23 research outputs found

    Multiclass classification of microarray data samples with a reduced number of genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained.</p> <p>Results</p> <p>A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples.</p> <p>Conclusions</p> <p>A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples.</p

    Application of ECOC SVMS in Remote Sensing Image Classification

    Get PDF

    Hierarchical information representation and efficient classification of gene expression microarray data

    Get PDF
    In the field of computational biology, microarryas are used to measure the activity of thousands of genes at once and create a global picture of cellular function. Microarrays allow scientists to analyze expression of many genes in a single experiment quickly and eficiently. Even if microarrays are a consolidated research technology nowadays and the trends in high-throughput data analysis are shifting towards new technologies like Next Generation Sequencing (NGS), an optimum method for sample classification has not been found yet. Microarray classification is a complicated task, not only due to the high dimensionality of the feature set, but also to an apparent lack of data structure. This characteristic limits the applicability of processing techniques, such as wavelet filtering or other filtering techniques that take advantage of known structural relation. On the other hand, it is well known that genes are not expressed independently from other each other: genes have a high interdependence related to the involved regulating biological process. This thesis aims to improve the current state of the art in microarray classification and to contribute to understand how signal processing techniques can be developed and applied to analyze microarray data. The goal of building a classification framework needs an exploratory work in which algorithms are constantly tried and adapted to the analyzed data. The developed algorithms and classification frameworks in this thesis tackle the problem with two essential building blocks. The first one deals with the lack of a priori structure by inferring a data-driven structure with unsupervised hierarchical clustering tools. The second key element is a proper feature selection tool to produce a precise classifier as an output and to reduce the overfitting risk. The main focus in this thesis is the binary data classification, field in which we obtained relevant improvements to the state of the art. The first key element is the data-driven structure, obtained by modifying hierarchical clustering algorithms derived from the Treelets algorithm from the literature. Several alternatives to the original reference algorithm have been tested, changing either the similarity metric to merge the feature or the way two feature are merged. Moreover, the possibility to include external sources of information from publicly available biological knowledge and ontologies to improve the structure generation has been studied too. About the feature selection, two alternative approaches have been studied: the first one is a modification of the IFFS algorithm as a wrapper feature selection, while the second approach involved an ensemble learning focus. To obtain good results, the IFFS algorithm has been adapted to the data characteristics by introducing new elements to the selection process like a reliability measure and a scoring system to better select the best feature at each iteration. The second feature selection approach is based on Ensemble learning, taking advantage of the microarryas feature abundance to implement a different selection scheme. New algorithms have been studied in this field, improving state of the art algorithms to the microarray data characteristic of small sample and high feature numbers. In addition to the binary classification problem, the multiclass case has been addressed too. A new algorithm combining multiple binary classifiers has been evaluated, exploiting the redundancy offered by multiple classifiers to obtain better predictions. All the studied algorithm throughout this thesis have been evaluated using high quality publicly available data, following established testing protocols from the literature to offer a proper benchmarking with the state of the art. Whenever possible, multiple Monte Carlo simulations have been performed to increase the robustness of the obtained results.En el campo de la biología computacional, los microarrays son utilizados para medir la actividad de miles de genes a la vez y producir una representación global de la función celular. Los microarrays permiten analizar la expresión de muchos genes en un solo experimento, rápidamente y eficazmente. Aunque los microarrays sean una tecnología de investigación consolidada hoy en día y la tendencia es en utilizar nuevas tecnologías como Next Generation Sequencing (NGS), aun no se ha encontrado un método óptimo para la clasificación de muestras. La clasificación de muestras de microarray es una tarea complicada, debido al alto número de variables y a la falta de estructura entre los datos. Esta característica impide la aplicación de técnicas de procesado que se basan en relaciones estructurales, como el filtrado con wavelet u otras técnicas de filltrado. Por otro lado, los genes no se expresen independientemente unos de otros: los genes están inter-relacionados según el proceso biológico que les regula. El objetivo de esta tesis es mejorar el estado del arte en la clasi cación de microarrays y contribuir a entender cómo se pueden diseñar y aplicar técnicas de procesado de señal para analizar microarrays. El objetivo de construir un algoritmo de clasi cación, necesita un estudio de comprobaciones y adaptaciones de algoritmos existentes a los datos analizados. Los algoritmo desarrollados en esta tesis encaran el problema con dos bloques esenciales. El primero ataca la falta de estructura, derivando un árbol binario usando herramientas de clustering no supervisado. El segundo elemento fundamental para obtener clasificadores precisos reduciendo el riesgo de overfitting es un elemento de selección de variables. La principal tarea en esta tesis es la clasificación de datos binarios en la cual hemos obtenido mejoras relevantes al estado del arte. El primer paso es la generación de una estructura, para eso se ha utilizado el algoritmo Treelets disponible en la literatura. Múltiples alternativas a este algoritmo original han sido propuestas y evaluadas, cambiando las métricas de similitud o las reglas de fusión durante el proceso. Además, se ha estudiado la posibilidad de usar fuentes de información externas, como ontologías de información biológica, para mejorar la inferencia de la estructura. Se han estudiado dos enfoques diferentes para la selección de variables: el primero es una modificación del algoritmo IFFS y el segundo utiliza un esquema de aprendizaje con “ensembles”. El algoritmo IFFS ha sido adaptado a las características de microarrays para obtener mejores resultados, añadiendo elementos como la medida de fiabilidad y un sistema de evaluación para seleccionar la mejor variable en cada iteración. El método que utiliza “ensembles” aprovecha la abundancia de features de los microarrays para implementar una selección diferente. En este campo se han estudiado diferentes algoritmos, mejorando alternativas ya existentes al escaso número de muestras y al alto número de variables, típicos de los microarrays. El problema de clasificación con más de dos clases ha sido también tratado al estudiar un nuevo algoritmo que combina múltiples clasificadores binarios. El algoritmo propuesto aprovecha la redundancia ofrecida por múltiples clasificadores para obtener predicciones más fiables. Todos los algoritmos propuestos en esta tesis han sido evaluados con datos públicos y de alta calidad, siguiendo protocolos establecidos en la literatura para poder ofrecer una comparación fiable con el estado del arte. Cuando ha sido posible, se han aplicado simulaciones Monte Carlo para mejorar la robustez de los resultados

    Angular feature extraction and ensemble classification method for 2D, 2.5D and 3D face recognition.

    Get PDF
    It has been recognised that, within the context of face recognition, angular separation between centred feature vectors is a useful measure of dissimilarity. In this thesis we explore this observation in more detail and compare and contrast angular separation with the Euclidean, Manhattan and Mahalonobis distance metrics. This is applied to 2D, 2.5D and 3D face images and the investigation is done in conjunction with various feature extraction techniques such as local binary patterns (LBP) and linear discriminant analysis (LDA). We also employ error-correcting output code (ECOC) ensembles of support vector machines (SVMs) to project feature vectors non-linearly into a new and more discriminative feature space. It is shown that, for both face verification and face recognition tasks, angular separation is a more discerning dissimilarity measure than the others. It is also shown that the effect of applying the feature extraction algorithms described above is to considerably sharpen and enhance the ability of all metrics, but in particular angular separation, to distinguish inter-personal from extra-personal face image differences. A novel technique, known as angularisation, is introduced by which a data set that is well separated in the angular sense can be mapped into a new feature space in which other metrics are equally discriminative. This operation can be performed separately or it can be incorporated into an SVM kernel. The benefit of angularisation is that it allows strong classification methods to take advantage of angular separation without explicitly incorporating it into their construction. It is shown that the accuracy of ECOC ensembles can be improved in this way. A further aspect of the research is to compare the effectiveness of the ECOC approach to constructing ensembles of SVM base classifiers with that of binary hierarchical classifiers (BHC). Experiments are performed which lead to the conclusion that, for face recognition problems, ECOC yields greater classification accuracy than the BHC method. This is attributed primarily to the fact that the size of the training set decreases along a path from the root node to a leaf node of the BHC tree and this leads to great difficulties in constructing accurate base classifiers at the lower nodes

    Probabilistic models for mining imbalanced relational data

    Get PDF
    Most data mining and pattern recognition techniques are designed for learning from at data files with the assumption of equal populations per class. However, most real-world data are stored as rich relational databases that generally have imbalanced class distribution. For such domains, a rich relational technique is required to accurately model the different objects and relationships in the domain, which can not be easily represented as a set of simple attributes, and at the same time handle the imbalanced class problem.Motivated by the significance of mining imbalanced relational databases that represent the majority of real-world data, learning techniques for mining imbalanced relational domains are investigated. In this thesis, the employment of probabilistic models in mining relational databases is explored. In particular, the Probabilistic Relational Models (PRMs) that were proposed as an extension of the attribute-based Bayesian Networks. The effectiveness of PRMs in mining real-world databases was explored by learning PRMs from a real-world university relational database. A visual data mining tool is also proposed to aid the interpretation of the outcomes of the PRM learned models.Despite the effectiveness of PRMs in relational learning, the performance of PRMs as predictive models is significantly hindered by the imbalanced class problem. This is due to the fact that PRMs share the assumption common to other learning techniques of relatively balanced class distributions in the training data. Therefore, this thesis proposes a number of models utilizing the effectiveness of PRMs in relational learning and extending it for mining imbalanced relational domains.The first model introduced in this thesis examines the problem of mining imbalanced relational domains for a single two-class attribute. The model is proposed by enriching the PRM learning with the ensemble learning technique. The premise behind this model is that an ensemble of models would attain better performance than a single model, as misclassification committed by one of the models can be often correctly classified by others.Based on this approach, another model is introduced to address the problem of mining multiple imbalanced attributes, in which it is important to predict several attributes rather than a single one. In this model, the ensemble bagging sampling approach is exploited to attain a single model for mining several attributes. Finally, the thesis outlines the problem of imbalanced multi-class classification and introduces a generalized framework to handle this problem for both relational and non-relational domains

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Modelling for the optimal product to offer a financial services customer

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014.This study, illustrates how various statistical classification models can be compared and utilised to resolve cross-selling problems encountered in a financial services environment. Various statistical classification algorithms were deployed to model for the appropriate product to sell to a financial services customer under a multi-classifier setting. Four models were used, namely: multinomial logistic regression, multinomial bagging with logistic regression, multinomial random forests with decision trees and error correcting output coding. The models were compared in terms of predictive accuracy, generalisation, interpretability, ability to handle rare instances and ease of use. A weighted score for each model was obtained based on the evaluation criteria stated above and an overall model ranking thereof. In terms of the data, banked customers who only had a transactional account at the start of the observation period were used for the modelling process. Varying samples of the customers were obtained from different time points with the preceding six to twelve months information being used to derive the predictor variables and the following six months used to monitor product take-up. Error correcting output coding performed the best in terms of predictive accuracy but did not perform as well on other metrics. Overall, multinomial bagging with logistic regression proved to be the best model. All the models struggled with modelling for the rare classes. Weighted classification was deployed to improve the rare-class prediction accuracy. Classification accuracy showed significant limitation under the multi-classifier setting as it tended to be biased towards the majority class. The measure of area under the receiver operating characteristic curve (AUC) as proposed by Hand and Till (2001) proved to be a powerful metric for model evaluation

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking
    corecore