels belong to
different segments. To predict these probabilities, we use the user labels to train a
random forest classifier with 64 trees with features for every edge between adjacent
supervoxels, where the element-wise distance between the feature vectors represents
the overall distance. In principle, it is possible to pre-train an edge classifier from
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Figure 4.3: Left: A blue superpixel is in conflict with a new red scribble. Middle: To
automatically resolve the conflict, we split the supervoxel in a 3D region-growing
process (dotted lines converging on center line), where samples along the brush
strokes act as seeds. Right: The supervoxel is split and the constraint resolved.

a database of videos. This could be useful for domain-specific videos, such as for
sports videos. However, in general, retraining the classifier for every video is the
most flexible approach to cope with unseen videos of widely-varying appearance.

4.3.3 Supervoxels

As we solve for a solution on a graph of supervoxels, we rely on these supervoxels
for temporal consistency. Given that, an initial over-segmentation should not be
too coarse so as to avoid missing important contours, and should not be too fine
so as to remain computationally tractable. We favored fast feedback, and refine the
supervoxel segmentation whenever user constraints deem it necessary. We compute
SLIC supervoxels (Achanta et al., 2012) which we re-label into connected components.
Moreover, SLIC sometimes produces small cluttered regions. We remove regions
smaller than 500 pixels per frame and relabel their pixels with that of their nearest
neighbors. This provides a good trade-off between speed and quality among a
set of tested alternatives (Sharon et al., 2006; Felzenszwalb and Huttenlocher, 2004;
Roerdink and Meijster, 2000).

Refining Supervoxels Our fast solver allows us to use many supervoxels, but
this still may not be enough to capture fine details. This manifests as conflicting
constraints in the system of equations, e.g., two different scribble colors in the
same superpixel. We detect such conflicts and automatically refine the supervoxel
segmentation to match the constraints (Fig. 4.3). Coordinates along the conflicting
scribble lines are used as seeds to a 3D region growing algorithm, which uses the
sum of squared gradient magnitudes in horizontal, vertical, and temporal directions
as features. This refinement takes less than a second. This allows the user to quickly
make coarse segmentations using the discovered supervoxel edges, but also to
specify new segmentation edges in arbitrary locations by drawing conflicting brush
strokes very close together.
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Ours
Novice

RotoBrush
Novice

Silhouette
Expert 1

mocha Pro
Expert 2

Video 1 11.29 27.61 405.75 174.25

Video 2 5.48 35.88 33.10 35.36

Video 3 8.99 15.31 103.50 147.34

Video 4 13.04 31.68 180.21 219.89

Mean 9.70 27.63 180.64 144.21

Table 4.1: Completion time in minutes. Participants completed the multi-label
segmentation tasks faster with our tool than with Rotobrush (RB).

4.3.4 Matting

After segmentation, we compute a matting solution to refine our supervoxel edges
and to cope with transparency. We use a spatio-temporal cross-bilateral filter (Tomasi
and Manduchi, 1998) with fast bilateral grids (Chen et al., 2007). This filter takes
two video volumes as input: a binary mask, and per-pixel weights to modulate the
Gaussian kernel used in filtering. We use a grayscale version of the video as our
weights. Each label is filtered separately, then the resulting mattes are normalized so
that they sum to 1. This solution can be parallelized across labels. Other state-of-the-
art matting solutions would improve our results further (Bai et al., 2011; Shahrian
et al., 2014).

4.3.5 Web Implementation and Collaborative Editing

Our system is built as a web application: All core algorithmic components are
implemented in C++, then wrapped through Cython and served from Tornado
Web Server. The client is written in JavaScript, with WebGL rendering. First, the
video and supervoxel segmentation are sent from the server and cached on the
client. During interaction, only the constraints are sent to the server, with the
segmentation returned to the client. Updates to the supervoxels are sent to the
client as incremental changes. This approach allows for new applications such as
collaborative segmentation on difficult or long sequences, or for segmenting large
video databases as the task can be crowdsourced and completed on light-weight
terminals.

For interaction, the user selects a brush, scribbles, and the segmentation is
returned. The user iterates until they are satisfied. There are two optional brushes:
the first turns off retraining the classifier, for use when the clustering is well-defined
and should not be swayed by newly-marked regions; the second is a pure non-
constraint-forming scribble, to paint the segmentation labels of supervoxels directly.
In practice, the novice user need not use these expert features.
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4.4 experiments

For a 1280×720×150 video, on an Intel Xeon E5-2609 CPU, our system spends
12 min in unoptimized pre-processing: 10 min to compute edge features, then 2

min to compute supervoxels and aggregate features. During interaction, with 5k
supervoxels and 25 user constraints, training and classifying takes 0.3 s, with the
multicut problem solved in a further 0.25 s. After network transfer, the total response
time to interaction is under one second. As an extreme case, with 25k supervoxels,
training and classifying takes 1.4 s, with the multicut problem solved in 5 s.

To assess the accuracy and efficiency of our approach, we compare our tool with
After Effects Rotobrush which is used in a repeated binary segmentation fashion
by a novice user. For comparison, we also hired two professional VFX artists to
segment our videos with professional tools of their choice (namely Silhouette and
mocha Pro). In total, four videos were segmented with different levels of difficulty
(Fig. 4.4). Completion times are shown in Table 4.1. We can see from the expert
timings that high-quality multi-label segmentation is a laborious task. Ideally, one
would re-use the shared edges between different segments. While this is possible
in existing foreground/background segmentation tools, our approach solves edges
jointly and guarantees consistent non-overlapping boundaries. Our novice user was
able to perform multi-label segmentation tasks more quickly with our tool than with
After Effects Rotobrush, and to a similar segmentation quality (Fig. 4.5). However,
our automatic pre-process takes longer. While we only tested four videos, these
results show some promise for the generality of the tool.

4.5 discussion

Pro-level tools can achieve high edge accuracy given enough time, and this is
where our tool cannot compete yet. In principle, the system of arbitrary supervoxel
refinement (Sec. 4.3.3) could be augmented to take input not from scribbles but from
parametric curves, similar to Silhouette. This would provide the control necessary
to describe arbitrary edges with more control, though it requires future work. That
said, our current results are suitable for many consumer-level editing tasks, and the
speed and multi-label nature of the tool makes it suitable for labeling large databases
of videos to generate ‘ground truth’ for training computer vision models.

One limitation with re-learning a classifier at every new stroke is that the resulting
segmentation can change in unexpected ways, e.g., an edge in the video which has
similar content in appearance on either side may change segment as new strokes
are added. This typically manifests itself in the very early stages of segmenting a
video, when the classification boundaries have very few user labels to inform them.
One solution is to simply educate the user to trust the process as it is a part of the
learning system; another is to use a static pre-trained classifier, though this may be
inflexible to new ‘unseen’ videos which do not match the training database.
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1)

2)

3)

4)

5)

Figure 4.4: The four different videos in the comparison. 1) ‘Kung Fu’, 960×540×270.
2) ‘The Secret Number’, 1280×720×210. 3) ‘Sunset’, 1280×960×60. 4) ‘Time Expired’,
1280×960×150. 5) The required segments for each sequence.

(a)

(b)

(c)

(d)

Figure 4.5: (a) ’Sunset’ (video 3) and ‘Kung Fu’ (video 1). (b) Segmentation from
professional VFX artist using Silhouette (SI). (c) Novice Rotobrush (RB) result. (d)
Novice result with our tool.
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4.6 conclusion

We propose an interactive multicut video segmentation system. We solve two
challenges with creating an interactive video multicut tool: making it fast through
a state-of-the-art multicut solver, and integrating user constraints into the problem.
Our system produces similar quality to current prosumer tools such as After Effects
Rotobrush, while being faster to use. Overall, these results show the promise of
interactive multicut video segmentation, easing the way for more advanced video
editing and database labeling.
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Lineage tracing, the tracking of living cells as they move and divide, is a central
problem in biological image analysis. Solutions, called lineage forests, are
key to understanding how the structure of multicellular organisms emerges.

We propose an integer linear program (ILP) whose feasible solutions define, for
every image in a sequence, a decomposition into cells (segmentation) and, across
images, a lineage forest of cells (tracing). In this ILP, path-cut inequalities enforce
the morality of lineages, i.e., the constraint that cells do not merge. To find feasible
solutions of this NP-hard problem, with certified bounds to the global optimum, we
define efficient separation procedures and apply these as part of a branch-and-cut
algorithm. To show the effectiveness of this approach, we analyze feasible solutions
for real microscopy data in terms of bounds and run-time, and by their weighted
edit distance to lineage forests traced by humans.
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5.1 introduction

Phenomenal progress in microscopy allows biologists to image large numbers of
living cells as they move and divide (Keller et al., 2010; Tomer et al., 2012). Such
observations are essential in developmental biology for studying embryogenesis and
tissue formation (Keller et al., 2008; Khairy and Keller, 2011; Megason and Fraser,
2007). Consequently, the tracing of cells and their lineages in sequences of images
has become a central problem in biological image analysis (Amat and Keller, 2013;
Amat et al., 2014; Keller, 2013).

The lineage tracing problem consists of two sub-problems. The first sub-problem
is to identify the cells in every individual image. The second sub-problem is to
connect every cell identified in an image to the same cell and descendant cells
identified in subsequent images. A joint solution of both sub-problems is a set of
pairwise disjoint lineage trees (depicted in Fig. 5.1, in red and green) whose nodes
are cells.

The first sub-problem is an image decomposition problem: If every pixel shows
a part of a cell and no pixel shows a background, the objective is to decompose
the pixel grid graph of the image into precisely one component per cell. If pixels
potentially show background, the objective is to jointly select and decompose a
subgraph of the pixel grid graph such that there is precisely one component for each
cell and no component for the background.

The second sub-problem is a cell tracking problem: The objective is to connect
every cell detected in one image to the same cell and descendant cells identified in
subsequent images. A joint solution of both sub-problems is constrained by prior
knowledge. In particular, every cell has at most one direct progenitor cell, i.e., cells
do not merge. Moreover, no cell splits into more than two cells at once. Yet, a cell
can appear without a direct progenitor cell when entering the field of view, and a
cell can disappear when dying or leaving the field of view. Finally, it can appear as
if a cell was dividing into more than two cells at once if the temporal resolution is
too low to separate consecutive divisions.

It is understood that errors in the image decomposition make it harder to recon-
struct the true lineage forest. Attempts at reconstructing the lineage forest can help
to avoid such errors. Thus, we state a joint optimization problem whose feasible
solutions define, for every image, a decomposition (segmentation) into cells and,
across images, a lineage forest. Unlike in prior work, we do not constrain the set of
decompositions, except by contracting pixels to superpixels.

5.2 related work

The image decomposition problem has been tackled by various abstractions in the
form of optimization problems including the minimum cost spanning forest problem,
i.e., agglomerative clustering (Adams and Bischof, 1994), balanced cut problems, i.e.,
spectral clustering (Arbeláez et al., 2011; Shi and Malik, 2000), and the minimum
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a

b

c d e

time

Figure 5.1: Given a sequence of images, taken at consecutive points in time, and
given a decomposition of each image into cell fragments (depicted above as nodes),
the objective of lineage tracing is to join fragments of the same cell within and across
images, e.g. {a, b} and {c, d}, and to join fragments of descendant cells across images,
e.g. {d, e}. Joins (cuts) are depicted as solid (dotted) lines. Fragments of dividing
cells are depicted as black nodes.

cost multicut problem, i.e., correlation clustering (Kim et al., 2014). We build on its
formulation as a minimum cost multicut problem, an optimization problem studied
in (Chopra and Rao, 1993; Deza and Laurent, 1997), which is NP-hard (Bansal et al.,
2004; Demaine et al., 2006) and has been used for image segmentation in (Alush
and Goldberger, 2012; Andres et al., 2011, 2012b, 2013; Bagon and Galun, 2011; Beier
et al., 2015, 2014; Kappes et al., 2011, 2016, 2015b; Kim et al., 2014; Yarkony et al., 2015,
2012).

The lineage forest reconstruction problem has been cast as an optimization
problem in (Funke et al., 2012; Jug et al., 2014; Kausler et al., 2012; Padfield et al.,
2011; Schiegg et al., 2013; Türetken et al., 2013a,b, 2012, 2011; Rempfler et al., 2018). If
cells neither die nor enter or leave the field of view and if one drops the constraint
that cells split into at most two direct descendant cells, e.g. because temporal image
resolution is too low to separate divisions, the problem can be formulated as a
minimum cost k disjoint arborescence problem (Schrijver, 2003, Section 53.9), as
shown in (Türetken et al., 2012, 2011). Here, k is the number of cells visible in the
first image. This problem can be solved in strongly polynomial time (Edmonds,
1975). With the additional constraint that cells split into at most two descendant
cells, the problem becomes NP-hard, and so do generalizations (Funke et al., 2012;
Jug et al., 2014; Kausler et al., 2012; Padfield et al., 2011; Schiegg et al., 2013; Türetken
et al., 2013a,b) that model, e.g., the (dis)appearance of cells.

One lineage tracing approach (Kausler et al., 2012) copes with imperfect decom-
positions by over-segmenting individual images. This guarantees that every cell is
represented by at least one component and that every component represents at most
one cell. Advantageous there is the fact that the true lineage forest is represented by
at least one set of disjoint arborescences. Disadvantageous is the loss of robustness:
For the true decomposition, every component belongs to precisely one arborescence
and thus, every error in the set of disjoint arborescences implies at least a second
error. This renders solutions robust to perturbations of the objective function. For an
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over-segmentation, this property is lost. Another disadvantage is the fact that the
number of progenitor cells is not determined by the number of components of the
first image. Over-estimates result in excessive arborescences that typically conflict
with correct ones. Under-estimates result in a loss of lineage trees. As in (Kausler
et al., 2012), we consider an over-decomposition of each image into cell fragments.
In contrast to (Kausler et al., 2012) where each node of a lineage forest is a single
representative fragment, each node in the lineage forests we consider is a clusters
of fragments. This idea of clustering instead of selecting has been used in (Tang
et al., 2015) to track multiple people in a video sequence. The optimization problem
defined in (Tang et al., 2015) is a hybrid of a minimum cost multicut problem and a
disjoint path problem. The optimization problem we propose here is a hybrid of a
minimum cost multicut problem and a disjoint arborescence problem.

Two techniques have been proposed to deal with over and under-decomposition
simultaneously: The first (Schiegg et al., 2013) is to allow single image components
to represent multiple cells and thus be part of multiple lineages. This relaxation
of the disjointness constraint of the arborescence problem introduces additional
feasible solutions that can represent the true lineage forest even in the presence
of under-decomposition. The same idea is used in (Türetken et al., 2013b) for the
reconstruction of curvilinear structures and in (Wang et al., 2014b) for the tracking of
objects in containers. The second technique (Funke et al., 2012; Jug et al., 2014; Schiegg
et al., 2014) considers a hierarchy of alternative decompositions and casts lineage
tracing as an optimization problem whose feasible solutions select and connect
components from the hierarchy. Constraints guarantee that selected components are
mutually consistent and consistent with a set of disjoint lineages. As in (Funke et al.,
2012; Jug et al., 2014), the feasible solutions we propose define, for every image, a
decomposition into cells and, across images, a lineage forest. In contrast to prior
work, we do not constrain the set of decompositions, except by contracting pixels
to superpixels. We compare our experimental results to a state-of-the-art software
system for lineage tracing (Aigouy et al., 2010).

Unlike in the work discussed above, feasible lineages and costs of feasible lineages
can be defined recursively, as in particle filtering. C.f . (Chenouard et al., 2014) for a
recent comprehensive comparison and (Amat et al., 2014) for a recent application to
lineage tracing.

5.3 problem

In this section, we cast lineage tracing as an optimization problem that we call moral
lineage tracing. In Section 5.3.1, we define the set of feasible solutions. In Section 5.3.2,
we define the objective function and optimization problem.
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5.3.1 Feasible Set

In order to encode a combinatorial number of feasible lineage forests, we define a
hypothesis graph. In a hypothesis graph, every node corresponds to one superpixel
of one image in a sequence and is referred to as a cell fragment (Def. 4). In order to
encode a single feasible lineage forest, we define a lineage graph (Def. 5). A lineage
graph is a subgraph of the hypothesis graph that defines, within each image, a
clustering of cell fragments into cells and, across images, a lineage forest of cells
(Lemma 1). In order to state in the form of an ILP an optimization problem whose
feasible solutions are lineage graphs, we identify the characteristic functions of
lineage graphs with 01-labelings of the edges of the hypothesis graph that satisfy a
system of linear inequalities (Lemma 2).

Definition 4 A hypothesis graph is a node-labeled graph1 G = (V, E, τ) in which
every edge {v, w} ∈ E holds |τ(v) − τ(w)| ≤ 1. Every v ∈ V is called a (cell)
fragment, and τ(v) is called its time index.

The intuition is this: For any distinct fragments v, w ∈ V with τ(v) = τ(w), the
presence of the edge {v, w} ∈ E indicates the possibility that v and w are fragments
of the same cell. For any fragments v, w ∈ V with τ(w) = τ(v) + 1, the presence
of the edge {v, w} ∈ E indicates the possibility that v and w are fragments of the
same cell, observed at successive points in time, as well as the possibility that v is a
fragment of a progenitor cell of the cell of w.

Next, we characterize those subgraphs of a hypothesis graph that we consider
as feasible solutions. For clarity, we propose some notation: For every t ∈ N, let
Vt := τ−1(t) the set of all fragments having the time index t. Let Gt = (Vt, Et) be
the subgraph of G induced by Vt. Let Et,t+1 := {{v, w} ∈ E|v ∈ Vt ∧ w ∈ Vt+1} be
the set of those edges of G that connect a fragment v having the time index t to a
fragment w having the time index t + 1. Let G+

t = (V+
t , E+

t ) be the subgraph of G
induced by V+

t := Vt ∪Vt+1.

Definition 5 For every hypothesis graph G = (V, E, τ), a set C ⊆ E is called a
lineage cut of G, and (V, C̄) with C̄ := E \ C is called a lineage (sub)graph of G, iff the
following conditions hold:

1. For every t ∈N, the set Et ∩ C is a multicut2 of Gt
2. For every t ∈ N and every {v, w} ∈ Et,t+1 ∩ C, v and w are not connected by

any path in the graph (V+
t , E+

t ∩ C̄)
3. For every t ∈ N, any vt, wt ∈ Vt and any vt+1, wt+1 ∈ Vt+1 such that

{vt, vt+1} ∈ E ∩ C̄ and {wt, wt+1} ∈ E ∩ C̄, and for any path in (V, Et+1 ∩ C̄) from
vt+1 to wt+1, there exists a path in (V, Et ∩ C̄) from vt to wt.

1All graphs are assumed to be finite, simple and undirected. A node labeling of a graph (V, E) is
a map τ : V →N.

2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et of edges such that, for every cycle Y in Gt:
|M ∩Y| 6= 1 (Chopra and Rao, 1993).
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If these conditions are satisfied then, for every t ∈ N and every non-empty,
maximal connected subgraph (V′t , E′t) of (Vt, Et ∩ C̄), its node set V′t is called a cell at
time index t.

A lineage cut and lineage subgraph are called binary iff, in addition to Conditions
1–3, it holds:

4. For every t ∈N, every cell V′t ⊆ Vt is connected in the lineage subgraph to at
most two distinct cells at t + 1.

An intuition for Conditions 1–3 is offered by Lemma 1 and the proof.

Lemma 1 For every t ∈ N, a lineage graph well-defines a decomposition of Gt
whose components are the cells at time index t. Across time, a lineage graph
well-defines a (lineage) forest of cells.

Proof Condition 1 guarantees that every subgraph defining a cell is node-induced,
i.e., for every t ∈N and every {v, w} ∈ Et: {v, w} ∈ C̄ iff v and w are fragments of
the same cell. Condition 2 guarantees, for every t ∈N, every cell V′t at time index t,
and every cell V′t+1 at time index t + 1 that either all edges of G between V′t and V′t+1
are in C̄, or none. Condition 3 guarantees, for every t ∈N and every distinct cells
V′t , V′′t at time index t that these are not connected in (V, E+

t ∩ C̄) to the same cell at
time index t + 1. This guarentees, by induction, that V′t , V′′t are not connected by any
path in the graph (V≥t, E≥t ∩ C̄). This guarantees that distinct cells never merge. 2

Lemma 2 For every hypothesis graph G = (V, E, τ) and every x ∈ {0, 1}E, the set
x−1(1) of edges labeled 1 is a lineage cut of G iff x satisfies the linear inequalities (5.1)–
(5.3) stated below. It is sufficient in (5.1) to consider only chordless cycles. Moreover,
the lineage cut is binary iff, in addition, x satisfies the linear inequality (5.4).

∀t ∈N ∀Y ∈ cycles(Gt) ∀e ∈ Y :

xe ≤∑
e′∈Y\{e}

xe′ (5.1)

∀t ∈N ∀{v, w} ∈ Et,t+1 ∀P ∈ vw-paths(G+
t ) :

xvw ≤∑
e∈P

xe (5.2)

∀t ∈N ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1
∀T ∈ vtwt-cuts(Gt) ∀P ∈ vt+1wt+1-paths(Gt+1) :

1− ∑
e∈T

(1− xe) ≤ xvtvt+1 + xwtwt+1 + ∑
e∈P

xe (5.3)

∀t ∈N ∀v ∈ Vt ∀w1, w2, w3 ∈ Vt+1

∀P1 ∈ vw1-paths(G+
t ) ∀P2 ∈ vw2-paths(G+

t )

∀P3 ∈ vw3-paths(G+
t ) ∀C12 ∈ w1w2-cuts(Gt+1)

∀C23 ∈ w2w3-cuts(Gt+1) ∀C13 ∈ w1w3-cuts(Gt+1) :

1− ∑
e∈C12∪C23∪C13

(1− xe) ≤ ∑
e∈P1∪P2∪P3

xe (5.4)
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Figure 5.2: Depicted above are examples (graphs and 01-labelings of edges) in
which inequalities (5.1)-(5.3) and, optionally, (5.4) are violated. (a) An inequality
(5.1) is violated iff there exist t ∈ N and a cycle Y in Gt in which precisely one
edge is labeled 1. (b) An inequality (5.2) is violated iff there exist t ∈ N, an edge
{v, w} ∈ Et,t+1 labeled 1 and a path in G+

t connecting v to w in which all edges are
labeled 0. (c) An inequality (5.3) is violated iff there exist t ∈ T and nodes vt, wt ∈ Vt
and vt+1, wt+1 ∈ Vt+1 connected by edges {vt, vt+1}, {wt, wt+1} ∈ Et,t+1 labeled 0,
such that vt and wt are separated by a cut in Gt with all edges labeled 1 and vt+1
and wt+1 are connected by a path in Gt+1 with all edges labeled 0. (d) An inequality
(5.4) is violated iff there exist t ∈ T and a node v ∈ Vt and nodes w1, w2, w3 ∈ Vt+1
connected by edges {v, w1}, {v, w2}, {v, w1}, {v, w2} ∈ Et,t+1 labeled 0, such that
w1, w2, and w3 are pairwise mutually separated by cuts in Gt+1 with all edges
labeled 1.

Proof If Condition 1 in Def. 5 holds for a set C ⊆ E, then all inequalities (5.1) are
satisfied by the x ∈ {0, 1}E such that x−1(1) = C. Otherwise, there would exist a
t ∈N, a cycle Y of Gt and an e ∈ Y such that xe = 1 and ∀e′ ∈ Y \ {e}: xe′ = 0. This
implies |Y ∩C| = 1, in contradiction to the assumption that C∩ Et is a multicut of Gt.
Conversely, if all inequalities (5.1) are satisfied by an x ∈ {0, 1}E, then C := x−1(1)
satisfies Condition 1 in Def. 5. Otherwise, there would exist a t ∈N for which C ∩ Et
is not a multicut of Gt. Thus, there would exist a cycle Y of Gt and an e ∈ Y such
that Y ∩ C = {e}, by definition of a multicut. Hence, the inequality (5.1) for that
cycle Y and that edge e of Y would be violated by x. The sufficiency of chordless
cycles follows from (5.1) and is established, e.g., in (Chopra and Rao, 1993).

If Condition 2 in Def. 5 holds for a set C ⊆ E, then all inequalities (5.2) are
satisfied by the x ∈ {0, 1}E such that x−1(1) = C. Otherwise, there would exist
t ∈ N, {v, w} ∈ Et,t+1 and a path P ∈ vw-paths(G+

t ) such that xvw = 1 and
xP = 0. From xvw = 1 follows {v, w} ∈ Et,t+1 ∩ C. From xP = 0 follows that v
and w are connected by P in (V+

t , E+
t ∩ C̄). Both statements together contradict the

assumption. Conversely, if all inequalities (5.2) are satisfied by an x ∈ {0, 1}E, then
C := x−1(1) satisfies Condition 2 in Def. 5. Otherwise, there would exist t ∈ N,
{v, w} ∈ Et,t+1 ∩C and a path P ∈ vw-paths(V+

t , E+
t ∩ C̄). From this follows xvw = 1

and xP = 0, in contradiction to the assumption that (5.2) is satisfied.
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If Condition 3 in Def. 5 holds for a set C ⊆ E, then all inequalities (5.3) are
satisfied by the x ∈ {0, 1}E such that x−1(1) = C. Otherwise, there would exist
t ∈ N, vt, wt ∈ Vt, vt+1, wt+1 ∈ Vt+1, a path P ∈ vt+1, wt+1-paths(Gt+1), and a cut
T ∈ vtwt-cuts(Gt) such that xvt,vt+1 = 0 and xwt,wt+1 = 0 and xP = 0 and xT = 1.
P witnesses the existence of a vt+1wt+1-path in (V, Et+1 ∩ C̄). The existence of T
certifies the non-existence of a vtwt-path in (V, Et ∩ C̄). Both statements together
contradict the assumption. Conversely, if all inequalities (5.3) are satisfied by an
x ∈ {0, 1}E, then C := x−1(1) satisfies Condition 3 in Def. 5. Otherwise, there would
exist t ∈ N, vt, wt ∈ Vt and vt+1, wt+1 ∈ Vt+1 such that {v, w} ∈ Et,t+1 ∩ C̄ and
{vt+1, wt+1} ∈ Et,t+1 ∩ C̄ and such that there exist P ∈ vt+1wt+1-paths(Vt+1, Et+1 ∩
C̄) and T ∈ vtwt-cuts(Vt, Et ∩ C̄). Hence, xvt,vt+1 = 0 and xwt,wt+1 = 0 and xP = 0
and xT = 1, in contradiction to the assumption that (5.3) is satisfied. 2

Complementary to the proof, a discussion of (dis)connectedness w.r.t. a multicut
can be found in (Horňáková et al., 2017).

Here, the set of all x ∈ {0, 1}E that satisfy (5.1)–(5.4) is denoted by XG. Examples
of violated inequalities are depicted in Fig. 5.2. Note that the path-cut inequalities
(5.3) guarantee that any fragments of the same cell at time t + 1 cannot be joined
with fragments of distinct cells at time t, i.e., morality is enforced.

5.3.2 Objective Function

Definition 6 A priced hypothesis graph is a tuple (V, E, τ, c, c+, c−) with (V, E, τ) a
hypothesis graph, c : E→ R and c+, c− : V → R+

0 . For every e ∈ E, ce is called the
cut cost of e. For every v ∈ V, c+v and c−v are called the appearance and disappearance
cost of v, respectively.

The optimization problem we propose is defined below in the form of an ILP
w.r.t. a priced hypothesis graph G = (V, E, τ, c, c+, c−). This ILP has the following
properties: Every feasible solutions defines a lineage subgraph of G. For every
{v, w} = e ∈ E, the objective function assigns the cost (or reward) ce to all lineage
graphs in which the cell fragments v and w belong to distinct cells. For every t ∈N

and every v ∈ Vt+1, the objective function assigns the (appearance) cost c+v to all
lineage graphs in which the fragment v is not joined with any fragment in Vt. For
every t ∈N and every v ∈ Vt, the objective function assigns the (disappearance) cost
c−v to all lineage graphs in which the fragment v is not joined with any fragment in
Vt+1.

Definition 7 For any priced hypothesis graph G = (V, E, τ, c, c+, c−), the instance of
the moral lineage tracing problem w.r.t. G is the ILP in x ∈ {0, 1}E and x+, x− ∈ {0, 1}V
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written below.

min
x,x+,x−

∑
e∈E

cexe + ∑
v∈V

c+v x+v + ∑
v∈V

c−v x−v (5.5)

subject to x ∈ XG (5.6)

∀t ∈N ∀v ∈ Vt+1 ∀T ∈ Vtv-cuts(G+
t ) :

1− x+v ≤ ∑
e∈T

(1− xe) (5.7)

∀t ∈N ∀v ∈ Vt ∀T ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤ ∑
e∈T

(1− xe) (5.8)

If, in an inequality of (5.7), all edges in the cut T are labeled 1, then x+v = 1.
Otherwise, for every feasible solution x the same solution but with x+v := 0 is not
worse (as 0 ≤ c+v , by definition of c+). Thus, a cost c+v 6= 0 is payed iff fragment v
appears at time t + 1. The argument for (5.8) and disappearance is analogous.

5.4 algorithms

5.4.1 Efficient Separation Procedures

Below, we define, for each class of inequalities, (5.1)–(5.4), (5.7) and (5.8), an efficient
separation procedure (Tab. 5.1) that takes any (x, x+, x−) as input. If any inequality
is violated, it terminates and outputs at least one of these. If no inequality is
violated, it terminates and outputs the empty set. We apply these procedures in a
branch-and-cut algorithm described in the next section. We have also applied these
procedures in the preparation of the experiments described in Section 5.5, to certify
the well-definedness of lineages we traced manually.

To separate infeasible solutions by inequalities (5.1) for a given t, we label maximal
subgraphs of Gt connected by edges labeled 0. Then, for every {v, w} = e ∈ Et
with xe = 1 and with v and w being in the same subgraph, we search for a shortest
vw-path P in Gt such that xP = 0, using breadth-first-search (BFS). If the path is
chordless, we output the inequality defined by the cycle P ∪ {e} and e.

To separate infeasible solutions by inequalities (5.2) for a given t, we label maximal
subgraphs of G+

t connected by edges labeled 0. Then, for every {v, w} = e ∈ Et,t+1
with xe = 1 and with v and w being in the same subgraph, we search for a shortest
vw-path P in G+

t such that xP = 0 using BFS. We output the inequality defined by
the cycle Y := P ∪ {e} and e ∈ Y.

To separate infeasible solutions by inequalities (5.3) for a given t, we label maximal
subgraphs of Gt connected by edges labeled 0. Then, for every pair v, w ∈ Vt of
nodes with different labels, we use BFS to search for (i) a shortest vw-path P in
(Vt+1, Et,t+1 ∪ Et+1) such that xP = 0, and (ii) a vw-cut T in Gt such that xT = 1. We
output the inequality defined by P and T.
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Constraint ILP (branch-and-cut) LP (cutting-plane)

Space O(|Et|2) O(|Et|2 log |Vt|)
Spacetime O(|Et,t+1||E+

t |) O(|Et,t+1||E+
t | log |V+

t |)
Morality O(|Vt|2|E+

t |) O(|Vt|2(m(|Vt|, |Et|)
+|Et+1| log |Vt+1|))

Termination O(|Vt|+ |E+
t |) O(|Vt|m(|V+

t |, |E+
t |))

Birth O(|Vt+1|+ |E+
t |) O(|Vt+1|m(|V+

t |, |E+
t |))

Bifurcation O(|E| log |V|+ |Vt| O(|Vt||Vt+1|3(m(|Vt+1|, |Et+1|)
+|E+

t | log |V+
t |) +|E+

t | log |V+
t |))

Table 5.1: Worst case time complexity of the separation procedures we implement
for integral points (ILP) and fractional points (LP). Here, m(|V|, |E|) denotes the
worst case time complexity of a maximum st-flow algorithm for a graph (V, E).

To separate infeasible solutions by inequalities (5.4) for a given t, we label
maximal subgraphs of Gt and Gt+1, resp., connected by edges labeled 0. From
every v ∈ Vt, we start a BFS in the subgraph of G+

t whose edges are labeled 0. If
nodes w1, w2, w3 ∈ Vt+1 of three distinct components of Gt+1 are reached, we output
the inequality defined by the boundaries of these components and by paths from v
to wj.

To separate infeasible solutions by inequalities (5.7) for a given t, we start a BFS
from every v ∈ Vt+1 in the subgraph of G+

t whose edges are labeled 0. We either
find a vertex w ∈ Vt (no violation) or a cut T ∈ Vtv-cuts(G+

t ) which separates v from
Vt. In the latter case, we output the inequality defined by the vertex v and the cut
T. The separation of infeasible solutions by inequalities (5.8) is analogous, in the
opposite order of time indices.

5.4.2 Branch-and-Cut Algorithm for the ILP

In order to find feasible solutions of the moral lineage tracing problem (Def. 7), with
certified bounds, we implement the separation procedures defined in the previous
section in C++ and call these form the branch-and-cut algorithm of the ILP solver
Gurobi (Gurobi Optimization, 2015) whenever an integer feasible solution is found.
In order to tighten intermediate LP relaxations, we resort to the cuts implemented in
Gurobi.

In all experiments we conduct, less than 1% of the total run-time is spent on the
separation of infeasible solutions by inequalities (5.1)–(5.4), (5.7) and (5.8) together.
Objective values, bounds and numbers of added inequalities are shown w.r.t. run-
time, for three instances of the problem, in Fig. 5.3.
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Problem Instance Variables Fractional Optimal

HeLa-small 1839 5 1834 (100%)
HeLa-test 41571 1180 40078 (99.2%)
Flywing 29063 1174 27740 (99.5%)

Table 5.2: Analysis of solutions of the canonical LP relaxation of the moral lineage
tracing problem.

5.4.3 Cutting-Plane Algorithm for the LP Relaxation

In addition to the moral lineage tracing ILP and (integer) feasible solutions found by
the branch-and-cut algorithm, we study the canonical LP relaxation and its (possibly
fractional) solutions found by a cutting-plane algorithm. Results shown in Fig. 5.3
and Tab. 5.2 are discussed below:

It can be seen from Fig. 5.3 that the solution found by our cutting-plane algorithm
for the LP (blue) converges slower than the lower bound found by our branch-and-
cut algorithm for the ILP (black). This is simply because the separation of infeasible
points by violated inequalities is more complex if the point can be fractional; see
Tab. 5.1.

It can be seen from Fig. 5.3 and Tab. 5.2 that the LP relaxation is almost tight for
the problem instance HeLa-small and less tight for the larger problem instances. This
is expected, as HeLa-small is dominated by the disjoint arborescence sub-problem,
which is in PTIME, while the larger problems are dominated by the minimum cost
multicut sub-problem, which is NP-hard. The solution of the LP is not half-integral.
Yet, it encourages future work on rounding procedures.
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Figure 5.3: Depicted above is the convergence of the branch-and-cut algorithm
that solves the ILP and of the cutting plane algorithm that solves the canonical LP
relaxation. Graphs on the left show the objective values of intermediate integer
feasible solutions (–) and lower bounds (–) found by the branch-and-cut algorithm,
as well as the lower bound found by the cutting-plane algorithm (–). Dotted lines
show the convergence with the bifurcation constraint (5.4). It can be seen that the LP
relaxation is not tight for larger problems. Graphs on the right show numbers of cuts:
morality (–), spacetime cycle (–), space cycle (–), appearance (–), disappearance (–),
and bifurcation (–). It can be seen that violated morality constraints dominate.
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5.5 experiments

In order to examine the effectiveness of moral lineage tracing (MLT) and the pro-
posed branch-and-cut algorithm, we define three instances of the problem w.r.t. two
biomedical data sets, N2DL HeLa and Flywing Epithelium.

5.5.1 N2DL HeLa Data

This microscopy data consists of three sequences of images which show HeLa cells
that move and divide as bright objects in front of a dark background, c.f . Fig. 5.6(a).
Two sequences are publicly available and one sequence is undisclosed for an annual
competition (Maška et al., 2014). Here, we use the two public sequences, one for
learning a cost function, the other (HeLa-test) for experiments. To obtain, in addition,
a shorter sequence of smaller images, we crop from HeLa-test a sub-problem (HeLa-
small). For both sequences, we construct a priced hypothesis graph as shown in
Fig. 5.4(a) and described below. The hypothesis graph for HeLa-test consists of 10882
nodes and 19807 edges. The hypothesis graph for HeLa-small consists of 512 nodes
and 812 edges.

Optimization The convergence of the branch-and-cut algorithm for the instances
HeLa-small and HeLa-test of the MLT problem is shown in the first two rows of Fig. 5.3.
It can be seen that the small problem is solved to optimality, while the full problem
is solved with an optimality gap. Most separating cuts are morality constraints.

Results A lineage forest for HeLa-small defined by the solution of the MLT problem
is shown in Fig. 5.5. This lineage forest is in exact accordance with the ground truth.
Corresponding decompositions of images are shown in Fig. 5.6. A lineage forest for
HeLa-test defined by the feasible solution of the MLT problem is shown in Fig. 5.8. A
comparison with ground truth provided in (Maška et al., 2014) is shown in Tab. 5.3
in terms of metrics SEG and TRA as defined in (Maška et al., 2014).

Technical details Before constructing a hypothesis graph we perform the following
data pre-processing: We train a random forest to predict, for every pixel r, the
probability pr of this pixel being foreground (part of a cell). For every time index
t, we consider the set St of pixels r at time t for which pr > 0.5. A watershed
search of the distance transform of St decomposes the subgraph of the pixel grid
graph induced by St into cell fragments (superpixels) Vt. For every cell fragment
v ∈ Vt, we compute its center of mass rv ∈ R2 in the image plane. We train a second
random forest to predict, for every pixel r, the probability p′r of this pixel showing a
cell boundary, i.e. the interface between a cell and the background or the interface
between two cells that touch.

We then construct a hypothesis graph G = (V, E, τ) as follows: For every time
index t and every pair of distinct cell fragments v, w ∈ Vt, we introduce the edge
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(a) N2DL-HeLa (b) Flywing-Epithelium
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Figure 5.4: Sketched above is the construction of an instance of the MLT for (a) the
N2DL-HeLa Data and (b) the Flywing-Epithelium Data. For every time index t and
the respective image I in the sequence, foreground probabilities p of pixels showing
part of a cell and probabilities p′ and p′′ of pixels showing object boundaries are
estimated and used to decompose the image into cell fragments St. A hypothesis
graph (shown for only one fragment each) connects nearby cell fragments within
images and across successive images.

time

Figure 5.5: Depicted above is the lineage forest (V, C̄) reconstructed by solving
an instance of the moral lineage tracing problem (Def. 7) defined w.r.t. the image
sequence HeLa-small. Edges connecting a fragment of one cell to a fragment of
a descendant cell (depicted in black) indicate cell divisions. Edges connecting
fragments of the same cell are depicted in a color representing that cell. Note the
two progenitor cells in the first image, visible here on the l.h.s..
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(a)

(b)

(c)

Figure 5.6: Depicted above are (a) image crops of the full HeLa-test data set, and
(c) decompositions of the images defined by a feasible solution of the moral lineage
tracing problem (Def. 7). Diagonally striped cells indicate cell division.

Test Data SEG TRA

MLT (our) public 0.7811 0.9747

KTH-SE (Magnusson et al., 2015) undisclosed 0.8932 0.9920
HEID-GE (Harder et al., 2015) undisclosed 0.8155 0.9871
LEID-NL (Dzyubachyk et al., 2010) undisclosed 0.8180 0.9558
HOUS-US (Merouane et al., 2015) undisclosed 0.7701 0.9865
NOTT-UK undisclosed 0.5778 0.7811
IMCB-SG undisclosed 0.3317 0.9327

Table 5.3: Quantified above is the distance from ground truth of decomposi-
tions (SEG) and lineage forests (TRA) obtained by MLT and contenders of the second
ISBI Tracking Challenge (Maška et al., 2014). Evaluation for (Maška et al., 2014) is
performed on undisclosed test data. We evaluate MLT on test data published on the
challenge website.
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(a)

(b)

(c)

Figure 5.7: Depicted above are (a) images of the fly wing test set, (b) decompositions
of these images into cell fragments, and (c) decompositions of the images defined by
a feasible solution of the moral lineage tracing problem (Def. 7). Diagonally striped
cells divide before the next time point (image).

{v, w} ∈ Et iff ‖rv − rw‖ < d1, for a maximum distance d1 ∈ R+. For every time
index t and every pair (v, w) ∈ Vt ×Vt+1, we introduce the edge {v, w} ∈ Et,t+1 iff
‖rv − rw‖ < d2, for a maximum distance d2 ∈ R+.

For every time index t and every edge e = {v, w} ∈ Et, we define the cost

ce = −logit max{||rv − rw||/d1, p′(rv, rw)} . (5.9)

Here p′(rv, rw) denotes the maximum of p′ along the Bresenham line from rv to rw.
For every time index t and every e = {v, w} ∈ Et,t+1, we define the cost

ce = −logit ||rv − rw||/d2 . (5.10)

All (dis)appearance costs are constant, c+ = c− = c0 ∈ R+.

5.5.2 Flywing Epithelium Data

This dataset contains images that show a developing fly wing epithelium, c.f . Fig. 5.7(a).
Every pixel is a part of a cell and no pixels show background. The data is divided
into a training sequence and a test sequence. We have collected ground truth for
both sequences by manually joining watershed superpixels. The construction of a
priced hypothesis graph from the raw test sequence is sketched in Fig. 5.4(b) and
described in more detail below. It consists of 5026 nodes and 19011 edges.
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Method SEG TRA

MLT (our) 0.9722 0.9813
PA (on GT seg.) 0.9327 0.9898
PA (auto) 0.7980 0.9206

Table 5.4: Quantified above is the distance from ground truth of decomposi-
tions (SEG) and traced lineage forests (TRA) obtained by MLT and, alternatively, the
Packing Analyzer (Aigouy et al., 2010).

Optimization The convergence of the branch-and-cut algorithm is shown in the
third row of Fig. 5.3. It be seen from this figure that the problem is solved with an
optimality gap determined by the lower bound.

Results The lineage forest defined by the feasible solution of the problem is
depicted in Fig. 5.8. Corresponding decompositions of images are depicted in
Fig. 5.7(c). Decompositions and the lineage forests are compared in Tab. 5.4 to the
ground truth in terms of the metrics SEG and TRA. It can be seen from this table
that these results compare well to those found by the tracking system biologist use
today (Aigouy et al., 2010).

Technical details Data pre-processing consists of training a random forest classifier
for detecting, for every pixel r, the probability p′′r of showing a cell membrane. For
every time index t, we decompose the image taken at time t into cell fragments
Vt by first applying a watershed transform on the raw image sequence and then
progressively joining adjacent superpixels iff both the average image intensity and
the average membrane probability along their shared boundary are below respective
thresholds. We maximize these thresholds w.r.t. the training data subject to the
constraint that no false joins occur at this stage. This leads to 3.09± 1.3 fragments
per cell. Also as pre-processing, we estimate dense optical flow f for the image
sequence and compute, for every cell fragment v, its center of mass rv ∈ R2.

We then construct a hypothesis graph G = (V, E, τ) as follows: For every time
index t and every pair of distinct cell fragments v, w ∈ Vt, we introduce the edge
{v, w} ∈ Et iff v and w are adjacent components of the pixel grid graph of the image
taken at time index t. For every time index t and every pair (v, w) ∈ Vt × Vt+1,
we introduce the edge {v, w} ∈ Et,t+1 iff ||rv + f (rv)− rw||2 ≤ d, for a maximum
distance d ∈ R+.

For every time index t and every edge e = {v, w} ∈ Et, we define the cut-cost

ce = −logit ∑
r∈E(v,w)

p′′(r)/|B(v, w)| (5.11)

where B(v, w) is the set of pixels in fragment v adjacent to fragment w and vice
versa. For every time index t and every edge e = {v, w} ∈ Et,t+1, we define the
cut-cost ce = c0 + c1me with me the maximum of p′′ along a geodesic between pixels
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rv and rw, and with c0, c1 ∈ R estimated from training data by logistic regression.
All (dis)appearance costs are constant, c+ = c− = c0 ∈ R+.

5.6 conclusion

Building on recent work in image decomposition and multi-target tracking, we have
proposed a rigorous mathematical abstraction of lineage tracing, a central problem
in biological image analysis. The optimization problem we propose, a hybrid of
the well-known minimum cost multicut problem and the minimum cost k disjoint
arborescence problem, is a joint formulation of image decomposition and lineage
forest reconstruction. Its feasible solutions define, for every image in a sequence
of images, a decomposition into cells and, across images, a lineage forest of cells.
Unlike previous formulations, it does not constrain the set of decompositions. We
have studied three instances of this problem defined by two biologically relevant
microscopy data sets. For all instances, we have obtained feasible solutions with
certified optimality gap. One instance has been solved to global optimality, yielding
a solution in exact accordance with decompositions and ground truth lineages. A
follow-up work by Rempfler et al. (2017) considerably improved the runtime of the
solver by obtaining tighter relaxations as well as implementing a Kernighan-Lin-type
heuristic with optimal branching.
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HeLa-test

Flywing

Figure 5.8: 3D rendered lineage forests as obtained by solving the moral lineage
tracing problem. For better visibility, only the traced moral lineages are shown while
all cut edges are not rendered. Time progresses from left to right.
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We state a combinatorial optimization problem whose feasible solutions
define both a decomposition and a node labeling of a given graph. This
problem offers a common mathematical abstraction of seemingly unre-

lated computer vision tasks, including instance-separating semantic segmentation,
articulated human body pose estimation, and multiple object tracking. Conceptually,
the problem we state generalizes the unconstrained integer quadratic program and
the minimum cost lifted multicut problem, both of which are np-hard. In order to
find feasible solutions efficiently, we define two local search algorithms that converge
monotonously to a local optimum, offering a feasible solution at any time. To
demonstrate their effectiveness in tackling computer vision tasks, we apply these
algorithms to instances of problems that we construct from published data and
improve over the corresponding baselines.
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6.1 introduction

Graphs are a ubiquitous and widely used structure in the field of computer science.
They offer an abstract representation of different phenomena in life and algorithms to
solve the arising problems. In computer vision continuous graph-based algorithms
have been particularly successful over the last few decades. In this article, we
propose a discrete optimization framework that simultaneously optimizes for a
decomposition and a node labeling of a given graph (Fig. 6.1).

Our objective function is submodular and is therefore np-hard to optimize exactly
for general graphs. We extend a heuristic proposed in Chapter 2 in a non-trivial way
and define and implement two local search algorithms, that allow us to perform
efficient inference into real world problems. Note, that we do not perform any
fine-tuning for a particular task, but rely solely on their generalization and efficiency.
We apply our formulation to three distinct computer vision tasks: multiple object
tracking, instance-separating semantic segmentation and articulated human body
pose estimation. We report an improvement of application-specific accuracy for these
three applications.

Articulated human body pose estimation can be seen as a task requiring two classes
of decisions: For every putative detection of a part of the human body in an image,
we need to decide whether it is a true or a false positive one. For every pair of
detections that do depict body parts, we need to decide if they belong to the same
body. Pishchulin et al. (2016) and Insafutdinov et al. (2016) abstract this problem as a
graph decomposition and node labeling problem w.r.t. a finite graph whose nodes
are putative detections of body parts and w.r.t. labels that identify body part classes
(head, wrist, ankle, etc.) and background. Due to high computational complexity
of the problem they had to restrict themselves to a small number of detections per
image. By reducing the running time for this task compared to their branch-and-cut
algorithm (that computes also lower bounds), we can tackle instances of the problem
with more detections obtained from their published data. This allows us to obtain
more accurate pose estimates for the MPII Human Pose Dataset (Andriluka et al.,
2014) than the respective baseline. Also, our efficient inference technique allowed
for a novel application of pose tracking (Insafutdinov et al., 2017), that can further
improve accuracy.

Multiple object tracking (Berclaz et al., 2011; Brendel et al., 2011; Choi, 2015; Fagot-
Bouquet et al., 2016; Kim et al., 2015; Milan et al., 2014; Pirsiavash et al., 2011; Xiang
et al., 2015; Zamir et al., 2012) can be seen as a task requiring two classes of decisions:
For every given detection in an image, we need to decide whether it is a true or a
false positive one. For every pair of detections that depict objects, we need to decide
if the object is the same. Tang et al. (2015) abstract this task as a graph decomposition
and node labeling problem w.r.t. a finite graph whose nodes are bounding boxes,
and w.r.t. 01-labels indicating that a bounding box depicts an object. However, due to
computational complexity of the problem they threshold detections on their scores
and then perform clustering. We straightforwardly apply our algorithms to the data
of (Tang et al., 2016) and obtain more accurate tracks for the multiple object tracking
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(a) Decomposition (b) Node Labeling

Figure 6.1: This article studies an optimization problem whose feasible solutions
define both a decomposition (a) and a node labeling (b) of a given graph G = (V, E).
A decomposition of G is a partition Π of the node set V such that, for every V′ ∈ Π,
the subgraph of G induced by V′ is connected. A node labeling of G is a map
f : V → L from its node set V to a finite, non-empty set L of labels.

benchmark (Milan et al., 2016) than the respective baseline.
Instance-separating semantic segmentation (Dai et al., 2016; Hayder et al., 2017; Arnab

and Torr, 2017; He et al., 2017; Liu et al., 2018; Bai and Urtasun, 2017; Kendall et al.,
2018; Liu et al., 2017) can be seen as a task requiring two classes of decisions: To
every point in an image, we need to assign a label that identifies a class of objects
(e.g. human, car, bicycle, etc.). For every pair of points of the same class, we need to
decide if they belong ot the same object (instance of this class). Kroeger et al. (2014)
state this problem as a multi-terminal cut problem w.r.t. a (super)pixel adjacency
graph of the image. We generalize their problem to larger feasible sets of the pixel
grid graphs. While Kroeger et al. (2014) show only qualitative results, we apply
our algorithms to instances of the problem from the Cityscapes (Cordts et al., 2016)
benchmarks.

Formally, the problem we propose and refer to as the minimum cost node
labeling lifted multicut problem, nl-lmp, generalizes the np-hard unconstrained
integer quadratic program, uiqp, that has been studied intensively in the context of
graphical models (Kappes et al., 2015a), and also generalizes the np-hard minimum
cost lifted multicut problem, lmp (Chapter 2). Unlike in pure node labeling problems
such as the uiqp, neighboring nodes with the same label can be assigned to distinct
components, and neighboring nodes with distinct labels can be assigned to the same
component. Unlike in pure decomposition problems such as the lmp, the cost of
assigning nodes to the same component or distinct components can depend on node
labels. Also unlike in the lmp, constraining nodes with the same label to the same
component constrains the feasible decompositions to be k-colorable, with k ∈N the
number of labels. For k = 2 in particular, this constrained nl-lmp specializes to the
well-known max-cut problem.

In order to find feasible solutions of the nl-lmp efficiently, we define and imple-
ment two local search algorithms that converge monotonously to a local optimum,
offering a feasible solution at any time. These algorithms do not compute lower
bounds. They output feasible solutions without approximation certificates. Hence,
they belong to the class of primal feasible heuristics for the nl-lmp. The first algo-
rithm we define and refer to as alternating Kernighan-Lin search with joins and node
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relabeling, KLj/r, is a generalization of the algorithm KLj (Chapter 2) and of Iterated
Conditional Modes (ICM). The second algorithm we define and refer to as joint
Kernighan-Lin search with joins and node relabeling, KLj∗r, is a generalization of
KLj that transforms a decomposition and a node labeling jointly, in a novel manner.

6.2 problem

In this section, we define the minimum cost node labeling lifted multicut problem,
nl-lmp. Sections 6.2.1–6.2.3 offer an intuition for its parameters, feasible solutions
and cost function. Section 6.2.4 offers a concise and rigorous definition. Section 6.2.5
discusses special cases.

6.2.1 Parameters

Any instance of the nl-lmp is defined with respect to the following parameters:

• A connected graph G = (V, E) whose decompositions we care about, e.g., the
pixel grid graph of an image.

• A graph G′ = (V, E′) with E ⊆ E′. This graph can contain as edges pairs of
nodes that are not neighbors in G. It defines the structure of the cost function.

• A digraph H = (V, A) that fixes an arbitrary orientation of the edges E′. That
is, for every edge {v, w} of G′, the graph H contains either the edge (v, w) or
the edge (w, v). Formally, H is such that for all v, w ∈ V:

{v, w} ∈ E′ ⇔ (v, w) ∈ A ∨ (w, v) ∈ A (6.1)
(v, w) /∈ A ∨ (w, v) /∈ A (6.2)

• A finite, non-empty set L called the set of (node) labels

• The following functions whose values are called costs:

– c : V × L → R. For any node v ∈ V and any label l ∈ L, the cost cvl is
payed iff v is labeled l.

– c∼ : A× L2 → R. For any edge vw ∈ A and any labels ll′ ∈ L2, the cost
c∼vw,ll′ is payed iff v is labeled l and w is labeled l′ and v and w are in the
same component.

– c 6∼ : A× L2 → R. For any edge vw ∈ A and any labels ll′ ∈ L2, the cost
c 6∼vw,ll′ is payed iff v is labeled l and w is labeled l′ and v and w are in
distinct components.
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v we

xv1xv2xv3

xw1xw2xw3yvw

Figure 6.2: A solution to nl-lmp is a 01-labeling of edges (decomposition) and a
01-labeling of vertices’ labels (node labeling).

6.2.2 Feasible Set

Every feasible solution of the nl-lmp is a pair (x, y) of 01-vectors x ∈ {0, 1}V×L

and y ∈ {0, 1}E′ , c.f . Fig 6.2. More specifically, x is constrained such that, for every
node v ∈ V, there is precisely one label l ∈ L with xvl = 1. y is constrained so as
to well-define a decomposition of G by the set {e ∈ E | ye = 1} of those edges that
straddle distinct components. Formally, (x, y) ∈ XVL × YGG′ with XVL and YGG′

defined below.

• XVL ⊆ {0, 1}V×L, the set of all characteristic functions of maps from V to L,
i.e., the set of all x ∈ {0, 1}V×L such that

∀v ∈ V : ∑
l∈L

xvl = 1 . (6.3)

For any x ∈ X, any v ∈ V and any l ∈ L with xvl = 1, we say that node v is
labeled l by x.

• YGG′ ⊆ {0, 1}E′ , the set of all characteristic functions of multicuts of G′ lifted
from G (Horňáková et al., 2017). For any y ∈ YGG′ and any e = {v, w} ∈ E′,
ye = 1 indicates that v and w are in distinct components of the decomposition
of G defined by the multicut {e′ ∈ E | ye′ = 1} of G. Formally, YGG′ is the set of
all y ∈ {0, 1}E′ that satisfy the following system of linear inequalities:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤ ∑
e′∈C\{e}

ye′ (6.4)

∀{v, w} ∈ E′ \ E ∀P ∈ vw-paths(G) :

y{v,w} ≤ ∑
e∈P

ye (6.5)

∀{v, w} ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− y{v,w} ≤ ∑
e∈C

(1− ye) . (6.6)
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6.2.3 Cost Function

For every x ∈ {0, 1}V×L and every y ∈ {0, 1}A×L2
, a cost ϕ(x, y) ∈ R is defined by

the form

ϕ(x, y) = ∑
v∈V

∑
l∈L

cvl xvl

+ ∑
vw∈A

∑
ll′∈L2

c∼vw,ll′ xvl xwl′ (1− y{v,w})

+ ∑
vw∈A

∑
ll′∈L2

c 6∼vw,ll′ xvl xwl′ y{v,w} . (6.7)

6.2.4 Definition

We define the nl-lmp rigorously and concisely in the form of a linearly constrained
binary cubic program.

Definition 8 For any connected graph G = (V, E), any graph G′ = (V, E′) with
E ⊆ E′, any orientation H = (V, A) of G′, any finite, non-empty set L, any function
c : V × L→ R and any functions c∼, c 6∼ : A× L2 → R, the instance of the minimum
cost node-labeling lifted multicut problem (nl-lmp) with respect to (G, G′, H, L, c, c∼, c 6∼)
has the form

min
(x,y)∈XVL×YGG′

ϕ(x, y) . (6.8)

6.2.5 Special Cases

Below, we show that the nl-lmp generalizes the uiqp. This connects the nl-lmp

to work on graphical models with second-order functions and finitely many labels.
In addition, we show that nl-lmp generalizes the lmp, connecting the nl-lmp to
recent work on lifted multicuts. Finally, we show that the nl-lmp is general enough
to express subgraph selection, connectedness and disconnectedness constraints.

6.2.5.1 Unconstrained Integer Quadratic Program

Definition 9 For any graph G′ = (V, E′), any orientation H = (V, A) of G′, any
finite, non-empty set L, any c : V × L→ R and any c′ : A× L2 → R, the instance of
the uiqp with respect to (G′, H, L, c, c′) has the form

min
x∈XVL

∑
v∈V

∑
l∈L

cvl xvl + ∑
vw∈A

∑
ll′∈L2

c′vw,ll′ xvl xwl′ . (6.9)

Lemma 3 For any graph G′ = (V, E′), any instance (G′, H, L, c, c′) of the uiqp and
any x ∈ XVL, x is a solution of this instance of the uiqp iff (x, 1E′) is a solution of
the instance (G′, G′, H, L, c, c′, c′) of the nl-lmp.
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Proof W.l.o.g. we can assume that G′ is connected. (Otherwise, we add edges
between nodes v, w ∈ V as necessary and set c′vw,ll′ = 0 for any l, l′ ∈ L.)

For any x ∈ XGL, the pair (x, 1E′) is a feasible solution of the instance of the
nl-lmp because the map 1E′ : E′ → {0, 1} : e 7→ 1 is such that 1E′ ∈ YG′G′ .

Moreover, (x, 1E′) is a solution of the instance of the nl-lmp iff x is a solution of
the instance of the uiqp because, for c 6∼ = c∼, the form (6.7) of the cost function of
the nl-lmp specializes to the form (6.9) of the cost function of the uiqp.

6.2.5.2 Minimum Cost Lifted Multicut Problem

Definition 10 (Horňáková et al., 2017) For any connected graph G = (V, E), any
graph G′ = (V, E′) with E ⊆ E′ and any c′ : E′ → R, the instance of the minimum
cost lifted multicut problem (lmp) with respect to (G, G′, c′) has the form

min
y∈YGG′

∑
e∈E′

c′eye . (6.10)

Lemma 4 Let (G, G′, c′) be any instance of the lmp. Let (G, G′, H, L, c, c∼, c 6∼) be the
instance of the nl-lmp with the same graphs and such that

L = {1} c = 0 c∼ = 0 (6.11)

∀(v, w) ∈ A : c 6∼vw,11 = c′{v,w} . (6.12)

Then, for any y ∈ {0, 1}E′ , y is a solution of the instance of the lmp iff (1V×L, y) is a
solution of the instance of the nl-lmp.

Proof Trivially, y is a feasible solution of the instance of the lmp iff (1V×L, y) is
a feasible solution of the instance of the nl-lmp. More specifically, y is a solution
of the instance of the lmp iff (1V×L, y) is a solution of the instance of the nl-lmp

because, for any x ∈ XVL, the cost function (6.7) of the nl-lmp assumes the special
form below which is identical with the form in (6.10).

ϕ(x, y)
(6.3),(6.11)

= ∑
vw∈A

c 6∼vw,11y{v,w}
(6.12)
= ∑

e∈E′
c′eye . (6.13)

6.2.5.3 Subgraph Selection

Applications such as (Insafutdinov et al., 2016; Pishchulin et al., 2016; Tang et al.,
2015, 2016) require us to not only decompose a graph and label its nodes, but to
also select a subgraph. The nl-lmp is general enough to model subgraph selection.
To achieve this, one proceeds in two steps: Firstly, one introduces a special label
ε ∈ L to indicate that a node is not an element of the subgraph. We call these nodes
suppressed. Secondly, one chooses a large enough c∗ ∈N, a c† ∈N0 and c∼, c 6∼ such
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that

∀vw ∈ A ∀l ∈ L \ {ε} : c∼vw,lε = c∼vw,εl = c∗ (6.14)

c 6∼vw,lε = c 6∼vw,εl = 0 (6.15)

∀vw ∈ A : c∼vw,εε = c† . (6.16)

By (6.14), suppressed nodes are not joined with the remaining nodes in the same
component. By (6.15), cutting a suppressed node from the remaining nodes has zero
cost. By (6.16), joining suppressed nodes has cost c†, possibly zero. Choosing c†

large enough implements an additional constraint proposed in (Tang et al., 2015)
that the suppressed nodes are necessarily isolated. It is by this constraint and by a
two-elementary label set that (Tang et al., 2015) is a specialization of the nl-lmp.

6.2.5.4 (Dis-)Connectedness Constraints

Some applications require us to constrain certain nodes to be in distinct components.
One example is instance-separating semantic segmentation where nodes with distinct
labels necessarily belong to distinct segments (Kroeger et al., 2014). Other applications
require us to constrain certain nodes to be in the same component. One example
is articulated human body pose estimation for a single human in the optimization
framework of Pishchulin et al. (2016), where every pair of not suppressed nodes
necessarily belongs to the same human. Another example is connected foreground
segmentation (Nowozin and Lampert, 2010; Rempfler et al., 2016; Stühmer and
Cremers, 2015; Vicente et al., 2008) in which every pair of distinct foreground pixels
necessarily belongs to the same segment.

The nl-lmp is general enough to model a combination of connectedness and
disconnectedness constraints by choosing sufficiently large costs: In order to con-
strain distinct nodes v, w ∈ V with labels l, l′ ∈ L to be in the same component, one
introduces an edge (v, w) ∈ A, a large enough c∗ ∈ N and costs c� such that
c�vw,ll′ = c�vw,l′l = c∗. In order to constrain distinct nodes v, w ∈ V with labels l, l′ ∈ L
to be in distinct components, one introduces an edge (v, w) ∈ A, a large enough
c∗ ∈N and costs c∼ such that c∼vw,ll′ = c∼vw,l′l = c∗.

6.3 local search algorithms

In this section, we define two local search algorithms that compute feasible solutions
of the nl-lmp efficiently. Both algorithms attempt to improve a current feasible
solution recursively by transformations. One class of transformations alters the
node labeling of the graph by replacing a single node label. A second class of
transformations alters the decomposition of the graph by moving a single node from
one component to another. A third class of transformations alters the decomposition
of the graph by joining two components.
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As proposed by Kernighan and Lin (1970) and generalized to the lmp in Chapter 2,
a local search is carried out not over the set of individual transformations of the cur-
rent feasible solution but over a set of sequences of transformations. Complementary
to this idea, we define and implement two schemes of combining transformations
of the decomposition of the graph with transformations of the node labeling of the
graph. This leads us to defining two local search algorithms for the nl-lmp.

6.3.1 Encoding Feasible Solutions

To encode feasible solutions (x, y) ∈ XVL × YGG′ of the nl-lmp, we consider two
maps: A node labeling λ : V → L that defines the xλ ∈ XVL such that

∀v ∈ V ∀l ∈ L : xλ
vl = 1 ⇔ λ(v) = l , (6.17)

and a so-called component labeling µ : V →N that defines the yµ ∈ {0, 1}E′ such that

∀{v, w} ∈ E′ : yµ

{v,w} = 0 ⇔ µ(v) = µ(w) . (6.18)

6.3.2 Transforming Feasible Solutions

To improve feasible solutions of the nl-lmp recursively, we consider three transfor-
mations of the encodings λ and µ:

For any node v ∈ V and any label l ∈ L, the transformation Tvl : LV → LV : λ 7→
λ′ changes the label of the node v to l, i.e.

∀w ∈ V : λ′(w) :=

{
l if w = v
λ(w) otherwise

. (6.19)

For any node v ∈ V and any component index m ∈ N, the transformation
T′vm : NV →NV : µ 7→ µ′ changes the component index of the node v to m, i.e.

∀w ∈ V : µ′(w) :=

{
m if w = v
µ(w) otherwise

. (6.20)

For any component indices m, m′ ∈ N, the transformation T′mm′ : NV → NV :
µ 7→ µ′ puts all nodes currently in the component indexed by m into the component
indexed by m′, i.e.

∀w ∈ V : µ′(w) :=

{
m′ if µ(w) = m
µ(w) otherwise

. (6.21)

Not every component labeling µ is such that yµ ∈ YGG′ . In fact, yµ is feasible
if and only if, for every m ∈ µ(V), the node set µ−1(m) is connected in G. For
efficiency, we allow for transformations (6.20) whose output µ′ violates this condition.
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This happens when an articulation node of a component is moved to a different
component. In order to repair any µ′ for which yµ is infeasible, we consider a map
R : NV → NV : µ′ 7→ µ such that, for any µ′ : V → N and any distinct v, w ∈ V,
we have µ(v) = µ(w) if and only if the exists a vw-path in G along which all
nodes have the label µ′(v). We implement R as connected component labeling by
breadth-first-search.

6.3.3 Searching Feasible Solutions

We now define two local search algorithms that attempt to improve an initial feasible
solution recursively, by applying the transformation defined above. Initial feasible
solutions are given, for instance, by the finest decomposition of the graph G that puts
every node in a distinct component, or by the coarsest decomposition of the graph G
that puts every node in the same component, each together with any node labeling.
We find an initial feasible solution for our local search algorithm by first fixing an
optimal label for every node independently and by then solving the resulting lmp,
i.e., (6.8) for the fixed labels x ∈ XVL, by means of GAEC (Chapter 2).

KLj/r Algorithm The first local search algorithm we define, alternating Kernighan-
Lin search with joins and node relabeling, KLj/r, alternates between transformations
of the node labeling and transformations of the decomposition. For a fixed decompo-
sition, the labeling is transformed by Func. 1 which greedily updates labels of nodes
independently. For a fixed labeling, the decomposition is transformed by Func. 2,
without those parts of the function that are written in green, i.e., precisely the algorithm
KLj we proposed in Chapter 2. All symbols that appear in the pseudo-code are
defined above, except the iteration counter t, cost differences δ, ∆, and 01-vectors α
used for bookkeeping, to avoid redundant operations.

KLj∗r Algorithm The second local search algorithm we define, joint Kernighan-
Lin search with joins and node relabeling, KLj∗r, transforms the decomposition and
the node labeling jointly, by combining the transformations (6.19)–(6.21) in a novel
manner. It is given by Func. 2, with those parts of the function that are written in green.

Like the alternating algorithm KLj/r, the joint algorithm KLj∗r updates the
labeling for a fixed decomposition (calls of Func. 1 from Func. 2). Unlike the
alternating algorithm KLj/r, the joint algorithm KLj∗r updates the decomposition
and the labeling also jointly. This happens in Func. 3 that is called from KLj∗r, with
the part that is written in green.

Func. 3 looks at two components V := µ−1(m) and W := µ−1(′m) of the current
decomposition. It attempts to improve the decomposition as well as the labeling by
moving a node from V to W or from W to V and by simultaneously changing its label. As
proposed by Kernighan and Lin (1970), Func. 3 does not make such transformations
greedily but first constructs a sequence of such transformations greedily and then
executes the first k with k chosen so as to decrease the objective value maximally.
KLj/r constructs a sequence of transformations analogously, but the node labeling
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Function 1: (∆, λ′) =update-labeling(µ, λ)
λ0 := λ ∆ := 0 t := 0
repeat

choose (v̂, l̂) ∈ argmin
(v,l)∈V×L

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt)

δ := ϕ(xTv̂l̂(λt), yµt)− ϕ(xλt , yµt)
if δ < 0

λt+1 := Tv̂l̂(λt)
∆ := ∆ + δ
t := t + 1

else
return (∆, λt)

remains fixed throughout every transformation of the decomposition. Thus, KLj∗r
is a local search algorithm whose local neighborhood is strictly larger than that of
KLj/r.

6.3.4 Implementation Details

Func. 1 and 3 choose local transformations that decrease the cost optimally. Our
implementation computes cost differences incrementally, as proposed by Kernighan
and Lin (1970). The exact computations are described below.

Transforming the Labeling Func. 1 repeatedly chooses a node v̂ and a label l̂ such
that labeling v̂ with l̂ decreases the cost maximally. I.e., Func. 1 repeatedly solves
the optimization problem

(v̂, l̂) ∈ argmin
(v,l)∈V×L

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt) . (6.22)

While ϕ(xλt , yµt) is constant, it is more efficient to minimize the difference ϕ(xTvl(λt), yµt)−
ϕ(xλt , yµt) than to minimize ϕ(xTvl(λt), yµt), as the difference can be computed locally,
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Function 2: (∆′, µ′, λ′) =update-lifted-multicut(µ, λ)
µ0 := µ t := 0
(δ, λ0) := update-labeling(µ0, λ)
let α0 : N→ {0, 1} such that α0(N) = 1
repeat

∆ := 0 µt+1 := µt λt+1 := λt
let αt+1 : N→ {0, 1} such that αt+1(N) = 0
for each {m, m′} ∈ (µ(V)

2 )
if αt(m) = 0∧ αt(m′) = 0

continue
(δ, µt+1, λt+1) :=update-2-cut(µt+1, λt+1, m, m′)
if δ < 0

αt+1(m) := 1 αt+1(m′) := 1 ∆ := ∆ + δ
for each m ∈ µ(V)

if αt(m) = 0
continue

m′ := 1 + max µ(V) (new component)
(δ, µt+1, λt+1) :=update-2-cut(µt+1, λt+1, m, m′)
if δ < 0

αt+1(m) := 1 αt+1(m′) := 1 ∆ := ∆ + δ
(δ, λt+1) := update-labeling(µt+1, λt+1)
∆ := ∆ + δ
if yµt+1 /∈ YGG′

µt+1 := R(µt+1) (repair heuristic)
∆ := ϕ(xλt+1 , yµt+1)− ϕ(xλ0 , yµ0)

t := t + 1
while ∆ < 0

considering only the neighbors w of v in G′:

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt)

= cvl − cvλt(v)

+ ∑
vw∈A

(1− y{v,w})
(

c∼vw,lλt(w) − c∼vw,λt(v)λt(w)

)
+ ∑

wv∈A
(1− y{v,w})

(
c∼wv,λt(w)l − c∼wv,λt(w)λt(v)

)
+ ∑

vw∈A
y{v,w}

(
c 6∼vw,lλt(w)

− c 6∼vw,λt(v)λt(w)

)
+ ∑

wv∈A
y{v,w}

(
c 6∼wv,λt(w)l − c 6∼wv,λt(w)λt(v)

)
=: ∆t,vl . (6.23)

Initially, i.e., for t = 0, we compute ∆0,vl for every node v and every label l. In
subsequent iterations, i.e., for t ∈N and the minimizer (v̂, l̂) of (6.22) chosen in this
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iteration, we update cost differences for all neighbors w of v̂ in G′ and all labels
l ∈ L. The update rule is written below for an edge (w, v̂) ∈ A. The update for an
edge in the opposite direction is analogous. Below, (6.24) subtracts the costs due to
v̂ being labeled λt(v̂) (which is possibly outdated), while (6.25) adds the costs due
to v̂ having obtained a new and possibly different label l̂.

∆t+1,wl =∆t,wl

− (1− y{w,v̂})
(

c∼wv̂,lλt(v̂) − c∼wv̂,λt(w)λt(v̂)

)
− y{w,v̂}

(
c 6∼wv̂,lλt(v̂)

− c 6∼wv̂,λt(w)λt(v̂)

)
(6.24)

+ (1− y{w,v̂})
(

c∼wv̂,ll̂ − c∼wv̂,λt(w)l̂

)
+ y{w,v̂}

(
c 6∼

wv̂,ll̂
− c 6∼

wv̂,λt(w)l̂

)
. (6.25)

We solve (6.22) by means of a priority queue in time complexity O(|V| log |V|+
|V|(|L|+ log |V|)deg G′) with deg G′ the node degree of G′. For sparse graphs and
constant number |L| of labels, this is O(|V| log |V|).

Transformation of Labeling and Decomposition The algorithm KLj (Chapter 2)
for the minimum cost lifted multicut problem generalizes the Kernighan and Lin
(1970) Algorithm for the minimum cost multicut problem. The algorithms KLj/r and
KLj∗r we define further generalize KLj to the nl-lmp. The critical part is Func. 3 that
solves the optimization problem

(v̂, l̂) ∈ argmax
(v,l)∈Vt×L

ϕ(xTvl(λt), yT′vm′ (µt))− ϕ(xλ
t , yµt) (6.26)

Let us consider w.l.o.g. two sets of vertices A and B representing two neighboring
components of the graph G. Then we compute ∀v ∈ A ∪ B, ∀l ∈ L:

∆vl = cvλt(v) − cvl + (6.27)
∑w∈A\{v} c∼vw,λt(v)λt(w) − c 6∼vw,lλt(w)

∑w∈B c 6∼vw,λt(v)λt(w)
− c∼vw,lλt(w)

∑w/∈A∪B c 6∼vw,λt(v)λt(w)
− c 6∼vw,lλt(w)

, (6.28)

where w ∈ NG′(v). In eq. (6.28) the first two cases are exactly the same as given
in (Kernighan and Lin, 1970) for the edges between partitions A and B. But in our
case changing vertex’s class label may affect the cut costs of edges between A and B
and any other partition. Also, we have join and cut costs.

Let us assume w.l.o.g. that vertex v̂ was chosen to be moved from set A to set B,
i.e. A = A \ {v̂}. Now we can update the expected gains of ∀w ∈ NG′(v̂), ∀l ∈ L:
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∆wl = ∆wl −
(

c∼v̂w,λt(v̂)λt(w) − c 6∼v̂w,λt(v̂)l

)
+ c 6∼

v̂w,l̂λt(w)
− c∼v̂w,l̂l , if w ∈ A , (6.29)

∆wl = ∆wl −
(

c 6∼v̂w,λt(v̂)λt(w)
− c∼v̂w,λt(v̂)l

)
+ c∼v̂w,l̂λt(w)

− c 6∼
v̂w,l̂l

, if w ∈ B . (6.30)

After that B = B ∪ {v̂}. In the above equations, the expression in parenthesis cancels
the current contribution for vertex w, that assumed v̂ was labeled λt(v) and belonged
to partition A. For the case when |L| = 1 and c 6∼ = c∼ the above equations simplify
to exactly the ones as in (Kernighan and Lin, 1970), but multiplied by 2, because in
our objective we have two terms that operate on the edges simultaneously.

As we generalize KLj (Chapter 2) by an additional loop over the set L of labels,
the analysis of the time complexity carries over with an additional multiplicative
factor |L|.
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Function 3: (∆′, µ′, λ′) =update-2-cut(µ, λ, m, m′)
µ0 := µ λ0 := λ t := 0
if µ−1(m′) = ∅

V0 := µ−1(m)
else

V0 := {v ∈ µ−1(m) | ∃w ∈ µ−1(m′) : {v, w} ∈ E}
if µ−1(m) = ∅

W0 := µ−1(m′)
else

W0 := {w ∈ µ−1(m′) | ∃v ∈ µ−1(m) : {v, w} ∈ E}
let α : N→ {0, 1} such that α(N) = 1
while Vt ∪Wt 6= ∅

δ := δ′ := ∞
if Vt 6= ∅

choose (v̂, l̂) ∈ argmin
(v,l)∈Vt×L

ϕ(xTvl(λt), yT′vm′ (µt))−
ϕ(xλt , yµt)

δ := ϕ(xTv̂l̂(λt), yT′v̂m′ (µt))− ϕ(xλt , yµt)
if Wt 6= ∅

choose (ŵ, l̂) ∈ argmin
(w,l)∈Wt×L

ϕ(xTwl(λt), yT′wm(µt))−
ϕ(xλt , yµt)

δ′ := ϕ(xTŵl̂(λt), yT′ŵm(µt))− ϕ(xλt , yµt)
if δ ≤ δ′

µt+1 := T′v̂m′(µt) (move node v̂ to component m′)
λt+1 := Tv̂l̂(λt) (label node v̂ with label λ̂)
α(v̂) := 0 (mark v̂ as visited)

else
µt+1 := T′ŵm(µt) (move node ŵ to component m)
λt+1 := Tŵl̂(λt) (label node ŵ with label λ̂)
α(ŵ) := 0 (mark ŵ as visited)

Vt+1 := {v ∈ V | µt+1(v) = m ∧ α(v) = 1∧
∃{v, w} ∈ E : µt+1(w) = m′}

Wt+1 := {w ∈ V | µt+1(w) = m′ ∧ α(w) = 1∧
∃{v, w} ∈ E : µt+1(v) = m}

t := t + 1
t̂ := min argmin

t′∈{0,...,t}
ϕ(xλt′ , yµt′ )− ϕ(xλ0 , yµ0)

∆1 := ϕ(xλt̂ , yµt̂)− ϕ(xλ0 , yµ0)

∆2 := ϕ(xλ0 , yT′mm′ (µ))− ϕ(xλ0 , yµ0) (join m and m′)
if min{∆1, ∆2} ≥ 0

return (0, µ, λ)
else if ∆1 < ∆2

return (∆1, µt̂, λt̂)
else

return (∆2, Tmm′(µ), λ)
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6.4 experiments

We show applications of the proposed problem and algorithms to three distinct
computer vision tasks: articulated human body pose estimation, multiple object
tracking, and instance-separating semantic segmentation. For each task, we set up
instances of the nl-lmp from published data, using published algorithms.

6.4.1 Articulated Human Body Pose Estimation

We turn toward applications of the nl-lmp and the algorithms KLj/r and KLj∗r
to the task of estimating the articulated poses of all humans visible in an image.
Pishchulin et al. (2016) and Insafutdinov et al. (2016) approach this problem via a
graph decomposition and node labeling problem that we identify as a special case
of the nl-lmp with c 6∼ = 0 and with subgraph selection (Section 6.2.5.3). In this
case, nodes are putative detections of body parts and labels define body part classes
(head, wrist, etc.).

Pishchulin et al. (2016) introduce a binary cubic problem w.r.t. a set C of body
joint classes and a set D of putative detections of body joints. Every feasible solution
is a pair (x, y) with x : D × C → {0, 1} and y : (D

2 ) → {0, 1}, constrained by the
following system of linear inequalities:

∀d ∈ D∀cc′ ∈ (C
2) : xdc + xdc′ ≤ 1 (6.31)

∀dd′ ∈ (D
2 ) : ydd′ ≤ ∑

c∈C
xdc

ydd′ ≤ ∑
c∈C

xd′c (6.32)

∀dd′d′′ ∈ (D
3 ) : ydd′ + yd′d′′ − 1 ≤ ydd′′ (6.33)

xvl = 1 indicates that the putative detection v is a body part of class l, and yvw = 1
indicates that the body parts v and w belong to the same human. The objective
function has the form below with coefficients α and β.

∑
d∈D

∑
c∈C

αdc xdc + ∑
dd′∈(D

2 )

∑
c,c′∈C

βdd′cc′xdcxd′c′ydd′ (6.34)

We identify the solutions of this problem with the solutions of the nl-lmp

w.r.t. the complete graphs G = G′ = (D, (D
2 )), the label set L = C ∪ {ε} and the costs

c 6∼ = 0 and

cvl :=

{
αvl if l ∈ C
0 if l = ε

(6.35)

c∼vw,ll′ :=


βvwll′ if l ∈ C ∧ l′ ∈ C
0 if l = ε xor l′ = ε

∞ if l = l′ = ε

. (6.36)
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Figure 6.3: Convergence of b&c (Insafutdinov et al., 2016), KLj/r, and KLj∗r on MPII
Human Pose Dataset (Andriluka et al., 2014). Plotted above is the mean objective
value vs. the absolute runtime. It can be seen, that KLj/r and KLj∗r converge to
solutions that are in between the bounds given by b&c, but obtained in five orders
of magnitude less time.

Alg. Mean cost Mean time [s] Median time [s]

b&c (Insafutdinov et al., 2016) -3013.30 9519.26 308.28

KLj/r -3352.74 0.033 0.031
KLj∗r -3419.07 0.119 0.100

Table 6.1: Mean cost and runtime averaged over 1758 instances of the MPII Human
Pose Dataset (Andriluka et al., 2014). We set a runtime limit of 3 hours per instance
for b&c (Insafutdinov et al., 2016). We used exactly the same data as in (Insafutdinov
et al., 2016).

The test set of MPII Human Pose Dataset (Andriluka et al., 2014) consists of
1758 images. To tackle the instances of problems defined over each image, Insa-
futdinov et al. (2016) implement a branch-and-cut (b&c) algorithm in the integer
linear programming software framework Gurobi. We refer to their published c++
implementation as b&c. We take unary c and pairwise c∼ costs exactly the same as
in (Insafutdinov et al., 2016).

Cost and time In Fig. 6.3, we compare the convergence of b&c (feasible solutions
and lower bounds) with the convergence of our algorithms, KLj/r and KLj∗r (feasible
solutions only). Shown in this figure is the average objective value over the test set
w.r.t. the absolute running time. Thanks to the lower bounds obtained by b&c, it can
be seen from this figure that KLj/r and KLj∗r arrive at near optimal feasible solutions
after 10−1 seconds, five orders of magnitude faster than b&c. Exact numbers are
presented in Tab. 6.1. This result shows that primal feasible heuristics for the nl-lmp,
such as KLj/r and KLj∗r, are practically useful in the context of this application.
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|D| Alg. Head Sho Elb Wri Hip Knee Ank AP

b&c (Insafutdinov et al., 2016) 84.9 79.2 66.4 52.3 65.5 59.2 51.2 65.5

KLj/r 87.1 80.0 66.8 53.6 66.1 60.0 51.8 66.5

1
5
0

KLj∗r 86.8 80.2 67.5 53.5 66.3 60.3 51.9 66.6

KLj/r 90.2 85.2 71.5 59.5 71.3 63.1 53.1 70.6

4
2
0

KLj∗r 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Table 6.2: Our algorithms improve application-specific accuracy results over the
baseline b&c (Insafutdinov et al., 2016) on the MPII Human Pose Dataset (Andriluka
et al., 2014). By using all the available detections (|D| = 420) in the data, we are able
to get a further 4% improvement.

Head Sho Elb Wri Hip Knee Ank AP

Insafutdinov et al. (2016) 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0
Varadarajan et al. (2018) 92.1 85.9 72.9 61.6 72.0 64.6 56.6 72.2
Insafutdinov et al. (2017) 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al. (2017) 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Fang et al. (2017) 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Newell et al. (2017) 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
Fieraru et al. (2018) 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0

Our 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Table 6.3: Application-specific accuracy results on the MPII Human Pose
Dataset (Andriluka et al., 2014).

Application-specific Accuracy and Results In Tab. 6.2, we compare feasible solu-
tions output by KLj/r and KLj∗r after convergence with those obtained by b&c after
at most three hours. It can be seen from this table that better mean cost translates
into higher average accuracy in the default setting.

Due to runtime issues, Insafutdinov et al. (2016) had to restrict themselves to at
most 150 detections per image in order to compute reasonable results with b&c. The
shorter absolute running time of KLj/r and KLj∗r allows us to use all the available
detections in the data, up to 420 per image, without additional learning. It can be seen
from the last two rows of Tab. 6.2 that this increases the accuracy by 4%. Our results
are put into perspective relative to other methods in Tab. 6.3. Qualitative results are
shown in Fig. 6.4. Also, this observation allowed for a novel application of pose
tracking in videos (Insafutdinov et al., 2017), that can further improve accuracy.

6.4.2 Multiple Object Tracking

We turn toward applications of the nl-lmp and the algorithms KLj/r and KLj∗r to
the task of multiple object tracking. Tang et al. (2015) approach this problem via a
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Figure 6.4: Pose estimation results on the MPII Human Pose Dataset (Andriluka
et al., 2014).

graph decomposition and node labeling problem that we identify as a special case of
the nl-lmp with two labels and subgraph selection (Sec. 6.2.5.3). In this case, nodes
are putative detections of persons.

Tang et al. (2015) introduce a binary linear program w.r.t. a graph G = (V, E)
whose nodes are candidate detections of humans visible in an image. Every feasible
solution is a pair (x, y) with x ∈ {0, 1}V and y ∈ {0, 1}E, constrained such that

∀{v, w} ∈ E : yvw ≤ xv (6.37)
yvw ≤ xw (6.38)

∀C ∈ cycles(G) ∀e ∈ C : 1− ye ≤ ∑
f∈C\{e}

(1− y f ) (6.39)

xvl = 1 indicates that the putative detection v is not suppressed, and yvw = 1
indicates that the putative detections v and w are of the same person. The objective
function has the form below with coefficients α and β.

∑
v∈V

αvxv + ∑
e∈E

βeye (6.40)

We identify the solutions of this problem with the solutions of the nl-lmp
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Method MOTA ↑ FP ↓ FN ↓ Hz ↑

Tang et al. (2016) 46.3 6373 90914 0.8
Choi (2015) 46.4 9753 87565 2.6
Sadeghian et al. (2017) 47.2 2681 92856 1.0
Chen et al. (2018) 47.6 9253 85431 20.6
Henschel et al. (2018) 47.8 8886 85487 0.6
Ma et al. (2018) 48.2 5104 88586 2.8
Sheng et al. (2018) 48.7 6632 86504 4.8
Tang et al. (2017) 48.8 6654 86245 0.5

KLj/r 47.6 5844 89093 8.3
KLj∗r 47.6 5783 89160 0.7

Table 6.4: Application-specific accuracy on the MOT16 (Milan et al., 2016) challenge
(public detections). We used the same data as in (Tang et al., 2016).
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Figure 6.5: Convergence of the algorithms KLj/r and KLj∗r on the data from the
MOT16 (Milan et al., 2016) challenge.

w.r.t. the graphs G′ = G, the label set L = {1, ε} and the costs c 6∼ = 0 and

cvl :=

{
αv if l = 1
0 if l = ε

(6.41)

c∼vw,ll′ :=


βvw if l = 1∧ l′ = 1
0 if l = 1 xor l′ = 1
∞ if l = l′ = ε

. (6.42)

The test set of the multiple object tracking benchmark (MOT16) (Milan et al.,
2016) consists of 7 video sequences and putative people detections are provided.
To tackle the large instances defined for each sequence, Tang et al. (2016) solve
the subgraph suppression problem first and independently, by thresholding on
the detections scores, and then solve the minimum cost multicut problem for the
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remaining subgraph by means of the algorithm KLj (Chapter 2), without re-iterating.
Here, we solve the joint problem of detections suppression and graph decomposition
by means of KLj/r and KLj∗r and compare their output to that of (Tang et al., 2016)
and of other top-performing algorithms (Choi, 2015; Fagot-Bouquet et al., 2016; Kim
et al., 2015). We use the same data as in (Tang et al., 2016), therefore the performance
gain is due to our algorithms that solve the full problem.

Cost and time The convergence of the algorithms KLj/r and KLj∗r is shown in
Fig. 6.5. It can be seen from this figure that KLj/r converges faster than KLj∗r.

Application-specific Accuracy and Results We compare the feasible solutions
output by KLj/r and KLj∗r on the MOT16 benchmark (Milan et al., 2016). To this
end, we report in Tab. 6.4 the standard CLEAR MOT metric, including: multiple
object tracking accuracy (MOTA), multiple object tracking precision (MOTP), mostly
tracked object (MT), mostly lost (ML) and tracking fragmentation (FM). MOTA
combines identity switches (ID Sw), false positives (FP) and false negatives (FN) and
is most widely used.

It is can be seen from Tab. 6.4 that the feasible solutions obtained by KLj/r and
KLj∗r substantially improve over the baseline (Tang et al., 2016). Compared to (Tang
et al., 2016), KLj/r and KLj∗r reduce the number of false positives and false negatives.
The average inverse running time per frame of a video sequence (column “Hz”
in the table) is better for KLj/r by a margin than for any other algorithm. Some
visual results are presented in Fig. 6.6. A complete evaluation of our experimental
results and complete video sequences with the tracking overlay can be found at
http://motchallenge.net/tracker/NLLMPa. Overall, these results show the
practicality of the nl-lmp in conjunction with the local search algorithms KLj/r
and KLj∗r for applications in multiple object tracking. We believe that the recently
published method by Tang et al. (2017), that uses the lifted multicut framework for
tracking, can also benefit from our new algorithms.

6.4.3 InstanceCut: Instance-Separating Semantic Segmentation

We turn toward applications of the nl-lmp and to the task of instance-separating
semantic image segmentation. We state this problem here as an nl-lmp whose nodes
correspond to pixels in a given image, and whose labels define classes of objects
(human, car, bicycle, etc.). In our notation, xvl = 1 indicates that the pixel v shows
an object of class l, and yvw = 1 indicates that the pixels v and w belong to distinct
objects. No subgraph selection is performed in this application.

Our pipeline (shown in Fig. 6.7) consists of two independent branches: For unary
costs cl

v, ∀v ∈ V, ∀l ∈ L, we employ a publicly available Fully Convolutional Network
Dilation10 (Yu and Koltun, 2016) for semantic labeling, pre-trained by the authors
and publicly available. Note, that since this is an independent component it can
easily be updated to the most recent FCN. Our contribution is a novel instance-aware
edge detector network that produces probabilities c 6∼vw, ∀{vw} ∈ E for neighbouring

http://motchallenge.net/tracker/NLLMPa
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Figure 6.6: Some visual results on MOT16 (Milan et al., 2016) challenge.

super-pixels to belong to the same instance. The two outputs are then combined in a
joint nl-lmp (6.8) formulation.

6.4.3.1 Instance-Aware Edge Detection

Edge detection is a very well studied problem in computer vision. Some classical
results were obtained already back in the 80’s (Canny, 1986). More recent methods
are based on spectral clustering (Shi and Malik, 2000; Arbeláez et al., 2011, 2014;
Isola et al., 2014). These methods perform global inference on the whole image.
An alternative approach suggests to treat the problem as a per-pixel classification
task (Lim et al., 2013; Dollár and Zitnick, 2015). Recent advances in deep learning
have made this class of methods especially efficient, since they automatically obtain
rich feature representation for classification (Ganin and Lempitsky, 2014; Kivinen
et al., 2014; Shen et al., 2015; Bertasius et al., 2015a,b; Xie and Tu, 2015; Bertasius et al.,
2016).

The recent per-pixel classification method (Bertasius et al., 2016) constructs fea-
tures, which are based on an FCN trained for semantic segmentation on Pascal
VOC 2012 (Everingham et al., 2010). The features for each pixel are designed as a
concatenation of intermediate FCN features, corresponding to that particular pixel.
The logistic regression trained on these features, followed by non-maximal sup-
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Figure 6.7: Our InstanceCut pipeline - Overview. Given an input image, two
independent branches produce the per-pixel semantic class scores and per-pixel
instance-aware edge scores. The edge scores are used to extract superpixels. The
final image partitioning block merges the superpixels into connected components
with a class label assigned to each component. The resulting components correspond
to object instances and background.
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Figure 6.8: Instance-aware edge detection block. The semantic segmentation FCN
is the front-end part of the network (Yu and Koltun, 2016) trained for semantic
segmentation on the same dataset. Its intermediate feature maps are downsampled,
according to the size of the smallest feature map, by a max-pooling operation with an
appropriate stride. The concatenation of the downsampled maps is used as a feature
representation for a per-pixel 2-layer perceptron. The output of the perceptron is
refined by a context network of Dilation10 (Yu and Koltun, 2016) architecture.

pression, outputs a per-pixel edge probability map. The paper suggests that the
intermediate features of an FCN trained for semantic segmentation form a strong
signal for solving the edge detection problem. Similarly constructed features also
have been used successfully for other dense labelling problems (Hariharan et al.,
2015).

For datasets like BSDS500 (Arbeláez et al., 2011) most works consider general
edge detection problem, where annotated edges are class- and instance-agnostic
contours. In our work the instance-aware edge detection outputs a probability for
each pixel, whether it touches a boundary. This problem is more challenging than
canonical edge detection, since it requires to reason about contours and semantics
jointly, distinguishing the true objects’ boundaries and other not relevant edges,
e.g., inside the object or in the background. Below (see Fig. 6.8), we describe a new
network architecture for this task that utilizes the idea of the intermediate FCN
features concatenation.

As a base for our network we use an FCN that is trained for semantic segmen-
tation on the dataset that we want to use for object boundary prediction. In our
experiments we use a pre-trained Dilation10 (Yu and Koltun, 2016) model, however,
our approach is not limited to this architecture and can utilize any other FCN-like
architectures. We form a per-pixel feature representation by concatenating the inter-
mediate feature maps of the semantic segmentation network. This is based on the
following intuition: during inference, the semantic segmentation network is able to
identify positions of transitions between semantic classes in the image. Therefore,
its intermediate features are likely to contain a signal that helps to find the borders
between classes. We believe that the same features can be useful to determine
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Figure 6.9: Ground truth examples for our instance-aware edge detector. Red
indicates pixels that are labeled as edges, blue indicates background, i.e. no edge
and white pixels are ignore.

boundaries between objects.
Commonly used approaches (Bertasius et al., 2016; Hariharan et al., 2015) suggest

upscaling feature maps that have a size which is smaller than the original image
to get per-pixel representation. However, in our experiments such an approach
produces thick and over-smooth edge scores. This behavior can be explained by the
fact that the most informative feature maps have an 8 times smaller scale than the
original image. Hence, instead of upscaling, we downscale all feature maps to the
size of the smallest map. Since the network was trained with rectified linear unit
(ReLU) activations, the active neurons tend to output large values, therefore, we use
max-pooling with a proper stride for the downscaling, see Fig. 6.8.

The procedure outputs the downscaled feature maps (of a semantic segmentation
FCN, see Fig. 6.8) that are concatenated to get the downscaled per-pixel feature map.
We utilize a 2-layer perceptron that takes this feature map as input and outputs log-
probabilities for edges (smooth instance-aware edge map, see Fig. 6.8). The perceptron
method is the same for all spatial positions, therefore, it can be represented as two
layers of 1× 1 convolutions with the ReLU activation in between.

In our experiments we have noticed that the FCN gives smooth edge scores.
Therefore, we apply a context network (Yu and Koltun, 2016) that refines the scores
making them sharper. The new architecture is an FCN, i.e., it can be applied to
images of arbitrary size, it is differentiable and has a single loss at the end. Hence,
straightforward end-to-end training can be applied for the new architecture. We
upscale the resulting output map to match an input image size.

Since the image partition framework, that comes next, operates on super-pixels,
we need to transform the per-pixel edge scores to edge scores c 6∼vw for each pair
{v, w} of neighboring superpixels. We do this by averaging all scores of those pixels
that touch the border between v and w.

In the following, we describe an efficient implementation of the 2-layer perceptron
and also discuss our training data for the boundary detection problem.

Efficient implementation In our experiments, the input for the 2-layer perceptron
contains about 13k features per pixel. Therefore, the first layer of the perceptron
consumes a lot of memory. It is, however, possible to avoid this by using a more
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efficient implementation. Indeed, the first layer of the perceptron is equivalent to
the summation of outputs of multiple 1× 1 convolutions, which are applied to each
feature map independently. For example, conv_1 is applied to the feature maps
from the conv_1_x intermediate layer, conv_2 is applied to the feature maps
from conv_2_x and its output is summed up with the output of conv_1, etc. This
approach allows reducing the memory consumption, since the convolutions can be
applied during evaluation of the front-end network.

Training data Although it is common for ground truth data that object boundaries
lie in-between pixels, we will use in the following the notion that a boundary lies on
a pixel. Namely, we will assume that a pixel i is labeled as a boundary if there is a
neighboring pixel j, which is assigned to a different object (or background). Given
the size of modern images, this boundary extrapolation does not affect performance.
As a ground truth for boundary detection we use the boundaries of object instances
presented in CityScapes (Cordts et al., 2016).

As mentioned in several previous works (Xie and Tu, 2015; Bertasius et al., 2015b),
highly unbalanced ground truth (GT) data heavily harms the learning progress. For
example, in BSDS500 (Arbeláez et al., 2011) less than 10% of pixels on average are
labeled as edges. Our ground truth data is even more unbalanced: since we consider
the object boundaries only, less than 1% of pixels are labeled as being an edge. We
employ two techniques to overcome this problem of training with unbalanced data:
a balanced loss function (Xie and Tu, 2015; Hwang and Liu, 2015) and pruning of the
ground truth data.

The balanced loss function (Xie and Tu, 2015; Hwang and Liu, 2015) adds a
coefficient to the standard log-likelihood loss that decreases the influence of errors
with respect to classes that have a lot of training data. That is, for each pixel i the
balanced loss is defined as

loss(pedge, yGT) = [[yGT = 1]] log(pedge) + α[[yGT = 0]] log(1− pedge) ,

where pedge is the probability of the pixel i to be labeled as an edge, yGT is the ground
truth label for i (the label 1 corresponds to an edge), and α = N1/N0 is the balancing
coefficient. Here, N1 and N0 are numbers of pixels labeled, respectively, as 1 and 0
in the ground truth.

Another way to decrease the effect of unbalanced GT data is to subsample the
GT pixels, see, e.g., (Bertasius et al., 2016). Since we are interested in instance-aware
edge detection and combine its output with our semantic segmentation framework,
a wrong edge detection, which is far from the target objects (for example, in the sky)
does not harm the overall performance of the InstanceCut framework. Hence, we
consider a pixel to be labeled as background for the instance-aware edge detection if
and only if it lies inside the target objects, or in an area close to it, see Fig. 6.9 for
a few examples of the ground truth data for the CityScapes dataset (Cordts et al.,
2016). In our experiments, only 6.8% of the pixels are labeled as object boundaries in
the pruned ground truth data.
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Figure 6.10: The histograms shows distribution of number of instances per image for
different datasets. For illustrative reasons we cut long tails of CityScapes and MS
COCO. We use CityScapes dataset since it contains significantly more instances per
image.

6.4.3.2 Experiments

Dataset There are three main datasets with full annotation for the instance-aware
semantic segmentation problem: PASCAL VOC2012 (Everingham et al., 2010), MS
COCO (Lin et al., 2014) and CityScapes (Cordts et al., 2016). We select the last one
for our experimental evaluation for several reasons: (i) CityScapes has very fine
annotation with precise boundaries for the annotated objects, whereas MS COCO
has only coarse annotations, for some objects, that do not coincide with the true
boundaries. Since our method uses an edge detector, it is important to to have
precise object boundaries for training. (ii) The median number of instances per
image in CityScapes is 16, whereas PASCAL VOC has 2 and MS COCO has 4. For
this work a larger number is more interesting. The distribution of the number of
instances per image for different datasets is shown in Fig. 6.10. (iii) Unlike other
datasets, CityScapes annotation is dense, i.e., all foreground objects are labeled.

The CityScapes dataset has 5000 street-scene images recorded by car-mounted
cameras: 2975 images for training, 500 for validation and 1525 for testing. There are
8 classes of objects that have an instance-level annotation in the dataset: person, rider,
car, truck, bus, train, motorcycle, bicycle. All images have the size of 1024× 2048
pixels.

Training details For the semantic segmentation block in our framework we test
two different networks, which have publicly available trained models for CityScapes:
Dilation10 (Yu and Koltun, 2016) and LRR-4x (Ghiasi and Fowlkes, 2016). The latter
is trained using the additional coarsely annotated data, available in CityScapes.
Importantly, CityScapes has 19 different semantic segmentation classes (and only
8 out of them are considered for instance segmentation) and both networks were
trained to segment all these classes. We do not retrain the networks and directly use
the log-probabilities for the 8 semantic classes, which we require. For the background
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AP AP50% AP100m AP50m

PANet (Liu et al., 2018) 36.4 63.1 49.2 51.8
Mask R-CNN (He et al., 2017) 32.0 58.1 45.8 49.5
SGN (Liu et al., 2017) 25.0 44.9 38.9 44.5
Arnab and Torr (2017) 23.4 45.2 36.8 40.9
Kendall et al. (2018) 21.6 39.0 35.0 37.0
DWT (Bai and Urtasun, 2017) 19.4 35.3 31.4 36.8
BAIS (Hayder et al., 2017) 17.4 36.7 29.3 34.0
Pixel Encoding (Uhrig et al., 2016) 8.9 21.1 15.3 16.7
MCG+R-CNN (Cordts et al., 2016) 4.6 12.9 7.7 10.3

InstanceCut (our) 13.0 27.9 22.1 26.1

Table 6.5: CityScapes results for instance-aware semantic segmentation on the test
set.
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AP 13.0 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7
AP50% 27.9 28.0 26.8 44.8 22.2 30.4 30.1 25.1 15.7

AP100m 22.1 19.7 14.0 38.9 24.8 34.4 23.1 13.7 8.0
AP50m 26.1 20.1 14.6 42.5 32.3 44.7 31.7 14.3 8.2

Table 6.6: Detailed instance-aware semantic segmentation results on the test set of
CityScapes, given for each semantic class.

label we take the maximum over the log-probabilities of the remaining semantic
classes.

As an initial semantic segmentation network for the instance-aware edge detection
block we use Dilation10 (Yu and Koltun, 2016) pre-trained on the CityScapes. We
exactly follow the training procedure described in the original paper (Yu and Koltun,
2016). That is, we pre-train first the front-end module with the 2-layer perceptron
on top. Then we pre-train the context module of the network separately and,
finally, train the whole system end-to end. All the stages are trained with the same
parameters as in (Yu and Koltun, 2016). In our experiments the 2-layer perceptron
has 16 hidden neurons. On the validation set the trained detector achieves 97.2%
AUC ROC.

Quantitative and qualitative results We evaluated our method using 4 metrics
that are suggested by the CityScapes benchmark: AP, AP50%, AP100m and AP50m.
We refer to the webpage of the benchmark for a detailed description.

The InstanceCut framework with Dilation10 (Yu and Koltun, 2016) as the semantic
segmentation block gives AP = 14.8 and AP50% = 30.7 on the validation part of the
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dataset. When we replace Dilation10 by LRR-4x (Ghiasi and Fowlkes, 2016) for this
block the performance improves to AP = 15.8 and AP50% = 32.4, on the validation
set.

Quantitative results for the test set are provided in Table 6.5. We compare our
approach to all published methods that have results for this dataset. Class-level
results are given in Tab. 6.6. Some qualitative results are shown in Fig. 6.11, failure
cases are shown in Fig. 6.12.

6.5 conclusion

We have stated the minimum cost node labeling lifted multicut problem, nl-lmp,
an np-hard combinatorial optimization problem whose feasible solutions define
both a decomposition and a node labeling of a given graph. We have defined
and implemented two local search algorithms, KLj/r and KLj∗r, that converge
monotonously to a local optimum, offering a feasible solution at any time. We have
shown applications of these algorithms to the tasks of articulated human body pose
estimation, multiple object tracking and instance-separating semantic segmentation,
obtaining competitive application-specific accuracy. We conclude that the nl-lmp

is a useful mathematical abstraction in the field of computer vision that allows
researchers to apply the same optimization algorithm to diverse computer vision
tasks.
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Ground truth Edges map InstanceCut prediction

Figure 6.11: Curated difficult scene, where InstanceCut performs well. The left
column contains input images with ground truth instances highlighted. The middle
column depicts per-pixel instance-aware edge log-probabilities and the last column
shows the results of our approach.
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Ground truth Edges map InstanceCut prediction

Figure 6.12: Failure cases. The left column contains input images with ground truth
instances highlighted. The middle column depicts per-pixel instance-aware edge
log-probabilities and the last column shows the results of our approach.
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Multiple model fitting—the task of explaining noisy observations by models
under certain assumptions—is a classical problem in pattern recognition.
Its core challenges are two-fold: First, one needs to estimate the number

of models along with the model parameters. Second, one usually has little prior
knowledge on the noise level each individual model is observed with. While most
previous approaches focus on either of the two challenges, we propose an pseudo-
boolean formulation for the joint problem. Solutions to the proposed formulation fit
multiple models to noisy data, while choosing, for each model, an appropriate noise
level. Despite the problem being np-hard, for the line fitting task, good solutions can
be found in practice by a primal feasible heuristic we propose.
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7.1 introduction

We tackle the problem of joint model fitting and model selection, i.e., we attempt to i)
fit an optimal number of models into noisy data and ii) simultaneously estimate the
noise level of each model. Specifically, we attempt to recover the true set of models
M, which are drawn from a pre-defined model class (for examples lines in the 2D
plane). We assume that each model mi ∈ M is subject to an individual noise level σi.

The most traditional way to tackle the problem of estimating a model from
noisy data is the random sampling consensus (RANSAC) approach (Fischler and
Bolles, 1981), with the underlying idea of iteratively growing a model’s inlier set
by sampling points. It can be adapted to fitting a pre-defined number of multiple
models for example by Zuliani et al. (2005). Preference analysis based methods such
as (Magri and Fusiello, 2014, 2016; Tepper and Sapiro, 2017; Amayo et al., 2018)
sample a large but fixed set of model hypotheses and then optimize the inlier sets of
these hypotheses based on preference matrices. Thus, they can recover any number
of models from the initially sampled ones, but are restrained to this initial set.

In contrast, we follow the line of work of Tennakoon et al. (2016); Xiao et al. (2016);
Purkait et al. (2017) and cast the multiple model fitting problem as a point grouping
problem. Thus, our approach is based on local observations over which a global
optimization is possible. Specifically, we consider residual errors r of k-tuples of
points relative to the most plausible model given these points as local features.

We compute residual errors relative to a model fit
using total least squares (tls). Unlike least squares
(brown), that minimize only axis-aligned residuals,
total least squares (red) minimize the residuals as the
distance between a point and its orthogonal projection
onto the model.

Intuitively, these residuals are assumed to be informative about the points’ like-
lihood of belonging together, i.e., belonging to the same model. Given this local
evidence, we can phrase multiple model fitting as a graph decomposition problem,
more specifically, as a higher order minimum cost multicut problem (Kim et al., 2011;
Kappes et al., 2016). This formulation allows us to optimize over the number of
models along with the model estimation itself. However, as any clustering-based
technique, this formulation has to assume that certain hyperparameters of the mod-
els are fixed (e.g., width of a line). However, this is not realistic for real-world data,
where each model might be captured with a unique noise level. One practically
relevant example would be the fitting of lines on building facades, where the noise
level of the data strongly depends on the objects’ distances from the camera or 3D
sensor. In such scenarios, traditional methods usually achieve best result when
assuming the same average noise level for all models, which, however, might lead to
under- or over-assignment of data points.

We solve this issue by a joint problem formulation. We generalize the higher
order minimum cost multicut objective by introducing nodel labels (Chapter 6). Thus,
we can formulate a pseudo-boolean program, which simultaneously groups points
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and chooses one of the possible noise levels for each group. Because multicuts are
np-hard (Bansal et al., 2004) and we expect to face large problem instances in practice,
we focus on providing heuristic solutions. Therefore, we propose an extension of
an efficient primal feasible heuristic (Keuper, 2017) to optimize our higher order node
labeling minimum cost multicut problem instances. Our experiments on line fitting data
show convincing results.

7.2 related work

J-Linkage (Toldo and Fusiello, 2008) builds a preference matrix by assigning either 1

or 0 indicating if a point belongs to a hypothesis, determined by a threshold. Then
they perform a greedy agglomerative clustering of points using the Jaccard distance,
i.e. they group points with similar preference sets.To avoid hard 01-assignments,
T-Linkage (Magri and Fusiello, 2014) relaxes the membership value and uses a
different similarity metric (Tanimoto, 1957).

A separate line of research seeks to find low-rank representations of the preference
matrix and thus discover the models. Robust Preference Analysis (RPA) (Magri and
Fusiello, 2015) builds a symmetric kernel of pairwise similarities (measured with
Tanimoto distance). Then it performs Robust PCA to obtain a rank-k representation
and clusters points in this reduced space using Symmetric Non-negative Matrix
Factorization. This approach requires the exact number of models to be provided
and can be seen as a “robust spectral clustering”.

Denitto et al. (2016) propose an approach to compute a sparse low-rank repre-
sentation of the preference matrix using FABIA (Hochreiter et al., 2010) and obtain
bi-clusters. The latter being clustering both in row and column space of the matrix
allows points to belong to multiple models.

Avoiding all intermediate operations, Non-negative Matrix Underapproximation
(RS-NMU) (Tepper and Sapiro, 2017) directly finds a low-rank representation of the
preference matrix and yields high-quality results. Notably, they make a further con-
tribution to preference-based multiple model fitting by pointing out the importance
of statistical observations. Their method gains robustness via a t-test that efficiently
filters out statistically insignificant hypotheses. Whenever the application of such a
test is possible in practice, it should be applied.

Magri and Fusiello (2016) cast multiple model fitting as a maximum set coverage
problem, similar to sequential RANSAC. The key difference is that this approach
finds a globally optimal coverage: Given an integer k, it selects exactly k subsets
of hypotheses that cover the maximum number of points. As a by-product, this
algorithm may leave certain (outlier) points uncovered.

Isack and Boykov Isack and Boykov (2012) also formulated a combinatorial
optimization problem with a discrete label space of possible models parameters.
They iteratively find inliers to the models by applying the efficient α-expansion
algorithm Boykov et al. (2001) and then re-estimate model parameters and prune
the redundant ones. In principle, it also possible to fit models with different noise
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levels in their framework. Amayo et. al. Amayo et al. (2018) proposed an efficient
primal-dual optimization method for a convex relaxation of the discrete energy
of Isack and Boykov (2012). Recently, Barath and Matas Barath and Matas (2018)
have introduced density modes into models’ parameters space and showed that
applying mean-shift Comaniciu and Meer (2002) can efficiently reduce the number
of models.

Higher order clustering has previously been used in (Agarwal et al., 2005; Jain and
Madhav Govindu, 2013; Madhav Govindu, 2005; Tennakoon et al., 2016; Xiao et al.,
2016; Purkait et al., 2017; Wang et al., 2018) for multiple model fitting. Higher order
potentials are defined over k-tuples of points and a probability of the latter to belong
together is computed based on the residuals to the sampled hypotheses. However,
to perform clustering, these approaches transform higher order terms into pairwise
potentials or use randomized techniques and apply spectral clustering. Thus, in
principle, they also require the number of models to be given. In contrast, we work
directly with the higher order potentials and perform correlation clustering so as to
automatically recover the optimal number of clusters. However, the results presented
in (Tennakoon et al., 2016) and (Purkait et al., 2017) can be seen as a motivation for
the use of local evidence on larger than minimal sets, as employed in the proposed
approach.

7.3 preliminaries

Recall, that a multicut of a graph G = (V, E) is a subset of edges MC ⊆ E that
uniquely defines a decomposition of G. A characteristic function y : E 7→ {0, 1}
assigns 1 to edges within the same component and 0 to edges that straddle distinct
components. The multicut polytope YG can be fully described by linear, so called
cycle, inequalities:

YG =

y | ∀C ∈ cycles(G), ∀e ∈ C : 1− ye ≤ ∑
f∈C\{e}

(1− y f )

 (7.1)

This definition is different from (1.2), because here 1 means join. Still, these inequali-
ties ensure the consistency of a solution: If an edge along one path connecting two
vertices is cut, there needs to exist a cut edge on all other paths connecting these two
vertices. Chopra and Rao (1993) showed that it is sufficient to consider all chordless
cycles, i.e., those correspond to the facets of YG.

Definition 11 For a graph G = (V, E) and a cost function c : E 7→ R, that assigns a
cost or reward for putting two vertices into the same component, the following integer
linear program is called minimum cost multicut problem (Grötschel and Wakabayashi,
1989)

arg min
y∈YG

∑
e∈E

ceye. (7.2)
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It is important to note that at least some values of c must be negative to avoid a
trivial solution. Yet, there are no assumptions on the number or (expected) size of
components. Indeed, they are deduced from the solution. This makes multicuts
useful, when the number of components needs to be estimated from data, which is
the case in the multiple model fitting scenario.

Each cost ce measures the agreement between corresponding vertices and has
a probabilistic interpretation. Andres et al. (2011); Kappes et al. (2011) show that if
P(ye = 1) is a probability estimate of 2 vertices to be put in the same component,
then solving the minimum cost multicut problem (7.2) with costs ce = logit(P(ye =

1)) = log 1−P(ye=1)
P(ye=1) is equivalent to finding a maximum likelihood decomposition.

For probability P(ye = 1) = 0.5, ce equals zero (random coin flip), while ce < 0,
when vertices are likely to belong together, and ce > 0, when P(ye = 1) < 0.5. This
allows to interpret solutions of (7.2) in terms of local probabilities.

Kim et al. (2011) proposed to extend the cost function c to include higher order
terms. In this case, each hyperedge e = {v0, . . . , vk} ⊆ V includes k vertices, and k is
called the order of the multicut problem. Higher order edges can be represented as
cliques of order k and (7.2) becomes a higher order problem by simply substituting
ye = ∏{u,v}∈e yuv, i.e., ye is 1, iff all vertices of hyperedge e are put into the same
component. In principle, the cost or reward c can include terms of different orders,
but here we use a constant k. The probabilistic interpretation is straightforwardly
extended by P(ye = 1) denoting the probability of all vertices in e to belong to the
same component.

In the following we describe how we compute costs c, introduce node labeling
into higher order multicuts, and propose a primal feasible heuristic to infer into the
emerging problem.

7.4 problem

We formulate the task of multiple model fitting as a higher order minimum cost
multicut problem. Thus, we need to define an appropriate cost function taking into
account the number of points needed to uniquely define a model as well as the
expected noise level. If k− 1 points are required to define a model of the model
class under consideration, the employed cost function needs to be at least of order k,
such as to allow for the computation of model residuals. For example lines in the
Euclidean space are uniquely defined by any two distinct points. Thus, three points
allow for the estimation of a model and the computation of their residual model
errors. In practice, since the space complexity of the higher order problem grows
polynomially with the chosen problem order, we choose it to be exactly k for models
defined with k− 1 points.

We assume, that data points belonging to the same model have been sampled
from this model independently and with a unique noise distribution. A point’s
probability of belonging to a model is inversely proportional to its residual error
w.r.t. to this model. Thus, we fit a model using tls into each subset of vertices
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Figure 7.1: Complementary CDF of a Gaussian (dashed) and our approximation by
logistic distribution with non-zero mean. For small values of σ it is quite accurate.

U = {ui}k
i=1 ∈ (V

k ) and compute residuals {ri}k
i=1. Then the probability of vertices

in U to belong to the same model is given as P(yU = 1) = φ(∑k
i=1 ri; θ), where

φ(·; θ) : R+ 7→ [0, 1] is some uncertainty model with hyperparameters θ.
Most commonly, one assumes the noise to be Gaussian normally distributed with

standard deviation σ. For numerical reasons, we want to approximate this noise
model with a logistic distribution with non-zero mean, i.e.,

f

(
k

∑
i=1

ri; µ, s

)
=

e−
∑k

i=1 ri−µ

s

s ·
(

1 + e−
∑k

i=1 ri−µ

s

)2 . (7.3)

With mean µ = σ and scale s := σ
θ0

for a constant, positive θ0, this approximation
is reasonable for small σ, as can be seen in Fig. 7.1. This, accordingly, motivates to
choose φ(·; θ) as a logistic complementary cumulative distribution function

φ

(
k

∑
i=1

ri; θ

)
=
(

1 + e−θ0+θ1 ∑k
i=1 ri

)−1
, (7.4)

with θ1 = θ0
σ̂ for an appropriate estimation σ̂ for the standard deviation σ. After

the logit transformation, the cost function is linear: c := logit(φ(∑k
i=1 ri; θ)) =

−θ0 + θ1 ∑k
i=1 ri.

Parameters θ in (7.4) can be interpreted as follows: θ0 is the maximum reward the
optimization can get for grouping all vertices {ui}k

i=1 together (in case ∑k
i=1 ri = 0).

θ1 defines the threshold when reward turns into penalty, i.e., when the cost function
crosses the x-axis. It should be chosen inversely proportional to the standard devia-
tion σ. Obviously, setting σ̂ too large will result in grouping all points together, which
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is probably not desired. Therefore σ̂ needs to be tuned for optimal performance by
grid search.

Interpreting these parameters in terms of mean µ and scale s, µ defines the
boundary corresponding to probability of 0.5 and s defines the steepness of transition
through this boundary. Indeed, in our experiments we noticed that setting σ̂ ∈
[2σ, 3σ] gives the best results, assuming the model noise is zero-mean Gaussian
distributed with standard deviation σ. This is not surprising, because 99.7% of
points sampled from a Gaussian (inliers to a model) are expected to be found within
3σ range.

Having computed costs cU for each subset U we can plug them directly into (7.2)
and solve with the heuristic proposed by Keuper (2017). The solution will be a
decomposition of points such that those points likely to belong together under
uncertainty φ(·; θ) will be grouped and each such group corresponds to one model.
We refer to this baseline as HO-MP further on.

7.4.1 Model Selection

Model fitting is a rather ill-posed problem and it requires certain assumptions on
the models being fit. For example, most methods in the literature require certain
hyperparameters (e.g., threshold value for a point to belong to a model) to be
specified beforehand. In our case, one specifically needs to determine σ̂ in eq. (7.4).
Moreover, in real data, it is unlikely that all models have the same noise level.
However, if one lets the optimization choose such thresholds (noise levels), it will
always choose the largest possible value (indeed, infinity) as this will lead to the
highest local probabilities and thus the lowest total objective value.

In our approach such a hyperparameter is σ̂, which directly corresponds to
the expected noise level and needs to be set correspondingly (θ0 can be fixed).
Instead of picking σ̂ by hand, we propose to take a discrete finite set of possible
hyperparameters {σ̂0, σ̂1, . . . , σ̂`−1} and would like the optimization to choose one
for each model. In Chapter 6 we extended the multicut framework by including
node labels which allows to specify different costs depending on the class labels of
the nodes. The combination of this formulation with higher order minimum cost
multicuts allows us to specify different costs cU for each subset U ⊆ V and each
hyperparameter σ̂. Thus, we propose the following

Definition 12 For any simple connected graph G = (V, E) and a set of labels L,
unary costs c : V ×L 7→ R, some integer k ∈ N, k > 1, and costs c : (V

k )×L 7→ R

written below is the minimum cost higher order node labeling multicut problem (HO-



118 chapter 7. geometric multiple model fitting with model selection
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Figure 7.2: (first row) depicts probabilities φ(·; θ) and corresponding reward parts
of cost functions c for different σ̂, but the same θ0. Functions corresponding to larger
σ̂ have more probability mass above 0.5 and, respectively, more reward. (second
row) after normalization all functions have the same probability mass above 0.5 and
the same amount of reward.

NLMP) of order k:

arg min
x∈{0,1}V×L,y∈YG

∑
v∈V

∑
l∈L

xvlcvl

+ ∑
U∈(V

k )

∑
l∈L

∏
{u,v}∈(U

2 )

y{u,v} ∏
v∈U

xv,l cU,l (7.5)

s. t. ∀v ∈ V : ∑
l∈L

xvl = 1 (7.6)

We can associate L = {σ̂0, σ̂1, . . . , σ̂`−1} and (7.6) ensures that each vertex can
only belong to a model with a specific σ̂. ∏v∈U xv,l makes sure that vertices in U can
be clustered together, iff they have the same label, i.e., the same σ̂.
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Figure 7.3: Depicted above is geometrical interpretation of our proposed normal-
ization of cost functions OAB and OCD. If observations can be explained by a
hyperparameter corresponding to OB, then choosing a larger one will result in loss
of reward equal to the area of ACP. However, if there are enough data points with
residuals in [P′, D], it will be compensated by the area of PBD. And because, by
construction, areas ACP and PBD are equal, the total amount of reward remains
constant.

7.4.2 Cost Functions Normalization

Solving (7.5) directly will lead to the above mentioned problem: the optimization
will pick the largest σ̂ possible. Recall, that θ0 can be arbitrary and we fix it to 1

for all the values of θ1 = θ0
σ̂ . Fig. 7.2 depicts reward parts of several cost functions

(multiplied by -1 for visualization purposes) corresponding to different σ̂, which

is a simple linear function cU,l = logit(φ(∑k
i=1 ri; θl)) = −θl

0 +
θl

0
σ̂l ∑k

i=1 ri. It is visible
from the figure, that for the same residuals each larger σ̂ will provide more reward
and all the points will be assigned to the models with the largest σ̂. To alleviate this
problem we propose to normalize all the cost functions to have the same integral

reward, i.e., area under the curve. We compute A0 =
θ0

0 σ̂0

2 and for all l ≥ 1 we leave
σ̂l fixed and adjust θl

0 = 2A0

σ̂l . Thus, ∀l ∈ N, l ≥ 1 : Al = A0 and all cost functions
have the same amount of reward. Fig. 7.3 shows the intuition: starting with the
smallest σ̂ the optimization may choose to switch to larger ones, only if such a move
is supported by enough points with the corresponding residuals to compensate for
the lost reward.

7.5 local search algorithms

Bansal et al. (2004) showed that the multicut problem is np-hard; even for planar
graphs (Voice et al., 2012). This makes multicut-based frameworks correspondingly
np-hard as well. Recently, Fukunaga (2018) proposed an LP-based pivoting algo-
rithm, that gives an O(k log n) approximation for the higher-order multicut problem.
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Algorithm 3: Kernighan-Lin Algorithm. The function update is given in Algorithm 4.
Data: weighted undirected higher-order graph G = (V, E, c) of order k, node labels set

L, starting y0 and x0

Result: 01-edge labelings y and x

1 while t < max_iter and (yt 6= yt−1 or xt 6= xt−1) do
2 foreach (a, b) ∈ adjacent_components(yt−1) do
3 (yt, xt)← update(G, a, b)

4 foreach a ∈ components(yt) do
5 (yt, xt)← update(G, a, ∅)

However, it does not include node labeling and is still slow for large instances. A
separate line of research focuses on local search algorithms, that do not provide
any guarantees on runtime and quality of the solutions, but tend to perform well in
practice; in Chapter 3 we provide a comparative study.

Kernighan and Lin (1970) proposed one such algorithm which is based on locally
optimal moves of vertices between neighbouring components. In Chapter 2 we
extended it to lifted multicuts, in Chapter 6 to node labeling multicuts, and Keuper
(2017) to higher order multicuts. Here, we further extend it to higher order node
labeling multicuts. The algorithm gets an initial decomposition and node labeling
and consists of two parts. The first (Alg. 3) iteratively updates the boundary between
pairs of neighbouring components (lines 2-3) or introduces new components (lines
4-5) into existing.

Alg. 4 receives graph G and two neighbouring components A and B from Alg. 3

(B can be an empty set). In each iteration (line 6), it finds a vertex whose move (with
possible relabeling) to the other set will result in the largest decrease of objective (7.5).
An efficient implementation is to pre-compute ∀v ∈ {A ∪ B}, ∀l ∈ L these values
(line 2) and then update them after every move. A special operation (line 3) computes
the decrease of objective of joining two components A and B under the same label.
This allows two smaller models to merge into a bigger one, if this is beneficial.

In the main loop it picks a vertex v∗ to move and its new (possibly the same)
label (line 7), records this move (line 8) and then updates pre-computed values of
all other vertices that share an edge with v∗. There are different cases captured by
lines 13-22; w.l.o.g. we assume that v∗ is moved from A to B. A special condition
in line 19 prevents moving of vertices if their label is different from the labels of
vertices in the other component. We compute the cumulative total gain (line 23) and
threshold on the maximum one (line 25). Note, that this way we allow sub-optimal
(non-decreasing) individual moves in the hope to leave local minimum and arrive at
a better one. We reverse the moves (possibly all), that did not lead to a decrease in
objective in line 28.
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Algorithm 4: Function update
Data: weighted undirected higher order graph G = (V, E, c) of order k, a pair of

partitions A and B
Result: 01-vectors y and x

1 Ω← find_boundary_nodes(G, A, B)
2 DΩ×L ← compute_differences(G, A, B)
3 ∆join ← compute_gain_from_joining(G, A, B)
4 S0 = 0 // cumulative gain
5 M = [] // record moves
6 for i← 1 to |Ω| do
7 (v∗, l∗)← argmaxv,l (DΩ×L)
8 M.push_back(v∗, l∗)
9 l′ ← old_node_label(x, v∗)

10 foreach e ∈ G.edges(v∗) do
11 U ← G.nodes(e)
12 foreach l ∈ L do
13 if |{U \ v∗} ∩ A| = k− 1 then
14 foreach w ∈ {U \ v∗} ∩ A do
15 Dw,l ← Dw,l − cU,l′

16 else if |U ∩ B| = k− 1 then
17 foreach w ∈ U ∩ B do
18 Dw,l ← Dw,l + cU,l∗

19 if |{U \ v∗} ∩ A| = 1 and l = l∗ then
20 Dw,l ← Dw,l − cU,l∗

21 else if |U ∩ B| = 1 then
22 Dw,l ← Dw,l + cU,l′

23 Si ← Si−1 + Dv∗,l∗

24 Ω← update_boundary(v∗, G, A, B)

25 i∗ ← argmaxiSi // threshold max gain
26 if ∆join > Si∗ and ∆join > 0 then
27 (y, x)← join_components(A, B)

28 (y, x)← rollback_moves_after(M, i∗)
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7.6 experiments

We evaluate our approach on line fitting data, which has always been a standard
problem for multiple model fitting. We start with the data of Toldo and Fusiello
(2008): it consists of 3 problem instances each containing a number of lines. Impor-
tant feature of this data is that all lines in each instance have the same Gaussian
distribution. To facilitate a thorough evaluation on more instances, we propose a
novel line fitting dataset. It consists of 100 instances, where each line is perturbed
by a unique and random noise level. In this scenario, our method, which is able
to choose an individual noise level for each line, outperforms previous methods
significantly.

7.6.1 Experimental setup

Here, we compare against J-Linkage (Toldo and Fusiello, 2008), T-Linkage (Magri
and Fusiello, 2014), RansaCov (Magri and Fusiello, 2016), and RS-NMU (Tepper
and Sapiro, 2017), whose code is publicly available. It has been shown in (Toldo
and Fusiello, 2008) that J-Linkage outperforms multiRANSAC (Zuliani et al., 2005),
residual histogram analysis (Zhang and Kosecka, 2006), and mean-shift (Comaniciu
and Meer, 2002).

As a performance measure, we use the widely accepted (Magri and Fusiello,
2014; Toldo and Fusiello, 2008; Magri and Fusiello, 2016; Tepper and Sapiro, 2017)
misclassification error (me), that is the ratio of the misclassified points over the total
number of points. The classification is performed by matching the predicted and
the ground truth clusters such that the number of misclassified points is minimized
using the Hungarian algorithm (Kuhn, 1955) for minimum weight bipartite matching.
Then the point is considered to be correctly classified if its cluster label corresponds
to the matched ground truth.

Xiao et al. (2016) notice that it is impossible to estimate the number of models
present in the data without introducing additional stronger assumptions. For
example, if we assume that points lying on a line constitute a model, then many
more lines can be discovered in the presence of heavy background noise. Knowing
the ground truth number of models K, one can simply take the top-K largest clusters
and assign the rest to noise as in (Toldo and Fusiello, 2008). Another approach would
be to apply an efficient filtering procedure proposed by Tepper and Sapiro (2017)
to keep only statistically significant models. In this paper we match the predicted
models to the ground truth so as to minimize the misclassification error. Some
algorithms, e.g., RansaCov, need the exact number of models before optimization.

7.6.2 Line fitting data from Toldo and Fusiello (2008)

This line fitting dataset consists of 3 instances—called Stairs4, Star5, and Star11—in
which lines are arranged in corresponding shapes. Points sampled from lines are
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Misclassification error [%]

J-Linkage T-Linkage RansaCov RS-NMU HO-MP HO-NLMP
original full original full original full

Stairs4 11.9±2.3 10.6 31.1±3.2 8.6 4.0±1.5 4.0 3.0 6.2 5.2
Star5 13.2±3.1 5.4 14.8±1.9 7.4 3.3±0.8 2.0 1.0 2.4 3.0
Star11 21.8±2.6 12.0 22.4±1.5 9.55 3.3±0.6 2.73 1.91 2.82 3.64

Runtime [s]

Stairs4 12/4 58/30 16/43 58/120 11/8 58/42 58/36 9/5 88/115

Star5 12/4 54/15 15/38 54/54 11/9 54/15 54/11 9/6 88/153

Star11 22/15 294/112 22/188 294/1652 24/19 294/113 294/210 98/51 927/643

Table 7.1: Results on synthetic line fitting data from Toldo and Fusiello (2008). The
total runtime is split into the sampling and solving time.

displaced by the same noise in each instance; here, 3σ corresponds to the actual
width of a line. Half of the points are uniform background noise. The largest instance
Star11 has 1100 points in total. We use the 3rd order multicut problem and sample,
correspondingly, all (|V|3 ) triplets of points and fit a line into each triplet using tls.
For the competing methods we used the best settings provided by the authors and
chose their hyperparameters by grid search for optimal performance.

Results and discussion The results are compiled together in Tab. 7.1. In their
default implementation J/T-Linkage and RansaCov perform a random sampling
of a small number of hypotheses, which leads to a considerable variance (‘original’
in Tab 7.1). For our method we perform a complete sampling, thus, for fairness,
competing methods should be evaluated using full sampling. During the experi-
ments, we noticed that the statistical filtering of Tepper and Sapiro (2017) greatly
reduces the number of irrelevant hypotheses. Therefore, we use full sampling with
such filtering (‘full’ in Tab 7.1). This has a two-fold benefit: 1) the mean error is
considerably reduced, 2) there is no more variance in the results.

Tab. 7.1 shows that, when the data has the same noise level, methods with one
model naturally perform better. However, they still require hand-tuning or grid
search for parameters. For example, Fig. 7.4 (a) shows how me of our HO-MP
approach changes depending on σ̂. Although the shape is almost convex, it requires
the user to try a number of different parameters (the same for all other approaches).

Having found the best parameter σ̂∗ for our HO-MP approach for each instance,
we construct instances of HO-NLMP with 9 different parameters σ̂ = σ̂∗ ± iδ, ∀i ∈
{0, . . . , 4}, i.e., the optimal one and other values to confuse the optimization. For
Stairs4 and Star11 we took δ = 0.0025 and for Star5 we took δ = 0.005, because its
original noise level is twice higher. Our results in Tab. 7.1 show that even in this case
the me is rather close to the hand-tuned variant.

As other methods, without prior knowledge of the number of models, our
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Figure 7.4: (a) me on Star11 as a function of the parameter σ̂; the latter is shown
in terms of the original noise level of the data σ. (b)–(d) sorted absolute costs per
cluster in the optimal solutions. For each problem the corresponding 4, 5, and 11

most expensive clusters are clearly separated form the lower cost clusters, the latter
being lines fit into background noise.

approach produces an over-segmentation of the data, i.e., it finds small models in
the background noise. However, if we plot the costs of clusters in our solution, for
example, Fig. 7.4 (b)–(d), it is easy to spot the good clusters, that have noticeably
larger costs.

7.6.3 Our novel line fitting dataset

To facilitate a clean evaluation of our and competing methods without possible over-
fitting to few problem instances and specific noise levels, we propose here a novel
line fitting dataset. It provides: 1) 100 instances, which allows a more statistically
significant evaluation, 2) from 3 up to 10 lines in each instance with a unique, random
noise level from the range [0.005, 0.025]. Some examples are depicted in Fig. 7.5.
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Misclassification error [%]

J-Linkage T-Linkage RansaCov RS-NMU HO-MP HO-NLMP

Mean 14.44 15.45 6.51 6.65 6.82 4.65

Median 13.96 16.01 6.21 5.47 6.83 4.11

Table 7.2: Results on our novel line fitting dataset.

We use exactly the same setting for our and competing approaches as in the
previous section. We construct instances of HO-NLMP with 5 parameters σ̂ =
0.01 + 0.01i, ∀i ∈ {0, . . . , 4}. The results are compiled together in Tab. 7.2. The
absolute mean me are significantly higher than on the data from Toldo and Fusiello
(2008), but the relative rankings of algorithms remain.

Note that we did not tune parameters of all methods for each problem instance,
but rather for the entire dataset. As a result, for all the methods a mean parameter
showed the best performance. Our HO-NLMP approach is able to choose a suitable
noise level for each line individually and therefore significantly improves accuracy.
This shows that, in case each model has a unique nose level, it is beneficial to let the
optimization choose an individual parameter for each model.

7.7 conclusions

We presented an approach to model fitting using higher order minimum cost mul-
ticuts. It groups points that are likely to belong to the same model based on local
feature estimates. We also presented a novel problem setting, when the optimization
algorithm may choose an optimal parameter for each model. This closer corresponds
to real world data, where different models may have different noise levels. We
introduced higher order node labeling multicut problem to do so. As it is np-hard,
we proposed an efficient primal feasible heuristic. We showed that our approach
outperforms previous methods in cases when models have different noise levels.
The main disadvantage of our method is its computational and memory complexity.
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Ground Truth HO-NLMP

Figure 7.5: Depicted are our results for our novel line fitting data set where each
line has a unique noise level.
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In this thesis we studied multicuts that require only local probability estimates, but
can find a globally consistent decomposition. The main advantage of multicuts
is that the number of components is not required to be known in advance,

but can rather be deduced from the solution. However, this comes at the cost of
the minimum cost multicut problem being np-hard to solve exactly (Bansal et al.,
2004). Also, the multicuts problem allow to specify a cost or a reward only for direct
neighbours in the graph and the objective does not include a unary term. In this
thesis, we proposed extensions and solutions that tackle exactly these problems.

We introduced new cost edges that allow to specify for non-neighbouring nodes
a cost or a reward for being put into distinct components. The crucial property is
that these additional edges do not change connectivity on the graph, thus preserving
the feasible set of solutions. We term this new formulation the minimum cost
lifted multicut problem. Although, in principle, the costs for the new edges can
be computed in any probabilistically consistent way, we proposed an automatic
construction called probabilistic geodesic lifting. For each pair of non-neighbouring
nodes it finds the most probable path connecting them and the total probability
is computed as a product of probabilities on the path. We showed that the new
formulation significantly improve the results in image and mesh segmentation.

Because multcuts are np-hard to solve, they have mostly been applied to super-
pixel graphs. To this end we defined and implemented two local search algorithms,
that do not provide any guarantees on the runtime or the quality of the solutions. We
performed an intensive analysis of them and other solvers for the multicut problem
in terms of runtime and metric/objective value. We applied it to graphs of different
size (from hundreds to more than 105 nodes) and different properties (e.g., complete
and sparse, planar and non-planar graphs with unitary and general costs). We
showed that our algorithms strike a favourable spot between runtime and solution
quality. The improvement in runtime allowed us to apply multicuts to big social
network graphs. This also enabled us to create a tool for online video segmentation:
This is a client-server application, where after a pre-processing of a video into super-
voxels a user draws scribbles on individual frames and a time-coherent segmentation
is computed on-the-fly on the server. This might enable some novel methods of
working, for example, collaborative video editing.

We introduced node labels into the multicut framework, that enabled us to opti-
mize jointly for a node labeling (e.g., node classification) and a graph decomposition.
We extended our local search algorithms, so that the inference time into emerging
models remained feasible. This novel formulation allowed us to solve three distinct
computer vision tasks using the same algorithms. In multiple person pose estimation

127
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node labels correspond to possible type of body joints and the task is to fit a skeleton
into an unknown number of persons present in an image. Due to improved runtime
we were able to achieve better results, than the prior work (Insafutdinov et al., 2016),
using exactly the same input data. Success in application to images allowed us
to develop a method for pose tracking in videos (Insafutdinov et al., 2017), where
estimated poses help tracking of people and tracking in turn helps to locate joints
more accurately. In multiple object tracking nodes correspond to putative detections
connected by edges inside and across frames and the task is to decompose the graph
so as to recover tracks corresponding to objects, while possibly getting rid of false
detections. We showed improvement over the prior work (Tang et al., 2016) using
exactly the same data.

Another important application, that has recently gained considerable attention, is
instance-aware semantic segmentation. Here the task is to not only assign a semantic
label to each pixel of an image (this task is almost solved by modern FC-CNNs),
but to group pixels corresponding to each instance of each class. We formulate
this as node labeling multicut problem and apply our local search algorithms for
inference. We trained a fully convolutional neural network to predict instance
boundaries that are combined in our multicut together with the unaries obtained
from a well-performing semantic labeling CNN and got competitive results on
CityScapes (Cordts et al., 2016).

We also tackled the problem of lineage tracing, i.e., the task of tracking cells in
microscopy data together with building their parental hierarchy. The problem is
complicated by the fact that we do not rely on any detections of cells, but rather
perform segmentation ourselves. We formulated it as a multicut-based ILP, that can
be seen as a more constrained lifted multicut problem. Unfortunately, due to new
types of constraints we could not apply our efficient heuristics and had to resolve to a
branch-and-cut approach. We proposed efficient separating procedures, as well as a
canonical LP relaxation to produce lower bounds. The obtained solutions compared
favourably to competing methods, however, runtime was an issue. A follow-up work
by Rempfler et al. (2017) proposed a tighter description of the polytope and a variant
of KLj with optimal branching, that greatly reduced the runtime.

Multicuts are not limited to only pairwise terms. Indeed, one can define a
higher-order multicut problem of any order (Kappes et al., 2016), or a problem that
even combines several different orders. To this end, we applied it to the task of
multiple model fitting, where one needs to explain observations by a set of models.
We constructed higher order problems by computing the probability of k-points to
belong together. For this, we fit a model into k data points using tls and use their
residuals w.r.t. this model as local features. However, this approach (same as most
other methods) assumes, for each model, hyperparameters fixed, e.g., width of a
line, which is unlikely to be true in real data. To this end, we propose a higher order
node labeling multicut problem that is able to simultaneously fit models and choose
a proper parameter for each model. The latter greatly improves results on our novel
line fitting data set, where each line has a unique noise level.
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Future perspectives One of the most important issues of multicut-based frame-
work is that they are np-hard to solve, that limits their possible application. Therefore,
the most important direction of future research, as we think, is about improving
algorithms. We see several possible ways to go:

1) Better understanding of the polytopes of emerging problems is utterly impor-
tant to create efficient solvers. For example, Horňáková et al. (2017) propose tighter
inequalities for lifted multicuts, that dramatically decrease runtime of branch-and-
bound algorithms.

2) We believe, that one of the most promising directions for future research is
about persistency and re-parametrization of edge values as done by Alush and
Goldberger (2012, 2015); Swoboda and Andres (2017); Lange et al. (2018). Persistency
allows to specify some edge values and guarantee that they will retain their values
also in the optimal solution. This decrease the search space of the solvers and improve
the runtime. Lange et al. (2018) show, that by computing a re-parametrization of the
multicut problem one can obtain both better solutions (with the heuristics proposed
in this thesis) and shorter runtime. In principle, this might allow to come up with
new local search algorithms that might make use of such information.

3) While improvements of branch-and-cut solvers (Horňáková et al., 2017) make
it feasible to apply multicut-based approaches to problems of increasingly larger
size, most real-world problems are still too big. Thus, we think, that local search al-
gorithms will play an important role in various applications. KLj heuristic, proposed
in Chapter 2, performs an exhaustive search of vertices to move. It might be possible
to improve the runtime by considering only a subset of such possibilities using, for
example, persistency information. Also, KLj processes a pair of partitions at a time,
so parallelization might be beneficial. However, to ensure correctness of results and
to prevent conflicts between multiple threads a 4-coloring of the graph is necessary,
which is np-hard for general graphs.

4) A separate line of research considers meta-heuristics, i.e., general algorithms
that have some multicut solver as their core component. Beier et al. (2015, 2016) pro-
posed to contract graph, solve multicut problem, and expand the solution back to the
original graph. Re-parametrization of edge weights and faster lower bounds (Lange
et al., 2018) might help here. Pape et al. (2017) proposed to solve multicuts on inter-
secting blocks of the graph and then merge individual solutions together; persistency
information may provide better global solutions in this case.

5) Certainly, an interesting research question is whether it is possible to introduce
multicuts into a deep learning framework, at least for certain graph type, e.g., planar
graphs. The main obstacle here is that the number of components is not known a
priori and the multicut constraints make the whole framework non-differentiable.
The former problem can be addressed in specific applications by first counting the
number of components in the graph as is done, for example, by Newell et al. (2017).
There they use some strong features, for example, heads of people, to count them.
But this approach fails in scenarios, when such an estimate is difficult or impossible.
It is possible to introduce multicut constraints into the loss function by assigning
high penalty for infeasible 01-edge labelings. However, in this case the loss might
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become exponentially large for general graphs due to exponentially many cycles in
such graphs. But even for complete graphs it will contain (V

3) additional terms, that
makes evaluation of cost function at each forward pass rather expensive. Another
question is how to mine positive and negative examples for learning.

On the application side we see a possibility to use multicuts for non-maximum
suppression, which is a crucial step in a variety of applications, most importantly
in object detection. It the latter one gets as output from a neural network a score
for each pixel to be a center for a bounding box of an object. Normally, way more
bounding boxes are predicted, than there are objects in an image. The usual way
to filter out irrelevant predictions is to keep only one maximum score in a certain
small window. However, in case of highly overlapping objects it is impossible to
distinguish cases when two local maxima correspond to two different objects or one
of them is a false positive. By estimating a pairwise probability for each pair of
predicted bounding boxes to depict the same object, we may resolve such difficult
cases by means of multicuts.
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