2,745 research outputs found

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    A stable FSI algorithm for light rigid bodies in compressible flow

    Full text link
    In this article we describe a stable partitioned algorithm that overcomes the added mass instability arising in fluid-structure interactions of light rigid bodies and inviscid compressible flow. The new algorithm is stable even for bodies with zero mass and zero moments of inertia. The approach is based on a local characteristic projection of the force on the rigid body and is a natural extension of the recently developed algorithm for coupling compressible flow and deformable bodies. Normal mode analysis is used to prove the stability of the approximation for a one-dimensional model problem and numerical computations confirm these results. In multiple space dimensions the approach naturally reveals the form of the added mass tensors in the equations governing the motion of the rigid body. These tensors, which depend on certain surface integrals of the fluid impedance, couple the translational and angular velocities of the body. Numerical results in two space dimensions, based on the use of moving overlapping grids and adaptive mesh refinement, demonstrate the behavior and efficacy of the new scheme. These results include the simulation of the difficult problem of a shock impacting an ellipse of zero mass.Comment: 32 pages, 20 figure
    corecore