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S um m ary

It has been recognised that, within the context of face recognition, angular separation 
between centred feature vectors is a useful measure of dissimilarity. In this thesis we 
explore this observation in more detail and compare and contrast angular separation 
with the Euclidean, M anhattan and Mahalonobis distance metrics. This is applied 
to 2D, 2.5D and 3D face images and the investigation is done in conjunction with 
various feature extraction techniques such as local binary patterns (LBP) and linear 
discriminant analysis (LDA). We also employ error-correcting output code (ECOC) 
ensembles of support vector machines (SVMs) to project feature vectors non-linearly 
into a new and more discriminative feature space.

It is shown that, for both face verification and face recognition tasks, angular separation 
is a more discerning dissimilarity measure than the others. It is also shown that the 
effect of applying the feature extraction algorithms described above is to considerably 
sharpen and enhance the ability of all metrics, but in particular angular separation, to 
distinguish inter-personal from extra-personal face image differences.

A novel technique, known as angularisation, is introduced by which a data  set that is 
well separated in the angular sense can be mapped into a new feature space in which 
other metrics are equally discriminative. This operation can be performed separately 
or it can be incorporated into an SVM kernel. The benefit of angularisation is that it 
allows strong classification methods to take advantage of angular separation without 
explicitly incorporating it into their construction. It is shown that the accuracy of 
ECOC ensembles can be improved in this way.

A further aspect of the research is to compare the effectiveness of the ECOC approach to 
constructing ensembles of SVM base classifiers with that of binary hierarchical classifiers 
(BHC). Experiments are performed which lead to the conclusion that, for face recogni­
tion problems, ECOC yields greater classification accuracy than the BHC method. This 
is attributed primarily to the fact that the size of the training set decreases along a path 
from the root node to a leaf node of the BHC tree and this leads to great difficulties in 
constructing accurate base classifiers at the lower nodes.

K ey  w ords: 2D, 2.5D and 3D Face Recognition, Distance Metrics, Angularisation, 
Linear Discriminant Analysis, Local Binary Patterns, Error Correcting O utput Codes, 
Binary Hierarchical Classifiers, Support Vector Machines.
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0.1. Abbreviations ix

0.1 Abbreviations

BCH Bose-Chaudmy-Hocquenghem. An error-correcting code algorithm based
on the use of Galois fields.

BHC Binary hierarchical classifier. An ensemble classifier that is based on a hi­
erarchical decomposition of the set of target classes.

CMC Cumulative m atch curve. Plots identification rate against rank.

DAG Directed acyclic graph.

ECOC Error-correcting output code classifier. An ensemble classifier th a t is based
on repeated partitioning of the set of target classes into two families.

EER Equal error rate. The value of FAR or FR R  at a threshold for which these
two values are equal.

FAR False acceptance rate. The fraction of impostor claims that are wrongly
accepted as valid by an authentication system.

FRR False rejection rate. The fraction of valid client claims that are wrongly
rejected by an authentication system. Equal to 1 — V R .

HTER Half-total error rate. The mean of FAR and FRR  at the EER.

IR Isotonic regression. A method of calibrating SVM outputs to probability
values.

LBP Local Binary Patterns. A texture analysis algorithm that is based on com­
paring pixel intensities with those of their neighbours at a given radial dis­
tance.

LDA Linear discriminant analysis. An algorithm for reducing the dimensionality
of a feature space in a way that increases the separation between classes. 
This is done by maximising the ratio of between-class scatter to within-class 
scatter of the training set.

NN Nearest neighbour classification algorithm. An algorithm that assigns a
probe vector to the class that has the nearest sample in training set.

PAV Pair-adjacent violators algorithm for applying isotonic regression.

PGA Principal components analysis. An algorithm for reducing the dimensional­
ity of a feature space in a way that retains most of the total scatter of the 
training set.

RBF Radial basis function. A function which is spherically symmetric about a
point.

ROC Receiver operating characteristics curve. Plots VR (or FRR) against FAR
for a range of acceptance threshold settings.
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SVM Support vector machine. A 2-class classification method that is based on
finding a maximum margin linear boundary between the training set sam­
ples. This may be done in the original feature space or after applying a 
non-linear projection into a higher dimensional feature space.

VR Verification rate. The fraction of valid client claims that are correctly ac­
cepted by an authentication system. Equal to 1 — F R R .
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0.2 M athematical Notation

A  (x) the class label assigned to input column vector x  by a classifier

Bang Bayes error estim ate based on angular separation

B euc Bayes error estim ate based on Euclidean separation

BMan Bayes error estimate based on M anhattan sepai'ation

^ M a h  Bayes error estimate based on Mahalanobis separation

B r a d  Bayes error estimate based on radial separation

Bj y’th  base classifier in an ensemble

C  number of target classes (i.e. person identities in biometric applications)

C (x) a discrete random variable th a t indicates the true class label associated with
input column vector x

Dang (', ') distance measure based on angular separation

D euc {■■>') distance measure based on Euclidean separation

Dnaus (•> •) distance measure based on Hausdorff separation

Dm a n  (•) ■) distance measure based on M anhattan separation

Dm a h  (', ') distance measure based on Mahalanobis separation

Dcos (', ') distance measure based on cosine separation

Drad (•> •) distance measure based on radial separation

/  (x) a 2-class discriminant function which outputs a “soft” value in the range
[-1.+1]

8  evaluation set of sample column vectors

G cost parameter of an SVM

J ( ‘) the indicator function which takes the value 0 or 1 depending on whether
its argument is false or true

Jp  (•) Fisher criterion function

L  number of input features; for greyscale images this is the number of pixels
in a rectangular face image and for a 3D point cloud this is the number of
points multiplied by 3 (since each point has z, y and z coordinates)

M  number of dimensions in a general feature space

N  number of vectors in a training set
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jVk the /û’th node of a BHC tree

P  number of base classifiers to be deployed in an ensemble

Q test set of column vectors

S sample covariance matrix

Si sample class covariance m atrix of the Vth. class, w ith l < l  < C

Sb  between-class covariance matrix

Scos similarity measure based on cosine separation

S w  within-class covaiiance matrix

T  training set of sample column vectors

T  an L X N  m atrix whose columns are training vectors

U  a matrix whose columns are eigenvectors of a given matrix

Z code m atrix for an ensemble

Zi i’th row of m atrix Z

Z-̂  j ’th column of m atrix Z

Zij entry at the F th  row and ÿ th  column of m atrix Z

m  sample mean vector

m/ sample class mean of the Z’th  class, w ith l < I < C

ts target class label for the s ’th  member of a training set where ts € ( —1, +1}

Xg s ’th column vector in a training set, with 1 < s < N

y  (x) column vector of output values from a classifier ensemble for a given input
column vector x

yj (x) output value from base classifier Bj for a given input vector x

A a diagonal m atrix of eigenvalues

Q family of all target classes (i.e. person identities)

Qj family of classes that is recognised by the j ’th base classifier in an ensemble

Qj positive sub-family of classes for the j ’th base classifier in an ensemble

Qj negative sub-family of classes for the , f th  base classifier in an ensemble

Ap an individual eigenvalue

(7 width parameter for an SVM with Gaussian kernel

uji an individual class (i.e. person identity) label, w ithl < I < C



Chapter 1

Introduction

1.1 The Need for Biometrics

In the day to day conduct of human economic, political and social affairs there has 

always been a need for accurate and reliable person recognition. Furthermore, its im­

portance has risen considerably in recent decades with the advent of mass travel and 

communications technologies which have led to the globalised economy of today. Whilst 

these developments have brought many benefits, they have also created problems and 

challenges, for example in the shape of newly evolving threats from organised criminal 

and terrorist activities.

As one instance of such a problem, consider the relatively neŵ  phenomenon of identity 

theft. Here a criminal claims the identity of another person and engages in fraudulent 

activity, for example by raiding the victim’s bank account or obtaining a loan in his or 

her name. This kind of crime is made possible only by the rather weak methods of person 

recognition th a t are currently widely used. These methods rely on the assumption that 

a person’s identity can be equated with his or her knowledge of secret information such 

as passwords, account numbers, place of birth  and so on. W hilst a well constructed 

and frequently changed password can be secure, it is known th a t many people do not 

follow best practice and often leave themselves open to their passwords being discovered, 

guessed or even extracted from them through “social engineering” techniques [22]. As far
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as other secret information is concerned, this tends to consist of details about a person’s 

history or circumstances and can often be discovered by a determined fraudster.

For these reasons there is an increasing need, in modern society, for reliable and accurate 

methods of computer-based person recognition. Applications of these systems fall into 

two main categories according to their objective. In person authentication or verification 

a subject claims a certain identity and the task is to make a decision as to whether to 

accept or reject this claim. This is required whenever it is necessary to control access 

to an object such as a bank account, a secure building or a mobile phone. In the more 

difficult problem of person identification the aim is to decide an individual’s identity out 

of a known population. This is useful, for example, in order to watch for wanted felons 

at an airport or to ensure that a person has not been entered more than once in a social 

security database. If it is assumed that the known subject list is exhaustive then this is 

referred to as closed-set identification and if it is allowed that the target individual may 

not be present in the list then this is referred to as open-set identification. Depending 

on the application, it is often useful to rank the list in decreasing order of likelihood of a 

match with the given individual. For open-set identification there is also the possibility 

of reaching the decision that the given subject is not a sufficiently close match with any 

member of the known population.

A major reason for the increasing importance of person recognition systems is that 

the rise of networks of computers and mass storage devices has given individuals much 

more power to access and manipulate sensitive information than has ever been the case 

previously. One instance of this is the fact that financial transactions, which used to 

be laboriously recorded and implemented by human beings, can now be carried out 

over a computer network almost instantaneously and without any manual intervention. 

Although the growth of computer power has exacerbated concerns over person recogni­

tion, this same phenomenon also makes possible a novel solution to the problem, namely 

making use of a person’s unique biometric d ata  as a means of identification.

By the term biometric data  is meant any measurable and repeatable aspect of a person’s 

physiological or behavioural characteristics that can be captured through a sensing 

device, processed by computer and compared with previously taken samples of similar
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d ata  taken from the same person. The captured data  is referred to as the probe and 

the stored data  is referred to as gallery data. Gallery data  is held in a database of 

enrolled clients. The main advantage of using biometric d ata  over a knowledge of 

secret information is that the former cannot easily be faked and hence is a much more 

trustworthy method of confirming a person's identity. Nevertheless, it should be noted 

that biometric recognition systems are not a panacea and care must still be taken over 

issues such as protecting the integrity of the gallery database and ensuring that valid 

enrolment and probe data  is collected.

A wide range of possible sources of biometric characteristics have been explored [9]. 

These include fingerprint, face, hand-geometry, signature, voice, lip motion, iris, retina, 

gait, keystroke' ear shape, body odour and DNA. Each m ethod has its own advantages 

and disadvantages. Fingerprints, for example, are highly accurate but their collection 

requires the active participation of the subject and thus cannot be gathered covertly, as is 

necessary in some person recognition applications. Another problem is th a t fingerprints 

can be damaged or eroded due to physical or chemical activity. Although highly accurate 

(except when distinguishing between identical twins) and stable, the practical difficulties 

of gathering and analysing DNA samples mean that it has thus far been restricted to 

forensic science applications.

In practice no known biometric is capable of identifying subjects with perfect accuracy 

and reliability. This is because, for any given set of biometric data, there are likely to 

exist multiple individuals in the world who could give rise to similar data. For verifi­

cation problems this means th a t there will be a tradeoff' betw^een the false acceptance 

rate (FAR) or false positive rate where claims are erroneously accepted and the false 

refection rate (FRR) or false negative rate where claims are wrongly rejected. Similarly, 

in identification problems it will not normally be possible to identify all subjects with 

rank one accuracy. In practical applications the likelihood of error can be reduced by 

employing a fusion of two or more biometrics since the probability of a false positive oc­

curring simultaneously on twm independent biometric identifiers is the product of their 

individual probabilities. This is the reason, for example, why the proposed UK identity 

card scheme will require fingerprint or iris information as well as a digital face image to 

be stored on the card [21].
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It should be noted that this kind of coincidental similarity between the biometric details 

of two different individuals is, in general, a much less serious problem than the deliberate 

faking of another’s identity that is used in crimes such as identity theft. The reason for 

this is that it would be unfeasably difficult to find at random a person whose biometric 

d ata  happens to be sufficiently close to that of a given target, even though this may be 

theoretically possible. Contrast this with the relative ease by which secret information 

about a person can be discovered. For this reason, the fact that biometric data  is less 

than perfectly reliable in discriminating between different people does not preclude it 

from playing an im portant role in high security systems.

1.2 Face Biometrics

This thesis is concerned with the use of facial characteristics as a source of biometric 

information. Face d ata  can be conveniently captured as a 2-dimensional colour or 

greyscale intensity image using a conventional camera. As a source of biometric data, 

facial images have a number of attractive properties. Firstly, if necessary they can be 

captured rapidly from a distance without the cooperation or even the knowledge of the 

target individual. This is im portant in applications such as detecting potential terrorist 

threats at airports or railway stations. Another advantage is that the ubiquitous closed- 

circuit television (CCTV) cameras in todays buildings and public spaces mean th a t this 

biometric data  is already routinely collected in large amounts (albeit often with rather 

poor quality) and so, depending on the proposed application, may not require the 

deployment of further expensive infrastructure. There are also established databases of 

face images resulting, for example, from the long-established practice of storing “mug- 

shots” of convicted criminals. A further point to note is that the collection of face 

images, unlike some other biometrics, such as fingerprints or body odour, is already 

regarded as commonplace and socially acceptable and so its use tends to meet less 

resistance than other methods.

The main disadvantages of using facial images as a source of biometric data  stem from 

the fact that large variations in the images can be caused by factors that have nothing 

to do with the subject’s identity . These sources of unwanted noise include illumination
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variability, which can cause shadowing effects and specular reflections, pose variation, 

expression vai'iation, occlusions, aging and changes in facial decorations such as glasses, 

jewellery, beards and hairstyle. A further problem is the need to detect and accurately 

register a face image so that corresponding pixels from two images of the same subject 

are representative of the same regions of the face. These issues, and possible solutions 

to them, are explored in more detail in chapters 2 and 3 and here we simply note that 

they represent considerable technical problems which, if not addressed, would greatly 

reduce the effectiveness of facial biometrics as a means of person recognition.

One recent development in the field of face recognition has been the increasing avail­

ability and falling price of cameras which are capable of capturing 3-dimensional shape 

information. This represents an additional modality which can be used, either alone, 

or, more commonly, in combination with 2D images to improve the accuracy of a face 

recognition system. For example, one way in which 3D information can be used is in 

correcting for problems of pose, illumination and expression variation in 2D images.

The architecture and data  flow of a typical face recognition system, of the kind consid­

ered in this thesis, is shown in Fig. 1.1. During the enrolment stage a client image^ 

is captured by a 2D colour or monochrome camera or by a 3D scanner. The result­

ing data  is then subjected to geometric registration and normalisation so as to crop, 

rescale and translate it to a standard position and size; 2D intensity images are also 

photometrically normalised to m itigate the effect of shadowing and uneven lighting. 

The output from this normalisation process is a high-dimensional feature vector which 

is then passed through a feature extraction process. The aim of feature extraction is 

to reduce the number of dimensions to a more manageable level and also to increase 

the separation between different clients, thereby improving the ability of the system to 

discriminate between them. This lower dimensional feature vector thus constitutes a 

representation of the client in an abstract feature space and it is this th a t is stored in 

the gallery database for future reference. To improve the accuracy of the system it is 

possible to capture more than one gallery image per client, perhaps taken over a period

^For the sake of brevity, we use the general term “image” in this docum ent to include 2D intensity  

images, 2.5D range images and full 3D scans. We only distinguish between these forms of biometric 

information in cases where the context makes the difference important.
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a) Enrollment

Geometric
2D camera or

- ►
and Feature

3D scanner photometric extraction

b) Verification / identification

Geometric
and

photometric
normalisation

2D camera or 
3D scanner - ►

Feature**
extraction

 ̂Pattern 
. matching j

Decision

Figure 1.1: The architecture and data  flow of a typical face recognition system. During 

the enrolment stage gallery image(s) are added to the face database. When the system 

is used to perform veriflcation or identification, a probe image is compared with the 

gallery image(s) to reach a decision.
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of time. Depending on the purpose of the face recognition system, gallery images may 

or may not be captured under controlled conditions, where the lighting is uniform, the 

face pose is frontal and the facial expression is neutral.

Having set up the gallery database, the face recognition system may then be used to 

perform verification or identification. Here a probe image is captured and subjected to 

the same normalisation and feature extraction processes that were applied to the gallery 

images. A pattern  matching process then compares the probe with the gallery image(s) 

and makes a decision. For face verification this is a yes/no decision as to whether the 

probe image should be accepted as belonging to the claimed client. Ideally, this would 

equate to an indication of whether the identity of the person is th a t of the claimed 

client, however, for reasons discussed above, such perfect accuracy is not, in general, 

achievable. The required output for face identification applications depends on whether 

closed-set or open-set identification is being performed. In the former case, the output 

decision is either the most likely client identity (rank 1 identification) or a list of several 

clients in decreasing order of likelihood. For open set identification a yes/no indication 

is given as to whether the supplied probe is a sufficiently close match to any of the 

clients; if it is then information similar to closed-set identification is also output.

As with gallery images, depending on the purpose of the face recognition system, probe 

images may or may not be captured under controlled conditions. It is also possible 

for the conditions under which these two types of image are captured to be different. 

For example, the gallery images may be taken under the controlled conditions of police 

“mug-shots”, but the probe images may be taken under the uncontrolled conditions of 

a CCTV camera in the street.

Although, for clarity. Fig. 1.1 shows only the capture of either a 2D intensity image 

or a 3D face scan, we also allow the possibility that both types of image of a given 

subject are captured and processed in parallel, thus allowing the information from the 

two modalities to be combined in order to achieve greater accuracy. This kind of 

simultaneous capture may be done either at the enrolment stage alone, or at both the 

enrolment and the probe stages, leading to different ways of using the captured data.
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1.3 Contributions

In the previous sections of this chapter we have establised the need for good methods 

of person verification and identification using face biometrics. A summary of the main 

ways in which the thesis contributes to the realisation of this goal is as follows:

• It has been recognised that, when comparing centred feature vectors derived from 

two face images, the angular separation distance measure tends to be more dis­

criminative than other commonly used metrics [34, 42, 52, 63, 65]. Here we 

perform extensive experiments on several face databases to show th a t angular 

separation tends to be better than Euclidean, M anhattan and Mahalanobis dis­

tance in distinguishing intra-class differences from inter-class differences. These 

experiments are conducted using a variety of image processing and feature ex­

traction scenarios including homomorphic filtering, histogram equalisation, linear 

discriminant analysis (LDA) [8], local binary patterns (LBP) [2, 50] and ensem­

bles of support vector machines (SVMs). In addition to 2D greyscale images, 

the experiments are extended to include 2.5D range image and 3D point cloud 

representations of the face data. The conclusion drawn from these experiments is 

that the superiority of angular separation is a general property of facial biometric 

data  and is not, for example, limited to any particular representation or feature 

extraction technique.

• We show that, in all the above scenarios, the magnitude of centred feature vectors 

is of little use for discrimination between faces and is more a source of unwanted 

noise. It is suggested that the main reason for this is that radial movement in 

feature space, in contrast to angular movement, does not affect the arrangement 

and geometry of facial features and hence is of little relevance to the problem of 

distinguishing between the identities of two face images.

On the wider question of what type of problem is suited to the use of angular 

separation, we show that its use is beneficial in the problem of detecting whether 

an image does or does not contain a vehicle image. Experiments with synthetic
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noise pattern  images, however, show that angular separation is not universally 

superior and that in some cases it may be outperformed by other metrics.

• Many standard classification algorithms are not based, in the first instance, on 

the use of angular separation as a distance metric and hence must be modified in 

some way if they are to take advantage of it. We propose two broad approaches 

to achieving this objective. The first approach is completely general and consists 

in transforming the feature space into one for which non-angular metrics, such 

as Euclidean and M anhattan, are approximately in correspondence with angular 

separation in the original space. We refer to this process as angularisation and 

propose two implementations of the concept. The second approach is specific 

to ensembles of SVM classifiers and consists of defining kernel functions that 

incorporate angularisation into their formulation, thereby avoiding the need for a 

separate stage of feature space transformation. We propose two novel kernels and 

show that they possess the Mercer property.

• Experiments performed on 2D, 2.5D and 3D face data show that the application 

of a global angularisation transformation is successful in improving the discrim­

inative capabilities of the Euclidean, M anhattan and Mahalanobis metrics, with 

the results from the first two becoming comparable to those from angular separa­

tion itself. Further experiments with ensembles of SVMs show that this leads to 

corresponding improvements in the performance of such classifiers when applied 

to practical face verification and identification problems. Finally, it is shown ex­

perimentally that the benefits of applying angularisation to face verification are 

largely insensitive to the details of how it is accomplished, as all four methods 

give similar results (one of the SVM kernels is, however, shown to have a small 

advantage over the other methods on the face identification task).

• Tu^o possible ai’chitectures for constructing ensembles of SVMs for face recogni­

tion purposes are compared and contrasted. These are error-correcting output 

codes (ECOC) [18, 19, 33], in which the set of all face identities is repeatedly 

partitioned into two families of approximately equal size, and binary hierarchical 

classifiers (BHC) [38, 39, 49, 59] where the set of all face identities is recursively
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subdivided to construct a binary classification tree. It is shown that, for both 

methods, the Gaussian SVM kernel tends to outperform the linear kernel. ECOC 

can gain improved accuracy by deploying an increased number of SVM classifiers 

whereas BHC entails the use of a fixed number of classifiers, as dictated by the 

number of target classes. Different methods for calibrating the output values of 

SVM classifiers are examined and it is shown that ECOC performance, on both 

verification and identification tasks, is improved by the use of isotonic regression 

[85] or P la tt’s sigmoid fitting algorithm [56]. For the BHC architecture, however, 

only the sigmoid algorithm is beneficial for face verification and no calibration 

method is found to be beneficial for face identification. It is found th a t the best 

decoding procedure to use for ECOC is a nearest neighbour comparison with the 

gallery set [37] whilst that for BHC is to multiply soft outputs from the base 

classifiers on the path from root node to leaf node [39]. When partitioning class 

families, the Bose-Chaudury-Hocquenghem (BCH) algorithm [73] is found to give 

slightly better results than random assignment for ECOC, whilst for BHC the 

2-means clustering algorithm improves on the use of a deterministic annealing 

algorithm [39].

• In terms of overall face recognition performance it is shown that ECOC signifi­

cantly outperforms BHC. This is attributed to problems caused by the progres­

sively smaller training set sizes associated with the lower nodes of the BHC tree, 

together with the fact that face data  may not form a deeply nested natural hier­

archy as required by the BHC algorithm.

• It is confirmed that, for 2D and 2.5D images, multi-scale LBP [16] is an excellent 

feature extraction technique and that the performance of this technique can be 

improved by the application of LDA, angularisation and ECOC.

• It is sometimes stated  [11] that 2.5D images or 3D scans are more reliable for face 

recognition than 2D images because the first two modalities overcome problems of 

illumination variation. Here we make use of the FRGC corpus [54] as a good source 

of data  for comparing these modalities. Evidence is presented which suggests that, 

under similar conditions, 3D is more reliable as a means of face recognition than
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2D which in turn  is more accurate than 2.5D. When the more advanced method 

of LBP feature extraction is applied to the latter two modalities, however, it is 

found th a t their performance is improved to the extent that 2D gives the greatest 

accuracy and whilst 2.5D gives comparable performance to 3D. A fusion of all 

three modalities is found to give greater accuracy than any single one.

1.4 Outline of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 provides a review of the 

literature concerning face representations, with particular reference to angular methods. 

This is followed in chapter 3 by a more detailed description of the specific techniques 

that are used in the remainder of the document. Methods for applying angularisation 

to a set of feature vectors are described in chapter 4 and this is followed in chapter 5 by 

a description of the test data  sets th a t are used in subsequent experiments. The first set 

of experiments is presented in chapter 6 and is concerned with relative effectiveness of 

different distance metrics and how their performance can be improved by angularisation. 

Chapter 7 then presents a detailed examination of the ECOC and BHC approaches to 

ensemble design and compares their usefulness in face recognition applications. Further 

remarks concerning these results are made in chapter 8 and the thesis concludes in 

chapter 9 with a summary of the conclusions to be drawn from this work.
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Chapter 2

Literature Review

General surveys of the methods employed in 2D and 3D face recognition can be found in 

[11] and [86]. In this thesis the main emphasis is on the representations used to encode 

face information and the distance metrics that are used to measure the similarities and 

differences between instances of such information.

2.1 Psychological Studies of Face Representation

The study of different face representations is im portant to both machine-based and 

human face recognition. In the field of experimental psychology it has been recognised 

that a useful heuristic is to regard faces as being represented in memory as points in a 

multi-dimensional face space. Fig. 2.1 illustrates this concept together with the different 

types of face distortion which are used in the study of face recognition. It is known that 

the position of a face in the abstract face space is im portant for human face recognition, 

particularly in respect of whether the face lies in a region which has a high density of 

faces belonging to different people. Faces from the lower density regions tend to possess 

non-typical characteristics and are said to have a greater distinctiveness] they are more 

memorable than other, more typical faces [60].

Two possible models for human face recognition have been proposed ]78], namely 

absolute-based coding and norm-based coding. In both cases position in face space is

13
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Caricature 50%
Lateral 50%

Veridical

Anti-caricature 50%
Lateral 50%

Average face

Anti-face 100%

Figure 2.1: An illustration of different types of face distortion. The veridical is the 

true position of a face in a multi-dimensional face space and the other points represent 

different types of distortion wliich can be applied to the veridical.

im portant for face recognition; norm-based coding differs from absolute based coding, 

however, in that the relation between the probe face and the average face is also a sig­

nificant factor. Which of these two models is applicable to the human face recognition 

system is an open question. Carey et al. [15) have found that speed of recognition of 

famous faces decreased in the order of caricature, veridical, anti-caricature then lateral 

distortions. The order of the first three is explained by decreasing levels of distinctive­

ness and fits either model. The fact th a t lateral distortions took longer to recognise than 

the anti-caricature, however, despite having the same distinctiveness as the veridical, is 

evidence that the axis through the average face and the veridical is a privileged direction 

in face space and thus supports the norm-based coding hypothesis. Rhodes et al. [60] 

were unable to reproduce these results, however, and found that speed of recognition 

decreased in the order caricature, veridical, lateral distortions then anti-caricature. This 

later result, which reverses the order of lateral distortions and the anti-caricature, indi­

cates that only distinctiveness is important to human face recognition and is evidence 

for absolute-based coding.

It is shown experimentally in [6], by progressively morphing 3D head models, that there 

is a perceptual discontinuity when moving from the veridical side of the average face to
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the opposite, or anti-face, side. This means that, if one considers the linear trajectory 

between the caricature and the anti-face in Fig. 2.1, there is a greater perceptual dis­

tance between two faces th a t straddle the average face than there is between similarly 

spaced points elsewhere on the trajectory. In particular, the anti-face is perceptually 

highly dissimilar to  the corresponding veridical. Another conclusion from this work is 

that, because the male and female average faces occupy different positions in feature 

space, reflecting through the general average face produces different results from re­

flecting through a gender-specific average face. For example, if a female face is reflected 

through the general average face the resulting anti-face shows more masculine charac­

teristics than if the female face is reflected through the female average face. Similar 

reasoning shows that, for caricatures, the situation is reversed.

Another aspect of the human visual system is the question of what similarity measure is 

used by the brain to assess the closeness of one image to another. This is im portant for 

applications such as image database retrieval where it is desirable that machine matching 

mimics that of humans. It is shown in [64] that the M anhattan metric better captures 

notions of human similarity than the Euclidean metric when images are approximated 

as a collage of fragments taken from a code book (a method of image compression known 

as vector quantisation). In these experiments subjects were asked to rate the fidelity of 

the approximation when the closest matching fragments were chosen using either the 

M anhattan or the Euclidean metric. There was found to be a pronounced bias in favour 

of the former.

Santini and Jain [66] cast doubt upon whether the human similarity measure satisfies 

the axioms of a metric space a t all. For example it is known th a t the perceived distance 

of images from themselves is not constant and it is generally acknowledged th a t the 

triangle inequality does not always,hold. They go on to propose a new similarity 

measure, based on fuzzy logic, that satisfies a new set of axioms and which more closely 

replicates experimental findings in humans.
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2.2 Dimensionality Reduction and Face Manifolds

One reason why face recognition is a challenging problem is that, considered as a vector, 

the dimensionality L of a face image is typically quite large, say of the order of 10,000. 

This makes direct comparisons between such images a computationally demanding pro­

cess. It is clear, however, th a t in a realistic face image the pixels cannot be allowed 

to take on values which are completely independent of each other and it is known that 

the space of all possible face images, under varying conditions of illumination and pose, 

constitutes a low dimensional manifold which is embedded within the ambient space 

of all possible images. Various techniques have been applied to the problem of finding 

approximations to this manifold. These have the aim of discovering a lower dimensional 

representation in which im portant variations in facial images, particularly with regard 

to identity differences, are emphasised, whilst at the same time variations due to un­

wanted noise are reduced or eliminated. Another argument for dimensionality reduction 

is the peaking phenomenon which tends to lead to problems of over-training unless the 

training set size is substantially greater than the number of pattern  dimensions.

Principal components analysis (PCA) [80], also known as the Karhunen-Loeve expan­

sion, was introduced into the field of face recognition by I\irk  and Pentland [77] under 

the name eigenfaces and was the first really successful demonstration of machine-based 

face recognition algorithms [86]. The method is described in some detail in section 3.3 

and summarised here. Given a training set T  of face images the covariance matrix, or 

total scatter matrix, of the centred training set is diagonalised to find an orthonormal 

basis in which the different eigenvectors represent different modes of variation. If the 

eigenvectors are ordered by decreasing eigenvalue then the largest variance occurs in 

the directions of first few eigenvectors and so, by discarding the later eigenvectors, an 

approximate low dimensional linear subspace can be found that preserves most of the 

variance of T . There is evidence [4, 82] th a t the first two eigenvectors simply code for 

differing lighting conditions and that better face recognition results are obtained when 

they are also discarded.

Although PGA represented an im portant advance in face recognition, the method suf­

fers from the drawback that, being an unsupervised technique which is based entirely
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on the global variation between training images, it takes no account of class member­

ship information in the training set and hence is not optimal for classification problems 

[4]. Linear discrimina,n t analysis (LDA) [80] is a dimensionality reduction and feature 

extraction technique, first applied to face recognition by Belhumeur et al. [8], that 

aims to rectify these deficiencies. Details of the LDA algorithm are given in section 3.4 

and here we give a short summary. Like PGA, LDA aims to find a low-dimensional 

linear subspace of the full image space in which face recognition is more readily car­

ried out. The method consists of solving a generalised eigenvector problem to find a 

linear transformation of the original image space that maximises the ratio of the mean 

between-class scatter to that of the mean within-class scatter. The resulting eigenvec­

tors, often referred to as Fisherfaces^, form a (non-orthogonal) basis with resiDect to 

which discrimination between classes is enhanced.

The methods discussed so far are linear methods in the sense th a t they are aimed at 

finding a linear subspace th a t represents the manifold of realistic face images within the 

full image space. In practice, however, this manifold is only approximately linear and 

several attem pts have been made to model the non-linearities with greater accuracy. 

Another way of looking at these ideas is to note that PGA and LDA are limited to 

finding second order statistical correlations in the data and that it may be beneficial 

to use techniques that incorporate higher order correlations. Kernel PGA and kernel 

LDA [25, 80] are two such approaches. They extend the methods of PGA and LDA by 

applying a non-linear kernel function to face image vectors in order to project them into 

a higher dimensional space where linear methods can then be applied (this technique, 

known as the “kernel trick”, is discussed in more detail in section 3.6). Yang et al. 

[83] have made a comparative study of PGA and LDA, together with their kernelised 

variants, and have found that, for face identification experiments on the AT&T and 

Yale test databases, the best performing algorithm was kernel LDA followed by LDA 

then kernel PGA and finally PGA.

A number of methods have been explored for directly mapping the face manifold into a 

lower dimensional space based on the spatial relationships between the training images

 ̂Named after R.A.Fisher who first proposed the use of such linear discriminant m ethods in statistical 

analysis.
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rather than on their statistical properties. In practice these techniques tend to work 

best when a large amount of training data  is available, for example when the input 

comes from a video stream so that multiple images are available for each subject with 

different pose angles, expressions and illumination conditions. Multi-dimensional scaling 

(MDS) [80] is the name given to a general technique for mapping a set of points in a 

high-dimensional feature space to a corresponding set of points in a lower dimensional 

feature space in such a way that the distance between pairs of points is preserved. One 

common use for this procedure is as a means visualising, in two or three dimensions, 

the similarities between, and clustering properties of, high dimensional data  sets such 

as collections of face images.

The choice of distance metric used with MDS influences the resulting low-dimensional 

representation. When the Euclidean metric is used, MDS is, in fact, equivalent to PCA 

[76]. The isomap algorithm [76] uses approximate geodesic distance within the manifold, 

in conjunction with MDS, to obtain a more accurate low-dimensional representation of 

the relationship between points on the manifold. To calculate the geodesic distance, 

neighbouring points (defined either as the K  nearest neighbours or as all points within a 

certain threshold distance) are assumed to lie on the manifold and, therefore, separated 

by their Euclidean distance; more distant points are handled by finding the shortest 

linking path that passes through successive neighbours and summing the local Euclidean 

distances along th a t path. Clearly, this approach depends for its success on the manifold 

of the underlying distribution being densely sampled by the training set. It is shown in 

[76] that isomap leads to a more accurate low-dimensional representation of the manifold 

than techniques such as PCA or Euclidean MDS. For example isomap correctly predicts 

the underlying 3D nature of a collection of face images of a single subject that are viewed 

and lit from different directions.

Local linear embedding (LLE) [62] is an algorithm that produces similar results to isomap 

but is computationally more efficient. In this approach each training point is first 

approximately reconstructed as a linear combination of its neighbours by solving a least 

squares optimisation problem. Once the sparse m atrix of reconstruction weights is 

determined in this way, it is used to find a projection of the training set into a lower 

dimensional space that preserves global distances as measured in the original manifold.
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Methods such as MDS, isomap and LLE are useful for visualising high-dimensional 

manifolds and for discovering their intrinsic dimensionality. The resulting maps are, 

however, only defined on the training points and it is not clear how they may be gen­

eralised to arbitrary data points, as is required in face recognition applications. The 

locality preserving projection (LPP) [27] algorithm addresses this problem by finding a 

set of vectors in the ambient image space th a t best preserve the local structure of the 

face manifold. These vectors, which are referred to as Laplacianfaces, are then used as 

the basis vectors of a linear subspace in a way similar to PCA and LDA. In this way, any 

image can be linearly projected into the LPP space. The method differs from PCA and 

LDA in that it emphasises the importance of local, rather than global structure. The 

face recognition experiments described in [27] on the PIE, Yale and MSRA databases 

show that Laplacianfaces outperforms both of these algorithms, particularly when a 

large number of training samples is available.

2.3 Distance Metrics and Similarity Measures

Having decided upon a feature space to represent facial information, the next issue 

that needs to be addressed is what similarity measure or distance metric to use within 

that feature space. Several candidate metrics have been studied in the face-recognition 

literature and in this section we present a summary of the main approaches (however 

we defer a discussion of the im portant class of angular similarity measures until section

2.4).

Given a pair of arbitrary M-dimensional column vectors x  =  [rri,. . .  and y  =  

[î/iî • ■ • VmŸ' 1 Euclidean, L2 or second-order Minkowski distance [80] is defined as

Dgwc (x, y) =  l lx - y l j  =
M

The Mqnahattan, city-hlock, L I  or first-order Minkowski distance [80] is defined as

M

D M a n  (x, y) =  ^  \Xi  -  pi ]  . (2.2)
2=1
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The Mahalanobis distance [80] is defined as

D m  ah (x, y) =  \ / ( x - y ) ' ^ S - i ( x - y ) .  (2.3)

where S is the covariance matrix, or total scatter matrix, of the training set. In ef­

fect, Mahalanobis distance is similar to Euclidean distance (identical if S is the identity 

matrix) but it attaches greater weight to those directions in feature space where the 

training set distribution has low variance. In [42] it is established that use of the Maha­

lanobis distance metric is equivalent to the optimal Bayes decision rule, whereby probe 

vectors are assigned to the class with the maximum posterior probability, provided that 

all class conditional distributions are multivariate normal with equal prior probabilities 

and identical covariance matrices S.

Another metric that has been successfully applied to face recognition is the Hausdorff 

metric. Given two point sets A — {ai},B  = {hi} the Hausdorff distance between A and 

B is defined as

Dj-jaus (/I, B) =  max {h (A, B ) , h {B, A)) (2.4)

where

h (A, B ) — max min ||n — b\\. (2.5)
aeA beB  "

It thus represents the largest distance between any point of either set and the nearest 

point in the other set. This can be used as a means of comparing general binary 

images (i.e. images where each point is either black or white), with the sets A and B  

being taken to be the set of black points in each image [31]. In [24] this is applied to 

face recognition by first constructing edge maps of a face image, to convert them from 

greyscale to binary, and then using a Hausdorff metric to compare them. The closest 

match between two such edge maps is found by sliding one relative to the other until 

the Hausdorff distance is minimised. This approach has the advantage that it does not 

require the precise geometric alignment of images in order to compare them and thus 

circumvents the need for accurate landmarks.

In [81] a method is proposed whereby, starting with pre-defined “side” information about 

which pairs of training vectors are to be regarded as similar or dissimilar, a customised 

metric can be learned that respects this notion of similarity. The algorithm consists of
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finding a symmetric positive semi-definite m atrix A  such that the quadratic distance

[80] between any pair of column vectors x  and y, defined as y  (x — y )^  A  (x — y), tends 

to yield small values when the vectors are classified as similar and larger values other­

wise. Experiments on a variety of data  sets show that the performance of the k-means 

clustering algorithm [80] is improved by the use of this metric when compared with the 

Euclidean metric. In face recognition applications a natural definition of whether two 

vectors are similar would be whether they represent the same subject identity or not.

An alternative approach to constructing a similarity measure between face images is that 

of Bayesian face recognition [46, 47]. Here the differences between pairs of face images 

are divided into two classes, namely intra-personal differences Qj when both images 

are of the same subject and inter-personal differences Üe  when the image identities 

are distinct. PCA is then applied separately to each of the two distributions and the 

resulting training sets are modelled as Gaussian distributions. Given arbitrary probe 

and gallery images with difference vector A, this model permits the calculation of the 

probability densities P r(A  | Üj) and P r(A  [ Q,e ) that the differences result from intra­

personal and inter-personal variations respectively. A similarity measure P r(D / | A) is 

then obtained, using Bayes rule:

P r (Cl, I A) =  F r ( A |n , ) P r ( Q , )
 ̂ ' P r ( A l f ! / ) P r ( n , )  +  P r ( A | n E ) P r ( n B ) '   ̂  ̂ ^

This is the maximum a posteriori probability (MAP) that the observed image differences 

can be explained by intra-personal variations; the priors P r(f2 /) and P r (fig) can be

used to incorporate a priori domain knowledge or, in the absence of this, simply set

to equal values. An alternative similarity measure, which is simpler but slightly less 

accurate, is to use the intra-class probability density function P r (A | Q.j) wdthout regard 

to the inter-personal distribution.

2.4 Angular M ethods

Classification techniques that are based on angular methods have been studied by a 

number of researchers. The most direct approach is to use angular separation between
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feature vectors as a distance pseudo-metric^. This is defined as

Dang (x, y ) =  arccos (

=  ^ (x , y )

where <9(x,y) is the angle between the vectors and is taken to be in the range [0,7r]. A 

closely related pseudo-metric is the cosine distance

D c o s ( x , y )  =  1 -  ^2,8)

=  1 — cos (x, y)

where Dcos {'■>') lies in the range [0,2]. When cosine distance is converted to a similarity 

measure in the range [—1,1], with a value of 1 indicating maximum similarity, it is 

referred to as the normalised correlation or cosine similarity measure and is defined as

5co5(x,y) =  (2.9)

— 1 ~  Dcos (x, y ) .

Note that, when applying these angular measures, it is assumed th a t the data  is first 

centred by subtracting the training set mean vector.

In a study by Jonsson et al. [34] using the XM2VTS database, normalised correlation 

was compared with both Euclidean distance and a directly trained SVM as a means 

of generating face similarity scores. This was done using raw images (with or without

photometric normalisation), PCA feature extraction and LDA feature extraction. On

the face verification task it was found that LDA outperformed PCA and that normalised 

correlation gave substantially better results than Euclidean distance, but was slightly 

worse than the SVM. For face identification LDA was again markedly better than PCA 

but there was little difference in the performance of the three similarity measures. In a 

similar study by Sadeghi et al. [65], using the BANC A database to perform verification 

experiments under adverse illumination and pose conditions, it was again found that 

LDA outperformed PCA and th a t normalised correlation gave better results than the 

Euclidean metric. Under these adverse conditions, it was also found th a t normalised

^Tliis is referred to as a pseudo-metric since it may take a value of zero on non-identical arguments.
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correlation tended to outperform the SVM method unless the training set was large. 

For 3D face scans, a method is described in [63] for applying PCA to scans whose 

coordinates have been standardised by bringing them into dense correspondence with a 

reference model. In verification and identification experiments performed on subsets of 

the Face Recognition Grand Challenge (FRGC) corpus it was found that cosine distance 

performed better than Euclidean distance as a similarity measure.

For PCA-based nearest neighbour face recognition algorithms, the whitened cosine dis­

tance [4] is commonly used. For example, this is the baseline algorithm chosen for 

performance comparison on the FRGC experiment set [54]. The whitened cosine mea­

sure is similar to cosine distance but with an additional whitening transformation being 

first applied to ensure that the training set has unit variance in all directions. This is 

accomplished by pre-multiplying x i  and xg in eqn. 2.8 by A “ 5TJ^ where U A U ^ =  S 

is the eigen-decomposition of the sample covariance m atrix S. Moon and Philips [48] 

show, by face identification experiments on the FERET database, th a t whitened cosine 

outperforms several other metrics including Euclidean, M anhattan, Mahalanobis and 

cosine distance. Liu et al. [42] observe th a t minimising the whitened cosine distance is 

equivalent to first normalising feature vectors so that their whitened transforms have 

unit length and then applying the optimal multi-class Bayes decision rule under the 

assumptions that the resulting class-conditional distributions are multi-variate normal 

with equal prior probabilities and equal covariance matrices S. W ithout the initial 

length normalisation step, the Bayes decision rule is equivalent to the inferior method 

of minimising the Mahalanobis distance. These assertions are supported by experiments 

on the FRGC database. The authors go on to propose two new similarity measures. 

The first of these, named the probability reasoning model whitened cosine (PWC) simi­

larity measure, replaces A in the whitening transformation by a diagonal m atrix whose 

i ’th  entry is the mean of the individual class variances in the f t h  direction; in FRGC 

experiments it yields slightly better results than the standard wdiitened cosine measure. 

The second proposal, called the within-class whitened cosine (WWC) similarity mea­

sure, uses the mean within-class scatter m atrix in place of the total scatter m atrix S 

and achieves substa,ntially better results on FRGC experiments.

An extensive comparison of different distance measures, used in conjunction with PCA
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feature extraction, is presented in [52]. These results are based on face verification 

and identification experiments conducted on a data  base of 423 individuals taken from 

various publicly available d ata  sets. They show th a t the overall best performance was 

obtained using a weighted angle similarity measure

N

Slot (x ,y ) =  "^W iX iV i/ ||x|| ||y|| (2.10)
i=l

where the weighting factors Wi are given by a /I/A j with Xi being the variance in the f  th 

direction. The whitened cosine distance also performed reasonably well, however recog­

nition accuracy was shown to degrade as the number of PCA features was increased. 

The best non-angular measure was a whitened correlation-coefficient distance, which 

gave similar performance to whitened cosine.

The approach taken in [36] is to perform a separate PCA analysis for each individual in a 

training database and to use the resulting linear subspaces as approximations to the face 

manifold for each separate person. To be reliable, this requires the availability of a large 

amount of training data  per subject, such as can be obtained from a video sequence. For 

any pair of subjects the principal angles between their respective subspaces is used as 

the basis for comparison, with the AdaBoost algorithm [20] being used to combine them 

into a similarity measure. Further improvements in recognition accuracy were obtained 

by using a weighted combination of these global linear manifold differences together 

with more local non-linear variations. The validity of this approach was confirmed by 

face identification experiments conducted using a database of video sequences of 100 

individuals showing different illumination conditions, pose angles and expressions.

An interesting parallel with the success of angular similarity measures in the image 

domain is that of methods based on phase information in the Fourier domain. It has 

been observed [51] that, when considering the Fourier transform

F (w )= A (w )e ;^ (“') (2.11)

of a general multi-dimensional signal /  (x), many of the im portant features of the sig­

nal are embodied in the phase function ^ (w), whilst the spectral magnitude function 

A{u)) is relatively uninformative. This means, for example, th a t if Ai (w) and

Ag (w) are the spatial Fourier transforms of two 2-dimensional images Ii  (x) and
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/2  (x) respectively, then the inverse Fourier transform of A2 (w) will be much

more similar to I i  than to ig. Similarly, the appearance of the image th a t is recovered 

from A i (w) be much closer to th a t of I 2 than to Ii.

The eigenphases method [67] is an approach to face recognition which exploits this prop­

erty of Fourier transforms. It consists of applying PCA to the phase spectrums only of 

transformed images to establish a new face representation in which the spectral mag­

nitude is discounted (note th a t performing PCA on the full Fourier transform achieves 

nothing as it produces eigenvectors th a t are trivially related, through the inverse Fourier 

transform, to those obtained by applying PCA in the original image domain). Exper­

iments on the PIE  database show th a t the eigenphases method is remarkably tolerant 

to problems of partial face occlusion and illumination variation, outperforming both 

Fisherfaces and eigenfaces under these adverse conditions.

Phase also plays an im portant role in correlation pattern recognition (CPR) [79]. This 

method uses the training images for each subject to design a filter which, when ap­

plied to the Fourier transform of a probe image of the same subject, produces a sharp 

peak in output for some displacement of the image. Impostor images, by contrast, 

produce no such sharp peak and hence the peak to sidelohe ratio (PSR), defined as

^^Gd as a measure of similarity between a probe and a 

target identity. Like eigenphases, this algorithm has been shown to give good results on 

the PIE  database and is robust to problems of occlusion and illumination variation. It 

also has the benefit that, because the probe image is tested at different displacements, 

it does not require the probe to be precisely registered. A potential problem with the 

method, however, is its high computational overhead. Because of this, an adaptation 

of CPR, known as class-dependence feature analysis (CFA), is described in [79] that 

sacrifices shift-invariance in order to achieve good illumination-invariant results at an 

acceptable computational cost; the experiments being conducted on the FRGC data set. 

The CFA algorithm consists of designing a filter for each of 222 subjects in a training 

database; these filters are then applied to gallery and probe images to produce 222- 

dimensional feature vectors and classification is performed using either cosine distance 

or SVMs.
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2.5 Representations of 3D Face Scans

Although many of the ideas described in this chapter were originally designed with 2D 

intensity images in mind, they can often be readily adapted to 3D face scans provided 

the raw data is first expressed in a standard vectorised form. This means ensuring that 

the feature vectors derived from different face scans are of equal length and that corre­

sponding components of the vectors have the same meaning in terms of the geometry 

of the face. The process of deriving such standard feature vectors should also allow for 

the correction of any defects in the 3D scan such as spurious holes or spikes.

One possible representation, an approach sometimes referred to as 2.5D, is to render 

the 3D scans as range images and then to treat them in a similar way to 2D greyscale 

intensity images. These range images consist of rectangular pixel grids, with the pixel 

brightness being proportional to the z-coordinate of the face surface rather than intensity 

of reflected light. The main advantage of tins approach is that it allows many of the 

techniques that have been developed for 2D intensity images to be applied unchanged to 

3D face recognition. For example Li et al. [41] have successfully achieved a fusion of 2D 

and 2.5D information by selecting AdaBoosted local binary pattern  features (see section

3.5) from a pooled set of 2D greyscale and 2.5D range images. Some disadvantages of 

range images are that detailed information may be lost due to the need to discretise the 

3D point-cloud data  into a fixed array of pixels, absolute size information is lost due to 

the need to rescale and register images in a consistent way and it precludes the use of 

algorithms that are based on inherently 3D concepts such as shape or curvature.

An alternative to the range image approach, and one which allows for the application 

of a richer set of feature extraction and classification algorithms, is to retain the full 3D 

structure of the data, but to normalise it so that a fixed set of vertices is retained, with 

the vertices from different scans being in one to one correspondence with each other. 

This may be accomplished through the method of dense non-rigid 3D face registration 

which establishes a dense correspondence between a given 3D face scan and a 3D face 

model. In [5] this is done by representing a probe as the minimum error linear com­

bination of a fixed basis of sample scans. A modified optical flow algorithm is used to 

perform matching between any pair of scans. The approach taken in [74] is to start with
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a generic 3D face model and to gradually morph it, using a thin-plate spline technique, 

until its shape is as close as possible to that of the probe scan. This is described in 

more detail in section 3.1.

A further benefit of using the method of dense 3D correspondence to create a standard 

representation of a probe image is that, once the correspondence has been established, 

the model can be m anipulated in a number of ways to achieve desirable effects. For 

example, texture from a 2D image can be mapped onto the 3D model to produce a 

photo-realistic 3D reconstruction; this can then be rotated and relit to correct for a 

non-frontal pose or adverse illumination conditions [75, 7]. As another example, in [13] 

MDS is used to map 3D face scans to an expression invariant canonical representation 

that allows for higher face recognition accuracy in the presence of expression changes.

2.6 Summary

In this chapter we have looked at a number of aspects of the face recognition task, with 

particular reference to the representations that are used to encode face information 

and the distance measures th a t are used to assess the similarity or otherwise between 

different face images.

Face recognition is carried out effortlessly by humans and so it is worthwhile to inves­

tigate what is known about how the brain carries out this complex task. Psychological 

studies show that faces are represented in the brain as vectors in a multi-dimensional 

feature space. W hen assessing the similarity of two points in this feature space it ap­

pears that the M anhattan metric is closer to the human idea of similarity than the 

Euclidean metric; however there is evidence that the actual similarity measure used by 

the brain does not satisfy the axioms of a metric space at all and that other approaches, 

such as those based on fuzzy logic, may provide a more accurate model. Another area 

of active investigation is the question of whether relationship to the mean face plays any 

special role in the process of human face recognition (norm-based coding) or whether 

faces aie identified solely on the basis of their position in feature space (absolute-based 

coding). Whilst this question is still open, it is known that distinctive faces, for example
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caricatures, are more easily recognised that those with more typical facial features and 

also that there is a large perceptual difference between the anti-face and the veridical.

Dimensionality reduction is an important aspect of most machine-based face recog­

nition systems. It achieves the twin goal of reducing the computational overhead of 

processing face data  whilst at the same time removing extraneous noise and thus fo­

cusing on information which is useful for discrimination purposes. PCA is a widely 

used unsupervised technique that accomplishes dimensionality reduction by finding the 

directions of maximal variance in feature space and eliminating the others. LDA is a 

supervised method that similarly finds a low dimensional subspace, but balances the 

need to maximise between-class scatter with the need to minimise within-class scatter. 

Several studies have shown that LDA is a more effective feature extraction technique 

than PCA for face recognition purposes. Both methods can be extended to take account 

of non-linearities in the data  by using a kernel based approach.

Another way of achieving dimensionality reduction is to directly model the low-dimensional 

non-linear manifold that represents the space of possible face images within the ambient 

space of all images. MDS, isomap and LLE are three successful algorithms for perform­

ing this function, however their primary use is in visualising the relationships between 

complex data  and they do not easily generalise to previously unseen data, as is required 

for face recognition tasks. The method of Laplacianfaces overcomes this problem by 

finding a linear subspace that approximates the local structure of the face manifold and 

thus allows any arbitrary face image to be mapped into the representation.

Having selected a reduced dimensionality representation for face images, it is then nec­

essary to choose the method that will be used to assess the degree of similarity or 

dissimilarity between two face images. Several possibilities have been explored for this 

purpose; they include the Euclidean metric, the M anhattan metric, Mahalanobis dis­

tance and Hausdorff metric (between binary images). Alternatively, in Bayesian face 

recognition the distributions of intra-class and inter-class differences are modelled and 

a probabilistic similarity measure is used. A further option is to artificially construct 

a metric that, as far as possible, gives rise to small distances between training images 

belonging to the same person and larger distances otherwise.
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Angular methods have proved to be of value in face recognition. It has been shown ex­

perimentally that similarity measures based on the angular separation between feature 

vectors tend to outperform non-angular metrics such as Euclidean, M anhattan and Ma­

halanobis. For example, good results have been obtained when LDA feature extraction 

is combined with the use of cosine distance (or the closely related normalised correla­

tion similarity measure). When PCA is used it has been found beneficial to apply a 

pre-whitening step before using cosine distance to ensure that all dimensions are given 

equal emphasis. Alternatively, a weighted angular distance may be used to similar ef­

fect. If sufiicient training data  is available for each subject (as when the training images 

are extracted from video sequences) then it is feasible to model each face manifold as a 

separate linear subspace; in this case the principal angles between subspaces have been 

shown to lead to good discrimination between different face identities. In the Fourier 

domain, phase spectrum information has been shown to be more im portant than the 

magnitude spectrum in encoding the details of an image; a fact which is exploited in the 

eigenphases and CPR algorithms which both give good face recognition performance, 

particularly in the presence of occlusions and illumination variation.

In face recognition from 2D images, the raw data is presented as a rectangular array 

of pixel values (or three arrays in the case of colour images). For 3D scans, however, 

a choice of representations exists. One approach is that of 2.5D whereby range images 

are treated as though they were greyscale images. This approach allows established 

2D techniques to be used but does not fully utilise the 3D shape information that is 

present in the data. An alternative representation, based on creating a standardised 

vector of 3D vertices in dense correspondence, provides a richer set of possibilities for 

manipulating the 3D information.

2.7 Conclusions from the Literature Review

In designing a machine-based system that will recognise faces from still images it is 

first necessary to choose the feature space representation that will be used to encode 

the captured facial data. Given such a representation, a choice must then be made as 

to the distance measure which will be used when deciding whether two feature vectors
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represent the same personal identity or not.

Several such distance measures have been proposed in the literature and it has been 

observed that angular separation tends to be particularly beneficial for face recognition 

applications. It is worthwhile, therefore, to examine this observation in more detail 

and to compare the effectiveness of angular separation with that of other commonly 

used metrics under a range of feature extraction scenarios. Some comparative studies 

have been previously reported in the literature, however they are usually carried out 

by measuring the accuracy of specific classification methods using different metrics. 

Whilst this is a im portant aspect of the research, there also a case for looking at the 

performance of the metrics in isolation so that it is not obscured by the details of any 

particular classifier design. Previous research in this area has also focused heavily on 

2D facial images, with relatively little attention having been paid to the 2.5D and 3D 

modalities.

Much of the work to date on the relative performance of angular and other metrics has 

been carried out using techniques such as nearest neighbour classifiers in a PCA or LDA 

feature space. It is desirable to extend this work to include more sophisticated methods 

such as ensembles of SVMs and to investigate how such methods can be adapted so 

as to gain maximum benefit from the enhanced discrimination capabilities of angular 

separation metrics.



Chapter 3

Face Recognition Techniques

The previous chapter provided a survey of the current literature relating to face repre­

sentations and metrics. In this chapter we describe in some detail several established 

face recognition algorithms and techniques; this list is not intended to be exhaustive, 

but is limited to those techniques which are referred to later in the experiments of chap­

ters 6 to 8. W ith this in mind, a range of topics is covered, from methods of image 

normalisation through dimensionality reduction and feature extraction to the those used 

in the construction of ensemble classifiers.

3.1 2D and 3D Geometric Registration

The first step in applying face recognition algorithms is to geometrically normalise an 

image or 3D scan so that the facial features - nose, eyes, mouth etc. - occur at the same 

geometrical location in all cases. In this thesis we assume that a manual procedure is 

used to initially landmark the position of a small number of standard facial features; this 

allows the effect of classification algorithms to be studied independently of algorithms 

for performing autom atic landmark location.

For 2D images just the (x, y) coordinates of the eye centres are required as a minimum. 

The image can then be translated, rotated, rescaled and cropped so as to map those 

coordinates to a standard location in the registered image. Further landmarks, such

31
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(a) (b)

Figure 3.1: An example of 2D geometric normalisation, (a) the original image, (b) after 

rescaling and cropping.

as the tip of the nose, corners of the mouth or tip of the chin may also be used to 

achieve a closer geometric fit between images. An example of a 2D image before and 

after geometric registration is shown in Fig. 3.1.

.As noted in section 2.5, there are various options for geometrically registering and 

representing 3D scans. Here we adopt the method of dense non-rigid 3D face registration 

using a morphable model, as described in |74|. The algorithm proceeds in three stages. 

Firstly a global mapping brings a pre-defined set of four landmarks (eye centres, nose 

tip and chin tip) into exact alignment with the generic model by using a thin-plate 

spline technifpie. Secondly local matching establishes a correspondence between each 

vertex of the probe and a vertex of the generic model. Finally, an energy minimisation 

stage fine-tunes the correspondences to minimise the RMS fitting error. Fig. 3.2 shows 

the result of applying this method of normalisation to a 3D face scan.
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Figure 3.2: 3D normalisation. From left to right this shows the generic morphable 

model, an example of a 3D surface scan and the corresponding mesh after placing the 

scan into dense correspondence with the morphable model.

3.2 2D Photometric normalisation

As previously noted, the differences between a pair of two dimensional intensity images 

that are caused by factors such as lighting, pose angle and expression, can be greater 

than those caused by differences in the identity of the subjects. The purpose of photo­

metric normalisation is to alleviate one of these sources of noise, namely illumination 

variability.

In general, the intensity of an image I  (x, y) at any point {x,y)  can usefully be regarded 

as a product of two separate functions:

(3.1:

where R  (x, y) is the reflectance of the surface at (x, y) and L  (x, y) is the illuminance 

at that point. Of these two functions reflectance conveys im portant information about 

the object being viewed whereas illuminance is the chance result of lighting conditions 

and will often vary greatly between different images of the same object. Homom,orphie 

filtering |53] is an algorithm that seeks to remove the effect of variations in L (•, •), and 

hence to recover /?(•,•), by applying a high pass filter to the image. This is based on
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(a) (b) (c)

Figure 3.3: .Application of photometric normalisation to face images with varying de­

grees of illumination variation, (a) the original images, (b) after homomorphic filtering, 

(c) after homomorphic filtering and histogram equalisation.

the assumption that changes caused by illumination variability are characterised by a 

low spatial frequency whilst those due to the surface features and texture of the object 

have a high spatial frequency.

Variations in image contrast may be another problem that makes it difficult to reliably 

compare images of the same or different subjects. This may be caused by poor illumina­

tion or by differences in the sensitivity of the photographic equipment which was used 

to capture the images. Histogram equalisation |53| improves and standardises image 

contrast by spreading out the probability distribution of pixel intensities over a wider 

range. This is achieved by applying a monotonie transformation to pixel intensities with 

the property that the cumulative histogram of the transformed image is linear.

Homomorphic filtering can lead to a general darkening of the image and loss of contrast 

so it is beneficial to follow this by a histogram equalisation stage to restore or enhance 

the contrast. Fig. 3.3 shows the effect of applying homomorphic filtering and histogram 

equalisation to a 2D image.

.Another successful and commonly used method of illumination correction is that pro­

posed by Gross and Brajovic |23|. This approach uses insights gained from the psy­



3.3. Principal Components Analysis 35

chology of human vision to estim ate the illumination field !/(•,•) based on local values 

of the intensity /(•,* ); fkis estimate is then substituted into Eqn. 3.1 to obtain the 

reflectance field

3.3 Principal Components Analysis

Given a training set T  =  {xg : s =  1 . . .  N }  consisting of N  face image column vectors, 

the PCA algorithm consists of finding the eigenvectors (often referred to as eigenfaces) 

of the covariance m atrix of the m ean-subtracted training images and ranking them in 

decreasing order of eigenvalue. This gives rise to an orthonormal basis of eigenfaces 

where the first eigenface gives the direction of maximum variance or scatter within the 

training set and subsequent eigenfaces are associated with steadily decreasing levels of 

scatter. A probe image can be represented as a linear combination of these eigenfaces 

and, by choosing a cut-off point beyond which the basis vectors are ignored, a reduced 

dimension approximation to the probe image can be obtained.

More formally, the PCA approach is as follows. The sample covariance m atrix of T  is 

defined as an average outer product:

1 ^
S =  ~  ^  (xg -  m ) (xg -  (3.2)

p=i

where m  is the sample mean column vector given by

1 ^
m = — ^ X g .  (3.3)

S=1

Hence the first step in the PCA algorithm is to find an orthonormal projection m atrix 

U  =  [ u i , . . .  Uf:,] that diagonalises S so that

S U  -  U A  (3.4)

where L  is the number of input dimensions and A is a diagonal m atrix of eigenvalues.

The columns Ug of U  then constitute a new orthonormal basis of eigenfaces for the 

image space and we may assume, without loss of generality, that they are ordered so
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that their associated eigenvalues \  form a non-increasing sequence, that is:

g < r ^  Xq > Xr (3.5)

for 1 <  q, r < L.

An important property of this transformation is that, with respect to the basis {u^}, the 

coordinates of the training vectors are decorrelated. Thus each Ug lies in a direction in 

which the total scatter between images, as measured over T , is statistically independent 

of the scatter in other orthogonal directions. By virtue of Eqn. 3.5 the scatter is 

maximum for u i and decreases as the index q increases. For any probe column vector 

X, the vector x ' =  (x — m) is the projection of the mean-subtracted vector x  — ra 

into the coordinate system {Ug} with the components being arranged in decreasing 

order of training set scatter. An approximation to x '  may be obtained by discarding all 

but the first M  < L  components to obtain the column vector x" =  . . . ,  • The

value of M  is chosen such that the RMS pixel-by-pixel error of the approximation is 

below a suitable threshold value. For face data sets it is found in practice th a t M  can 

be chosen such that M  L  and so this procedure leads to the desired dimensionality 

reduction. The resulting linear subspace preserves most of the scatter of the training 

set and thus permits face recognition to be performed effectively within it.

The matrices S and U  of Eqn. 3.4, being of size L x L, are large matrices and thus 

present computational difficulties in solving the eigenvector problem. In fact the rank 

of S can be no larger than iY -  1, and typically N  L, so most of the eigenvalues will 

be zero. This observation allows an alternative solution to the problem to be found as 

follows [77]. Firstly we note th a t the m atrix S can be represented as

S = T T ^  (3.6)

where

T  =  [xi -  m , . . . ,  xat -  m] (3.7)

is the mean-subtracted training set expressed as an L x matrix. If v  is any solution 

to the eigenvalue equation

T 'I'T v =  Av (3.8)
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with eigenvalue A, then pre-multiplying by T  gives T T ^ T v  =  S T v  =  ATv, so T v  is 

also an eigenvector of S. In this way the N  — 1 eigenvectors of S can be found as linear 

combinations of the training set vectors by solving Eqn. 3.8 and pre-multiplying each 

eigenvector solution by T . Since the m atrix T ^ T  is only of size N  x N , Eqn. 3.8 is a 

less computationally demanding problem to solve than Eqn. 3.4.

3.4 Linear Discriminant Analysis

The LDA algorithm operates as follows. Let il =  {wi , . . .  ,w&} be the complete set of 

class labels (personal identities) under consideration, these having prior probabilities 

P r (wf), and let the known class label of each training column vector Xg € T  be repre­

sented by the variable ts E D. The sample class covariance m atrix for each uji is defined 

as
1 ^

(Xm -  (3.9)
m=l

where Â i is the number of representatives of class w/ in T , /  (•) is the indicator function 

and m/ is the class mean column vector defined as

1 ^
~  ^  ^  {tm ~  ^ i)  X|77,. (3.10)

^  m=l

Fisher’s criterion is a scalar function Jp  : M that is defined, for an arbitrary

column vector u, as

where
C

Sb ^  ^  P r (loi) {mi -  m ) (m^ -  m)'^ (3.12)
=̂1

is known as the between-class covariance (or scatter) m atrix and

c
S w  =  ^ P r ( w / ) S /  (3.13)

/=1

is known as the within-class covariance (or scatter) matrix. The value of Jp  (u) is a 

measure of the effectiveness of direction u  in separating the classes from each other 

when all training vectors are projected onto this single dimension. The aim of the LDA
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method is to find a set of basis vectors {u^} that maximise the values of Jp  (ug), subject 

to the constraint that UgSwu,. =  <5gr which ensures th a t class-centralised vectors in the 

transformed space are uncorrelated. This leads to the generalised eigenvector problem

Sb U  =  S w U A  (3.14)

where A is a diagonal matrix of generalised eigenvalues and U  =  [ u i , . . . u l ]  is the 

desired projection matrix. As with PCA it can be assumed th a t the generalised eigen­

vectors have been re-ordered so that the generalised eigenvalues form a non-increasing 

sequence.

If S w  is non-singular then Eqn. 3.14 can be solved by pre-multiplying by Sw~^ and 

using standard eigenanalysis methods to solve the resulting eigenvalue equation

Sw “ ^Sb U  =  UA. (3.15)

Note, however, th a t the matrix Sw ~^Sb  is not symmetric so the resulting eigenvectors, 

although they form a basis of the projected feature space, are not orthogonal. Also 

note that the rank of Sb  is at most C — 1 so the feature space will have at most C — 1 

dimensions.

For face recognition problems this approach cannot be applied directly because there is 

usually insufficient training data, relative to the dimensionality of the training images. 

This means that the rank of S w , which is at most N  — C, is much less than the number 

of input features L. The solution proposed in [8] and also applied here, is to precede 

the LDA calculation by a PCA stage so as to transform to an intermediate space of 

dimensionality jY  — C. In this space S w  is non-singular and this allows Eqn. 3.15 to 

be solved.

Other variants of LDA have been proposed whicli take a different approach to solv­

ing this small sample size problem. For example, it has been observed [17, 84] that 

the null space^ of the within-class scatter m atrix is useful, from the point of view of 

discrimination between classes, because any variation within this space must be due 

solely to differences in face identity and not to extraneous factors such as changes in

*Thc mill space of a matrix A  is defined as the sub-space of vectors x  for which A x  =  0, that is 

the space of eigenvectors which have au associated eigenvalue of 0.
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Figure 3.4: Local binary pattern image production. Each non-border pixel is mapped 

as shown.

lighting conditions. Chen |17| has proposed a method in which only the null space is 

used (provided the within-class scatter matrix is singular). The approach taken by Yu 

184] is to first discard the null space of Sb (since this can contain no discriminatory 

information) and then to look for the most discriminating eigenvectors of a modified 

S w , giving priority to those with smaller (but not necessarily zero) eigenvalues.

Note that for 2-class problems the output feature space defined by Eqn. 3.15 is just 1 

dimensional so the LDA procedure described above leads to a particularly simple form 

in which a single unit vector Ci, the Fisher vector, is obtained such that projection of 

the input feature vectors in the direction of û  leads to maximal discrimination between 

the two classes. In this case û  is given by the equation

S w “  ̂ (mi  -  m 2 )u —
|Sw  ̂(mi-m2) II' (3.16)

3.5 2D Local Binary Patterns

The local binary pattern (LBP) operator is a powerful 2D texture descriptor which was 

first used in face recognition by Ahonen et al |2|. As illustrated in Fig. 3.4, the method 

associates each interior pixel of an intensity image with a binary code number in the 

range 0-256. This code number is generated by taking the surrounding pixels and, 

working in a clockwise direction from the top left hand corner, assigning a bit value 

of 0 where the neighbouring pixel intensity is less than that of the central pixel and 1 

otherwise. The concatenation of these bits produces an eight-digit binary code word
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which becomes the grey-scale value of the corresponding pixel in the transformed image. 

Fig. 3.4 shows a pixel being compared with its immediate neighbours. It is however 

also possible to compare a pixel with others which are separated by distances of two, 

three or more pixel widths, giving rise to a series of transformed images. Each such 

image is generated using a different radius for the circularly symmetric neighbourhood 

over which the LBP code is calculated. Another possible refinement is to obtain a finer 

angular resolution by using more than 8  bits in the code-word [50]. Note that the choice 

of the top left hand corner as a reference point is arbitrary and that different choices 

would lead to different LBP codes; valid comparisons can be made, however, provided 

th a t the same choice of reference point is made for all pixels in all images.

It is noted in [50] that in practice the m ajority of LBP codes consist of a concatenation 

of at most three consecutive sub-strings of Os and Is; this means th a t when the circular 

neighbourhood of the centre pixel is traversed, the result is either all Os, all Is or a 

starting point can be found which produces a sequence of Os followed by a sequence of 

Is. These codes are referred to as uniform patterns and, for an 8  bit code, there are 58 

possible values. Uniform patterns are most useful for texture discrimination purposes 

as they represent local micro-features such as bright spots, fiat spots and edges; non- 

uniform patterns tend to be a source of noise and can therefore usefully be mapped to 

a single common value.

In order to use LBP codes as a face comparison mechanism it is first necessary to sub­

divide a face image into a number of sub-windows and then compute the occurrence 

histograms of the LBP codes over these regions. These histograms can be combined 

to generate useful features, for example by concatenating them or by comparing corre­

sponding histograms from two images.

Li [41] has used AdaBoost [20] to select the best histogram bins from a large number of 

candidate histograms, each corresponding to a different sub-window size and position. 

This technique has been applied to a fusion of 2D intensity and 2.5D range data. Chan 

[16] has obtained good results on 2D images by averaging the distances between cor­

responding sub-windows in a non-overlapping rectangular tiling. For each sub-window 

the histograms a t multiple LBP scales are concatenated and LDA is used to reduce the



3.6. Support Vector Machines 41

dimensionality. Cosine distance is then used to compare corresponding sub-windows 

from two different images. In this thesis we adopt a modified form of this algorithm 

in which the LBP histograms from each non-overlapping sub-window are concatenated 

and a then a single LDA stage is performed.

3.6 Support Vector Machines

The support vector machine (SVM) concept is an increasingly popular tool for solving 

problems in pattern  recognition. As a classification method, it falls into the category 

known as discrim inant analysis [80]. Here the aim is not to directly model the class- 

conditional probability distributions p (x j w,) of a problem, but rather to find a decision 

boundary that optimally separates two classes into different regions of feature space. 

Once such a boundary has been determined, a probe vector x  can be assigned to a 

class by determining on which side of the boundary it falls. Compared with other 

discriminant analysis methods, such as neural networks, the SVM approach has the 

advantages that that it is based on sound theoretical principles, it produces a single 

globally optimal solution, it is less susceptible to “curse of dimensionality” problems 

and is thus less prone to overfitting.

An introductory tutorial on SVMs, which includes some example applications, can be 

found in [28] and a more detailed tutorial on their operation is given in Burges [14]. In 

this section we present without proof a brief overview of the main principles of SVMs.

The general aim in the SVM approach is to find a discrim inant function f  : R that

optimally separates two classes by mapping members of one class to positive values and 

members of the other class to negative values. The function is chosen from a restricted 

family of functions whose capacity is limited in accordance with the amount of available 

training data  [28]. Here the term  capacity comes from Vapnik-Chervonenkis theory and 

refers to the maximum number of points in a given feature space th a t can be partitioned 

into two classes in all possible ways. If the capacity is not limited in this way then any 

pair of classes can be fully separated. This leads to overfitting on the training set and 

consequently to poor generalisation performance.
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Figure 3.5: An example linear SVM for a 2-dimensional feature space in which the two 

classes coi and wg are linearly separable. The support vectors are shown as shaded.

In the simplest scenario for SVM application the two target classes and wg are linearly 

separable, that is there exist hyper planes in the feature space such that all the training 

examples for lie on one side and those for wg lie on the other side. In this case it is 

reasonable to restrict the family of decision surfaces to the set of all possible hyper planes 

and to look for the one which acliieves optimal separation of the two classes. This give 

rise to the class of SVMs known as linear SVMs, an example of which is illustrated in 

Fig. 3.5.

The optimal separating hyperplane is the one for which the margin (that is the sum of 

the shortest distances from the hyperplane to the nearest examples of classes and 

wg) is maximised. To solve this problem we must look for a minimal length vector w 

and scalar value b such that the set of constraints

/ ( x s )  >  + 1  fo r  ts =  + 1  

f  (Xs) < - 1  fo r  ts = - 1

(3.17)

(3.18)
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is satisfied for 1 <  z < iV. Here 6  T  is any training-set column vector and

/ ( x s ) = x J w  +  5 (3.19)

is the discriminant function of the linear SVM; the values of j|w]| and b are scaled 

so that /  (xg) =  ± 1  for members of wi and Wg that are closest to the separating 

hyper plane. Such closest points are known as support vectors and they lie on the two 

parallel hyperplanes labelled -t-1 and —1 in Fig. 3.5; the optimal separating hyperplane, 

for which /  (x )  =  0 , is also shown in this diagram and labelled 0 .

Using the method of Lagrange multipliers [4] to solve this optimisation problem leads 

to the primal form of the objective function

I ^  ^
Lp =  -  l|w^|| -  ^  ci'ĝ g (x jw  -b 6 ) +  ^  CKg (3.20)

3 =  1 3 =  1

where cts > 0 are undetermined multipliers, one for each training point. L p  must

be minimised with respect to w  and b whilst simultaneously requiring that the its

derivatives with respect to all the ctg vanish.

This is a convex quadratic programming problem and it can be solved [14] by maximising 

the dual form of the objective function

N  1 ^  ■

Lp, =  ^  a'g -  -  ^  agQ'pigipxJxp. (3.21)2
3 = 1  S , p = l

subject to the constraints

and

a a > 0  (T 2 ^

N

=  0  (3.%%
3 =  1

This has a unique solution for {a-g} which can be used to obtain the required value for 

w through the equation
N

vv =  ^   ̂cl'gitgXg. (3.24)

The support vectors are those for which a-g > 0 with the rest being zero. Hence, as

expected, the value of w is determined only by the support vectors and other training

points have no influence on it. Once w  has been determined, the value of b can be
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Figure 3.6: An example linear SVM for a 2-dimensional feature space in which the two 

classes u-’i and ujo are not linearly separable. The support vectors are shown as shaded.

obtained by substitution into Eqn. 3.17 or 3.18 using any support vector, or, better, by 

averaging over all support vectors.

\ s  illustrated in Fig. 3.6, to extend the linear SVM algorithm to the non-separable 

case it must be modified to allow some data points to occur on the wrong side of the 

separating hyperplane. This is done by introducing slack variables s = 1 . . .  N  with

( , > 0

and relaxing the constraints 3.17 and 3.18 so that they become

/  (Xg) > +1 — fo r  ts = +1 (3.26)

/  (xg) < — 1 -f ĝ fo r  tg = —I. (3.27)

The only difference that this makes to the linear SVM algorithm is that a user-defined 

cost parameter G must be introduced to place an upper bound on the values of Qg. 

Thus, the constraints of Eqn. 3.22 are replaced by

G > Og > Ü. (3.28)
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This prevents the values of CKg growing without bound and allows a solution to be found. 

This solution gives rise to two types of support vector. The margin vectors are those 

for which 0 < oig <  G\ they lie on the hyperplanes defined by /  (x) =  ± 1  and have 

== 0 . Only those support vectors for which ckg =  G have non-zero values of the 

slack variables ^g. For these variables ^ > 1  implies that / (x g )  is in error because 

it has the incorrect sign for the data  point Xg, and ^  < 1  means that the point is 

classified correctly although it lies at a distance of less than 1 /  ||w || from the separating 

hyperplane.

If SVMs were restricted to linear decision boundaries then their usefulness would be 

severely limited. This is because, in practice, many datasets occupy non-linear manifolds 

in a feature space and so cannot be adequately partitioned using linear boundaries. 

Fortunately the method described above for linear SVMs can be readily extended to the 

problem of finding non-linear decision boundaries by making use of the “kernel trick”. 

This approach is based on the observation th a t it is only the scalar products of training 

vectors x^Xp that appear in the dual form of the objective function Ld of Eqn. 3.21 

and not their individual values. The scalar product term can be replaced, therefore, by

a suitable kernel function K  (xg,Xp) which represents the effect of using an associated

non-linear function (f) : to project Xg and Xp into a higher dimensional feature

space and then taking the scalar product within that space. The objective function to 

be maximised thus becomes

N  ̂ N
Ld — ^   ̂o-'g — ^  ] (XsCiptstpK (xg , Xp) (3 .29)

5 = 1  S ,p = l

where

K  (xg, Xp) =  (f) (xg)'^ (j) (x p ). (3.30)

For any probe vector x  the value of the discriminant function can be computed as

N

/  (x )  =  OistsK (xg , x ) + 6  (3 .31)
S  =  l

and the valne of b can be found as before by applying the constraint equations 3.25 

to 3.28 to the margin vectors. Note th a t the non-linear transformation (/){•) never has 

to be explicitly evaluated because it only appears in scalar products and these are
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determined by A '(•,•). This greatly increases the efficiency of calculations involving 

non-linear SVMs as it obviates the need to work with high dimensional vectors in the 

feature space

Ideally, a kernel function will have the property that there exists an associated function 

0  (•) and feature space dimension S  such that Eqn. 3.30 is satisfied for any pair of input 

vectors. A necessary and sufficient condition for this is th a t the kernel satisfies Mercer’s 

condition., which reciuires that

j  (x, y) 9 (x) 9  (y) dxdy > 0 (3.32)

for any function g : R for which f  g (x)^ dx  is finite. If Mercer’s condition is

not satisfied then there may exist training sets for which the training process does not 

converge to a unique optimum solution. In practical applications, this may not be a 

problem for realistic data sets and kernels that do not satisfy Mercer’s condition are 

sometimes found to be useful [10, 14].

A number of non-linear kernel functions have been explored for the application of SVMs 

to specific problems. In this thesis we make use of the Gaussian kernel for face recogni­

tion purposes and section 4 introduces two further SVM' kernels that are optimised to 

make use of angular separation between feature vectors, rather than Euclidean separa­

tion. The Gaussian kernel is defined by the equation

=  e æ p ^ - ^ | | x - y | |^ )

=  exp  2^  {Deuc (x, y))^^

where a  is an undetermined tuning parameter th a t determines the width of the kernel 

function. The value of cr, along with that of the cost parameter G, is typically deter­

mined by a method such as cross validation; this is discussed further in section 3.7. For 

the Gaussian kernel the associated function 0 (-) maps all vectors onto the unit sphere 

in an infinite dimensional space. Combining Eqns. 3.31 and 3.33 it can be seen that 

an SVM with Gaussian kernel is equivalent to a radial basis function (RBF) network 

representation of the discriminant function /  (x) but with the added advantage that the 

number and centres of the basis functions are determined automatically by the training 

data  114],
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Figure 3.7: Examples of uniform design patterns with (a) 13, (b) 9 and (c) 5 sample 

points.

3.7 SVM Parameter Optimisation

One practical problem which arises when training SVMs is th a t of how to choose an 

optimal, or near-optimal, set of param eters which gives the lowest generalisation error 

for the given data set. For example, the Koauss (', -) kernel function of Eqn. 3.33 

requires the selection of two parameters, namely the kernel width param eter cr and the 

cost param eter G. Such param eter selection can be performed by training a number 

of SVMs, with different combinations of param eter values, and noting which yields the 

lowest error. It is desirable to measure this error against an evaluation set S  which is 

different from the training set T  tha t is used in construction of the discriminant function 

of Eqn. 3.19, as otherwise overtraining on T  may result.

A commonly used method for choosing SVM parameters is to perform an exhaustive grid 

search; that is to examine all combinations of parameter values at given intervals over a 

given range. For each set of values an SVM is trained on T  and the classification error 

is measured on £. Whilst this method produces the desired result it is computationally 

expensive as time is wasted examining param eter combinations th a t are close to those 

which are known to be sub-optimal. A gradient descent method can also be used, 

however this suffers from the disadvantage that it can fall into a local minimum.

In the method of nested uniform design [29] a two-stage search strategy is adopted. The
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first stage consists of sampling the search space using a uniform design pattern. This 

achieves the best coverage for a fixed number of sample points. Fig. 3.7 illustrates three 

such patterns with 13, 9 and 5 sample points. Note th a t each individual param eter value 

is tried exactly once and that the sample points are approximately uniformly distributed 

on a disc which is concentric with the centre of the search space. In the second stage, 

the best sample point from the first search is made the centre of a new search space 

whose width and height are half that of the first space; any duplicate points are not 

evaluated again. The number of sample points in the two stages may differ and it is 

shown in [29] th a t 13 followed by 9 samples (giving 21 SVM evaluations in all after 

removal of the duplicate point) produce near-optimal results on a variety of data sets.

3.8 SVM Calibration

Although SVM-based classification techniques do not attem pt to directly model the 

class-conditional probability distributions of data within a feature space, it is shown 

later (see sections 7.1.3 and 7.2.3) th a t it is often desirable in practice to normalise the 

raw output from the discriminant function /  (x) of an SVM to obtain a value which is 

linearly related to the probabilities that the probe vector x  belongs to the positive or 

negative target classes. This process is referred to as calibration and is an important 

factor in the use of SVMs as base classifiers in an ensemble classifier (see section 3.9) 

where the outputs from many disparate SVMs must be combined on an equal footing 

to produce an overall classification decision.

In this section we consider three possible methods for calibrating SVM output values. 

All three methods rely on using a representative training set S  = ( x i , . . .  ,xg} to 

construct a calibration function ^ : R i-> [—1 , 1 ] where

p ( / ( x ) )  =  2 ^ ' ( x E n + ) - l  (3.34)

and P r (x 6  0 + ) is a probability estimate that vector x  belongs to the positive set. A 

classifier is said to be well calibrated if P r (x E H+) approaches the true probability 

P r (x €  n + ) as |<S| approaches infinity. In order to distinguish <S from the training set 

T  that was originally used to train the SVM, we refer to it as the calibration se t  S
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may usefully be regarded as the union of two disjoint subsets, and <S“ , consisting 

of training vectors which are members of and respectively. It is desirable that 

S  be different from T  as otherwise overtraining on T  may result and the probability 

estimates g { f { x ) )  may be unreliable. Note also th a t the nature of the SVM training 

algorithm, which is aimed at separating (most of) the positive examples from (most of) 

the negative examples should lead to the function g being monotonie in / .

The first method for classifier calibration to be considered is to use a Gaussian mixture 

model [80]. In this method /  (<S+) and f  (S~)  are modelled as Gaussian distributions 

with equal priors. Bayes rule is used to compute the probability value in Eqn. 3.34 as

=  - ------- , ----------^ ( ^ U W - ^ ) ) -------------------

exp (./• (x) -  m + )j +  ^  exp ( /  (x) -  m _ ) jj_
a+

where s+, s_, m + and m _ are the empirically derived standard deviation and mean 

values for the two distributions. TV̂ o disadvantages of this approach are that the as­

sumption of Gaussian class-conditional probabilities may not be justified and also that 

it may lead to a non-monotonic calibration function.

In P la tt’s sigm.oid fitting  algorithm [56] monotonicity is enforced by assuming th a t the 

probability curve has a sigmoid form

P r (x  € n+) =  i  +  e x p (A /(x )  +  B)

where A and B aie calibration parameters. To compute these parameters a maximum 

likelihood algorithm is used which minimises the negative log-likelihood error function

e{a, b)  = - J 2  (xp e n+) log (K  (x € n+)) + 1 (xp e n~) log (K  (x e n- )J  .

(3.37)

where I  {■) is the indicator function.

The third approach to classifier calibration to be considered is that of isotonic regres­

sion (IR) by the pair adjacent violators (PAV) algorithm [85]. This is a non-parametric 

method which is akin to constructing a histogram of S  with variable bin sizes, sub­

ject to the constraint that the histogram values are isotonic (i.e. monotonically non­

decreasing). The operation of the algorithm is illustrated in Fig. 3.8. The calibration
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Figure 3.8; Operation of the isotonic regression by pair-adjacent violators algorithm, 

(a) is the initial configuration, (b) shows the result of averaging the first pair of violators 

and (c) the result of averaging the second (and final) pair.

set is first sorted into ascending values of /  (xp) and initial values of P r (xp G 0+ ) are 

assigned as 0 or 1, depending on whether Xp belongs to 0 “ or 0+  respectively. The 

algorithm then repeatedly searches for pair-adjacent violators, that is pairs of values 

for which the calibration curve is non-isotonic, and replaces their calibrated values by 

the average of the current values. This process continues until P r (Xp E is fully 

isotonic. One advantage of isotonic regression over the sigmoid fitting algorithm is that 

it makes no assumptions about the form of the calibration curve (beyond the fact that 

it is monotonie) and thus can adapt to data sets for which the anti-symmetric sigmoid 

curve is not a good fit. The counter argument to this, however, is that isotonic regres­

sion does not include a method of régularisation and this could lead to overfitting on 

the calibration set with corresponding reduced accuracy on unseen data; this is likely 

to be particularly problematic when the calibration set is small.
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3.9 Classifier Ensembles

Face recognition, in common with most real-world pattern recognition applications, is 

inherently a multi-class problem. Many successful classification techniques, however, 

such as SVMs and neural networks, are better suited to solving 2-class problems, or 

dichotomies. A fruitful approach to overcoming this mismatch between the needs of 

applications and the capabilities of classifiers has been to re-cast multi-class problems 

as a collection of 2-class sub-problems. A separate base classifier is trained to solve 

each sub-problem and the outputs from the ensemble of base classifiers are combined to 

produce an overall classification decision. These base classifiers are sometimes referred 

to as dichotomisers because they discriminate between just two classes.

Several possible architectures for constructing such ensembles have been described in 

the literature; these include all-pairs [32] in which {C — 1 ) base classifiers are trained 

to distinguish between each pair of target classes, directed acyclic graph (DAG) methods 

[32] in which a binary tree of \ C  {C — 1 ) base classifiers is constructed, one-per-class 

(OPC) [32] in which C  base classifiers are trained to distinguish each class from the 

others, error-correcting output codes (ECOC) and binary hierarchical classifiers (BHC). 

In this thesis we evaluate the latter two methods with reference to face recognition.

Allwein [3] has proposed a general framework for describing these architectures; this 

consists of defining a C x  P  code matrix Z where P  is the number of base classifiers 

to be deployed in the ensemble. Each row Z.j is associated with a single target class uJi 

whilst each column V  is associated with a single base classifier Bj. The entries Z ij of 

the code m atrix are fixed at either 0, -4-1 or -1. A value of 0 indicates that Bj is not 

involved in discriminating members of class and, as a consequence, is not trained 

with examples from class w*. The -4-1 and —1 entries in column Z-̂  define two families 

of target classes; these are the positive set f i f  = j Zij =  -4-1 } and the negative set 

f l j  — {coi I Zij = —1}. Base classifier Bj is trained to distinguish between these two 

families by outputting a value o f + 1  and — 1 respectively when presented with examples 

from the positive and negative families.

As base classifiers, any 2-class classification algorithm may be used, for example multi­

layer perception neural networks or SVMs. In general a base classifier output pj (x)
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for an input vector x  will not be exactly ± 1  but rather it will be a “soft” value which 

is positive (or zero) for and negative for If required, such soft values can be 

hardened into definite decisions by applying the sign  (■) function. Alternatively, the soft 

base classifier outputs may be used directly; in this case, to facilitate a fair comparison 

between them, it may be necessary to calibrate the values so that they are related to 

the probabilities of class membership through Eqn. 3.34.

The operation of a classifier ensemble can be divided into two distinct stages. In the 

encoding stage each base classifier is applied to probe vector x  to produce a vector of 

base classifier output values y  (x) (where these may be the raw outputs or they may 

have been calibrated or discretised as described above). The decoding stage consists of 

applying some decoding procedure to y  (x) in order to malce a definite assignment of x  

to one of the target classes; here we denote this assignment by A  (x) G O. As discussed 

in the following sections, each specific ensemble architecture tends to lead to its own 

set of decoding procedures with different advantages and disadvantages.

3.9.1 Error-Correcting Output Code Ensembles

Inspired by error-correcting codes from communications theory, the method of error- 

correcting output code (ECOC) ensembles [18,19] is to repeatedly partition the complete 

family of target classes H into two sub-families QJ and and to construct a separate 

base classifier to handle each such partitioning. W ith this architecture, the code matrix 

contains no 0 entries because, in each column of Z, every target class is assigned 

to one or the other of the families ÜJ and O t. The only m andatory constraint on the 

code matrix is that each row Z{ of Z must be distinct from all other rows so that Z.j 

represents a unique set of base classifier target outputs th a t is specific to the associated 

target class w .̂ Beyond this requirement, there is flexibility in the choice of the number 

P  of base classifiers to be used in any application of ECOC ; the minimum number is 

given by logg C, however using more than this minimum is desirable as it introduces 

redundancy into the ensemble. This means that errors made by some classifiers can 

be compensated for by other classifiers which are not in error, leading to a correct 

classification decision by the ensemble as a whole. It is in this sense that the ensemble
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Class

Classifier Id.

1 2 3 4 5 6 7 8

A - 1 - 1 + 1 - 1 + 1 + 1 4-1 - 1

B + 1 + 1 - 1 - 1 + 1 - 1 4-1 - 1

C - 1 - 1 + 1 4-1 - 1 - 1 4-1 +  1

D - 1 - 1 - 1 + 1 + 1 - 1 - 1 4-1

E + 1 + 1 4-1 - 1 - 1 4-1 - 1 - 1

F - 1 -hi - 1 4-1 4-1 + 1 - 1 -1

Table 3.1: An example ECOC code matrix for a 6 -class classification task.

can be said to be error-correcting since it is analogous to transm itting a signal (class 

label) over a communications medium which adds noise (base classifier error) but from 

which the original signal can be recovered (ensemble decision). An example ECOC 

code matrix that uses eight base classifiers to discriminate between a set of six classes 

is shown in table 3.1.

In an ECOC ensemble, tolerance to base classifier errors is greatest when the rows of 

Z are chosen such that the minimum Hamming distance between any pair is as large 

as possible. Similarly diversity among base classifiers tends to be greatest when the 

columns of Z have maximal separation. In general, however, the construction of a code 

m atrix that has both these properties is an NP-complete problem so an approximate 

method may need to be employed. The Bose-Chaudury-Hocquenghem algorithm [73] 

produces good row separation but may not give optimal column separation. Randomly 

generated code matrices, with equal probability of -4-1 or — 1 in any position [3 3 ], tend 

to yield reasonable, though not optimal, row and column separation.

ECOC was introduced as a means of solving multi-class classification problems; that is, 

given an input feature vector x, the base classifier outputs are assembled into an output 

vector y  (x) and the objective is to make a decision as to which of the target classes is 

most probably indicated by y  (x). The method proposed in [19] is to base the decision 

on the Hamming distance between the output vector and the class codewords. The base 

classifier outputs are first discretised to ± 1  so that they each make a definite decision
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Feature Space ECOC Ensemble Target Classes

Figure 3.9: An illustration of the ECOC concept w ith the Hamming decoding procedure. 

Four classes are shown in the feature space; these are represented by circles, squares, 

triangles and crosses. The diagram shows a probe vector, indicated by a star, being 

correctly assigned to the circle class.
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as to whether the probe vector x  belongs to the positive or negative family of classes for 

that classifier. The class assignment y l(x ) is made to the class w, whose codeword Z{ 

is closest in Hamming distance to y  (x). Fig. 3.9 illustrates the operation of an ECOC 

ensemble using SVM base classifiers and the Hamming decoding method.

The Hamming method is computationally efficient but it depends for its success on the 

m ajority of base classifiers making accurate individual decisions; it takes no account of 

different levels of confidence which these decisions may warrant. Other methods, such 

as using M anhattan distances between y  (x) and or probabilistic methods, have 

been proposed [72] to overcome these drawbacks.

An alternative to using the class codeword as an idealised class tem plate is to compare 

y  (x) with the actual outputs {y (x j) | t j  = w^} obtained on the gallery set for the z’th 

class [37]. In this approach the ECOC ensemble is viewed as performing a transforma­

tion from one feature space into a new feature space, possibly of higher dimension, in 

which there is better separation between classes; this concept is illustrated in Fig. 3.10. 

W ithin this new feature space any classification technique, such as nearest neighbour 

or using the smallest average distance to class samples, can be used.

One disadvantage of the the second decoding method is that it requires the storage 

of the base classifier outputs for each member of the gallery set and hence can be 

computationally demanding. Against this, however, it does not assume anything about 

individual base classifier accuracy, but rather relies on base classifiers giving consistent 

soft outputs when presented with members of a given class.

Another issue to be considered is that of correllation between base classifier outputs. Ide­

ally each base classifier would provide a statistically independent source of information 

about the class of a given probe vector. In practice however this ideal is unattainable 

and the errors made by base classifiers will tend to be correlated to some degree. The 

Hamming decoding method aims to use the error-correcting capability of the ensem­

ble as a whole to counteract the effects of any such correlation between individual base 

classifiers. The transformational decoding method, however, does not take advantage of 

de-correlation caused by error-correcting behaviour and, again, rests on the assumption 

that base classifier outputs will be consistent for a given class, regardless of whether
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Figure 3.10: An illustration of ECOC viewed as a method for transforming the feature 

space. The original feature vector is x. As indicated by the star, this is transformed into 

a point in a two-dimensional space using two base classifiers which give rise to output 

values '^1 (x) and %/2 (x). Corresponding gallery set feature vectors for four classes are 

shown; these are represented by circles, squares,- triangles arid crosses.
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they are correct in the Hamming sense.

3.9.2 Binary Hierarchical Classifier Ensembles

Another approach to constructing ensembles of 2-cIass classifiers to solve multi-class 

problems is that of Binary Hierarchical Classifiers (BHC). This method was first pro­

posed as a solution to the ground cover classification problem in remotely sensed hyper- 

spectral images [38, 39, 49]. In contrast to ECOC, in which no structure among classes 

is assumed, the BHC m ethod proceeds by repeatedly partitioning families of classes 

into pairs of smaller sub-families where each such sub-family consists of classes which 

are more similar to each other than they are to classes in the other family of the pair. 

This process leads naturally to the construction of a binary tree where the root node 

contains all target classes and the leaf nodes contain just one class each. This tree is 

used to construct an ensemble classifier by training a 2 -class base classifier for each 

internal node of the tree and combining the results from some or all of these classifiers 

to make an overall classification decision. Raj an [59] has shown that BHC can give 

comparable results to ECOC on problems other than satellite imaging, however these 

experiments were conducted on datasets with a relatively small number of classes (the 

maximum being 26) and features (the maximum being 64). The use of random forests 

[1 2 ] has also been proposed; in this method the results are combined from a number of 

trees constructed using different random subsets of features. Ham et. al. have shown 

[26] that this leads to an improvement in accuracy on hyper spectral data  classification.

Fig. 3.11 shows a simple example of a BHC tree with just six classes, labelled A- 

F. Note that the tree will not, in general, be balanced and also that, for reference 

purposes, each node is assigned a unique identification number. For unbalanced trees, 

these identification numbers do not necessarily form a dense set. Expressed in binary 

and read from left to right (ignoring the initial 1 bit), a node identification number 

indicates the path down from the root node, with 0  signifying that a left branch is 

taken and 1 a right branch.

The code m atrix for a BHC decomposition consists of C  rows, since there are C  classes 

in total, and 0 — 1 columns representing the number of internal nodes of the tree.
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Figure 3.11: The BHC concept. Each node represents a set of classes. Numbers to the 

left of the nodes are their unique identification numbers.
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Class

Classifier Id.

1 2 3 4 9

A - 1 - 1 0 - 1 0

B + 1 0 - 1 0 0

0 - 1 - 1 0 -t- 1 - 1

D - 1 - 1 0 + 1 + l

E -t- 1 0 + 1 0 0

F - 1 + 1 0 0 0

Table 3.2: The code m atrix for the example BHC tree shown in Fig. 3.11

Each column contains 0-valued entries for classes which are not on the path to the 

corresponding internal node, — 1 for members of the negative sub-family for that node 

and -t- 1  for members of the positive sub-family. An example code m atrix for the BHC 

tree of Fig. 3.11 is shown in Table 3.2.

It is im portant to the success of the BHC method that, as far as possible, the two families 

of classes represented by each node be easily distinguishable from one another. This is a 

problem in 2 -class clustering and, for this purpose, an algorithm based on deterministic 

annealing [61] is proposed in [39]. In section 7.2 we examine the performance of this 

algorithm on face data and compare it with the widely used 2 -means algorithm [80] (i.e. 

the k-means algorithm with k, the target number of clusters, being set to 2). Many 

other clustering algorithms have been described in the literature [80], for example the 

neural gas algorithm [58] has proved successful in several applications.

The aim of the clustering algorithm described in [39] is to find a partitioning of S7j, the 

family of classes represented at the j ’th  node, into left and right sub-families Q j  and f i t  

that maximises the Fisher discriminant Jp  (û) of Eqns. 3.11 and 3.16. It thus aims to 

achieve the twin purposes of finding a partition of f lj  that gives good separation between 

the two sub-families of classes whilst simultaneously finding a projection vector û  that 

can be used to construct a base classifier. Since clustering is inherently an NP complete 

problem the method uses deterministic annealing [61] to find an approximate solution. 

In contrast to the 2-means approach, the algorithm does not initially make definite
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assignments of each class w% to either Qj' or H t,  but rather associates each cui with both 

Q~ and 0 +  by means of the probability values P r ( q ~ [ and P r j (which 

sum to 1). Initially the value of just one of these probabilities is set to 1, thus making 

a definite assignment for one wp whilst all the remaining probabilities are set to 0.5. 

As the algorithm proceeds, these probabilities diverge from their initial settings and are 

gradually hardened, as a tem perature parameter is reduced, until definite assignments 

have been made for all w*.

Once clustering has been performed for the j ’th  node it is necessary to create a corre­

sponding base classifier. The method proposed in [39] is to project all feature vectors 

on to the Fisher vector û  and to use a Gaussian mixture model in this one-dimensional 

space. Evidence presented in [59], however, shows that, for data  other than hyper- 

spectral images, greater accuracy can be achieved by training an SVM in the general 

feature space.

Two strategies are described in [39] for decoding the outputs y  (x) from a BHC ensemble. 

In the BHG-hard decoding method the tree is descended, starting at the root node, and 

the j ’th base classifier makes a definite decision as to which of the two families UJ 

or f i t  the vector x  belongs. Depending on this decision, the left or right sub-node 

(labelled as node 2j or 2j -f 1) respectively is examined next. This process is repeated 

until a terminal node jVf. is reached; the probe vector is then assigned to the class 

C {J\fk) represented by th a t node. The main disadvantage of this method is that base 

classifier errors tend to be magnified because a classification error at any stage will 

lead to an overall misclassification (contrast this with the error-correcting approach of 

ECOC which aims to recover from a such errors). Unless the base classifiers are very 

accurate, therefore, the BHC-hard algorithm may lead to a large ensemble error.

In the BHC-soft decoding method each base classifier is assumed to be capable of 

generating posterior probabilities P r ( c  (x) € f i j^  and P r ( c  (x) € f i ^ ^  For each leaf 

node Mk these probabilities are multiplied together, on the path  from the root node to 

jVk to obtain a posterior probability that C (x) is equal to C (A4), the class represented 

by the leaf node. The probe vector is then assigned to the class with the largest posterior 

probability. Since this algorithm uses soft outputs it is more forgiving of base classifier
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errors than BHC-Hard, however ensemble accuracy still depends on the ability of the 

base classifiers to generate good probability estimates.

Note that for face verification, where it is only necessary to compare a probe image with 

a single claimed identity, a score can be computed by following the path  from the root 

node to a single leaf node. For both decoding rules this is a computationally efficient

0  (log C)  process as it involves evaluating, on average, only logg C  classifiers. For rank

1 identification problems the BHC-Hard decoding rule still has O (log C)  complexity, 

however the BHC-Soft decoding rule has O (C) complexity since it requires all C  — 1 

base classifiers to be evaluated so that the class with the highest probability can be 

found.

3.10 Summary

An essential first step in most face recognition systems is to register the images so that 

the facial features occur at the same geometrical location in all cases. In this thesis we 

assume the availability of manual landmarks for this purpose. When dealing with 3D 

face scans, we also adopt the method of dense non-rigid 3D face registration using a 

morphable model to obtain a standard representation of the source data.

A variety of techniques have been explored for carrying out illumination normalisation 

on 2D images and here we make use of homomorphic filtering and histogram equalisa­

tion.

PGA is an unsupervised technique which finds an orthonormal basis of eigenfaces, with 

the basis eigenfaces being arranged in decreasing order of training set scatter. Dimen­

sionality reduction is accomplished, in a way which preserves most of the variance of 

the data  distribution, by projecting each face image vector onto this basis and then 

discarding the later components which make only a small contribution to this variance. 

The exact set of components to discard is determined by requiring the mean square 

error to be below a pre-defined threshold.

LDA is a supervised algorithm which finds a discriminative (non-orthogonal) basis of 

Fisherfaces by maximising the ratio of between-class scatter to within-class scatter.
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LDA is often preceded by a PCA stage in order to reduce the dimensionality of the 

input vectors and thus avoid singular within-class scatter matrices.

LBP is a powerful 2D and 2.5D texture description algorithm which has proved to be 

effective in face recognition applications. The approach used in this thesis is to concate­

nate LBP histograms at several scales from the different regions in a non-overlapping 

rectangular tiling of the image; LDA is then applied to reduce the dimensionality and 

improve class separation.

SVMs are a principled way of constructing classifiers for 2-class problems. The method 

consists of finding a hyperplane that maximises the margin of separation between the 

two classes. Non-linear decision surfaces can be accommodated by using a kernel func­

tion, such as the Gaussian kernel, to project the data into a higher dimensional feature 

space in which an appropriate linear decision boundary can be found. The method 

of nested uniform design is an efficient search strategy for finding near-optimal sets of 

SVM parameters. Gaussian mixture modelling, P la tt’s sigmoid fitting algorithm and 

isotonic regression are three ways in which SVM outputs can be calibrated so that they 

are linearly related to class membership probabilities.

Multi-class face classification problems can be handled by constructing ensembles of 

2 -class classifiers and then applying a suitable decoding procedure to the outputs from 

the ensemble so as to reach a classification decision. Two possible architectures for such 

ensembles are ECOG and BHG. The first of these consists of repeatedly partitioning 

the set of all face identities into two families of approximately equal size; in the second 

method the set of all face identities is recursively subdivided to construct a binary 

classification tree. Decoding of ECOG outputs may be done either by measuring the 

distance from the target codeword for a given class or by adopting a nearest neighbour 

approach based on the outputs obtained on the gallery set. BHG decoding may be 

accomplished by making a definite decision at each node until a leaf node is reached; 

alternatively, the product of the soft outputs from the root node to a given leaf node 

may be used as a similarity score for the class represented by that leaf node.
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A ngularisation M ethods

In this thesis we are primarily concerned with data  sets for which angular separation 

is more discriminative than other metrics such as Euclidean separation. It has been 

noted in section 2.4, and is further shown by the experimental results of chapter 6 , 

tha t a collection of mean-subtracted face images is an example of such a data set. A 

central theme of this thesis is that classifier performance can be improved by non-linearly 

mapping a data set of this kind into a new feature space in which the Euclidean or other 

metrics are placed on a par with angular separation. The generic name we give to this 

process is angularisation and in this section we propose two SVM kernel functions which 

incorporate angularisation into their construction. We begin by defining two general 

transformations which may be applied to any feature space and then show the Gaussian 

SVM kernel may be adapted to make use of these transformations without an explicit 

feature space transformation stage.

4.1 Explicit Implementations of Angularisation

The first proposed implementation of an explicit angularisation transformation consists 

of applying the vector transformation ang : t—> which is defined as

ang (x) — 180
9 0  arccos tt—;

7T X
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, i =  1...M  (4.1)
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Thus, if y  =  ang (x) then yi G [-90,90) is equal to 90 -  6i where 6i G [0,180] is the 

principal angle in degrees between x  and the ith. coordinate axis of the original feature 

space. Note that 90 — 9i is used, rather than 9i itself, in order to avoid introducing 

an unnecessary change of sign, or displacement of the data  components. The ang (•) 

transformation collapses any ray emanating from the origin down to a single point; it 

preserves the angular separation between two vectors but not the Euclidean distance. 

It has the desirable property that points which are close together in the angular sense 

are mapped to points which are close together in the Euclidean sense and vice versa.

One disadvantage of ang (•), from an analytical point of view, is th a t a simple equation 

cannot express the precise relationship between the original angular separation of two 

vectors and their corresponding Euclidean separation after transformation. For this rea­

son we also investigate an alternative method of achieving the same objective, which is 

to map feature vectors to the unit sphere by rescaling them to unit length. Accordingly, 

we introduce the vector transformation sp/i : where

sp/i(x) =  | j ^ .  (4.2)

This transformation has similar properties to ang {•) and also has the benefit that we 

can derive the equation

j|spfi(x) -  sph (y)|| =  D euc (spfi(x), sph (y)) =  2 sin ^9  (x, y) (4,3)

which relates the angle between two feature vectors to their transformed Euclidean 

separation. The value of D e ^c (sp/i(x), sph (y))lies in the range [0,2 ]; it takes the value 

0 for parallel vectors and 2 for anti-parallel ones. By making use of the trigonometric 

identity cos 9 =  1 -  2 sin^ |  it can also be shown that this distance is closely related to 

the cosine distance Dcos (', ') of Eqn. 2.8 as follows^;

D euc ( s # ( x ) , sph (y)) =  y^2Dcos (x, y). (4.4)

' This equation may appear to be suspect from a dimensional analysis point of view. The right hand 

side is dimensiouless but the left hand side is a distance measurement. On closer inspection, however, 

the left hand side can also be seen to be dimensiouless due to the presence of the sp li{ ')  function. This 

means that any change of distance measurement units would leave the right hand side numerically 

unchanged.
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4.2 Angularised SVM Kernels

The transformations ang {■) and sph{-) are applied as a separate stage of processing, 

independently of any particular classification technique. Our main objective in this 

research, however, is to investigate ways by which SVM classifiers can make use of 

angularisation implicitly without the need for a separate feature space transformation. 

We approach this problem by looking at how the Euclidean distance measure that is 

used in the formulation of the Gaussian kernel (see Eqn. 3.33) can be replaced by 

angle-based measures.

The first proposal for angularising the Gaussian kernel is modelled on the ang (•) trans­

formation and it makes use of the arccos (■, -)  ̂ function to measure the angular separa­

tion between vectors. The kernel function is defined as

Ka n s i ^ , y )  = ® p ( - S ^ a r e c o s ,p |§ i , )

= exp (-^^ong(x,y)).

Note that, since Kang (-, •) is able to directly incorporate the angular separation between 

pairs of feature vectors without the need for a separate calculation of Euclidean distance, 

the effect of this approach is m athematically dift'erent to that obtained by applying the 

a?ig (•) transformation followed by a Gaussian kernel SVM.

The second proposal is based on rescaling feature vectors to unit length and the kernel 

function is defined as

Ksph (x, y) - e x p  M  ~  M  )

=  exp ( ^ - ^ D c o s  ( x , y

(4.6)

where <j\ = a j  \ / 2  is an undetermined tuning parameter and the second formulation 

follows from Eqn. 4.4. In effect this m ethod incorporates the sph(-) function directly 

into the kernel and is, therefore, mathematically equivalent to applying the sph{-)  

transformation followed by an SVM with a Gaussian kernel.

^To be completely consistent with the Gaussian kernel the definition of the angular kernel would 

use arccos^ in its formulation rather than arccos. In section 6.3 we refer to this as the Kangi  (•, •) kernel 

and show that the proposed Kang {•, •) definition yields slightly better performance, particularly on face 

identification problems.
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4.3 Mercer Properties of SVM kernels

As noted in section 3.6, a desirable property of SVM kernels is that they satisfy the 

Mercer condition. This ensures that there exists a unique global optimum to which the 

SVM algorithm converges for all training sets. In this section we show that the two 

kernels Kang {'■>■) and Ksj^h (-, -) do possess the Mercer property.

First we state without proof some standard properties of Mercer kernels [6 8 ]. Let 

K i  : X E^^ —> E be a Mercer kernel, p : E  t-» E  be a polynomial (or convergent

infinite series) with positive coefficients, <p : w  E^^ and a G E+. Then the following

functions are all Mercer kernels:

1. K  (x ,y ) =  al<i (x ,y ).

2. K  (x , y) =  I<i {(j) ( x ) , (j) (y)).

3. A  (x ,y ) =  p (A i (x ,y )).

4. K  (x, y) =  exp (x, y))

5. AGa«ss(x,y) of Eqn. 3.33.

6 . K  (x, y) =  X • y, i.e. the inner product of the two vectors is a Mercer kernel.

To prove that the kernel Kang (-, -) is a Mercer kernel we first note that the Taylor series

expansion for the arcsin(-) function

1 ^ 3  1 3 a 5  1 . 3 . 5 a ?
arcsiu a = Q. + 2 Y  + + . ■ ■

has only positive coefficients. It follows from rule 3 that, for any Mercer kernel K \  (x, y), 

the function arcsin (ATi (x ,y )) is also a Mercer kernel. By making use of the trigono­

metric identity
TT

arccos a  = — ~  arcsin a  

it can be seen from Eqn. 4.5 that

Kang (x, y) =  exp ( “  ̂ )  ^xp f  ̂  arcsiii
x || l|y||



4.4. Sum m ary  67

That this is a Mercer kernel follows from rules 1 and 4, noting that exp (—4^ )  >  0 and 

also that is a Mercer kernel by rules 2 and 6  with 0 (x) =  r r^ .

The result that Ksph (•> 0 of Eqn. 4.6 is a Mercer kernel follows from rules 5 and 2 w ith

=  M -

4.4 Summary

It has been noted in section 2.4 that angular separation has been found to be a useful 

measure of dissimilarity in face recognition applications. In this chapter two angularised 

SVM kernel functions, named Kang •) and Ksph (', '), have been defined that are based 

on adaptations of the Gaussian kernel. They replace the Euclidean distance measure, 

in the formulation of the Gaussian kernel, by alternative measures that ai'e based on 

angular separation. It has been shown that both Kang {•■,•) and Ksph{‘,') are Mercer 

kernels.

In addition to these kernel functions, we have also presented two general methods, 

named ang{-) and sp/i (-), for mapping a general vector space non-linearly into a new 

space in such a way that angular separation between feature vectors in the original 

space is related to Euclidean separation in the new space. In computing ang (x ), each 

coordinate Xi is mapped to a new value determined by the angle between x  and the z’th 

coordinate axis. The value of sph (x) is simply the unit vector in the direction of x. 

Use of these transformations allows any classification technique to be applied without 

it being explicitly based on angular separation.

In chapter 6 , experimental results are presented that show that the application of an­

gularisation to face-recognition problems can lead to improvements in classifier perfor­

mance.
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Chapter 5

Experimental Data

Chapters 6  to 8  present the results of experiments carried out using the face recognition 

techniques described in chapters 3 and 4. In this chapter we describe the data sets and 

protocols that were used in these experiments. W ith the exception of the synthetic data 

described below, these data sets are all publicly available. Any 2D colour images are 

converted to greyscale before use.

5.1 List of D ata Sets

X M 2V T S . This database is provided by the University of Surrey [44]. It contains 

8  colour images at a resolution of 720 x 576 pixels for each of 295 sub­

jects, taken under conditions of uniform illumination and neutral expression. 

Some examples of images from this data  set are shown in Fig. 5.1.

We use an experimental protocol known as the Lausanne protocol. Con­

figuration 1 . This divides the database into a training set of 200 clients, an 

evaluation set of the same 200 clients plus 25 impostors and a test set of the 

same 200 clients plus 70 additional impostors. For each client, 3 images are 

used in the training set, 3 in the evaluation set and 2 in the test set. For 

each impostor all 8  images are used in the evaluation or test set as appli­

cable. Verification tests, therefore, consist of 400 valid claims (one for each 

test-set client image) and 1 1 2 , 0 0 0  invalid claims (one per client per test-set

69
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QVW'SK'

Figure 5.1: Example images from the XM2VTS corpus after conversion to greyscale, 

geometric normalisation and rescaling to 120 x 142 pixels. Training images are shown 

in the top row, evaluation images in the middle row and test images in the bottom row.

Figure 5.2: Example images from the FRGC corpus after conversion to greyscale, geo­

metric normalisation and rescaling to 120 x 142 pixels. VI images are shown in the top 

row and v2  images in the bottom row.

impostor image). The 400 test-set client images are also used to perform 

closed-set identification experiments.

F R G C  ex p e rim e n t 3. The FRGC protocol [54] defines 6  experiments which are de­

signed to test various face recognition scenarios. Of these, experiment 3 is 

concerned with the combination of 2D and 3D information. It is divided 

into experiments 3t, 3s and 3; these use, respectively, the texture channel 

(i.e. 2D images), the shape channel (i.e. 2.5D range images or 3D scans) 

and the fusion of both.

The supplied database is divided into two parts. The version 1 (vl) data 

consists of up to 8  colour images and scans of 270 subjects taken under uni-
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Figure 5.3: Example range images from the FRGC corpus after cropping to 120 x 142

pixels. VI images are shown in the top row and v2 images in the bottom  row.

form illumination in frontal pose and with neutral expressions. The version 

2 (v2) data consists of up to 22 images and scans of each of 410 subjects 

taken under adverse illumination conditions in near frontal pose but with 

non-neutral expressions. The v2 images are split approximately evenly be­

tween the 270 v l subjects and 140 new ones. The images and scans were 

captured almost simultaneously using a Minolta Vivid 900 range scanner at 

a resolution of 640 x 480. Some examples of 2D images are shown in Fig. 

5.2 and examples of 2.5D range images are shown in Fig. 5.3.

A standard experimental protocol is defined in [54] whereby the FRGC vl 

data is used only for training and tuning a face recognition algorithm; once 

training has been performed the images are discarded and are not used as 

gallery templates in the subsequent tests. Instead, verification performance 

is evaluated by comparing subsets of the v2 data against each other. These 

subsets are labelled I, II and III and represent increasingly difficult face 

verification problems due to the increasing time lapse between probe and 

gallery images. Because of the difference in expressions and lighting condi­

tions between the v l and v2  data, the FRGC protocol is designed primarily 

as a test of algorithms that correct for illumination and expression variation. 

A baseline algorithm is supplied as part of the FRGC Basic Experimenta­

tion Environment (BEE); this uses PCA feature extraction with a whitened 

cosine similarity measure. A brief summary of the results obtained by the 

participants in the 2005 FRGC competition is given in [55]

F R G C v 2  2D im ages. Because this thesis is not targeted at investigating methods
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of illumination and expression correction, the full FRGC 2D and 3D data 

sets and protocols described above do not constitute an ideal test database. 

Instead, we wish to focus on the performance of classification algorithms and 

thus need to utilise a database in which the training set is representative of 

the same range of conditions as the test data. For this reason we define a new 

protocol in which the v l data is discarded and the uncontrolled FRGCv2 

images are divided randomly into five subsets in a manner similar to the 

Lausanne protocol for XM2VTS. These subsets consist of approximately 

800 records each for the training client set, the evaluation client set, the 

evaluation impostor set, the test client set and the test impostor set. This 

leads to a set of 236 client identities, 115 evaluation impostor identities and 

115 test impostor identities. Verification tests consist of 801 valid claims 

and 189,508 invalid claims. Identification tests are carried out using the 801 

test client records. Full details of the protocol are given in appendix A.

F R G C v 2  2.5D  ra n g e  im ages. To perform classification experiments using range im­

ages we similarly subdivide the FRGCv2 data. These scans are in one to 

one correspondence with the FRGCv2 2D images described in the previous 

paragraph and the same test protocol is used.

F R G C v 2  3D scans. These are full 3D scans which again are in one to one corre­

spondence with the FRGCv2 2D images and we again adopt the same test 

protocol. The use of identically structured FRGCv2 2D, 2.5D and 3D data 

sets allows comparisons to be made between the results of a face recognition 

algorithm for each of these modalities.

J A F F E  2D  im ages. The JA FFE  [43] database is utilised in order to ensure that the 

algorithms described in the thesis are tested on a wide variety of ethnic 

groups, includirig oriental faces. JA FFE contains 213 greyscale images of 10 

Japanese female subjects. These images were captured under uniform illu­

mination conditions but with seven different facial expressions per subject; 

these being happiness, sadness, surprise, anger, disgust, fear and neutral. 

Fig. 5.4 shows an example of each of these expressions.
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Figure 5.4: Example images from the JA FFE database after geometric normalisation 

and rescaling to 120 x 142 pixels.. From left to right these show angry, disgusted, fearful, 

happy, sad, surprised and neutral expressions.

Figure 5.5: An example image from the synthetic data set. These images are used in 

experiments that contrast the behaviour of classification algorithms on face and non-face 

data.

A test protocol similar to that used for the FR.GCv2 data set is employed. 

Accordingly, the data  is partitioned into 57 training client images, 57 valida­

tion client images, 21 validation impostor images, 56 test client images and 

22 test impostor images. This produces a set of 8  client identities, leaving 

1 subject each for the evaluation and test impostor identities. Verification 

tests thus consist of 56 valid claims and 176 invalid claims. Identification 

tests make use of the 56 test client images. Full details of the protocol are 

given in appendix A.

S y n th e tic  d a ta . In order to be able to compare the behaviour of classification al­

gorithms on both face and non-face data, a further synthetic image set 

is utilised in some of the experiments. This data set is modelled on the 

XM2VTS Configuration 1 Lausanne protocol in that it has the same num­

ber and arrangement of images. It differs, however, in that each image is 

an artificially generated noise pattern. Considered as a 2805 dimensional 

vector, the images belonging to each class are generated in such a way as to 

be normally distributed about the class centre, with the class centres being 

uniformly distributed through the available greyscale space. An example of 

a such a synthetic image is shown in Fig. 5.5.
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Figure 5.6; Example images from the UIUC vehicle database. The top row shows 

non-car data and the bottom row shows car data.

U IU C  vehicle im ages. Although the synthetic images described in the previous para­

graph constitute an example of non-face data, it is also worthwhile to ex­

amine the behaviour of classification algorithms on real world images which, 

though they do not represent faces, nevertheless posses some structure and 

regularity in a similar way to face images. For this purpose we make use 

of the UIUC database of vehicle images | 1 ]. This database was designed 

with multi-scale object detection algorithms in mind but here we are inter­

ested in the classification task and thus make use of just the training set of 

images; this results in an image database containing 550 car images, of ap­

proximately equal scale, and 500 non-car images. Some examples are shown 

in Fig. 5.6.

The experiments performed on this data set are aimed at solving the 2-class 

problem of determining whether a probe image does or does not contain a 

car. For this purpose we use a protocol that randomly partitions the data 

into training, evaluation and test sets of 350 images each, with approxi­

mately equal numbers of car and non-car images in each set. The concept 

of impostor images is not applicable to this data set. Full details of the 

protocol are given in appendix A.

5.2 Summary

The XM2VTS database provides a large set of 2D images captured under controlled 

illumination conditions with neutral expressions.

The FRGC Experiment 3 corpus is a large set of face image data which was simulta­
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neously captured using 2D, 2.5D and 3D modalities. The original purpose of this data  

was to provide a testbed for illumination and expression correction algorithms. Such 

algorithms are not the main focus of this work, however, and for most of the exper­

iments described in subsequent chapters we make use of a subset of the FRGC data. 

This subset is referred to as the version 2 data and consists of a large set of images and 

scans that were captured under uncontrolled illumination conditions and with varying 

facial expressions.

JA FFE is a fairly small database of 2D images of Japanese female faces which shows a 

fixed set of emotional expressions for each subject. It is included in order to test the 

algorithms described herein on oriental faces.

In addition to face images we also perform some experiments using randomly generated 

synthetic data  and the UIUC vehicle image database. In the latter case a subset of the 

images are used as a source of examples of car and non-car images.

A publicly defined standard test protocol, known as the Lausanne protocol Configura­

tion I, is adopted for XM2VTS experiments. In all other cases we define a protocol for 

the experiments which is modelled on the Lausanne protocol. In most cases this con­

sists of subdividing the available images into approximately equally sized sets of training 

clients, evaluation clients, evaluation impostors, test clients and test impostors. The 

exception is the UIUC vehicle image database in which the concept of impostors does 

not apply so we subdivide the images into training clients, evaluation clients and test 

clients only.



76 Chapter 5. Experimental Data



Chapter 6

Angularisation Experiments

In this chapter we investigate experimentally the benefits of applying the process of 

angularisation th a t was introduced in chapter 4. Section 6.1 begins the investigation by 

looking at the power of each of five metrics, used with and without angularisation, to 

distinguish intra-class differences from inter-class differences. This is done for different 

feature extraction scenarios so as to gain an understanding of the interplay between 

the distance metric used within a feature space and the feature extraction techniques 

th a t are used to construct it. Section 6 . 2  then demonstrates the effect of applying these 

techniques in practical face verification and identification experiments and shows how 

performance can be improved by the correct combination of angularised feature extrac­

tion algorithms. Finally, section 6.3 shows that these techniques are largely insensitive 

to the choice of algorithm by which angularisation is achieved.

In carrying out these experiments the following methods were used except where stated 

otherwise. Photometric normalisation of 2D images was performed using homomorphic 

filtering and histogram equalisation. LDA was accomplished by first using PCA to 

reduce the number of dimensions to a more manageable level whilst retaining 98% 

of the total training set variation. LDA was then applied to reduce the number of 

dimensions further to a value of C  — 1 , where C  is the number of distinct face identities 

in the training set; this is the largest number of dimensions that can be supported 

without the within-class scatter m atrix becoming singular. Angularisation was applied 

using and the ang {•) function (see Eqn. 4.1) to transform to a new feature space. To
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apply the LBP algorithm to 2D and 2.5D images, multi-scale 8 -bit uniform pattern 

occurrence histograms were computed over a 4 x 4 tiling of each image, with radii 

varying from 1 to 10 pixels. These were then concatenated and LDA was applied to 

the resulting 9440 dimensional vectors. This method is similar to that described in [16] 

except that LDA is performed in a single stage rather than per sub-window, thereby 

avoiding the need to carry out a fusion operation on multiple scores. ECOC code 

matrices with 510 columns were produced by using the Bose-Chaudury-Hocquenghem 

algorithm to generate a square m atrix and then selecting the best subm atrix with the 

required number of rows out of 1000 random trials. ECOC was then used as a means of 

projecting the d ata  into a 510-dimensional feature space, within which a distance metric 

could be used to compare feature vectors. SVMs with C aussi an radial basis function 

kernels, as defined in Eqn. 3.33, were used to implement the ECOC base classifiers. The 

method of nested uniform design, with 13 then 9 sample points, was used to optimise 

the parameters of each SVM on the appropriate evaluation set data. Isotonic regression 

by pair-adjacent violators was used to calibrate the SVM output scores. Verification 

and identification decisions were made by taking the mean distance between a probe 

vector in the final feature space and each member of the training set for the given client.

For 3D experiments the scans were first registered using the supplied manual landmarks 

and placed into dense correspondence with a morphable model as described in section 

3.1. For each scan, the (x^y^z) coordinates of the 2762 vertices were concatenated to 

form an 8286 dimensional feature vector. LDA feature extraction, angularisation and 

the construction of ECOC ensembles was then carried out as described above.

6.1 Separation Performance

This section presents the results of an investigation into the effectiveness of five different 

distance measures in separating intra-class variations from inter-class variations. We 

refer to this as the separation performance of the metric and begin in section 6 .1 .1  by 

defining the means by which it is measured.

Four of the metrics used, namely Euclidean, M anhattan, Mahalanobis and angular 

distance, have been already been defined in Eqns. 2.1, 2.2, 2.3 and 2.7 respectively. To
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these we add the radial distance pseudometric:

( x , y )  =  I | |x | i  -  llyll I , (6 .1 )

which measures the difference in magnitude between feature vectors. Although radial 

distance is not expected to be as discriminative as the other measures, it is nevertheless 

instructive to investigate its properties in order to gain an insight into the relative 

importance of the magnitude of feature vectors versus their angular separation.

6.1.1 Measurement of Separation Performance

In order to isolate the performance of a distance measure from other factors, we require 

a simple numerical statistic th a t is independent of the details of any particular classifier 

design or test protocol. For this purpose we use an empirical estimate of the single­

comparison Bayes error for a  G {Eue., M an, M ah, ang, rad], th a t results when 

each member of the test set Q (including both clients and impostors) is compared with 

each member of the training set T  using distance measure {■,■). The comparisons 

are categorised, based on the known class identities, as either intra- or inter-class. The 

Bayes error statistic lies in the range 0 to 0.5 and represents the degree of overlap 

between the posterior distributions for the two categories. It can thus be regarded 

as a measure of the ability of the distance measure to discriminate between natural 

variations within known classes and those caused by impostor attacks.

To calculate the empirical Bayes error the set of feature vector pairs T  x Q is partitioned 

into intra- and inter-class subsets and, for each subset, a frequency histogram of the 

distances between feature vectors is constructed. The required value is then given by

1 ^
(6 .2)

1 = 1

where P  is the total number of histogram bins (here fixed at 20) and Wi, Vi are re­

spectively the fraction of the intra-class samples and inter-class samples which fall into 

the z’th  histogram bin. Note that ^  Wi =  X) Id =  1 and that we impose equal prior 

probabilities for the two distributions.



80 Chapter 6. Angularisation Experiments

No processing

0.2

m

37.01%

Photometric normalisation

0.2
0.1

0 1 J 1

24.80%

Photo + LDA

21.49%

Photo + LDA + ang

6.94%

Photo + LDA + ang + ECOC
0.4

0.2
I I ■ ■ J! I  ■  I XL _# ■—Ël_.m

4.34%.

n n r
Photo + LBP + LDA

2.84%

Photo + LBP + LDA + ang

1.33%

■ I I I- ■ 1
Photo + LBP + LDA + ang + ECOC

1.08%

□ 0

Figure 6.1: Example distributions of Euclidean distances between greyscale images 

under different feature extraction techniques. The intra-class distribution is shown in 

black and the inter-class distribution in white. D ata is taken from the FRGCv2 2D 

corpus. Percentage Bayes errors are also shown.
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Figure 6.2; Example distributions of angular distances between 3D scans under differ­

ent feature extraction techniques. The intra-class distribution is shown in black and 

the inter-class distribution in white. The data  is taken from the FRGCv2 3D corpus. 

Percentage Bayes errors are also shown.



82 Chapter 6. Angularisation Experiments

Photo + LDA

38.99%

Photo + LDA + ang + ECOC

26.06%

Figure 6.3; Example distributions of radial distances between images under different 

feature extraction techniques. The intra-class distribution is shown in black and the 

inter-class distribution in white. D istributions for other processing methods are similar 

to those for LDA and are not shown. Only ECOC leads to a qualitatively different 

pattern, as illustrated by the bottom  graph. The data  is taken from the XM2VTS 

corpus. Percentage Bayes errors are also shown.

Fig. 6.1 shows some example Euclidean distributions for 2D data and Fig. 6.2 shows 

some example angulai’ distributions obtained on 3D data. These two figures illustrate 

the general pattern of the intra- and inter-class distributions which typify the distance 

metrics Dmo/i (•, •) and Dangi'r)-  The distributions fall nat­

urally into two families. The non-ECOC distributions can be seen to be uni-modal 

and approximately Gaussian in shape. The effect of applying ECOC is to polarise the 

differences between intra- and inter-class so th a t the distributions, particularly those 

for intra-class, become much more skewed. In both cases the effect of the techniques 

described in this thesis is generally to increase the separation and reduce the overlap 

between intra- and inter-class distributions.

As shown in Fig. 6.3, the typical pattern  for Drad {■-,•) is somewhat different. The 

non-ECOC distributions have a common mode of zero, with the intra-class distribution 

being distinguished from the inter-class distribution only by the fact that the former 

is concentrated over a narrower region, with a higher modal value but lower variance. 

When ECOC is applied, the distributions do become better separated, however a sig­

nificant proportion of inter-class scores still falls at or near to zero.
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Processing

Applied

Bayes Error Estimate { % ) Angle Range (degrees)

^  E u e ^  M  a n B h l a h B a n g B r a d intra-class inter-class

X M 2 V T S  2D

None 20 19 10 33 17-108 33-149

10 10 10 27 17-109 31-147

Photometric 13 11 8 31 20-101 35-127

9 8 9 29 23-104 33-126

Photo +  LDA 11 12 14 3.00 39 25-95 64-108

2.62 3.68 6 2.99 35 25-95 64-108

Photo +  LDA +  ECOC 2.63 2.78 2.40 33 0-27 15-32

2.18 2.08 1.98 26 0-91 36-101

Photo +  LBP +  LDA 5 5 8 2.33 39 29-93 65-107

2./17 2.82 3.58 2.33 46 29-92 62-107

Photo +  LBP +  LDA +  ECOC 1.42 1.44 1.44 26 0-87 33-103

1.35 1.41 1.46 24 0-89 32-100

Table 6.1: Bayes errors and angle range statistics for the XM2VTS 2D face images. 

For each feature extraction scenario, the top and bottom  rows show respectively the 

results obtained without and with application of the ang{-) transformation. Figures for 

Mahalanobis distance are om itted when the covariance m atrix is singular.

6.1.2 Separation Performance Experiments

Tables 6.1 to 6.5 show a list of empirical Bayes error estimates that were obtained on 

2D, 2.5D and 3D face d ata  bases when a range of feature extraction and enhancement 

techniques were applied. Fig. 6.4 also shows the same information in a more graphical 

form, however some of the effects are quite subtle and are not always obvious from the 

graphical information alone.

6.1 .2 .1  A ngular and radial separation  o f face im ages

A number of observations can be made about the statistics shown in Fig. 6.4 and 

tables 6.1 to 6.5. Firstly, we note that within the context of face-recognition using
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Figure 6.4: A comparison of the posterior Bayes errors made on face data using differ­

ent metrics in different feature extraction scenarios. For each metric the error made by 

using the unmodified metric is compared with that obtained using the angularised ver­

sion of the metric (achieved by application of the ang{-) transformation) and with the 

error resulting from using the angular separation metric itself. Mahalanobis distance is 

omitted when the covariance matrix is singular.
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Processing

Applied

Bayes Error Estimate { % ) Angle Range (degrees)

B  E u e B m  a n B m  a h B a n g B r a d intra-class inter-class

P R G C v 2  2D

None 37 39 33 47 9-148 5-158

33 35 34 46 10-148 5-159

Photometric 25 23 19 41 20-111 35-130

20 18 19 34 20-112 35-131

Photo -f LDA 21 24 31 8 40 27-98 57-113

7 10 20 8 30 27-99 57-114

Photo +  LDA +  ECOC 5 5 4 36 0-96 31-106

4 4 4 31 0-96 28-103

Photo +  LBP -f LDA 2.84 3.24 9 1.07 37 26-89 61-108

1.33 1.17 6 1.07 39 26-89 61-108

Photo +  LBP -i- LDA +  ECOC 1.02 1.37 1.14 26 0-90 21-104

1.08 1.03 0.97 26 0-88 22-101

Table 6.2: Bayes errors and angle range statistics for the FRGCv2 2D face images. 

For each feature extraction scenario, the top and bottom  rows show respectively the 

results obtained without and with application of the ang{-) transformation. Figures for 

Mahalanobis distance are omitted when the covariance m atrix is singular.
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Processing

Applied

Bayes Error Estimate { % ) Angle Range (degrees)

^ E u c a n a h B a n g B r a d intra-class inter-class

J A F F E  2D

None 20 19 17 33 12-104 42-140

17 17 17 34 12-104 42-138

Photometric 24 21 18 42 13-102 48-127

18 16 18 37 13-103 47-126

Plioto +  LDA 0.51 1.25 0.56 0.42 35 2-45 43-143

0.27 0.38 0.32 0.46 27 2-47 45-143

Photo + LDA +  ECOC 0.00 0.35 0.52 14 0-78 27-101

0.00 0.00 0.00 13 0-39 45-105

Plioto -1- LBP +  LDA 0.15 0.40 0.68 0.09 33 2-43 36-148

0.09 0.11 0.52 0.11 21 2-43 35-149

Photo -}- LBP -I- LDA +  ECOC 0.00 0.00 0.00 15 0-16 36-121

0.00 0.00 0.00 13 0-21 56-100

Table 6.3: Bayes errors and angle range statistics for the JA FFE 2D face images. 

For each feature extraction scenario, the top and bottom  rows show respectively the 

results obtained without and with application of the ang (•) transformation. Figures for 

Mahalanobis distance are omitted when the covariance m atrix is singular.
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Processing

Applied

Bayes Error Estim ate (%) Angle Range (degrees)

B e u c B m  a n B M a h B a n g B r a d intra-class inter-class

F R G C v 2  2 .5 D

None 25 21 21 39 18-112 24-132

21 19 21 36 18-112 24-132

LDA 16 20 26 10 43 28-93 36-119

10 12 21 10 44 28-92 35-120

LDA +  ECOC 10 6 6 40 2-94 16-105

7 6 6 37 0-97 7-102

LBP +  LDA 14 17 23 3.69 38 18-96 45-117

4.21 5.09 16 3.74 28 18-96 45-118

LBP +  LDA +  ECOC 1.91 2.03 1.87 30 0-91 24-104

2.00 1.91 1.78 27 0-92 8-102

Table 6.4: Bayes errors and angle range statistics for the FRGCv2 2.5D range images. 

For each feature extraction scenario, the top and bottom  rows show respectively the 

results obtained without and with application of the ang{>) transformation. Figures for 

Mahalanobis distance are om itted when the covariance m atrix is singular.

Processing Bayes Error Estimate (%) Angle Range (degrees)

Applied B e u c B  M  a n B M a h B a n g B r a d intra-class inter-class

F R G C v 2  3D

None 28 27 24 43 6-146 10-162

24 24 24 40 6-145 10-162

LDA 13 15 25 9 33 11-90 26-143

8 10 22 9 29 10-90 22-147

LDA -f- ECOC 1.45 1.84 1.45 30 0-90 13-105

1.27 1.58 1.34 29 0-93 11-106

Table 6.5: Bayes errors and angle range statistics for the FRGCv2 3D face scans. 

For each feature extraction scenario, the top and bottom  rows show respectively the 

results obtained without and with application of the ang (•) transformation. Figures for 

Mahalanobis distance are om itted when the covariance m atrix is singular.
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mean-subtracted images, the angular separation between feature vectors Dang bas 

much more discriminative power than the magnitude of the feature vectors Drad (', •)• 

Furthermore, the effectiveness of Dang (*>•) can be progressively increased by applying 

normalisation and feature extraction techniques, whereas the same is not true to any­

thing like the same extent for Drad (', •)• As an example of this, consider the FRGCv2 

2D data set where the angular Bayes error Bang fulls steadily from 33% on the raw data 

to 0.97% when photometric normalisation, LBP, LDA, ang (•) and ECOC are applied. 

Another example is the FRGCv2 3D data set where Bang similarly falls from 24% to 

1.34% with the application of LDA, ang{-) and ECOC. By contrast, the values for the 

radial Bayes error Brad for the same data  sets only fall from 47% to 26% and from 43% 

to 29% respectively. Whilst this does represent an improvement, it is not sufficiently 

great to make D ^ d  {'■,') & useful measure of dissimilarity in itself. It thus appears that 

variability in the magnitude of feature vectors is at best only a weak source of discrim­

inative information (the possibility of using D ^ d  (-, -) in combination with Dang (', ') is 

discussed in section 9.2).

An explanation as to why this should be the case is suggested by Fig. 6.5 which shows 

the effect of artificially rescaling a selection of mean-subtracted face images in the radial 

direction. Rescaling by a factor greater than one produces a higher contrast image with 

exaggerated facial features whilst rescaling by a factor of less than one produces a 

blander, lower contrast version of the image. Neither of these operations, however, lead 

to a change in the basic character of the face - the shape of the nose, distance between 

the eyes, the presence or absence of facial hair etc., nor do they produce a change in 

the spatial relationship between the facial features. This strongly suggests that, if one 

considers a ray emanating from the mean image in any particular direction, then all the 

images which lie on that ray will belong to a unique individual and will not, for example, 

change from one identity to another as the distance from the mean is increased.

Inspection of the final two columns of Tables 6.1 to 6.5, which show the extreme values 

found in the angular intra- and inter-class distributions, also supports this assertion. 

It can be seen that the lowest inter-class angular separations between unprocessed face 

images or scans range from 5"̂  to 42°, w ith the lower figure occurring under the ad­

verse conditions of illumination and expression variation of the FRGCv2 2D data (fur-
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x4 x2 x1 xO.5 xO

Figure 6.5; A sample of face images whose distance from the mean face has been rescaled 

by varying amounts. The original image (or veridical) is column x l, the mean face is 

column xO and the anti-face is column x-1. Note that positive re-scaling does not change 

the basic character of the face and also that the anti-face does not resemble any real 

face.
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thermore, as discussed below, the minimum angular separation increases when feature 

extraction and enhancement techniques are applied). This empirical evidence again 

suggests that, except under conditions of extreme adversity, such, as very low or uneven 

illumination, the likelihood of finding two co-linear images of different subjects is small.

Although these considerations relate to the raw intensity image, as collected from the 

input sensor, columns Bang and Brad of Tables 6.1 to 6.5 indicate th a t they continue 

to apply even after post-processing by feature extraction techniques. Indeed, the main 

effect of these techniques, from a geometric point of view, is to greatly sharpen the 

angular sepaiation between different individuals, whilst having a much smaller effect on 

the radial separation.

The final two columns of Tables 6 .1  to 6.5 show th a t the effect of non-ECOC post­

processing techniques is also to concentrate the angular distributions over much nar­

rower ranges by increasing the minimum and reducing the maximum angular separation 

between images within each distribution. The process of angularisation does not have 

any significant effect on the angulai' distributions themselves, either in terms of the 

maximum spread of angular separations or on the Bang statistics. This is to be ex­

pected since the objective of angularisation is to preserve the angles between feature 

vectors whilst at the same time bringing other distance metrics into line with angular 

separation. Angularisation does however appear to slightly improve the Brad statistics.

Due to the non-linearity of the ECOC transformation, the effect on angular separation is 

somewhat different from other feature extraction methods as there is a strong tendency 

for the value to be mapped to either end of the intra- and inter-class distributions. This 

is because the nature of the SVM algorithm used in the ECOC base classifiers tends to 

force a definite class membership decision to be made, so that there is a bias towards 

the extreme values of ±1 being output. Fig. 6.2 illustrates this effect on feature vectors 

extracted from 3D face scans but it applies equally well to 2D and 2.5D images. For 

the intra-class distribution the polarisation that occurs under ECOC means th a t many 

pairs of images are mapped to co-linear vectors whilst inter-class pairs become sharply 

clustered around a large angular value.

The artificially rescaled images of Fig. 6.5 suggest that, for 2D images, the point
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Figure 6 .6 : Some examples of intra-class face image pairs with angular separation of 

more than 90° after photometric normalisation. Each image in the top row has the 

same subject identity as the corresponding image in the bottom  row.

in feature space that represents the anti-face to any actual face image is unlikely to 

represent a realistic face. This is because the greyscale intensity is inverted with respect 

to the original image and this gives rise to artifacts such as white nostrils, lips, glasses 

and facial hair. We would thus expect the conical region surrounding any anti-face to be 

sparsely populated in the face database. This is supported by the fact that the largest 

angular separation to be found for the 2D data of Tables 6.1 to 6.2 is 158° (again, 

the worst-case example is furnished by the FRGCv2 2D images), indicating that the 

smallest angular separation between any real face and any anti-face is 2 2 °.

It is perhaps a little surprising that two mean-subtracted image vectors of the same 

subject can be orthogonal to each other. Fig. 6 . 6  shows some examples of such pairs 

which are 90° or more apart. They suggest that the large angular separations can be 

explained by variations such as the presence or absence of glasses, whether the glasses are 

worn high or low on the nose, differences in facial expression and general misregistration 

errors.

6.1 .2 .2  E uclidean, M anhattan  and M ahalanobis separation

The Euclidean, M anhattan and Mahalanobis distances between any pair of points in 

a feature space is influenced by both the angular and the radial separation between 

the points. It is to be expected, therefore, that in the absence of angularisation, the 

effectiveness of these two metrics in discriminating between intra-class and inter-class 

differences, falls somewhere between those of the angular and radial dissimilarity mea-
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sures. Tables 6.1 to 6.5 and Fig. 6.4 show that this is indeed the case with, for example, 

the Bayes error on the XM2VTS data base after applying photometric normalisation 

and LDA being 11%, 12%, 14%, 3% and 39% respectively for the Euclidean, M anhattan, 

Mahalanobis, angular and radial dissimilarity measures. When LBP feature extraction 

is interposed before the LDA stage these figures fall to 5%, 5%, 8 %, 2 % and 39% but 

the relative ordering is preserved.

Tables 6.1 to 6.5 and Fig. 6.4 also clearly show that angularisation is effective in bringing 

the performance of D ehc (*, ■) and Av/an (•, ■) into line with that of Dang (-, with the 

Bayes error for the former dissimilaiity measures becoming similar to, and in some cases 

better than, that of the latter. An example of this can be seen in the figures for the 

FRGCv2 2D d ata  (see Table 6.2) after application of photometric normalisation and 

LDA; the value of Bang before and after angularisation is 8 % whereas B euc and BMan 

falls from 21% to 7% and 24% to 10% respectively. Again, the interposition of an LBP 

feature extraction stage greatly reduces the Bayes error rates but this does not alter the 

basic conclusion that the Euclidean and M anhattan metrics are further improved by 

angularisation, with reductions from 2.84% to 1.33% and 3.24% to 1.17% respectively 

being observed.

The Mahalanobis distance measure D müIi (", •) is also improved by angularisation, with 

BMah falling, for example, from 0.68% to 0.52% on the JA FFE database using photo­

metric normalisation together with LBP and LDA feature extraction. Generally speak­

ing, however, the separation performance of D mmi (-, -) is significantly worse than that 

of D euc{'^)  and DMan {■■,’) and also suffers from the disadvantage th a t it cannot be 

calculated when the number of feature-space dimensions exceeds the number of training 

samples.

The purpose of applying angulaiisation is to allow stronger classifiers to be brought 

to bear on the face recognition problem and here we have used an ECOC ensemble of 

SVMs in that role. T hat the strategy can be highly effective is evidenced, for example, 

by the Euclidean Bayes error rate on the FRGCv2 3D data set which falls from 13% 

with just LDA to 1.27% after the further application of ang{-) and ECOC. Other data 

sets show a similar trend, for example BMan on the XM2VTS database falls from 12%
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Figure 6.7: Intra-class (black) and inter-class (white) distributions for the synthetic 

data set.

Bayes Error Estimate (%) Angle Range (degrees)

Peuc Bm  an Bang Brad intra-class inter-class

17 15 27 6 30-92 30-150

Table 6 .6 : Empirical error and angle range statistics that result when the training set 

for synthetic data  is matched against the test set. Figures for Mahalanobis distance are 

om itted due to the singularity of the covariance matrix.

to 2.08% and the figure for JA FFE falls from 1.25% to 0%.

6 .1 .2 .3  N on-face im ages

The question arises as to whether the effectiveness of Dang i ', ') as a measure of dis­

similarity is a property of face data, or whether it is perhaps a general characteristic 

of high-dimensional data  sets. It may be conjectured, for example, th a t any data  set 

with sufficiently high dimensionality may be fitted to a hyper-ellipsoidal surface and 

that this would lead naturally to an angular dissimilarity measure. To investigate this 

an experiment similar to the raw data XM2VTS experiment was run, but using the 

synthetic image set described in chapter 5 instead of face images. The Bayes error es­

timates and intra/inter-class error distributions from this experiment are shown in Fig. 

6.7 and Table 6 . 6  respectively. It can be seen that these are quite different in character
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UlUC vehicle images
No processing IHIÎHiBHIIBÎR
Photometric normalisation 
Photo + LDA
Photo + LBP + LDA I I  I — —

Euclidean Manhattan Mahalanobis Radial

Key
Angular separation 
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Figure 6.8: A comparison of the posterior Bayes errors made by using different metrics 

in different feature extraction scenarios when applied to the UIUC vehicle data. For 

each metric the error made by using the unmodified metric is compared with that 

obtained using the angularised version of the metric (achieved by application of the 

anp{-) transformation) and the error from the angular separation metric itself. Figures 

for Mahalanobis distance are omitted when the covariance matrix is singular.

to those obtained on face data (as shown in Figs. 6.2 and 6.3 together with Tables 6.1 

to 6.5). In fact, for the synthetic data set, Drad (', -), with a Bayes error of 6%, is much 

more discriminative than Dang (••,•) for which the value is 27%. This counter example 

shows that the superiority of angular over radial as a dissimilarity measure is indeed a 

property of the face data itself, rather than being merely due to the high dimensionality 

of the data.

To further investigate the application of these distance measures to non-face data the 

same techniques were applied to the problem of determining the presence or absence 

of a vehicle in the UIUC images (since this is 2-class problem and hence has only one 

way of partitioning the classes, ECOC cannot be usefully applied). The results of this 

investigation are shown graphically in Fig. 6.8 and detailed statistics are given in Table

6.7.

The vehicle data  results fall into two distinct categories. On the raw, or photometrically 

normalised data, the Euclidean, M anhattan and angular metrics give very similar, and 

rather poor performance. Radial separation, however, yields the best separation perfor­

mance, particularly after the application of photometric normalisation where the Bayes 

error of 21% is close to half that of angular separation. Under these circumstances
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Processing Bayes Error Estimate (%) Angle Range (degrees)

Applied ^  E u e M a n I h t a h i ^ a n g ^ r a d intra-class inter-class

U IU C  v e h ic le  im a g es

None 38 38 39 29 22-139 49-130

39 39 39 26 22-138 49-13

Photometric normalisation 38 38 38 21 23-141 50-129

39 39 38 25 23-140 50-128

Photo + LDA 11 11 11 9 49 0-180 0-180

9 9 9 9 9 0-180 0-180

Photo + LBP + LDA 1.51 1.51 1.48 1.14 49 0-180 0-180

1.14 1.14 1.14 1.14 1.14 0-180 0-180

Table 6.7: Bayes errors and angle range statistics for vehicle images. For each feature 

extraction scenario, the top and bottom  rows show respectively the results obtained 

without and with application of the ang {■) transformation. Figures for Mahalanobis 

distance are omitted when the covariance matrix is singular.

angularisation is not beneficial.

When LDA is applied to the data, with or without LBP, the situation changes consider­

ably and angular separation becomes much more discriminative than radial separation. 

Euclidean, M anhattan and Mahalanobis distances are also greatly improved and tend 

to give results that are close to, but slightly worse than angular separation. Now angu­

larisation further improves the performance of these metrics, by up to 25%, and brings 

it up to the level of angular separation. This is illustrated by figure 6.9 which shows how 

angularisation greatly reduces the variance of the Euclidean distributions and the over­

lap between them. As expected angularisation has no effect on the angular separation 

metric itself.

It is also striking that, after the application of LDA and the ang {■) transformation, 

the separation performance of Dr ad becomes identical to that of the other metrics.

The reason for this is that LDA transforms to a feature space in which the vehicle and 

non-vehicle images form two diametrically opposite clusters which are tightly grouped
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Figure 6.9: Intra-class (black) and inter-class (white) distributions for the UIUC vehicle 

data  set after LBP -f LDA feature extraction. Where applicable, angularisation was 

accomplished by application of the ang(-) transformation.
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around a line passing through the origin. This is demonstrated by Fig. 6.9 which shows 

the angular, Euclidean and radial distributions for UIUC data with and without angu­

larisation. Angular separation for intra-class variation peaks very sharply at 0° whilst 

that for inter-class variation peaks similarly at 180®. In the absence of angularisation, 

distributions of radial distance follow a similar pattern to those observed with face data 

(see Fig. 6.3). Application of the ang{-) transformation, however, leads to the two 

clusters being projected into two different small regions of feature space and this in 

turn polarises the radial distance measure in the same way as angular separation.

It can thus be seen that when the vehicle image results are compared with those ob­

tained on face data, there are some similarities and some differences. Nevertheless, the 

broad conclusions are that, for both face and vehicle images, the feature extraction tech­

niques explored in this thesis of LBP, LDA and ECOC together lead to good angular 

separation and that the performance of non-angular metrics is improved by the process 

of angularisation.

6.2 Verification and Identification Experiments

The results of applying ECOC, with and without angularisation, to face recognition 

problems are shown in Fig. 6.10. For face verification this figure shows the receiver 

operating characteristics (ROC) curve and for closed-set face identification it shows the 

cumulative match curve (CMC). The former curve plots verification rate (VR) against 

false acceptance rate (FAR) as the acceptance threshold is varied. The latter curve 

plots the cumulative identification rate as the identification rank is increased. The term 

identification rank refers to the position of a face class in the list of all classes when 

they are arranged in decreasing order of likelihood of a match with a given probe image. 

Thus, rank 1 identification means that the true class is found to be the most likely class, 

or is in the first group of equally likely classes; rank 2 identification means that the true 

class is in second most likely group and so on. The cumulative match curve shows the 

results of summing these rank-n identification rates as the rank is increased.

As a baseline, nearest neighbour classification using a normalised correlation metric 

directly in the LDA space is also shown in Fig. 6.10. The processing applied in these
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and \\ithout angularisation. LBP feature extraction was first applied to 2D and 2.5D 

images. As a baseline, normalised correlation LDA results are also shown. JAFFE data 

is not shovim as all methods gave 100% accuracy.
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experiments was photometric normalisation (for 2D images), LBP feature extraction 

(for 2D and 2.5D data), LDA feature extraction, angularisation through the ang{-) 

transformation and ECOC with Gaussian kernel SVMs. This combination of techniques 

was selected as being the one that yields optimal results (a topic which is explored in 

more detail in chapter 7).

Note that there is some flexibility as to the order in which the above operations are 

applied, particularly with regard to the point at which the explicit angularisation step 

is performed. An im portant objective of this research, however, was to benchmark the 

performance of the SVM kernel functions Kang (', •) and Kgph (-, •) and compare it with 

explicit methods of angularisation when combined with a Gaussian kernel. In order 

to ensure a valid comparison, therefore, the ang (•) transformation always immediately 

precedes the point at which the ECOC ensemble of SVM base classifiers is trained.

It is apparent from Pig. 6.10 that the use of angularisation tends to have the desired 

effect of improving the performance of ECOC classifiers. Indeed, without angularisation, 

the performance of ECOC, particularly on the 2D images, is often comparable with that 

of LDA alone. After angularisation, however, ECOC tends to give the lowest error of the 

three methods; exceptions to this are the JA FFE data, where all methods gave 100% 

verification and identification accuracy, and the XM2VTS identification experiments 

where ECOC gave similar results with and without angularisation. The benefits of 

ECOC and angularised ECOC ai’e particularly marked on the 3D verification task where 

a three-fold improvement in verification ra te is observed at a FAR of 0.01%. The 

difference is less marked on the 3D identification task where angularised ECOC still 

significantly improves on LDA but, without angularisation, LDA outperforms ECOC 

(except for the rank 1 value).

6,3 Comparison of Angularisation M ethods

Chapter 4 described four different approaches to incorporating angular dissimilarity 

measures into the construction of strong classifiers such as ECOC ensembles. In the 

first two methods either the ang {•) or sph(-) transformation is applied separately and 

this is followed by an ECOC ensemble of SVM base classifiers which use the Kcauss
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kernel (see Eqn. 3.33). In the second two methods the ECOC ensemble is constructed 

directly from base classifiers which make use of the specialised SVM kernels Kang (•> ‘) 

or Ksph (-, •) (as defined in equations 4.5 and 4.6 respectively). The discussion so far in 

this chapter has assumed that angularisation is applied by means of a general ang (•) 

transformation that is independent of the details of classifier construction. In this 

section we compare this transformation with other methods of angularisation.

Fig. 6.11 shows the verification and identification performance on the XM2VTS, FRGCv2 

2D, 2.5D and 3D data sets. The processing applied in these experiments was photo­

metric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D data), 

LDA feature extraction, angularisation through the one of the four methods described 

above and ECOC with Gaussian kernel SVMs.

This figure suggests that, on the face verification task, there is no significant difference 

in performance between any of the proposed methods methods of angularisation, as 

all the curves lie very close to each other over the range of measurement. For face 

identification, all the performance curves are again very close to each other. There 

is, however, some evidence that, under the more adverse conditions of the FRGCv2 

2D, 2.5D and 3D data, the Kang (-, -) kernel tends to give a slightly higher recognition 

rates. Note that the proposed version of Kang {•■>•), as defined in Eqn. 4.5, tends to 

outperform Kang2  (-, •) in which the arccos^ function is used. As expected, the results 

from the sph{')  and Kgphi't •) methods were identical apart from very small rounding 

errors.

In conclusion, these experiments imply that the improvement to be gained from angu­

larisation is quite robust to the details of how it is accomplished. In the case of face 

identification using ensembles of SVMs, there is a slight preference for the use of the 

!<ang  ( kernel.

6.4 Summary

This chapter has compared the performance of five distance metrics in separating intra­

class from inter-class face differences. These are the Euclidean, M anhattan, Maha-
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function is used.
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lanobis, angular and radial distance metrics. To this end, the concept of the separation 

performance statistic was first defined as the overlap, or empirical Bayes error, that 

is measured between the intra-class and inter-class distributions for a given training 

and test set. It was shown experimentally that, when applied to face data, angular 

sepai’ation tends to have the best separation performance and radial separation the 

worst, with Euclidean, Manhattan and Mahalanobis being somewhere in between. It 

was further shown that the application of image enhancement and feature extraction 

techniques such as photometric normalisation, LBP, LDA and ECOC can considerably 

improve the separation performance of the first four of these metrics but that radial 

separation is not improved to any significant degree.

The application of angularisation was shown to be successful at bringing the separation 

performance of the Euclidean, Manhattan and, to some extent, the Mahalanobis metrics, 

into line with that of angular separation. The reasons for the success of angular, relative 

to radial, separation in face recognition were explored and it was shown, by experiments 

on synthetic data, that not all images have this property. Experiments with vehicle 

images, however, found that angularisation was again beneficial and imply that the 

method may be useful for a wider class of applications.

Angularisation allows classifiers to be constructed which, although not explicitly based 

on the angular separation metric, nevertheless capitalise on the improved discriminative 

capabilities of angular separation. It was demonstrated, using an ECOC ensemble of 

Gaussian kernel SVM classifiers, that the verification and identification accuracy of a 

general classifier can be enhanced by this method.

Finally, difierent methods of implementing angularisation, as defined in chapter 4, were 

compared. It was shown that all methods give broadly similar levels of accuracy, with 

the K a n g  (", ) kernel having a slight advantage in face identification problems. These 

findings imply that the benefits of angularisation are quite robust to the details of how 

it is adiieved.



Chapter 7

Ensemble Design for Face 

Recognition

Chapter 6 presented experimental results which demonstrated that, within the context 

of face recognition, the performance of a strong classifier can be enhanced by use of the 

angularisation process. This principle was illustrated by using an ECOC ensemble of 

SVM base classifiers.

In this chapter we look in more detail at the design choices that exist when constructing 

classifier ensembles. To this end we examine two possible approaches to their construc­

tion. These are the ECOC method, described in section 3.9.1, and the BHC algorithm 

which is described in section 3.9.2.

We begin in section 7.1 by looking at the ECOC approach in isolation and comparing 

the effectiveness of different SVM kernel and calibration algorithms and also looking at 

the effect of varying the ensemble size, using different code m atrix design strategies and 

different decoding procedures. Section 7.2 then presents a similar discussion of BHC 

design considerations; it looks at the choice of SVM kernel and calibration algorithms, 

BHC decoding method and the clustering algorithm used to construct the BHC hier­

archy. Finally, in section 7.3, the best results from ECOC are compared with those 

from BHC. Here experimental evidence is presented to show that, for face recognition 

purposes, ECOC is to be preferred to BHC and the reasons as to why this is the case

103
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are discussed.

7.1 ECOC Ensembles

In this section we study the performance characteristics of ECOC ensembles, as applied 

to face recognition problems.

7.1.1 Gaussian vs. linear SVM kernel

A comparison of the results of using Gaussian and linear SVM kernels as ECOC base 

classifiers is shown in Fig. 7.1. The processing applied in these experiments was photo­

metric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D data), 

LDA feature extraction, angularisation through the ang(-) transformation and ECOC. 

For the Gaussian kernels, near optimal pairs of the parameters G  and cr were found 

using the method of nested uniform design described in section 3.7. Linear kernels were 

found to be insensitive to the cost parameter and so fixed values of this param eter were 

used.

The implication of these experiments is that, under the relatively benign conditions 

represented by the XM2VTS data set, the linear kernel can perform as well as, or 

better than, the Gaussian Kernel. For example on XM2VTS the rank 3 identification 

rate achieved by the linear kernel is 100%, whereas the largest value attained by the 

Gaussian kernel is 99.5%. Under the more adverse conditions of the FRGCv2 2D, 2.5D 

and 3D data, however, the Gaussian kernel has a clear advantage over the linear one. 

This is particularly noticeable for 2D data set where illumination as well as expression 

variations contribute to the non-linearity of the decision surfaces. For the 2.5D and 3D 

data, where only expression variations exist, the difference in performance between the 

two kernels is less strong.

In summary, these experiments suggest that, under controlled conditions, the face man­

ifolds can be accurately delineated by a series of hyperplanes and the linear kernel 

performs well; under more noisy conditions, however, this breaks down and the ability 

of the Gaussian kernel to model non-linear decision surfaces renders it more successful.
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Figure 7.1: A comparison of Gaussian and linear kernels in ECOC SVM base classifiers.
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Figure 7.2: Variation in ECOC rank 1 closed-set identification error with different 

numbers of base classifiers. Values are shown for the Hamming decoding rule using 

Gaussian and linear base classifier SVM kernels. The dotted line indicates the total 

number of target classes.

7.1.2 Ensemble size

One advantage of the ECOC approach to constructing classifier ensembles is that the 

number of base classifiers can be varied to achieve a desired balance between accuracy 

and computational cost. In this section we examine how the performance characteristics 

of the ensemble are affected by the number of base classifiers used in the ensemble. 

Figs. 7.2 and 7.3 give a graphical representation of this information for identification 

and verification problems respectively, using both linear and Gaussian kernels. The 

processing applied in these experiments was photometric normalisation (for 2D images), 

LBP feature extraction (for 2D and 2.5D data), LDA feature extraction, angularisation 

through the ang{-) transformation and ECOC.

The general pattern, for both identification and verification problems, is that ensemble 

error reduces as the number of base classifiers increases until a point is reached where no 

appreciable improvement can be gained by the addition of more classifiers. The point
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Figure 7.3: Variation in ECOC verification equal error rate with different numbers of 

base classifiers. Values are shown for the Hamming decoding rule using Gaussian and 

linear base classifier SVM kernels. The dotted line indicates the total number of target 

classes.

a t which this happens varies depending on the data set and the type of SVM kernel in 

use. For Gaussian kernels it appears th a t about 1 to 1.5 times the number of target 

classes is sufficient to achieve optimal or near-optimal accuracy. For linear classifiers, 

however, about 2 to 2.5 times the number of target classes is needed before the error 

rate begins to stabilise.

These graphs also reinforce the general conclusion stated in section 7.1.1 th a t the Gaus­

sian kernel is a better fit for face recognition problems than the linear kernel. Using 

Gaussian classifiers, reasonable accuracy can be obtained with a relatively small number 

of base classifiers; for linear classifiers however, a small ensemble size leads to unaccept- 

ably high error rates. Furthermore, on the FRGCv2 2D and 3D data, even with a large 

number of base classifiers, the performance of the linear kernel is clearly inferior to that 

of the Gaussian one. On XM2VTS d ata  the results are different as, given a sufficient 

number of base classifiers, the performance of the linear kernel converges to th a t of the
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Gaussian one. We suggest that this is due to the fact that the XM2VTS data set, being 

much less noisy than the FRGC data, is more readily separated using linear decision 

boundaries.

7.1.3 SVM calibration procedures

As noted in section 3.8, when combining the outputs from several SVM base classifiers, 

it is beneficial to calibrate the SVM output values so that they are linearly related to the 

probability of membership of the positive and negative target sets. This ensures that 

base classifier outputs can be combined with one another on an equal basis. The results 

of applying four difierent calibration procedures are shown in Fig. 7.4. These are; no 

calibration, a Gaussian mixture model, P la tt’s sigmoid fitting algorithm and isotonic 

regression. The processing applied in these experiments was photometric normalisation 

(for 2D images), LBP feature extraction (for 2D and 2.5D data), LDA feature extraction, 

angularisation through the ang (•) transformation and ECOC with Gaussian kernels.

The benefits of applying calibration are immediately apparent from Fig. 7.4 since 

in all cases the curve for no calibration lies below the other curves, indicating lower 

verification and identification accuracy. For 2D and 2.5D data the sigmoid and isotonic 

regression methods give very similar results with no clear advantage to either. Gaussian 

mixture modelling appears not to capture the underlying probability distributions with 

the same level of accuracy and this leads to slightly worse performance than the other 

two methods. For 3D data  all three calibration methods give similar results on face 

verification, but with the sigmoid and Gaussian methods showing a slight advantage 

over isotonic regression on rank 2 and rank 3 face identification.

An illustration of the effect of applying the three calibration methods to a typical base 

classifier is shown in Fig. 7.5. This shows how the raw output from the SVM is mapped 

to a calibrated value which more accurately reflects the probability of membership of 

the positive and negative classes. It can be seen that effect of a calibration function is 

to both shift the position of the score of equal probability (i.e. the score which gives a 

calibrated output of zero) and to magnify the effect of small deviations from this score. 

Due to the discrete nature of the isotonic regression algorithm, the resulting calibration



7.1. ECOC Ensembles 109

ROC curves for XM2VTS CMC curves for XM2VTS

0) 0-995 

^  0.99
y

0.985

0.99
CC> 0.98

0.97
0.98.0-2.-4 4 6 82

ROC curves for FRGCv2 2D

0.98

>  0.96 Sigmoid
Gaussian
None

0.94

0.92
.-2 ,0.-4 10

ROC curves for FRGCv2 2.5D

0.95
cc
>  0.9

0.85

-2 .0,-4

ROC curves for FRGCv2 3D

0.95

cc>

0.85

0.8 -2
FAR

CMC curves for FRGCv2 2D

® 0.99
I
-  0.98

4 6 82

CMC curves for FRGCv2 2.5D

0.98

§
-o 0.96

0.94

4 6 82

CMC cun/es for FRGCv2 3D

0.99

I 0.98

0.97

0.96

0.95

4 6 82
FAR

Figure 7.4: A comparison of different methods for calibrating ECOC SVM base clasihers
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Figure 7.5: ECOC calibration graphs for a typical base classifier. The raw score is the 

value output by the SVM base classifier and the calibrated score is the modified value 

which is a more accurate refiection of class membership probability.

curve is discontinuous, whereas those generated by the Gaussian mixture modelling and 

sigmoid curve fitting methods are smooth.

7 .1 .4  D eco d in g  m eth o d s

Section 3.9.1 describes two different approaches to  using the output vector y  (x )  from 

an ECOC ensemble to generate a class distance score. The first of these is to take the 

codeword Zi as a template for class oji and to  measure the distance between y  (x )  and 

Zi. In the second approach the training data images under the ECOC transformation 

are used as class templates and a nearest neighbour strategy is employed.

In Fig. 7.6 these methods are compared. In producing these graphs the processing 

applied was photometric normalisation (for 2D images), LBP feature extraction (for 2D 

and 2.5D data), LDA feature extraction, angularisation through the ang (•) transfor­

mation and ECOC with Gaussian SVMs. For the nearest neighour method both the 

training and evaluation sets were used as a source of class examples and the Euclidean
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Figure 7.6: A comparison of different ECOC decoding procedures. ’NN’ is the nearest 

neighbour method, averaged over class templates. ’Codeword’ measures the M anhattan 

distance between probe and class codeword.
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metric was used to measure the distance between a probe vector and each example; 

these distances were then averaged to obtain an overall class distance score. For the 

codeword method the M anhattan distance between probe and class codeword was used.

It can be seen from Fig. 7.6 that, in all cases, the nearest neighbour method outperforms 

the class codeword method. The difference is particularly marked on the FRGCv2 2D 

data where the codeword method produces a verification error at an FAR of 0.01% that 

is 50% greater and a rank 1 identification error that is 3 times greater. This suggests 

that, for noisy data  of this kind, it is more reliable to base classification decisions on the 

actual training set classifier outputs, rather than the target outputs as represented by 

the codeword. The differences .between the two approaches are least pronounced under 

the controlled conditions of the XM2VTS data whilst the moderately noisy 2.5D and 

3D data give intermediate values.

7.1.5 Bose-Chaudury-Hocquenghem vs. random code matrix

When constructing ECOC code matrices it is desireable for the pairs of rows and 

columns to be maximally separated in terms of Hamming distance (see section 3.9.1). 

Fig. 7.7 compares the effect of using two different methods of constructing an ECOC 

code matrix. In the first of these the Bose-Chaudury-Hocquenghem algorithm is used to 

construct a rectangular binary code m atrix with optimal row separation. A sub-matrix 

with the required number of rows is then constructed by choosing the one with the 

best column sepai’ation from 1000 random trials. In the second approach 1000 random 

binary matrices are generated and the one with the best row and column separation 

is chosen. These two methods are comparable in the sense that they consume similar 

amounts of CPU resource. In producing these graphs the processing applied was photo­

metric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D data), 

LDA feature extraction, angularisation through the ang (•) transformation and ECOC 

with Gaussian SVMs.

It can be seen from Fig. 7.7 that that there is in fact very little difference in the 

performance of the two methods of code m atrix construction. Such differences as do 

exist, however, generally favour the Bose-Chaudury-Hocquenghem approach.
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Figure 7.7: A comparison of ECOC code m atrix generation methods. These are the 

Bose-Chaudury-Hocquenghem algorithm with random sub-selection of rows and the 

method of randomly generated matrices.
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7.2 BHC Ensembles

In this section we undertake an experimental investigation for BHC ensembles which is 

similar to that for ECOC described in section 7.1. The aim is to find the combination of 

decoding rules, feature extraction procedures and base classifier algorithms that leads 

to the optimal BHC performance.

7.2.1 Decoding methods

Section 3.9.2 describes two different approaches to using the output from a BHC en­

semble to generate a distance measure between an input vector x  and an arbitrary 

class u>i. The first of these methods is to descend the tree, from the root node to the 

terminal node corresponding to class Wj, and at each stage j  take a hardened decision 

as to whether x  is most probably indicative of the left branch QJ or the right branch 

Q f.  If all the decisions take the branch which leads to w, then x  is deemed to belong 

to class uj-i and the distance is 0. If any branch fails to meet this condition, however, 

then the distance between x  and the target class cui is 1. This method thus leads to a 

discrete distance measure which takes values from the set {0,1}. The second method is 

to regard the soft outputs from the base classifiers as measures of the probability that x  

belongs to ÜJ or Q tan d  to multiply these values on the path from the root node to the 

terminal node for w*. This is then subtracted from 1 to obtain a probabilistic distance 

measure in the range [0,1].

In Fig. 7.8 these methods are compared on the XM2VTS and FRGCv2 data sets. 

In producing these graphs the processing applied was photometric normalisation (for 

2D images), LBP feature extraction (for 2D and 2.5D data), LDA feature extraction, 

angularisation through the ang (•) transformation and BHC with Gaussian SVMs.

The main point to note from Fig. 7.8 is the unsuitability of the hard decoding method 

for face recognition applications. In face verification tasks it allows only two effective 

threshold settings; when the verification threshold is in the range [0,1) then a single 

pair of VR and FAR values is produced which corresponds to the set of probe images 

which exactly match the target class. When the threshold is set to 1 all claims are
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Figure 7.8: A comparison of BHC hard and soft decoding procedures.
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accepted so the values of VR and FAR are both 1; a situation which is of no practical 

value. By contrast, the soft decision method allows for a gradual transition from low 

VR and FAR values to high values, thereby allowing the threshold to be set to a level 

which gives an acceptable tradeoff between false acceptance and false rejection errors.

In the case of face identification, the hard decoding method gives lower rank 1 recogni­

tion rates than soft decoding on all the data sets examined. Hard decoding appears to 

give better performance on rank 2 rates and above but again this is of no practical use 

since it is achieved by equating every member of the face database and thus does not 

produce a small enough subset of candidate matches. As with verification, therefore, 

the graduated performance curve of soft decoding is more suitable for face identification 

applications.

7.2.2 Gaussian vs. linear SVM kernel

A comparison of the results of using Gaussian and linear SVM kernels as BHC base 

classifiers is shown in Fig. 7.9. The processing applied in these experiments was photo­

metric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D data), 

LDA feature extraction, angularisation through the ang(-) transformation and a BHC 

ensemble of SVMs. For the Gaussian kernels, near optimal pairs of gamma and cost 

parameters were found using the method of nested uniform design described in section

3.7. Linear kernels were found to be insensitive to the cost param eter and so fixed 

values were used.

It is apparent from these experiments that, for 2D, 2.5D and 3D data, the Gaussian 

kernel tends to perform better than the linear kernel on both verification and closed-set 

identification tasks. The difference is particularly marked on the 2D data. For 2.5D 

data  the linear kernel is only slightly less accurate on face verification and actually gives 

a slightly better rank 1 recognition rate with identical values for higher rankings. A 

similar picture is presented for 3D data where the rank 1 identification rates are equal 

but the linear kernel slightly lags the Gaussian kernel for higher identification rankings.
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7.2.3 SVM calibration procedure

As noted in section 3.8, when combining the outputs from several SVM base classifiers, 

it is generally beneficial to calibrate the SVM output values so that they are linearly 

related to the probability of membership of the positive and negative target sets. This 

ensures that base classifier outputs can be combined with one another on an equal 

footing. The results of applying four different calibration procedures are shown in Fig. 

7.10, These are: no calibration, a Gaussian mixture model, P la tt’s sigmoid fitting 

algorithm and isotonic regression. The processing applied in these experiments was 

photometric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D 

data), LDA feature extraction, angularisation through the ang (•) transformation and 

BHC with Gaussian kernels.

It is apparent from Fig. 7.10 that the benefits of applying calibration are less clear 

cut for BHC than for ECOC (see section 7.1.3) where all three calibration methods 

performed better than no calibration. By contrast, for BHC verification, only the sig­

moid method consistently outperforms no calibration whilst the Gaussian and isotonic 

regression methods give lower accuracy, particularly at low FAR values. For face identi­

fication, the uncalibrated rank 1 identification rate is equal to or better than the others 

in all experiments. Isotonic regression gives better results for the higher rankings but 

tends to give a lower rank 1 recognition rate. The sigmoid calibration method gives an 

identification performance which is similar the uncalibrated curve. Gaussian mixture 

modelling gives the worst performance of all the methods.

It is suggested that the reason for the different behaviour of these calibration methods, 

when compared with ECOC, is the great disparity in the size of training sets available 

for calibration, depending on the position of a node in the BHC tree. This is illustrated 

by Fig. 7.11 which shows the calibration curves for three different nodes. The first 

of these is the root node, for which a large number - typically hundreds - of examples 

is available. Secondly an intermediate node is shown which has a few dozen training 

examples. Finally, the bottom  row shows the calibration curves for a leaf node which 

has only around five to ten training examples; in this case, therefore, a continuous curve 

cannot be shown.
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Figure 7.11: BHC calibration graphs for different base classifiers. The top, middle and 

bottom rows show respectively calibration graphs for the root node, an intermediate 

node and a leaf node. The raw score is the value output by the SVM discriminant 

function and the calibrated score is the modified value which is a more accurate reflection 

of class membership probability.
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The top row of Fig. 7.11 is similar to the situation for ECOC base classifiers and there 

is sufficient data  for all three m ethods to work effectively. In the second row it can 

be seen that there is insufficient data for isotonic regression to be trained correctly 

since it has become a simple step function which, in effect, shifts the position of equal 

probability, but otherwise simply serves to convert soft outputs into hardened decisions. 

This behaviour is continued in the bottom  row but in this case the sample size is 

insufficent for any of the methods to produce a realistic calibration function. The 

success of the sigmoid method in the experiments of Pig. 7.10, however, suggests that it 

is the most successful in producing reasonable calibrated outputs; this may be attributed 

to the fact th a t it is the most heavily regularised of the three methods. These findings 

also illustrate the overfitting problems, alluded to in section 3.8, which can occur with 

isotonic regression when the callibration set is too small.

7.2.4 Clustering algorithm

An im portant aspect of the implementation of a BHC ensemble classifier is the clustering 

algorithm that is used at each node in the tree to partition a family of classes into a 

pair of sub-families. The method proposed in [39], which is described in section 7.2, is 

based on the use of a deterministic annealing algorithm; this gave good results for the 

problem of classifying hyper-spectral satellite image pixels into different types of ground 

cover. In this section we contrast the performance of deterministic annealing with that 

of the widely used 2-means clustering algorithm.

One aspect of this performance is whether the clustering algorithm produces balanced 

sub-families in the sense that, on average, the two clusters are of approximately equal 

size. This is a desirable property since it leads to approximately equal numbers of 

training samples for each target class. Fig. 7.12 shows the relationship between the 

cluster sizes produced by the two algorithms on the XM2VTS data  set and it can be 

seen that, from the point of view of cluster sizes, the deterministic annealing method is to 

be preferred to 2-means. In the former case the two clusters tend to be of approximately 

equal size whilst in the latter case there is often a large discrepancy between them, with 

one cluster being typically much larger than the other.
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Figure 7.12; Scatter plot of cluster sizes produced by two different BHC clustering 

algorithms on the XM2VTS data  set.

The distributions of base classifier errors for these two clustering algorithms, as mea­

sured on the XM2VTS test set, are shown in Fig. 7.13. It can be seen from this that 

both algorithms give rise to similar distributions, with the majority of classifiers be­

ing highly accurate, but with a long tail of base classifiers giving higher error rates. 

Notwithstanding the unbalanced cluster sizes, the 2-means algorithm appears to be 

slightly better than deterministic annealing in terms of base classifier error as it pro­

duces a higher number of base classifiers with zero error (75% vs. 65%) and also gives a 

lower mean base classifier error rate (2.8% vs. 3.6%). Against this, however, the range 

of error rates is higher for 2-means (0-50% vs. 0-25%), indicating that that the base 

classifiers may be a little more erratic in their generalisation performance.

These observations are reinforced by Fig. 7.14 which plots base classifier error as a 

function of jn^j, the size of family of classes which is partitioned by the j 't h  base 

classifier. This figure indicates that, for both clustering algorithms, the variance in base 

classifier error increases as \üj\  decreases; for small |Qj| the majority of base classifiers 

give a reasonable performance on the test set, but the number of poor performers 

becomes larger as jQj| approaches zero. The effect is more pronounced for the 2-means
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ferent BHC clustering algorithms.



124 Chapter 7. Ensemble Design for Face Recognition

2-means

I

50

40

30

20

10

0
0 50 100 150 200

Deterministic annealing

No. classes

O 00  -006 0
200

Figure 7.14: Scatter plot showing the variation in XM2VTS test-set base classifer error 

rates from two different BHC clustering algorithms as a function of the number of target 

classes.

algorithm than for deterministic annealing, perhaps as a result of the unbalanced cluster 

sizes. Note that the base classifier errror at the root node of the BHC tree (for which 

|Qj| is maximum) is around 10% in both cases. This figure limits the performance of 

the ensemble, particularly when the BHC-hard decision procedure is used, as errors 

accumulate on the path from the root node to a terminal node.

Finally, in order to determine which of the two clustering algorithms gives better ensem­

ble accuracy in face recognition applications, they were compared using the XM2VTS 

and FRGCv2 d ata  sets. The results of this comparison are shown in Fig. 7.15. It can 

be seen from this figure that, for both face verification and identification, the 2-means
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algorithm is consistently better than deterministic annealing. On the FRGC data sets 

the difference is quite small but it becomes more marked on the less noisy XM2VTS 

data.

The conclusion to be drawn from these experiments is that, despite the unbalanced 

cluster sizes, the 2-means clustering algorithm gives greater ensemble accuracy and is 

to be preferred to deterministic annealing for face recognition purposes. One possi­

ble reason for this is that in face recognition problems, unlike hyper-spectral remote 

sensing, the target classes do not form a natural hierardiy. In the latter problem, for 

example, pixels can be characterised as vegetation, rocks or water; vegetation can then 

be subdivided into upland and wetland and these in turn  can be classified as trees and 

grasses and so on. These natural groupings can be exploited by the BHC algorithm. 

For face recognition applications, however, such deeply nested natural groupings do not 

exist so that the subdivisions found by the clustering algorithms will tend to be rather 

arbitrary. This problem is exacerbated by the much larger number of face classes (i.e. 

one per face identity) leading to hundreds or thousands of target classes, rather than 

the dozen or so classes that exist in the land classification problem.

Another aspect of the deterministic annealing, but not the 2-means, clustering algo­

rithm is that it requires the input vector dimensions at each stage to be be reduced 

down to Cj -  1, where Cj  is the number of target classes at the j ’th  node. In the case 

of terminal nodes, for example, this means that the input vector must be reduced to a 

single dimension. For satellite images, the special features of the problem allow this to 

be achieved by merging adjacent spectral bands as these tend to be highly correlated. 

For face recognition applications, however, this approach is not applicable and an alter­

native, perhaps less successful, solution must be found. In these experiments we make 

use of the fact that LDA dimensions are ranked in decreasing order of discriminative 

power and discard all but the first Cj — 1 dimensions at each node.

7.3 ECOC vs. BHC

Sections 7.1 and 7.2 have examined in some detail the design considerations to be taken 

into account when constructing ECOC and BHC ensemble classifiers for face recognition
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applications. In each case a set of techniques has been proposed that leads to optimal 

performance. In this section we compare these two ensemble architectures and comment 

on their relative merits.

Fig. 7.16 shows the results of applying the ECOC and BHC algorithms to face verifica­

tion and identification problems. The processing applied in these experiments was pho­

tometric normalisation (for 2D images), LBP feature extraction (for 2D and 2.5D data), 

LDA feature extraction, angularisation through the ang{-) transformation and either 

ECOC or BHC with Caussian kernels. For ECOC, code matrices with 510 columns 

were constructed using the Bose-Chaudury-Hocquenghem method, the base-classifier 

outputs were callibrated using isotonic regression and the nearest neighbour decision 

rule was employed. For BHC, clustering was performed using the 2-means algorithm, 

the base-classifier outputs were calibrated using the sigmoid algorithm and the soft 

decoding rule was used.

It is immediately apparent from this figure that ECOC performs better than BHC in 

all the experimental scenarios examined. The difi’erences are most pronounced on the 

2D experiments where, for example, rank 1 recognition error rates from BHC are up to 

8 times greater than those from ECOC and false rejection rates at a FAR of 0.01% are 

up to 3 times greater. The differences on 2.5D and 3D data  are not quite so great but 

are nevertheless significant.

The previous sections have touched upon a number of reasons as to why the ECOC 

architecture should be more successful than BHC for face recognition purposes and 

these are summarised here. One of the main diff’erences is that the training task for all 

ECOC base classifiers is approximately equivalent in the sense that there exists a large 

training set that is evenly balanced between the positive and negative class families. 

For BHC ensembles, by contrast, both the size of the training set and the number of 

target classes is halved a t each step from a node to its left or right child node. For 

the lower nodes of the tree this leads to a reduced training set size and can also result 

in unbalanced sizes for the positive and negative training sets. This in turn can lead 

to problems of poor generalisation performance by the base classifiers and inaccuracies 

when attem pting to calibrate the base classifier output values so as to convert them to
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Figure 7.16: A comparison of ECOC and BHC ensemble classifiers.
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probability estimates.

A further problem with BHC, when compared with its use for hyperspectral satellite 

image analysis, is that the deterministic annealing clustering algorithm is less successful 

on face images. This is thought to be due to the fact that face images do not naturally 

form deep hierarchies and also the problems caused by the need to reduce the number 

of input dimensions in order to handle small training set sizes.

Finally, it should be noted th a t the number of base classifiers in an ECOC ensemble is 

variable and can be increased as necessary to achieve a lower classification error. In a 

BHC ensemble, by contrast, the number of base classifiers is fixed at C  — 1, where C  is 

the total number of target classes, and this places a limit on ensemble performance.

7.4 Summary

A number of factors need to be considered when constructing ensembles of SVM clas­

sifiers for face recognition applications and these choices can have a significant impact 

on the accuracy of the resulting classification decisions. In chapter 6 it was shown that 

angularisation, whether performed as a pre-processing stage or incorporated into the 

SVM kernel function, tends to improve ensemble performance. This chapter has looked 

at other aspects of the design of ECOC and BHC ensembles and has presented evidence 

for a number of conclusions.

Firstly it can be stated th a t the Gaussian kernel tends to outperform the linear kernel on 

both face verification and face identification tasks. The benefit of the Gaussian kernel 

is most pronounced on 2D images, especially when the face images are captured under 

uncontrolled conditions, and less so on 2.5D and 3D data. For ECOC ensembles, where 

the number of base classifiers can be varied, the Gaussian kernel is also less sensitive to 

the number of classifiers used in the ensemble and reasonable results can be achieved 

with a smaller number of base classifiers.

W hen combining base classifier outputs it is generally beneficial to apply a calibration 

algorithm. Three such algorithms have been examined, namely Gaussian mixture mod­

elling, isotonic regression and P la tt’s sigmoid fitting algorithm. The results of these
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experiments differ between ECOC and BHC ensembles. For ECOC the isotonic regres­

sion and sigmoid methods give approximately equal results which are generally better 

than those obtained from the Gaussian method. All three methods improve on no cal­

ibration. The picture that emerges when base classifier calibration is applied to BHC 

ensembles is more complex. For face verification, only the sigmoid algorithm shows a 

consistent improvement over uncalibrated results, particularly at low FAR values. The 

Gaussian and isotonic regression methods are actually counter productive. For face 

identification, however, the sigmoid method gives only comparable, and in some cases 

slightly worse results, than no calibration. Isotonic regression tends to give better results 

a t the higher rankings, but at the cost of lower rank 1 recognition rates. It is probable 

that the reason for this more variable performance, when compared with ECOC, is that 

a large range of training set sizes is encountered at different levels of the BHC tree and 

this means that there is insufficient data to construct accurate calibration curves for 

the lower nodes.

The decoding algorithm used can also make a difference to ensemble accuracy. W ith 

the ECOC architecture one possibility is to measure the distance of the vector of out­

put values from the codeword template for each class. For face recognition purposes, 

however, it appears that this method is not optimal and better results can be achieved 

using a nearest neighbour approach. It has been shown th a t the BHC-hard decoding 

method is unsuitable for face recognition applications since, for face verification, it does 

not allow sufficient flexibility in adjusting the tradeoff between false acceptance and 

false rejection errors and, for face identification, it does not allow for the extraction 

of a small group of candidate faces. Both these objections are overcome by using the 

BHC-soft decoding method.

Two methods for generating ECOC code matrices have been examined, namely ran­

domly generated matrices and sub-selection of rows from a Bose-Chaudury-Hocquenghem 

matrix. The latter method yields better row separation and this appears to lead to 

marginally better ensemble performance.

Evidence has been presented to show that, for BHC ensembles, the deterministic anneal­

ing clustering algorithm is less effective for face recognition than the 2-means algorithm.
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It is likely that this is a reflection of the fact th a t face images do not form deep natural 

hierarchies and also of the difficulty in progressively reducing the number of feature- 

space dimensions without sacrificing classification accuracy.

Finally, a comparison between the best attainable ECOC and BHC performance has 

shown that ECOC is greatly superior to BHC when applied to face recognition problems. 

This is attributed to the fact th a t ECOC allows more classifiers to be deployed to achieve 

greater accuracy and also the fact th a t ECOC produces large balanced training sets for 

each base classifier. By contrast, BHC necessitates a fixed number of classifiers and the 

training sets become smaller at the lower nodes of the tree. The latter fact can lead to 

problems of poor generalisation performance and difficulties in calibrating the outputs 

from some base classifiers. For face recognition applications BHC also suffers from the 

difficulties alluded to above, namely the non-hierarchical nature of the data  and the lack 

of an effective method for drastically reducing the number of feature-space dimensions.
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Chapter 8

Further Remarks

The previous two chapters have described respectively the advantages of applying the 

technique of angularisation in face recognition and the design decisions to be considered 

when constructing an ensemble classifier to solve face recognition problems. In this 

chapter we make a number of further observations which do not fall within the scope 

of those two themes.

8.1 The Benefits of LBP Feature Extraction

In the experiments described in the preceding chapters, multi-scale LBP feature ex­

traction has been applied to 2D and 2.5D images as a pre-processing step prior to 

dimensionality reduction by LDA. In this section we show why this is advantageous.

Some examples of 2D and 2.5D face images using different LBP radii are shown in 

Fig. 8.1. A comparison of the verification and identification results on the XM2VTS, 

FRGCv2 2D and 2.5D data sets with and without LBP is shown in Fig. 8.2. In 

both cases photometric normalisation (for 2D images) and LDA feature reduction was 

applied followed by an ECOC classifier using Gaussian kernel SVM base classifiers. The 

difference is that in one case LDA was applied to a concatenation of multi-scale LBP 

histograms and in the other case LDA was applied directly to the input data.

It is immediately apparent from Fig. 8.2 that the ability of LBP pre-processing to

133
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Figure 8.1: Examples of LBP processing applied to 2D and 2.5D images. The top row 

shows 2D images with the original (photometrically normalised) image on the left. The 

bottom row shows 2.5D range images with the original again shown on the left. In both 

cases LBP radii from 1 to 10 are shown.

extract discriminative texture features leads to a significant improvement in face recog­

nition accuracy. For face verification the benefit is greatest at low FAR values; for 

example, at 0.01% FAR verification accuracy on the FRGCv2 2.5D data is four times 

greater when LBP is used. Rank 1 identification rates also show a marked improve­

ment with, for example, a factor of eight improvement on the FRGCv2 2D images. The 

benefit of LBP is weakest, although still signficant, on the XM2VTS images, indicating 

perhaps that LBP is most useful under the less controlled conditions of the FRGC data.

8.2 Comparison of Image Modalities

In the preceeding chapters we have shown the results of various experiments using the 

2D, 2.5D and 3D modalities of the FRGCv2 data set. It of interest to compare the best 

results that were achieved on these different modalities, using the techniques described 

in this thesis, and to look at the effect of carrying out a fusion of all three of them.

Fig. 8.3 shows the verification and identification curves for the 2D, 2.5D and 3D 

FRGCv2 data. These curves were generated using photometric normalisation (for 2D 

images), LBP feature extraction (for 2D and 2.5D images), LDA feature extraction, 

angularisation through the arig{-) transformation and ECOC with Gaussian SVMs. 

The figure also shows the results of performing a fusion of 2D, 2.5D and 3D data; for 

comparison the 2D and 2.5D results are also shown without LBP feature extraction.
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Figure 8.2: ECOC classification on 2D and 2.5D images with and without LBP pre­

processing.



136 Chapter 8. Farther Remarks

ROC curves for FRGCv2 CMC curves for FRGCv2

0.9

0.8

5  0.7

0.6

0.5

0.4

10

Fusion
2D LBP + LDA 

2D LDA
2.5D LBP + LDA 

2.5D LDA 

3D LDA

0.95 >

I
5  0.85

10
FAR

10"

0.75 ■

FAR

Figure 8.3: A comparison of different face image modalities on the FRGCv2 data sets. 

Note that a n g  (•) and ECOC is applied in all cases.
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Inspection of Fig. 8.3 shows that, in the absence of LBP feature extraction, the 3D 

modality is considerably more discriminative than 2D which itself is significantly better 

than 2.5D. The application of LBP feature extraction to the latter two modalities, 

however, improves their performance to the extent that 2D is now more discriminative 

than 2.5D and 3D; the latter two modalities are now comparable in performance for 

face verification, whilst 3D still retains a small advantage on the identification task.

Also shown in Fig. 8.3 is the result of carrying out a fusion of all three modalities 

and it can be seen that this yields an even greater level of accuracy than 2D, w ith a 

verification rate of 97.0% at 0.01% FAR and a rank 1 recognition rate of 99.4%. The 

method adopted here is to apply decision level fusion by averaging the output scores 

from each of the three modalities. Although this is a simple approach it has been shown 

to give good results in face recognition applications [30, 35].

8.3 Benchmark Results

Table 8.1 shows the half total error rates (HTER) obtained using the XM2VTS Lausanne 

configuration I protocol when the validation set is used to select a threshold of equal false 

acceptance and false rejection error. These results bear out the claim th a t LDA, ECOC 

and angularised ECOC lead to a progressive improvement in verification accuracy and 

also that LBP feature extraction greatly improves on LDA alone. They also show that 

the angularised ECOC method, when used together with LBP and LDA, compai'es 

favourably with the best reported result in the ICB 2006 competition [45]^.

Table 8.2 shows the equal error rate (EER) values obtained on the FRGC face verifi­

cation experiments 3t, 3s and 3. As noted in chapter 5, the FRGC training set was 

captured under conditions of uniform illumination and neutral expression whilst the

^Tlie winning entry came from the Chinese Academy of Sciences. In their m ethod images were first 

photometrically normalised using region-based histogram equalisation. Gabor filters at 5 scales and 

8 orientations were then applied to produce feature vectors with 40 times the dimensionality of the 

original images. These high dimensional feature sets were then adaptively divided into sub-groups and 

LDA was used to train a classifier on each sub-group. The final classification decisions were made by 

combining the scores from these individual classifiers.
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Processing Evaluation set Test set

applied FAR PER HTER FAR FRR HTER

X M 2 V T S 2 D , n eu tr a l-n eu tra l

Photo +  LDA 4.00 4.00 4.00 4.12 1.50 2.81

Photo +  LDA +  ECOC 1.24 6.67 3.95 1.37 6.00 3.68

Piioto +  LDA +  ang +  ECOC 2.44 2.33 2.39 2.50 2.00 2.25

Photo -1- LBP LDA 0.99 1.00 1.00 0.96 0.75 0.86

Photo +  LBP +  LDA +  ECOC 0.37 0.33 0.35 0.29 1.00 0.65

Photo 4- LBP 4- LDA 4- ang 4- ECOC 0.22 0.33 0.28 0.20 0.75 0 .4 7

ICB 06 Best 0.80 0.80 0.80 0.96 0.00 0.48

Table 8.1: Percentage half-total error rates obtained on the XM2VTS database using 

the Lausanne configuation I protocol.

test set was obtained under adverse illumination and expression conditions. In this 

thesis we are not primarily concerned with the problem of correcting for illumination 

and expression variability in the test set versus the training set and these results reflect 

that fact. It was found on experiment 3t that the lowest verification error was obtained 

by disregarding the training set altogether and generating a similarity measure between 

probe and gallery images by taking the M anhattan distance between concatenated LBP 

histograms taken over 4 x 4  tilings of the images. Methods that rely on supervised 

learning to establish classifier parameters suffer from the problem of being overtrained 

on a non-representative data set and thus give lower performance. For this reason, the 

use of LDA and ECOC lead to a significant drop in performance. The interposition of 

an angularisation stage is able to bring the performance back somewhat, but only to a 

level that is comparable with the baseline algorithm. The BEE baseline algorithm itself 

suffers from the problem of overtraining and yields an EER value that is 45% worse 

than the untrained LBP histogram comparison method.

When the 2.5D modality is used in experiment 3s the problem of illumination variability 

is removed but noise due to expression variation in the test set remains an issue. Table

8.2 shows that, in this case, the use of supervised training is beneficial. This can be seen 

by comparing the results from the untrained LBP histogram comparison method with
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those obtained when LBP is followed by LDA. As with 2D data, however, no further 

improvement is to be gained by the additional application of ECOC techniques.

Experiment 3s with 3D scans gives much better results than those obtained using either 

2D or 2.5D data. Furthermore, progressive improvements are obtained by the appli­

cation of LDA, ECOC and angularisation. The performance of the latter algorithm 

improves on the BEE baseline figure for 3D by 27% and it is also 35% lower than the 

best figure obtained on the 2D data. These observations lead to the conclusions that 

not only is the 3D modality unaffected by illumination variation in the test set, but it 

is also more robust to the problem of expression variability than is the 2.5D modality.

The benefits of using a fusion of 2D and 3D information are also evident from Table 

8.2, which shows the effect of combining the best performing algorithms for 2D and 3D 

data by averaging their respective similarity scores. It can be seen th a t the combined 

error rate is 28% less than that based on 3D alone and is 53% less than that based on 

2D alone.

8.4 Summary

In this chapter experimental evidence has been presented to show that, for 2D and 2.5D 

face images, the application of multi-scale LBP feature extraction leads to a significant 

improvement in accuracy on both verification and identification problems. It is notewor­

thy that, when using similar algorithms (i.e. LDA, ang(-) and ECOC) the 3D modality 

gives greater accuracy than 2D which, in turn, is more accurate than 2.5D. W hen an 

LBP feature extraction stage is applied to the 2D and 2.5D modalities, however, their 

performance is improved so that 2.5D and 3D now give comparable results (with 3D 

being slightly more accurate on the face identification task) and both modalities are 

significantly outperformed by 2D.

A comparison with the best reported XM2VTS results show that the face verification 

algorithms described here are capable of delivering state of the art performance. When 

the standard FRGC Experiment 3 protocol is applied, however, the algorithms are 

adversely affected by the fact that they are not optimised to correct for illumination
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Processing applied Sub-experiment

I II III

E x p e r im e n t  3 t  (2 D  g re y sc a le  im a g es)

Photo +  LBP 9 .3 0 1 1 .95 1 3 .9 8

Photo +  LBP +  LDA 13.98 16.07 17.90

Photo + LBP + LDA +  ECOC 39.16 40.68 42.72

Photo +  LBP -|- LDA ang +  ECOC 19.97 22.08 24.10

BEE Baseline 17.03 21.08 24.80

E x p e r im e n t 3s (2 .5 D  ran ge im a g es)

LBP 18.68 20.81 22.74

LBP +  LDA 1 1 .0 6 12 .21 1 2 .9 8

LBP + LDA +  ECOC 11.06 12.21 12.98

LBP + LDA +  ang + ECOC 11.10 12.20 13.00

BEE Baseline 13.54 14.70 15.38

E x p e r im e n t 3s (3 D  scan s)

LDA 9.93 11.20 11.90

LDA +  ECOC 8.93 9.68 10.24

LDA +  ang +  ECOC 6 .0 9 6 .7 8 7 .1 8

BEE Baseline 8.33 8.80 9.30

E x p e r im e n t  3 (F u sion  o f  sh a p e  an d  t e x tu r e  ch a n n els)

(Photo 4 LBP) and (LDA 4- ang 4- ECOC) 4 .3 7 4 .9 4 5 .25

BEE Baseline 7.05 7.61 8.19

Table 8.2: Percentage EER results on FRGC experiment 3.
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and expression variability in the test set. Nevertheless, it has been demonstrated that 

the 3D modality is less affected by these problems than either the 2D or 2.5D modalities.

A fusion of image modalities has been shown to improve face recognition performance 

beyond that attainable by any single one of them.
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Chapter 9

Conclusions and Further Work

9,1 Summary and Conclusions

This thesis began by establishing the need for accurate methods of person authentication 

and identification using face biometrics. In this context, drawing on the results of 

experiments performed on databases of 2D greyscale images, 2.5D range images and 

3D facial scans, we summarise below the main contributions of this thesis and the 

conclusions to be drawn from this work:

• The separation performance experiments of section 6.1.2 show that, for centred 

face images, angular separation is a more discriminative measure of the dissim­

ilarity between two images than either Euclidean, M anhattan or Mahalanobis 

distance. This was previously known to be the case for 2D images and is the 

reason for the success of methods such as PCA with whitened cosine and LDA 

with normalised correlation. This work shows that it is also true for 2.5D range 

images and, perhaps surprisingly, for densely registered 3D scans. The experi­

ments also show th a t angular separation performs better than the other metrics 

over a wide range of feature extraction scenarios. These include using the raw 

data, photometrically normalised data  (for 2D images), and the feature vectors 

that result from the application of combinations LBP (for 2D and 2.5D images), 

LDA and ECOC. The implication of this is that good angular separation is a

143
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general property of face data and is not, among the methods described in this 

thesis, limited to any particular representation or feature extraction technique.

•  The separation performance experiments of section 6.1.2 also show that the mag­

nitude of feature vectors is only a weak source of information for discrimination 

between faces. The main reason for this is that radial movement in feature space, 

in contrast to angular movement, does not affect the arrangement and geometry 

of facial features and hence is of little relevance to the problem of distinguishing 

between the identities of two face images.

• In chapter 4 the concept of angularisation was introduced and we proposed two 

novel Mercer kernel functions, known as Kang {'■,') and (•,•)> by which an­

gularisation can be incorporated into the design of an SVM classifier. We also 

discussed two transformations, referred to as ang{-) and sp/i(-), by which a gen­

eral feature space may be mapped into one in which non-angular metrics such 

as Euclidean and M anhattan are approximately in correspondence with angular 

separation in the original space. The separation performance experiments of sec­

tion 6.1.2 show that angularisation is successful in improving the performance of 

the Euclidean, M anhattan and Mahalanobis metrics, with the results from the 

first two becoming comparable to angular separation. The experiments of section

6.3 also show th a t the results of applying angularisation are largely insensitive to 

the details of how it is accomplished since all four of the proposed methods give 

broadly similar results. There is, however, shown to be a slight advantage to using 

the Kang {'■>’) kernel in face identification applications.

• The vehicle image experiments of section 6.1.2.3 suggest that the above three ob­

servations apply to a wider range of image types than just face images. However 

experiments with synthetic data  show that they are not universally applicable 

to all images. It is, therefore, currently an open question as to what are the 

characteristics of images and data  sets which make angular separation more dis­

criminative than other commonly used distance metrics. This point is discussed 

further in section 9.2 below.

• The main objective in applying angularisation is to allow strong classifiers to be
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trained which, though they do not explicitly incorporate angular separation into 

their construction, can nevertheless benefit from its improved performance. For 

this purpose ECOC ensembles of Gaussian SVMs have been used, with the ayig (•) 

transformation being applied as a pre-processing stage. These experiments are 

described in section 6.2 and they show th a t angularisation does indeed improve 

verification and identification accuracy on 2D, 2.5D and 3D images, with the 

improvement being greatest on the noisier FRGC data.

• Chapter 7 presented a study of two approaches to constructing ensembles of SVMs 

for face recognition purposes, namely ECOC and BHC. It was shown that, for both 

methods, the Gaussian SVM kernel tends to outperform the linear kernel. ECOC 

can gain improved accuracy by deploying an increased number of base classifiers, 

whereas BHC entails the use of a fixed number of classifiers as dictated by the 

number of target classes. Base classifier calibration, either by isotonic regression 

or P la tt’s sigmoid fitting algorithm, improves ECOC performance on both verifi­

cation and identification tasks. For the BHC algorithm, however, only the sigmoid 

algorithm was beneficial for face verification and no calibration method was found 

to be beneficial for face identification. The best decoding procedures were found 

to be nearest neighbour for ECOC and the soft combination rule for BHC. When 

partitioning class families, the Bose-Chaudury-Hocquenghem algorithm was found 

to give slightly better results than  random assignment for ECOC whilst for BHC 

the 2-means clustering algorithm improved on deterministic annealing.

• As shown in section 7.3, in terms of overall ensemble classification performance 

ECOC was significantly better than BHC. This is a ttributed to problems caused 

by the progressively smaller training set sizes associated with the lower nodes of 

the BHC tree, together with the fact th a t face data may not form a deeply nested 

natural hierarchy as required by the BHC algorithm.

• In section 8.1 it was confirmed that, for 2D and 2.5D images, multi-scale LBP is 

an excellent feature extraction method. It was also shown in section 6.2 that the 

performance of this technique can be improved by the application of angularisation 

and ECOC.
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• It is sometimes stated [11] th a t 2.5D images or 3D scans are more reliable for face 

recognition than 2D images because the first two modalities overcome problems of 

illumination variation. The FRGC corpus is a good source of data  for comparing 

these modalities since all images are captured at the same time and thus with 

the same pose angles and facial expressions. The evidence of the experiments 

described in section 8.2 suggests that, under similar conditions, 3D is more reliable 

as a means of face recognition than 2D which in turn is more accurate than 2.5D. 

When the more advanced method of LBP feature extraction was applied to the 

latter two modalities, however, it was found that 2D gave the greatest accuracy 

and that 2.5D gave comparable performance to 3D using just LDA (with slightly 

worse performance on the face identification task). A fusion of all three modalities 

gave greater accuracy than any single one.

• It has been shown that the methods described in this thesis are capable of deliver­

ing state-of-the art classification results. For example in section 8.3 it was shown 

that the perfomance of these methods on the XM2VTS database under the Lau­

sanne Configuration I protocol was slightly better than that of the winning entry in 

the ICB 2006 competition[45]. These results were obtained using multi-scale LBP, 

LDA, angularisation and an ECOC ensemble of Gaussian SVMs, with isotonic re­

gression being used to calibrate the SVM outputs. The winning entry from the 

ICB 2006 competition employed Gabor filters to create a high-dimensional feature 

space and then trained multiple LDA-based classifiers on different feature subsets 

within that space.

It has also been shown that good results can also be obtained on the more chal­

lenging FRGCv2 data set in which the images are made harder to identify by 

the presence of illumination and expression variations. For example, figure 8.3 

in section 8.2 shows that a fusion of the 2D, 2.5D and 3D modalities yields a 

verification rate of 98.6% at an FAR 0.1%, together with a rank 1 recognition rate 

of 99.5%. For the reasons discussed in chapter 5 these experiments make use of a 

new protocol (see appendix A) and hence cannot be directly compared with other 

published FRGC results; they can, however, be taken as an indication of the kind 

of performance which can be achieved through these methods. As a rough guide
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for comparison, it is stated  in [55] that the best verification rate obtained in the 

2006 FRGC experiment 3 fusion competition was 97.0% at an FAR of 0.1% but 

no details are given of how this result was obtained. Kakadiaris et. al. [35] has 

since obtained a verification rate of 97.3% at an FAR of 0.1% on the 3D modality 

alone by using a fusion of Haar and pyramid wavelet transforms.

9.2 Further Work

The work described in this thesis could be extended in a number of ways:

• As stated in section 9.1, it is an open question as to the circumstances under 

which the angular separation metric outperforms others such as Euclidean, Man­

hattan  and Mahalanobis distance. This determines when it is beneficial to apply 

angularisation and when it is counterproductive. Angularisation has been shown 

to be of value for face recognition using three different representations and un­

der a range of feature extraction scenarios. It has also been shown to be of use 

when dealing with vehicle images, although the benefits were not as pronounced 

and they did not become apparent until after the application of LDA (with or 

without LBP), It seems a reasonable hypothesis that such angular methods will 

be of value when dealing with data, such as face images and scans, that have a 

regular and repeatable structure. The high dimensionality of the input data  may 

also be a factor. It would be useful to explore these ideas further with the aim 

of obtaining a more detailed characterisation of the circumstances under which 

angular methods are and are not beneficial in solving classification problems.

• It is clear from section 8.2 that the reason why the 2D and 3D modalities are able 

to equal or exceed the face recognition performance of 3D d ata  is that the method 

of LBP feature extraction is available in the first two cases. In the absence of LBP 

processing, 3D has been shown to be a much more discriminative modality than 

either 2D or 2.5D. A potentially fruitful research direction, therefore, would be to 

investigate methods by which the concept of LBP can be generalised to apply to 

densely registered 3D face models. One possible way of achieving this would be
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to consider the tangent plane at a vertex and assign the values 0 or 1 to each of 

the neighbouring vertices depending on whether they lie above or below (or on) 

that plane. These bit values could then be concatenated into a binary word as for 

greyscale LBP.

• In the separation performance experiments of section 6.1.2 it was noted th a t radial 

separation does tend to show some improvement with the application of feature 

extraction methods. ECOC in particular appears to be somewhat successful in 

separating intra-class and inter-class differences into two distinct groups. Whilst 

this improvement is not sufficient to allow radial separation in itself to be used as 

a classification metric, it may be that a fusion of radial separation with angular 

separation would lead to an improvement over the use of angular separation alone. 

W hether this is the case will depend on the degree to which the angular and radial 

pseudo-metrics act as independent sources of dissimilarity information.

• Fig. 6.6 of section 6.1.2.1 illustrates the kind of differences between images that 

occur when two images of the same subject have the maximum observed angular 

separation of 90°. This work could be extended by looking at different angular 

ranges from 0°up to 90° and attem pting to characterise the type of facial difference 

th a t arises within each range. The aim of this research would be to determine the 

textural differences that are encoded by different bands of angular separation.

• Throughout this thesis, when angularisation has been applied as a separate feature 

space transformation through the ang (•) and sph  (•) functions, this transformation 

has been delayed until just before ECOC has been applied. This approach has been 

adopted in order to facilitate a comparison of explicit methods of angularisation 

with the proposed SVM kernel functions. It would, however, be possible to move 

the point a t which explicit angulai'isation is applied to a different position in the 

sequence of operations. In particular it would be instructive to investigate the 

effects of applying angularisation before LDA is performed so as to maximise class 

separation within an angularised, rather than the original feature space. It would 

also be worthwhile to investigate other dimensionality reduction techniques within 

the angularised space, for example the method of locality preserving projections
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(LPP) that is described in section 2.2.

• The results shown in section 8.3 that were obtained using the standard FRGC 

Experiment 3 protocol were less satisfactory than those obtained by partitioning 

the FRGCv2 data. This may be attributed to the fact that in the former case 

the training set (i.e. the FRG Cvl data) was obtained under ideal controlled con­

ditions whereas in the latter case the training set was more representative of the 

test data. Although homomorphic filtering and histogram equalisation were em­

ployed in these experiments, the evidence of section 8.3 is that these methods are 

inadequate to deal with the kind of major mismatch between training and probe 

d ata  that is illustrated by Fig. 5.2.

A number of possible approaches to improving performance on the standard ex­

periment suggest themselves. The first method would be to transform the test 

images so as to correct, as far as possible, for the problems of illumination and 

expression variation and thus render them more similar to the training images. 

For example, the illumination correction method of Gross and Brajovic [23] is a 

promising approach to correcting for illumination variation in 2D images whilst 

that of Bronstein et al [13] could be used to address the problem of expression 

variation in 3D scans. A second possibility would be to augment the training set 

by a suitably large set of non-FRGC images which would be more representative of 

the FRGC test set. A practical difficulty here, however, would be that of obtain­

ing sufficiently large numbers of 2.5D and 3D scans. A third improvement would 

be to make better use of the available colour information by treating each of the 

three colour channels as separate 2D images and fusing the resulting classification 

outputs.
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Appendix A

Experimental Protocols

Chapter 5 gives a brief description of the various test databases that were used in the 

experiments of chapters 6 to 8. In this appendix we list in detail the constituents of the 

training, evaluation and test client sets together with (where applicable) the evaluation 

and test impostor sets for each of the FRGC, JA FFE and UIUC data sets. Information 

about the Lausanne Configuration I protocol for XM2VTS is supplied as part of the 

package available from the University of Surrey [44] and is not repeated here.

The verification and identification tests are conducted as follows. The set of valid 

verification claims is obtained by claiming the true client identity for each member of 

the test client set. The set of invalid verification claims is constructed by taking each 

of the test impostor images and claiming it to have the identity of each client in turn. 

For identification tests each test client image is ranked in order of decreasing likelihood 

of a match with each client identity.

A .l FRGCv2 Database

Each image or scan in the FRGCv2 database (see Chapter 5) is assigned a unique 

name of the form suhjectdsession where subject is a 5 digit code th a t uniquely identifies 

the subject of the image and session is a 1-3 digit code that distinguishes the image 

from all other images of the same subject. For 3D scans (including range images) the
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session code is an even number. For 2D images the session code is an odd number 

which is 1 greater than that of the corresponding 3D scan. In the following sections the 

constituents of the training, evaluation and test client sets, together with the evaluation 

and test impostor sets, are listed. Only the names of the 3D scans are shown; those of 

the 2D images can be obtained from the 3D names by adding 1 to each.

A. 1.1 Training Client Set

802 images:

0 2 4 6 3 d & 4 6 ,0 2 4 6 3 d 5 S 2 , 0 2 4 6 3 d 5 S 8 ,0 2 4 6 3 d 6 S 2 .0 2 4 6 3 d 6 5 8 ,0 2 4 6 3 d 6 6 4 , 0 2 4 6 3 d 6 7 0 , 0 4 2 0 3 d 4 3 6 , 0 4 2 0 3 d 4 4 2 ,0 4 2 0 3 d 4 4 8 , 0 4 2 0 3 d 6 3 6 , 0 4 2 0 3 d 6 4 2 ,

0 4 2 0 3 d 5 5 0 ,0 4 2 0 3 d 5 5 6 ,0 4 2 1 7 d 4 0 3 ,0 4 2 1 7 d 4 0 9 ,0 4 2 1 7 d 4 5 B ,0 4 2 1 7 d 4 6 l ,0 4 2 t9 d 4 1 7 ,0 4 2 2 1 d 4 3 1 ,0 4 2 2 1 d 4 3 7 ,0 4 2 2 1 d 4 4 3 .0 4 2 2 1 d B 4 3 ,0 4 2 2 1 d 8 4 9 ,

0 4 2 2 ld 6 B S ,0 4 2 3 3 d 3 9 4 ,0 4 2 3 3 d 4 0 0 ,0 4 2 3 3 d 5 0 0 ,0 4 2 3 3 d 5 0 6 ,0 4 2 3 3 d 5 1 2 ,0 4 2 3 7 d l4 1 ,0 4 2 3 7 d l4 9 ,0 4 2 3 7 d l5 5 ,0 4 2 6 1 d 2 9 9 ,0 4 2 6 1 d 3 2 9 ,0 4 2 B B d 2 6 1 .

0 4 2 6 6 d 2 6 7 ,0 4 2 6 S d 3 3 9 ,0 4 2 6 S d 3 4 5 ,0 4 2 7 3 d 2 4 8 ,0 4 2 7 3 d 2 B 4 ,0 4 2 7 3 d 2 9 0 ,0 4 2 8 4 d 5 3 .0 4 2 8 4 d 6 1 ,0 4 2 8 6 d 2 6 7 ,0 4 2 8 6 d 2 7 3 ,0 4 2 8 6 d 3 6 7 ,0 4 2 8 6 d 3 7 3 ,

0 4 2 8 6 d 3 7 9 ,0 4 2 9 8 d 6 7 ,0 4 2 9 8 d 7 3 ,0 4 3 0 0 d 2 2 2 .0 4 3 0 0 d 2 2 8 ,0 4 3 0 ld 2 4 0 ,0 4 3 0 1 d 2 4 6 .0 4 3 0 1 d 2 8 2 ,0 4 3 0 1 d 2 S 8 ,0 4 3 0 1 d 3 5 3 .0 4 3 0 1 d 3 B 9 ,0 4 3 0 9 d l6 3 ,

0 4 3 0 9 d l6 g ,0 4 3 0 9 d l7 S ,0 4 3 0 9 8 2 4 9 ,0 4 3 1 3 d S 6 ,0 4 3 1 3 d 6 2 ,0 4 3 1 9 d i9 0 ,0 4 3 ig d l9 6 ,0 4 3 ig d 2 6 6 ,0 4 3 1 9 d 2 7 2 ,0 4 3 1 9 d 2 7 6 ,0 4 3 2 0 d 2 7 4 ,0 4 3 2 0 d 2 8 0 ,

0 4 3 2 0 8 3 4 6 ,0 4 3 2 4 8 2 7 6 ,0 4 3 2 4 8 2 8 2 ,0 4 3 2 4 8 2 8 8 ,0 4 3 2 4 8 3 4 8 ,0 4 3 2 4 8 3 6 6 ,0 4 3 3 4 8 3 0 4 ,0 4 3 3 4 8 3 1 0 ,0 4 3 3 4 8 4 1 0 ,0 4 3 3 4 8 4 1 6 ,0 4 3 3 4 8 4 2 2 ,0 4 3 3 4 8 4 2 8 ,

0 4 3 3 8 8 8 0 ,0 4 3 3 9 8 2 2 6 ,0 4 3 3 0 8 2 9 0 ,0 4 3 3 9 8 2 9 6 ,0 4 3 4 1 8 1 5 6 ,0 4 3 4 1 8 1 9 1 ,0 4 3 4 3 8 3 2 1 ,0 4 3 4 3 8 3 2 7 ,0 4 3 4 3 8 3 3 3 ,0 4 3 4 3 8 4 2 7 ,0 4 3 4 3 8 4 3 3 ,0 4 3 4 3 8 4 3 9 ,

0 4 3 4 7 8 2 9 1 ,0 4 3 4 7 8 2 9 7 ,0 4 3 4 7 8 3 0 3 ,0 4 3 4 7 8 3 8 9 ,0 4 3 4 7 8 3 9 5 ,0 4 3 4 7 8 4 0 1 ,0 4 3 5 0 8 2 5 8 ,0 4 3 5 0 8 2 6 4 ,0 4 3 5 0 8 3 2 2 ,0 4 3 5 0 8 3 2 8 ,0 4 3 6 1 8 1 7 5 ,0 4 3 6 1 8 1 8 1 ,

0 4 3 6 5 8 3 2 0 ,0 4 3 6 6 8 3 2 8 ,0 4 3 6 9 8 2 5 0 ,0 4 3 7 0 8 2 2 5 ,0 4 3 7 0 8 2 3 1 ,0 4 3 7 0 8 2 0 5 ,0 4 3 7 0 8 3 0 1 ,0 4 3 7 3 8 5 4 ,0 4 3 7 3 8 6 0 ,0 4 3 7 8 8 2 0 3 ,0 4 3 7 8 8 2 0 9 ,0 4 3 7 8 8 2 3 1 ,

0 4 3 8 1 8 1 1 0 ,0 4 3 8 2 8 1 7 0 ,0 4 3 8 2 8 1 7 6 ,0 4 3 8 5 8 3 2 3 ,0 4 3 8 5 8 3 2 9 ,0 4 3 8 5 8 3 3 5 ,0 4 3 8 5 8 4 3 1 ,0 4 3 8 5 8 4 3 7 ,0 4 3 8 5 8 4 4 3 ,0 4 3 8 5 8 4 4 9 ,0 4 3 8 8 8 2 8 5 ,0 4 3 8 8 8 2 9 1 ,

0 4 3 8 8 8 2 9 7 ,0 4 3 8 8 8 3 7 3 ,0 4 3 8 8 8 3 7 9 ,0 4 3 8 8 8 3 8 6 ,0 4 3 9 5 8 1 9 6 ,0 4 3 9 5 8 2 0 2 ,0 4 3 9 5 8 2 6 5 ,0 4 3 9 5 8 2 7 3 ,0 4 3 9 7 8 3 3 6 ,0 4 3 9 7 8 3 4 2 ,0 4 3 9 7 8 3 4 8 ,0 4 3 9 7 8 4 4 8 ,

0 4 3 9 7 8 4 5 4 ,0 4 3 9 7 8 4 6 0 ,0 4 4 0 0 8 2 9 4 ,0 4 4 0 0 8 3 0 0 ,0 4 4 0 0 8 3 0 6 ,0 4 4 0 0 8 3 8 0 ,0 4 4 0 0 8 3 8 6 ,0 4 4 0 0 8 3 9 2 ,0 4 4 0 6 8 9 0 ,0 4 4 0 9 8 1 3 7 ,0 4 4 1 0 8 1 8 0 ,0 4 4 1 1 8 1 9 0 ,

0 4 4 1 8 8 2 8 5 ,0 4 4 1 8 8 2 9 1 ,0 4 4 1 8 8 2 9 7 ,0 4 4 1 8 8 3 8 6 ,0 4 4 1 8 8 3 9 2 ,0 4 4 1 8 8 3 9 8 ,0 4 4 1 9 8 2 5 0 ,0 4 4 1 9 8 2 5 6 ,0 4 4 1 9 8 2 6 2 ,0 4 4 1 9 8 3 2 2 ,0 4 4 1 9 8 3 2 8 ,0 4 4 2 3 8 1 9 0 ,

0 4 4 2 3 8 1 9 6 ,0 4 4 2 3 8 2 7 4 ,0 4 4 2 8 8 2 4 1 ,0 4 4 2 8 8 2 4 7 ,0 4 4 2 9 8 3 3 5 ,0 4 4 2 9 8 3 4 3 ,0 4 4 2 9 8 4 4 3 ,0 4 4 2 9 8 4 4 9 ,0 4 4 2 9 8 4 5 5 ,0 4 4 2 9 8 4 6 1 ,0 4 4 3 3 8 1 8 4 ,0 4 4 3 4 8 1 6 4 ,

0 4 4 3 4 8 1 9 1 ,0 4 4 3 5 8 3 4 2 ,0 4 4 3 5 8 3 4 8 ,0 4 4 3 5 8 3 5 4 ,0 4 4 3 6 8 3 0 8 ,0 4 4 3 6 8 3 1 4 ,0 4 4 3 6 8 3 6 0 ,0 4 4 3 6 8 3 6 6 ,0 4 4 4 0 8 1 2 1 ,0 4 4 4 0 8 9 1 ,0 4 4 4 0 8 9 7 ,0 4 4 4 6 8 2 7 1 ,

0 4 4 4 6 8 2 7 7 ,0 4 4 4 6 8 3 6 5 ,0 4 4 4 6 8 3 7 1 ,0 4 4 4 6 8 3 7 9 ,0 4 4 4 6 8 3 8 5 ,0 4 4 4 9 8 1 7 3 ,0 4 4 4 9 8 2 4 5 ,0 4 4 4 9 8 2 5 1 ,0 4 4 4 9 8 2 5 7 ,0 4 4 4 9 8 2 6 3 ,0 4 4 5 6 8 2 7 1 ,0 4 4 5 6 8 2 7 7 ,

0 4 4 5 6 8 2 8 3 ,0 4 4 5 6 8 3 5 3 ,0 4 4 6 0 8 2 6 2 ,0 4 4 6 0 8 3 2 6 ,0 4 4 6 0 8 3 3 2 ,0 4 4 6 0 8 3 3 8 ,0 4 4 6 1 8 2 9 6 ,0 4 4 6 1 8 3 0 1 ,0 4 4 6 1 8 3 0 7 ,0 4 4 6 1 8 4 0 7 ,0 4 4 6 1 8 4 1 3 ,0 4 4 6 1 8 4 1 9 ,

0 4 4 7 1 8 2 6 3 ,0 4 4 7 1 8 2 6 9 ,0 4 4 7 1 8 2 8 5 ,0 4 4 7 2 8 2 2 4 ,0 4 4 7 2 8 2 3 0 ,0 4 4 7 2 8 3 1 6 ,0 4 4 7 2 8 3 2 4 ,0 4 4 7 2 8 3 3 0 ,0 4 4 7 5 8 1 1 4 ,0 4 4 7 5 8 1 2 0 ,0 4 4 7 6 8 1 2 8 ,0 4 4 7 6 8 1 2 0 ,

0 4 4 7 6 8 1 2 6 ,0 4 4 7 6 8 2 1 4 ,0 4 4 7 6 8 2 2 0 ,0 4 4 7 6 8 2 2 6 ,0 4 4 7 9 8 2 2 2 ,0 4 4 7 9 8 2 6 2 ,0 4 4 8 2 8 3 0 4 ,0 4 4 8 2 8 3 1 0 ,0 4 4 8 2 8 3 1 6 ,0 4 4 8 2 8 4 1 0 ,0 4 4 8 2 8 4 1 6 ,0 4 4 8 2 8 4 2 2 ,

0 4 4 8 4 8 1 8 7 ,0 4 4 8 4 8 1 9 3 ,0 4 4 8 6 8 2 8 6 .0 4 4 8 5 8 2 9 2 ,0 4 4 8 5 8 2 9 8 ,0 4 4 8 5 8 3 9 8 ,0 4 4 8 5 8 4 0 4 ,0 4 4 8 5 8 4 1 0 ,0 4 4 9 3 8 2 0 2 ,0 4 4 9 3 8 2 2 6 ,0 4 4 9 5 8 3 0 9 ,0 4 4 9 5 8 3 1 5 ,

0 4 4 9 5 8 3 2 1 ,0 4 4 9 5 8 4 2 1 ,0 4 4 9 5 8 4 2 7 ,0 4 4 9 5 8 4 3 3 ,0 4 4 9 5 8 4 3 9 ,0 4 5 0 2 8 5 6 ,0 4 5 0 2 8 6 2 ,0 4 5 0 5 8 2 2 0 ,0 4 5 0 5 8 2 2 6 ,0 4 5 0 5 8 2 3 2 ,0 4 5 0 5 8 3 2 6 ,0 4 5 0 5 8 3 3 2 ,

0 4 5 0 8 8 7 9 ,0 4 5 0 8 8 8 5 ,0 4 5 0 9 8 2 7 6 ,0 4 5 0 9 8 2 8 2 ,0 4 5 0 9 8 2 8 8 ,0 4 5 0 9 8 3 8 8 ,0 4 5 0 9 8 3 9 4 ,0 4 5 0 9 8 4 0 0 ,0 4 5 1 2 8 3 2 4 ,0 4 5 1 2 8 3 3 0 ,0 4 5 1 2 8 4 2 8 ,0 4 5 1 2 8 4 3 6 ,

0 4 5 1 2 8 4 4 2 ,0 4 5 1 2 8 4 4 8 ,0 4 5 1 4 8 3 2 0 ,0 4 5 1 4 8 3 2 6 ,0 4 5 1 4 8 3 3 2 ,0 4 5 1 4 8 4 3 2 ,0 4 5 1 4 8 4 3 8 ,0 4 5 1 4 8 4 4 4 ,0 4 5 1 4 8 4 5 0 ,0 4 5 3 1 8 2 8 5 ,0 4 6 3 1 8 2 9 1 ,0 4 5 3 1 8 2 9 7 ,

0 4 5 3 1 8 3 9 1 ,0 4 5 3 1 8 3 9 7 ,0 4 5 3 5 8 2 1 3 ,0 4 6 3 5 8 2 1 9 ,0 4 5 3 5 8 2 5 9 ,0 4 5 4 2 8 1 1 2 ,0 4 6 4 2 8 1 1 8 ,0 4 5 4 2 8 1 9 4 ,0 4 5 4 2 8 2 0 0 .0 4 5 4 6 8 7 5 ,0 4 5 5 3 8 2 3 6 ,0 4 5 5 3 8 2 6 4 ,

0 4 5 5 6 8 3 0 7 ,0 4 5 5 6 8 3 1 3 ,0 4 5 5 6 8 3 1 9 ,0 4 5 5 6 8 4 1 1 ,0 4 6 5 6 8 4 1 7 ,0 4 5 5 6 8 4 2 3 ,0 4 5 6 0 8 2 6 5 ,0 4 5 6 0 8 2 7 1 ,0 4 5 6 0 8 2 7 7 ,0 4 5 6 0 8 3 7 6 ,0 4 5 6 0 8 3 8 4 ,0 4 5 6 0 8 3 9 0 ,

0 4 5 6 0 8 3 9 6 ,0 4 5 6 8 8 9 1 ,0 4 5 7 5 8 2 9 4 ,0 4 5 7 5 8 3 0 0 ,0 4 5 7 5 8 3 9 6 ,0 4 5 7 5 8 4 0 2 ,0 4 5 7 5 8 4 1 0 ,0 4 5 7 7 8 2 8 2 ,0 4 5 7 7 8 2 8 8 ,0 4 5 7 7 8 2 9 4 ,0 4 5 7 7 8 3 0 0 ,0 4 5 7 7 8 3 4 6 ,

0 4 5 7 9 8 2 6 0 ,0 4 5 8 0 8 2 9 3 ,0 4 5 8 0 8 2 9 9 ,0 4 5 8 0 8 3 0 5 ,0 4 5 8 0 8 4 0 5 ,0 4 5 8 0 8 4 1 1 ,0 4 5 8 0 8 4 1 7 ,0 4 5 8 0 8 4 2 3 ,0 4 5 8 7 8 1 1 0 ,0 4 5 8 7 8 1 1 6 ,0 4 5 8 8 8 1 2 9 ,0 4 5 8 8 8 1 3 5 ,

0 4 5 8 8 8 2 3 1 ,0 4 5 8 8 8 2 3 7 ,0 4 5 8 8 8 2 4 3 ,0 4 5 8 8 8 2 4 9 .0 4 5 9 3 8 1 9 6 ,0 4 5 9 3 8 2 0 2 ,0 4 5 9 3 8 2 0 8 ,0 4 5 9 3 8 2 6 2 ,0 4 5 9 3 8 2 6 8 ,0 4 5 9 6 8 1 6 6 ,0 4 5 9 6 8 1 7 4 ,0 4 5 9 6 8 1 6 0 ,

0 4 5 9 6 8 8 0 ,0 4 5 9 6 8 8 6 ,0 4 5 9 8 8 2 5 1 ,0 4 5 9 8 8 2 5 7 ,0 4 5 9 8 8 2 6 3 ,0 4 5 9 8 8 3 5 7 ,0 4 5 9 8 8 3 6 3 ,0 4 6 0 3 8 1 3 5 ,0 4 6 0 3 8 1 4 1 ,0 4 6 0 3 8 1 4 7 ,0 4 6 0 3 8 2 4 7 ,0 4 6 0 3 8 2 5 3 ,

0 4 6 0 3 8 2 5 9 ,0 4 6 0 3 8 2 6 5 ,0 4 6 0 6 8 1 7 8 ,0 4 6 0 6 8 1 8 4 ,0 4 6 0 9 8 1 0 2 ,0 4 6 0 9 8 1 9 5 ,0 4 6 0 9 8 2 0 1 ,0 4 6 0 9 8 2 0 7 ,0 4 6 0 9 8 9 4 ,0 4 6 1 2 8 6 3 ,0 4 6 1 3 8 1 7 6 ,0 4 6 1 3 8 1 8 2 ,

0 4 6 1 8 8 1 6 0 ,0 4 6 2 2 8 2 3 2 ,0 4 6 2 2 8 2 3 8 ,0 4 5 2 2 8 2 4 4 ,0 4 6 2 2 8 3 2 4 ,0 4 6 2 2 8 3 3 2 ,0 4 6 2 2 8 3 3 8 ,0 4 6 2 6 8 2 3 5 ,0 4 6 2 6 8 2 4 1 ,0 4 6 2 6 8 2 4 7 ,0 4 6 2 6 8 3 4 7 ,0 4 6 2 6 8 3 5 3 ,

0 4 6 2 5 8 3 5 9 ,0 4 6 2 6 8 3 6 5 ,0 4 6 2 9 8 1 4 0 ,0 4 6 2 9 8 1 4 6 ,0 4 6 2 9 8 1 5 2 ,0 4 6 2 9 8 2 4 6 ,0 4 6 2 9 8 2 5 4 ,0 4 6 2 9 8 2 6 0 ,0 4 5 3 3 8 1 8 0 ,0 4 6 3 3 8 1 8 6 ,0 4 6 3 3 8 1 9 2 ,0 4 6 3 3 8 2 8 8 ,

0 4 6 3 3 8 2 9 4 ,0 4 6 3 3 8 3 0 0 ,0 4 6 3 3 8 3 0 6 ,0 4 6 3 7 8 1 9 6 ,0 4 6 3 8 8 1 9 3 ,0 4 6 4 1 8 1 7 5 ,0 4 6 4 1 8 1 8 1 ,0 4 6 4 1 8 2 4 5 ,0 4 6 4 1 8 2 6 1 ,0 4 6 4 4 8 2 0 0 ,0 4 6 4 4 8 2 0 6 ,0 4 6 4 4 8 2 1 2 ,

0 4 6 4 4 8 2 5 8 ,0 4 6 4 4 8 2 6 4 ,0 4 6 6 0 8 1 4 8 ,0 4 6 5 0 8 1 5 4 ,0 4 6 5 2 8 1 5 6 ,0 4 6 5 2 8 1 6 2 ,0 4 6 6 2 8 1 2 3 ,0 4 6 6 2 8 1 3 1 ,0 4 6 6 7 8 1 9 4 ,0 4 6 6 7 8 2 0 0 ,0 4 6 6 7 8 2 0 6 ,0 4 6 6 7 8 3 0 2 ,

0 4 6 6 7 8 3 0 8 ,0 4 6 6 7 8 3 1 4 ,0 4 6 6 7 8 3 2 0 ,0 4 6 7 3 8 1 8 4 ,0 4 6 7 3 8 1 9 2 ,0 4 6 7 3 8 2 7 7 ,0 4 6 7 3 8 2 8 3 ,0 4 6 7 3 8 2 8 9 ,0 4 6 7 6 8 1 6 3 ,0 4 6 8 1 8 1 4 9 ,0 4 6 8 1 8 1 5 5 ,0 4 6 8 1 8 1 7 7 ,

0 4 6 8 2 8 1 2 0 ,0 4 6 8 2 8 1 2 6 ,0 4 6 8 2 8 1 3 2 ,0 4 5 8 2 8 2 1 8 ,0 4 6 8 2 8 2 2 4 ,0 4 6 8 2 8 2 3 2 ,0 4 6 8 3 8 2 3 1 ,0 4 6 8 3 8 2 3 7 ,0 4 6 8 3 8 2 4 3 ,0 4 6 8 3 8 3 3 9 ,0 4 6 8 3 8 3 4 5 ,0 4 6 8 3 8 3 5 1 ,

0 4 6 8 3 8 3 5 7 ,0 4 6 8 8 8 4 0 ,0 4 6 8 9 8 2 4 ,0 4 6 8 9 8 3 0 ,0 4 6 8 9 8 9 6 ,0 4 6 9 1 8 1 2 4 ,0 4 6 9 1 8 1 3 0 ,0 4 6 9 1 8 1 3 8 ,0 4 6 9 1 8 5 2 ,0 4 6 9 5 8 6 8 ,0 4 6 9 5 8 7 4 .0 4 6 9 5 8 8 0 ,

0 4 6 9 6 8 3 8 ,0 4 6 9 6 8 4 4 ,0 4 6 9 7 8 1 8 2 ,0 4 6 9 7 8 1 8 8 ,0 4 6 9 7 8 7 8 ,0 4 6 9 7 8 8 4 ,0 4 6 9 7 8 9 0 ,0 4 7 0 0 8 2 0 ,0 4 7 0 1 8 1 8 5 ,0 4 7 0 1 8 1 6 1 ,0 4 7 0 1 8 1 6 7 ,0 4 7 0 1 8 7 0 ,

0 4 7 0 1 8 7 6 ,0 4 7 0 4 8 1 8 .0 4 7 0 5 8 4 2 ,0 4 7 0 7 8 5 2 ,0 4 7 0 7 8 6 2 ,0 4 7 0 8 8 1 6 3 ,0 4 7 0 8 8 1 7 1 ,0 4 7 0 8 8 1 7 7 ,0 4 7 0 8 8 5 4 ,0 4 7 0 8 8 6 0 ,0 4 7 1 1 8 1 4 9 ,0 4 7 1 1 8 1 5 5 ,

0 4 7 1 1 8 1 6 1 ,0 4 7 1 1 8 1 6 7 .0 4 7 1 1 8 4 9 ,0 4 7 1 4 8 1 8 6 ,0 4 7 1 4 8 1 9 2 ,0 4 7 1 4 8 2 0 0 ,0 4 7 1 4 8 7 8 ,0 4 7 1 4 8 8 4 ,0 4 7 1 4 8 9 0 ,0 4 7 1 4 8 9 6 ,0 4 7 1 7 8 4 5 ,0 4 7 1 8 8 1 8 ,

0 4 7 1 9 8 1 7 7 ,0 4 7 1 9 8 1 8 3 ,0 4 7 1 9 8 1 9 1 ,0 4 7 1 9 8 8 0 ,0 4 7 1 9 8 8 6 ,0 4 7 1 9 8 9 2 ,0 4 7 2 2 8 4 4 ,0 4 7 2 2 8 5 0 .0 4 7 2 4 8 1 3 6 ,0 4 7 2 4 8 1 4 2 ,0 4 7 2 4 8 1 4 8 .0 4 7 2 4 8 4 2 ,
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04724848,04728842,04728894 ,04729824 ,04729854 ,047308128 ,047308134 ,04730856 ,04730862 ,047318133 ,047318139 ,04731835 ,

04731843,04733834.047348184 ,047348190 ,047348196 ,04734880 ,04734886 ,04737840 ,04737868 ,04742878 ,04742884 ,04742890 ,

047438134,047438140,047438146 ,04743848 ,04743854 ,047458168 ,047458174 ,047458180 ,04745876 ,04745882 ,04745888 ,047488111 ,

047488117,047488123 ,04750852 ,04750858 ,04751846 ,04753818 ,047548176 ,047548182 ,047548190 ,047548196 ,04754876 ,04754882 ,

04754888,047578159,047578165 ,04757873 ,04757879 ,04757885 ,047588129 ,047588135 ,04758861 ,04758867 ,047608168 ,047608174 ,

047608180,04760880,047638152 ,047638158 ,047638164 ,04763866 ,04763872 ,04766828 ,047678102 ,047678108 ,04767840 ,04770824 ,

04770848,04772840 ,047738181 ,047738189 ,047738195 ,04773880 ,04773886 ,04773892 ,047748168 ,047748164 ,04774870 ,04774876 ,

04774882,047778186 ,047778192 ,047778200 ,04777872 ,04777878 ,04777884 ,04778848 ,04778854 ,04779850 ,04779856 ,047828195 ,

047828201,047828207 ,047828213 ,04782881 ,04782887 ,04782893 ,04785868 ,04785874 ,04785880 ,04787812 ,04767854 ,047908100 ,

047908106,04790846 ,04790898 ,04792845 ,04792867 ,047968142 ,047968148 ,04796874 ,04796880 ,04799836 ,04801860 ,04801866 ,

04801872,04802820 ,048038166 ,048038172 ,048038178 ,04803874 ,04803880 ,04803886 ,04806840 ,04808832 ,04809850 ,04809856 ,

048118112,048118118,04811850,048138138,048138144 ,048138150 ,048138155 ,04813846 ,048158194 ,048158200 ,048158206 ,048158212 ,

04815882,04815888,04815894 ,04820838 ,048218104 ,048218110 ,04821844 ,04824854 ,04824860 ,048278122 ,048278128 ,04827844 ,

048298110,048298116,04829842,04829848 ,048308144 ,04830880 ,04830886 ,04830892 ,048338150 ,048338156 ,048338162 ,048338168 ,

04833852,04836845,04836851 ,048388154 ,048388160 ,048388166 ,04838850 ,04838856 ,048398180 ,048398186 ,04839878 ,04839884 ,

04839890,048428158,048428164 ,048428172 ,048428178 ,04842858 ,04842864 ,048438155 ,048438163 ,04843875 ,04843881 ,048468144 ,

04846874,04846880,048488138 ,048488144 ,048488150 ,048468156 ,04848846 ,04848852 ,04850834 ,04850870 ,048518160 ,048518166 ,

048518172,048518178 ,04851858 ,04852860 ,04852866 ,04852872 ,04855888 ,04855894 ,048668102 ,04856888 ,04856894 ,04857872 ,

04857878 ,04857884 ,04859828 ,04863862 ,048658102 ,048668108 ,04865892 ,04668898 ,04868876 ,04868882 ,04869852 ,04869858 ,

04869865,04870888 ,04870894 ,04872842 ,04872848 ,04873847 ,04874828 ,04876870 ,04876876 ,04880835 ,04880841 ,048818104 , 

048818110,04881894,048838100 ,04883888 ,04883894 ,04887872 ,04887878 ,04887884 ,04888838 ,04888844 ,04889857 ,048928104 , 

04892890,04892898 ,04893870 ,04893876 ,04894868 ,04894876 ,04898860 ,04898866 ,04899880 ,04899886 ,04899892 ,049008104 ,

04900892 ,04903830 ,04903836 ,04906868 ,04905864 ,04907880 ,04907886 ,04910865 ,04910873 ,04914846 ,04915848 ,04915854 , 

04915860,049178104 ,04917892 ,04917898 ,04921846 ,04922862 ,04922870 ,04923848 ,04923854 ,04923860 ,04925834 ,04927838 ,

04927844,04929844,04929850,04932838 ,04932844 ,04934854 ,049368100 ,049368106 ,04936892 ,04936898

A .1.2 Evaluation Client Set

801 images:

0 2 4 6 3 8 5 4 8 ,0 2 4 6 3 8 5 5 4 ,0 2 4 6 3 8 6 6 0 ,0 2 4 6 3 8 6 5 4 ,0 2 4 6 3 8 6 6 0 ,0 2 4 6 3 8 6 6 6 ,0 2 4 6 3 8 6 7 2 ,0 4 2 0 3 8 4 3 8 ,0 4 2 0 3 8 4 4 4 ,0 4 2 0 3 8 4 5 0 ,0 4 2 0 3 8 5 3 8 ,0 4 2 0 3 8 5 4 6 ,

0 4 2 0 3 8 5 5 2 ,0 4 2 1 7 8 3 9 9 ,0 4 2 1 7 8 4 0 5 ,0 4 2 1 7 8 4 1 1 ,0 4 2 1 7 8 4 5 7 ,0 4 2 1 7 8 4 6 3 ,0 4 2 1 9 8 4 1 9 ,0 4 2 2 1 8 4 3 3 ,0 4 2 2 1 8 4 3 9 ,0 4 2 2 1 8 4 4 5 ,0 4 2 2 1 8 5 4 5 ,0 4 2 2 1 8 5 5 1 ,

0 4 2 3 3 8 3 9 0 ,0 4 2 3 3 8 3 9 6 ,0 4 2 3 3 8 4 0 2 ,0 4 2 3 3 8 5 0 2 ,0 4 2 3 3 8 5 0 8 ,0 4 2 3 3 8 6 1 4 ,0 4 2 3 7 8 1 4 3 ,0 4 2 3 7 8 1 5 1 ,0 4 2 3 7 8 1 5 7 ,0 4 2 6 1 8 3 0 1 ,0 4 2 6 1 8 3 3 1 ,0 4 2 6 5 8 2 6 3 ,

0 4 2 6 5 8 2 6 9 ,0 4 2 6 5 8 3 4 1 ,0 4 2 6 5 8 3 4 7 ,0 4 2 7 3 8 2 5 0 ,0 4 2 7 3 8 2 5 6 ,0 4 2 7 3 8 2 9 2 ,0 4 2 8 4 8 6 5 ,0 4 2 8 6 8 2 6 3 ,0 4 2 8 6 8 2 6 9 ,0 4 2 8 6 8 2 7 5 ,0 4 2 8 6 8 3 6 9 ,0 4 2 8 6 8 3 7 6 ,

0 4 2 8 6 8 3 8 1 ,0 4 2 9 8 8 6 9 ,0 4 3 0 0 8 2 1 8 ,0 4 3 0 0 8 2 2 4 ,0 4 3 0 0 8 2 5 8 ,0 4 3 0 1 8 2 4 2 ,0 4 3 0 1 8 2 4 8 ,0 4 3 0 1 8 2 5 4 ,0 4 3 0 1 8 3 4 9 ,0 4 3 0 1 8 3 5 5 ,0 4 3 0 1 8 3 6 1 ,0 4 3 0 9 8 1 6 5 ,

0 4 3 0 9 8 1 7 1 ,0 4 3 0 9 8 2 4 6 ,0 4 3 0 9 8 2 5 1 ,0 4 3 1 3 8 5 8 ,0 4 3 1 9 8 1 8 6 ,0 4 3 1 9 8 1 9 2 ,0 4 3 1 9 8 1 9 8 ,0 4 3 1 9 8 2 6 8 ,0 4 3 1 9 8 2 7 4 ,0 4 3 2 0 8 2 7 0 ,0 4 3 2 0 8 2 7 6 ,0 4 3 2 0 8 3 4 0 ,

0 4 3 2 0 8 3 4 8 ,0 4 3 2 4 8 2 7 8 ,0 4 3 2 4 8 2 8 4 ,0 4 3 2 4 8 2 9 0 ,0 4 3 2 4 8 3 5 0 ,0 4 3 3 4 8 3 0 0 ,0 4 3 3 4 8 3 0 6 ,0 4 3 3 4 8 3 1 2 ,0 4 3 3 4 8 4 1 2 ,0 4 3 3 4 8 4 1 8 ,0 4 3 3 4 8 4 2 4 ,0 4 3 3 4 8 4 3 0 ,

0 4 3 3 8 8 8 2 ,0 4 3 3 9 8 2 2 8 ,0 4 3 3 9 8 2 9 2 ,0 4 3 3 9 8 2 9 8 ,0 4 3 4 1 8 1 5 7 ,0 4 3 4 1 8 1 9 3 ,0 4 3 4 3 8 3 2 3 ,0 4 3 4 3 8 3 2 9 ,0 4 3 4 3 8 3 3 5 ,0 4 3 4 3 8 4 2 9 ,0 4 3 4 3 8 4 3 5 ,0 4 3 4 3 8 4 4 1 ,

0 4 3 4 7 8 2 9 3 ,0 4 3 4 7 8 2 9 9 ,0 4 3 4 7 8 3 0 5 ,0 4 3 4 7 8 3 9 1 ,0 4 3 4 7 8 3 9 7 ,0 4 3 4 7 8 4 0 5 ,0 4 3 5 0 8 2 6 0 ,0 4 3 5 0 8 2 6 6 ,0 4 3 5 0 8 3 2 4 ,0 4 3 5 0 8 3 3 0 ,0 4 3 6 1 8 1 7 7 ,0 4 3 6 1 8 1 9 5 ,

0 4 3 6 5 8 3 2 2 ,0 4 3 6 9 8 2 4 6 ,0 4 3 6 9 8 2 5 2 ,0 4 3 7 0 8 2 2 7 ,0 4 3 7 0 8 2 3 3 ,0 4 3 7 0 8 2 9 7 ,0 4 3 7 0 8 3 0 3 ,0 4 3 7 3 8 5 6 ,0 4 3 7 3 8 6 2 ,0 4 3 7 8 8 2 0 5 ,0 4 3 7 8 8 2 1 1 ,0 4 3 8 1 8 1 0 6 ,

0 4 3 8 1 8 1 1 2 ,0 4 3 8 2 8 1 7 2 ,0 4 3 8 2 8 1 9 0 ,0 4 3 8 5 8 3 2 5 ,0 4 3 8 5 8 3 3 1 ,0 4 3 8 5 8 3 3 7 .0 4 3 8 5 8 4 3 3 ,0 4 3 8 5 8 4 3 9 ,0 4 3 8 5 8 4 4 5 ,0 4 3 8 5 8 4 6 1 ,0 4 3 8 8 8 2 8 7 ,0 4 3 8 8 8 2 9 3 ,

0 4 3 8 8 8 2 9 9 ,0 4 3 8 8 8 3 7 5 ,0 4 3 8 8 8 3 8 1 ,0 4 3 9 5 8 1 9 2 ,0 4 3 9 5 8 1 9 8 ,0 4 3 9 5 8 2 0 4 ,0 4 3 9 5 8 2 6 7 ,0 4 3 9 7 8 3 3 2 ,0 4 3 9 7 8 3 3 8 ,0 4 3 9 7 8 3 4 4 ,0 4 3 9 7 8 4 4 4 ,0 4 3 9 7 8 4 5 0 ,

0 4 3 9 7 8 4 5 6 ,0 4 3 9 7 8 4 6 2 ,0 4 4 0 0 8 2 9 6 ,0 4 4 0 0 8 3 0 2 ,0 4 4 0 0 8 3 7 6 ,0 4 4 0 0 8 3 8 2 ,0 4 4 0 0 8 3 8 8 ,0 4 4 0 6 8 8 6 ,0 4 4 0 6 8 9 2 ,0 4 4 0 9 8 1 3 9 ,0 4 4 1 0 8 1 8 2 ,0 4 4 1 1 8 1 9 2 ,

0 4 4 1 8 8 2 8 7 ,0 4 4 1 8 8 2 9 3 ,0 4 4 1 8 8 2 9 9 ,0 4 4 1 8 8 3 8 8 ,0 4 4 1 8 8 3 9 4 ,0 4 4 1 8 8 4 0 0 ,0 4 4 1 9 8 2 5 2 ,0 4 4 1 9 8 2 5 8 ,0 4 4 1 9 8 3 1 8 ,0 4 4 1 9 8 3 2 4 ,0 4 4 1 9 8 3 3 0 ,0 4 4 2 3 8 1 9 2 ,

0 4 4 2 3 8 1 9 8 ,0 4 4 2 3 8 2 7 6 ,0 4 4 2 8 8 2 4 3 ,0 4 4 2 9 8 3 3 1 ,0 4 4 2 9 8 3 3 9 ,0 4 4 2 9 8 3 4 5 ,0 4 4 2 9 8 4 4 5 ,0 4 4 2 9 8 4 5 1 ,0 4 4 2 9 8 4 5 7 ,0 4 4 3 3 8 1 8 0 ,0 4 4 3 3 8 1 8 6 ,0 4 4 3 4 8 1 5 6 ,

0 4 4 3 5 8 3 3 8 ,0 4 4 3 5 8 3 4 4 ,0 4 4 3 6 8 3 5 0 ,0 4 4 3 5 8 3 7 2 ,0 4 4 3 6 8 3 1 0 ,0 4 4 3 6 8 3 1 6 ,0 4 4 3 6 8 3 6 2 ,0 4 4 3 6 8 3 6 8 ,0 4 4 4 0 8 1 2 3 ,0 4 4 4 0 8 9 3 ,0 4 4 4 0 8 9 9 ,0 4 4 4 6 8 2 7 3 ,

0 4 4 4 6 8 2 7 9 ,0 4 4 4 6 8 3 6 7 ,0 4 4 4 6 8 3 7 3 ,0 4 4 4 6 8 3 8 1 ,0 4 4 4 6 8 3 8 7 ,0 4 4 4 9 8 1 7 5 ,0 4 4 4 9 8 2 4 7 ,0 4 4 4 9 8 2 5 3 ,0 4 4 4 9 8 2 5 9 ,0 4 4 5 6 8 2 6 7 ,0 4 4 5 6 8 2 7 3 ,0 4 4 5 6 8 2 7 9 ,

0 4 4 5 6 8 3 4 9 ,0 4 4 5 6 8 3 5 7 ,0 4 4 6 0 8 2 6 4 ,0 4 4 6 0 8 3 2 8 ,0 4 4 6 0 8 3 3 4 ,0 4 4 6 1 8 2 9 1 ,0 4 4 6 1 8 2 9 7 ,0 4 4 6 1 8 3 0 3 ,0 4 4 5 1 8 4 0 3 ,0 4 4 6 1 8 4 0 9 ,0 4 4 6 1 8 4 1 5 ,0 4 4 6 1 8 4 2 1 ,

0 4 4 7 1 8 2 6 5 ,0 4 4 7 1 8 2 7 1 ,0 4 4 7 2 8 2 2 0 ,0 4 4 7 2 8 2 2 6 ,0 4 4 7 2 8 2 3 2 ,0 4 4 7 2 8 3 1 8 ,0 4 4 7 2 8 3 2 6 ,0 4 4 7 2 8 3 3 2 ,0 4 4 7 5 8 1 1 6 ,0 4 4 7 5 8 1 2 4 ,0 4 4 7 5 8 1 3 0 ,0 4 4 7 6 8 1 2 2 ,

0 4 4 7 6 8 1 2 8 ,0 4 4 7 6 8 2 1 6 ,0 4 4 7 6 8 2 2 2 ,0 4 4 7 6 8 2 2 8 ,0 4 4 7 9 8 2 2 4 ,0 4 4 7 9 8 2 6 4 ,0 4 4 8 2 8 3 0 6 ,0 4 4 8 2 8 3 1 2 ,0 4 4 8 2 8 4 0 6 ,0 4 4 8 2 8 4 1 2 ,0 4 4 8 2 8 4 1 8 ,0 4 4 8 2 8 4 2 4 ,

0 4 4 8 4 8 1 8 9 ,0 4 4 8 5 8 2 8 2 ,0 4 4 8 5 8 2 8 8 ,0 4 4 8 5 8 2 9 4 ,0 4 4 8 5 8 3 9 4 ,0 4 4 8 5 8 4 0 0 ,0 4 4 8 5 8 4 0 6 ,0 4 4 8 5 8 4 1 2 ,0 4 4 9 3 8 2 0 4 ,0 4 4 9 3 8 2 2 8 ,0 4 4 9 5 8 3 1 1 ,0 4 4 9 5 8 3 1 7 ,

0 4 4 9 5 8 3 2 3 ,0 4 4 9 5 8 4 2 3 ,0 4 4 9 5 8 4 2 9 ,0 4 4 9 5 8 4 3 5 ,0 4 4 9 5 8 4 4 1 ,0 4 5 0 2 8 5 8 ,0 4 5 0 5 8 2 1 6 ,0 4 5 0 5 8 2 2 2 ,0 4 5 0 5 8 2 2 8 ,0 4 5 0 5 8 3 2 2 ,0 4 5 0 5 8 3 2 8 ,0 4 5 0 5 8 3 3 4 ,

0 4 5 0 8 8 8 1 ,0 4 5 0 8 8 8 7 ,0 4 5 0 9 8 2 7 8 ,0 4 5 0 9 8 2 8 4 ,0 4 6 0 9 8 3 8 4 ,0 4 6 0 9 8 3 9 0 ,0 4 5 0 9 8 3 9 6 ,0 4 5 1 2 8 3 2 0 ,0 4 5 1 2 8 3 2 6 ,0 4 5 1 2 8 3 3 2 ,0 4 5 1 2 8 4 3 0 ,0 4 5 1 2 8 4 3 8 ,

0 4 5 1 2 8 4 4 4 ,0 4 5 1 2 8 4 5 0 ,0 4 5 1 4 8 3 2 2 ,0 4 5 1 4 8 3 2 8 ,0 4 5 1 4 8 3 3 4 ,0 4 5 1 4 8 4 3 4 ,0 4 5 1 4 8 4 4 0 ,0 4 5 1 4 8 4 4 6 ,0 4 6 1 4 8 4 5 2 ,0 4 5 3 1 8 2 8 7 ,0 4 5 3 1 8 2 9 3 ,0 4 5 3 1 8 3 8 7 ,

0 4 5 3 1 8 3 9 3 ,0 4 5 3 1 8 3 9 9 ,0 4 6 3 5 8 2 1 5 ,0 4 5 3 5 8 2 2 1 ,0 4 5 3 5 8 2 6 1 ,0 4 5 4 2 8 1 1 4 ,0 4 5 4 2 8 1 9 0 ,0 4 5 4 2 8 1 9 6 ,0 4 5 4 6 8 7 1 ,0 4 5 5 3 8 2 3 2 ,0 4 5 5 3 8 2 3 8 ,0 4 5 5 3 8 2 6 6 ,
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0 4 5 5 6 8 3 0 9 ,0 4 5 5 6 8 3 1 5 ,0 4 5 5 6 8 3 2 1 ,0 4 5 5 6 8 4 1 3 ,0 4 S 5 6 d 4 1 9 ,0 4 5 5 6 8 4 2 5 ,0 4 5 6 0 8 2 6 7 ,0 4 5 6 0 8 2 7 3 ,0 4 5 6 0 8 2 7 9 ,0 4 S 6 0 d 3 7 B ,0 4 5 6 0 8 3 8 6 ,0 4 5 6 0 8 3 9 2 ,

0 4 5 6 0 8 3 9 8 ,0 4 5 6 8 8 9 3 ,0 4 5 7 5 8 2 9 6 ,0 4 5 7 5 8 3 0 2 ,0 4 5 7 6 8 3 9 8 ,0 4 5 7 5 8 4 0 4 ,0 4 5 7 5 8 4 1 2 ,0 4 5 7 7 8 2 8 4 .0 4 5 7 7 8 2 9 0 ,0 4 5 7 7 8 2 9 6 ,0 4 5 7 7 8 3 4 2 ,0 4 5 7 7 8 3 4 8 ,

0 4 5 7 9 8 2 6 2 ,0 4 6 8 0 8 2 9 5 ,0 4 5 8 0 8 3 0 1 ,0 4 5 8 0 8 3 0 7 ,0 4 5 8 0 8 4 0 7 ,0 4 5 8 0 8 4 1 3 ,0 4 5 8 0 8 4 1 9 ,0 4 5 8 0 8 4 2 5 ,0 4 5 8 7 8 1 1 2 ,0 4 5 8 7 8 1 1 8 ,0 4 5 8 8 8 1 3 1 ,0 4 5 8 8 8 1 3 7 ,

0 4 5 8 8 8 2 3 3 ,0 4 5 8 8 8 2 3 9 ,0 4 5 8 8 8 2 4 5 ,0 4 5 9 3 8 1 9 2 ,0 4 5 9 3 8 1 9 8 ,0 4 5 9 3 8 2 0 4 ,0 4 5 9 3 8 2 1 0 ,0 4 5 9 3 8 2 6 4 ,0 4 5 9 3 8 2 7 0 ,0 4 5 9 6 8 1 6 8 ,0 4 6 9 6 8 1 7 6 ,0 4 5 9 6 8 1 8 2 ,

0 4 5 9 6 8 8 2 ,0 4 6 9 6 8 8 8 ,0 4 5 9 8 8 2 6 3 ,0 4 5 9 8 8 2 5 9 ,0 4 5 9 8 8 3 5 3 ,0 4 5 9 8 8 3 5 9 ,0 4 5 9 8 8 3 6 5 ,0 4 6 0 3 8 1 3 7 ,0 4 6 0 3 8 1 4 3 ,0 4 6 0 3 8 1 4 9 ,0 4 6 0 3 8 2 4 9 ,0 4 6 0 3 8 2 5 5 ,

0 4 6 0 3 8 2 6 1 ,0 4 6 0 3 8 2 6 7 ,0 4 6 0 6 8 1 8 0 ,0 4 6 0 6 8 1 8 6 ,0 4 6 0 9 8 1 9 1 ,0 4 6 0 9 8 1 9 7 ,0 4 6 0 9 8 2 0 3 ,0 4 6 0 9 8 2 0 9 ,0 4 6 0 9 8 9 6 ,0 4 6 1 2 8 6 5 ,0 4 6 1 3 8 1 7 8 ,0 4 6 1 3 8 1 8 4 ,

0 4 6 1 8 8 1 6 2 ,0 4 6 2 2 8 2 3 4 ,0 4 6 2 2 8 2 4 0 ,0 4 6 2 2 8 2 4 6 ,0 4 6 2 2 8 3 2 6 ,0 4 6 2 2 8 3 3 4 ,0 4 6 2 6 8 2 3 1 ,0 4 6 2 6 8 2 3 7 ,0 4 6 2 6 8 2 4 3 ,0 4 6 2 6 8 3 4 3 ,0 4 6 2 6 8 3 4 9 ,0 4 6 2 6 8 3 5 6 ,

0 4 6 2 6 8 3 6 1 .0 4 6 2 9 8 1 3 6 ,0 4 6 2 9 8 1 4 2 ,0 4 6 2 9 8 1 4 8 ,0 4 6 2 9 8 1 6 4 ,0 4 6 2 9 8 2 4 8 ,0 4 6 2 9 8 2 5 6 ,0 4 6 2 9 8 2 6 2 ,0 4 6 3 3 8 1 8 2 ,0 4 6 3 3 8 1 8 8 ,0 4 6 3 3 8 1 9 4 ,0 4 6 3 3 8 2 9 0 ,

0 4 6 3 3 8 2 9 6 ,0 4 6 3 3 8 3 0 2 ,0 4 6 3 3 8 3 0 8 ,0 4 6 3 7 8 1 9 8 ,0 4 6 3 8 8 1 9 5 ,0 4 6 4 1 8 1 7 7 ,0 4 6 4 1 8 2 4 1 ,0 4 6 4 1 8 2 4 7 ,0 4 6 4 1 8 2 5 3 ,0 4 6 4 4 8 2 0 2 ,0 4 6 4 4 8 2 0 8 ,0 4 6 4 4 8 2 5 4 ,

0 4 6 4 4 8 2 6 0 ,0 4 6 5 0 8 1 4 4 ,0 4 6 5 0 8 1 5 0 ,0 4 6 5 2 8 1 5 2 ,0 4 6 5 2 8 1 5 8 ,0 4 6 6 2 8 1 1 9 ,0 4 6 6 2 8 1 2 5 ,0 4 6 5 2 8 1 3 3 ,0 4 6 6 7 8 1 9 6 ,0 4 6 6 7 8 2 0 2 ,0 4 6 6 7 8 2 0 8 ,0 4 6 6 7 8 3 0 4 ,

0 4 6 6 7 8 3 1 0 ,0 4 6 6 7 8 3 1 6 ,0 4 6 6 7 8 3 2 2 ,0 4 6 7 3 8 1 8 8 ,0 4 6 7 3 8 2 7 3 ,0 4 6 7 3 8 2 7 9 ,0 4 6 7 3 8 2 8 5 ,0 4 6 7 6 8 1 5 9 ,0 4 6 8 1 8 1 4 5 ,0 4 6 8 1 8 1 5 1 ,0 4 6 8 1 8 1 5 7 ,0 4 6 8 1 8 1 7 9 ,

0 4 6 8 2 8 1 2 2 ,0 4 6 8 2 8 1 2 8 ,0 4 6 8 2 8 2 1 4 ,0 4 6 8 2 8 2 2 0 ,0 4 6 8 2 8 2 2 6 ,0 4 6 8 2 8 2 3 4 ,0 4 6 8 3 8 2 3 3 ,0 4 6 8 3 8 2 3 9 ,0 4 6 8 3 8 2 4 5 ,0 4 6 8 3 8 3 4 1 .0 4 6 8 3 8 3 4 7 ,0 4 6 8 3 8 3 5 3 ,

0 4 6 8 8 8 3 6 ,0 4 6 8 8 8 4 2 ,0 4 6 6 9 8 2 6 ,0 4 6 8 9 8 9 2 ,0 4 6 8 9 8 9 8 ,0 4 6 9 1 8 1 2 6 ,0 4 6 9 1 8 1 3 4 ,0 4 6 9 1 8 4 8 ,0 4 6 9 6 8 1 0 0 ,0 4 6 9 5 8 7 0 ,0 4 6 9 5 8 7 6 ,0 4 6 9 5 8 9 8 ,

0 4 6 9 6 8 4 0 ,0 4 6 9 7 8 1 7 8 ,0 4 6 9 7 8 1 8 4 ,0 4 6 9 7 8 1 9 0 ,0 4 6 9 7 8 8 0 ,0 4 6 9 7 8 8 6 ,0 4 6 9 7 8 9 2 ,0 4 7 0 0 8 2 2 ,0 4 7 0 1 8 1 5 7 ,0 4 7 0 1 8 1 6 3 ,0 4 7 0 1 8 6 6 ,0 4 7 0 1 8 7 2 ,

0 4 7 0 1 8 7 8 ,0 4 7 0 4 8 2 0 ,0 4 7 0 5 8 4 4 ,0 4 7 0 7 8 5 4 ,0 4 7 0 8 8 1 5 9 ,0 4 7 0 8 8 1 6 8 ,0 4 7 0 8 8 1 7 3 ,0 4 7 0 8 8 1 7 9 ,0 4 7 0 8 8 5 6 ,0 4 7 0 8 8 6 2 ,0 4 7 1 1 8 1 5 1 ,0 4 7 1 1 8 1 5 7 ,

0 4 7 1 1 8 1 6 3 ,0 4 7 1 1 8 1 6 9 ,0 4 7 1 1 8 5 1 ,0 4 7 1 4 8 1 8 8 ,0 4 7 1 4 8 1 9 6 ,0 4 7 1 4 8 2 0 2 ,0 4 7 1 4 8 8 0 ,0 4 7 1 4 8 8 6 ,0 4 7 1 4 8 9 2 ,0 4 7 1 7 8 4 1 ,0 4 7 1 7 8 4 7 ,0 4 7 1 8 8 2 0 ,

0 4 7 1 9 8 1 7 9 ,0 4 7 1 9 8 1 8 5 ,0 4 7 1 9 8 1 9 3 ,0 4 7 1 9 8 8 2 ,0 4 7 1 9 8 8 8 ,0 4 7 1 9 8 9 4 ,0 4 7 2 2 8 4 6 ,0 4 7 2 2 8 6 2 ,0 4 7 2 4 8 1 3 8 ,0 4 7 2 4 8 1 4 4 ,0 4 7 2 4 8 1 5 0 ,0 4 7 2 4 8 4 4 ,

0 4 7 2 4 8 5 0 ,0 4 7 2 8 8 4 4 ,0 4 7 2 8 8 9 6 ,0 4 7 2 9 8 6 0 ,0 4 7 2 9 8 5 6 ,0 4 7 3 0 8 1 3 0 ,0 4 7 3 0 8 1 3 6 ,0 4 7 3 0 8 5 8 ,0 4 7 3 0 8 6 4 ,0 4 7 3 1 8 1 3 5 ,0 4 7 3 1 8 1 4 1 ,0 4 7 3 1 8 3 7 ,

0 4 7 3 3 8 3 0 ,0 4 7 3 3 8 4 8 ,0 4 7 3 4 8 1 8 6 ,0 4 7 3 4 8 1 9 2 ,0 4 7 3 4 8 1 9 8 ,0 4 7 3 4 8 8 2 ,0 4 7 3 7 8 3 6 ,0 4 7 3 7 8 4 2 ,0 4 7 3 7 8 7 0 ,0 4 7 4 2 8 8 0 ,0 4 7 4 2 8 8 6 ,0 4 7 4 2 8 9 2 ,

0 4 7 4 3 8 1 3 6 ,0 4 7 4 3 8 1 4 2 .0 4 7 4 3 8 1 4 8 ,0 4 7 4 3 8 5 0 ,0 4 7 4 3 8 5 6 ,0 4 7 4 5 8 1 7 0 ,0 4 7 4 5 8 1 7 6 ,0 4 7 4 5 8 7 2 ,0 4 7 4 5 8 7 8 ,0 4 7 4 6 8 8 4 ,0 4 7 4 8 8 1 0 7 ,0 4 7 4 8 8 1 1 3 ,

0 4 7 4 8 8 1 1 9 ,0 4 7 5 0 8 4 8 ,0 4 7 6 0 8 5 4 ,0 4 7 6 0 8 6 0 ,0 4 7 5 1 8 4 8 ,0 4 7 5 3 8 2 0 ,0 4 7 5 4 8 1 7 8 ,0 4 7 5 4 8 1 8 4 ,0 4 7 5 4 8 1 9 2 ,0 4 7 5 4 8 7 2 ,0 4 7 5 4 8 7 8 ,0 4 7 5 4 8 8 4 ,

0 4 7 5 7 8 1 5 3 ,0 4 7 5 7 8 1 6 1 ,0 4 7 5 7 8 1 6 7 ,0 4 7 5 7 8 7 5 ,0 4 7 5 7 8 8 1 ,0 4 7 5 8 8 1 2 5 ,0 4 7 5 8 8 1 3 1 ,0 4 7 5 8 8 1 3 7 ,0 4 7 5 8 8 6 3 ,0 4 7 5 8 8 6 9 ,0 4 7 6 0 8 1 7 0 ,0 4 7 6 0 8 1 7 6 ,

0 4 7 6 0 8 7 6 ,0 4 7 6 0 8 8 2 ,0 4 7 6 3 8 1 5 4 ,0 4 7 6 3 8 1 6 0 ,0 4 7 6 3 8 1 6 6 ,0 4 7 6 3 8 6 8 ,0 4 7 6 6 8 2 4 ,0 4 7 6 6 8 3 0 ,0 4 7 6 7 8 1 0 4 ,0 4 7 6 7 8 3 6 ,0 4 7 6 7 8 9 6 ,0 4 7 7 0 8 2 6 ,

0 4 7 7 2 8 0 6 ,0 4 7 7 2 8 4 2 ,0 4 7 7 3 8 1 8 3 ,0 4 7 7 3 8 1 9 1 ,0 4 7 7 3 8 1 9 7 ,0 4 7 7 3 8 8 2 ,0 4 7 7 3 8 8 8 ,0 4 7 7 3 8 9 4 ,0 4 7 7 4 8 1 6 0 ,0 4 7 7 4 8 6 6 ,0 4 7 7 4 8 7 2 ,0 4 7 7 4 8 7 8 ,

0 4 7 7 7 8 1 8 2 ,0 4 7 7 7 8 1 8 8 ,0 4 7 7 7 8 1 9 4 ,0 4 7 7 7 8 2 0 2 ,0 4 7 7 7 8 7 4 ,0 4 7 7 7 8 8 0 ,0 4 7 7 7 8 8 6 ,0 4 7 7 8 8 5 0 ,0 4 7 7 8 8 5 6 ,0 4 7 7 9 8 5 2 ,0 4 7 8 2 8 1 9 1 ,0 4 7 8 2 8 1 9 7 ,

0 4 7 8 2 8 2 0 3 ,0 4 7 8 2 8 2 0 9 ,0 4 7 8 2 8 7 7 ,0 4 7 8 2 8 8 3 ,0 4 7 8 2 8 8 9 ,0 4 7 8 2 8 9 5 ,0 4 7 8 5 8 7 0 ,0 4 7 8 5 8 7 6 ,0 4 7 8 5 8 8 2 ,0 4 7 8 7 8 5 0 ,0 4 7 8 7 8 5 6 ,0 4 7 9 0 8 1 0 2 ,

0 4 7 9 0 8 4 2 ,0 4 7 9 0 8 4 8 ,0 4 7 9 2 8 4 1 ,0 4 7 9 2 8 4 7 ,0 4 7 9 6 8 1 3 8 ,0 4 7 9 6 8 1 4 4 ,0 4 7 9 6 8 1 5 0 ,0 4 7 9 6 8 7 6 ,0 4 7 9 6 8 8 2 ,0 4 7 9 9 8 3 8 ,0 4 8 0 1 8 6 2 ,0 4 8 0 1 8 6 8 ,

0 4 8 0 1 8 8 0 ,0 4 8 0 2 8 3 3 ,0 4 8 0 3 8 1 6 8 ,0 4 8 0 3 8 1 7 4 ,0 4 8 0 3 8 1 8 0 ,0 4 8 0 3 8 7 6 ,0 4 8 0 3 8 8 2 ,0 4 8 0 6 8 3 6 ,0 4 8 0 6 8 4 2 ,0 4 8 0 8 8 3 4 ,0 4 8 0 9 8 5 2 ,0 4 8 1 1 8 1 0 8 ,

0 4 8 1 1 8 1 1 4 ,0 4 8 1 1 8 1 2 0 ,0 4 8 1 1 8 5 2 ,0 4 8 1 3 8 1 4 0 ,0 4 8 1 3 8 1 4 6 ,0 4 8 1 3 8 1 6 2 ,0 4 8 1 3 8 4 2 ,0 4 8 1 3 8 4 8 ,0 4 8 1 5 8 1 9 6 ,0 4 8 1 5 8 2 0 2 ,0 4 8 1 5 8 2 0 8 ,0 4 8 1 5 8 7 8 ,

0 4 8 1 6 8 8 4 ,0 4 8 1 5 8 9 0 ,0 4 8 1 5 8 9 6 ,0 4 8 2 0 8 4 0 ,0 4 8 2 1 8 1 0 6 ,0 4 8 2 1 8 1 1 2 ,0 4 8 2 1 8 4 6 ,0 4 8 2 4 8 5 6 ,0 4 8 2 7 8 1 1 8 ,0 4 8 2 7 8 1 2 4 ,0 4 8 2 7 8 1 3 0 ,0 4 8 2 7 8 4 6 ,

0 4 8 2 9 8 1 1 2 ,0 4 8 2 9 8 1 1 8 ,0 4 3 3 9 8 4 4 ,0 4 8 3 0 8 1 4 0 ,0 4 8 3 0 8 1 4 6 ,0 4 8 3 0 8 8 2 ,0 4 8 3 0 8 8 8 ,0 4 8 3 0 8 9 4 ,0 4 8 3 3 8 1 5 2 ,0 4 8 3 3 8 1 5 8 ,0 4 8 3 3 8 1 6 4 ,0 4 8 3 3 8 4 8 ,

0 4 8 3 3 8 5 4 ,0 4 8 3 6 8 4 7 ,0 4 8 3 6 8 5 3 ,0 4 8 3 8 8 1 5 6 ,0 4 8 3 8 8 1 6 2 ,0 4 8 3 8 8 1 6 8 ,0 4 8 3 8 8 5 2 ,0 4 8 3 9 8 1 7 6 ,0 4 8 3 9 8 1 8 2 ,0 4 8 3 9 8 1 8 8 ,0 4 8 3 9 8 8 0 ,0 4 8 3 9 8 8 6 ,

0 4 8 3 9 8 9 2 ,0 4 8 4 2 8 1 6 0 ,0 4 8 4 2 8 1 6 8 ,0 4 8 4 2 8 1 7 4 ,0 4 8 4 2 8 5 4 ,0 4 8 4 2 8 6 0 ,0 4 8 4 3 8 1 5 1 ,0 4 8 4 3 8 1 5 9 ,0 4 8 4 3 8 7 1 ,0 4 8 4 3 8 7 7 ,0 4 8 4 6 8 1 4 0 ,0 4 8 4 6 8 1 4 6 ,

0 4 8 4 6 8 7 6 ,0 4 8 4 6 8 8 2 ,0 4 8 4 8 8 1 4 0 ,0 4 8 4 8 8 1 4 6 ,0 4 8 4 8 8 1 5 2 ,0 4 8 4 8 8 4 2 ,0 4 8 4 8 8 4 8 ,0 4 8 5 0 8 3 0 ,0 4 8 6 0 8 6 6 ,0 4 8 6 0 8 7 2 ,0 4 8 5 1 8 1 6 2 ,0 4 8 6 1 8 1 6 6 ,

0 4 8 5 1 8 1 7 4 ,0 4 8 5 1 8 5 4 ,0 4 8 6 1 8 6 0 ,0 4 8 5 2 8 6 2 ,0 4 8 5 2 8 6 8 ,0 4 8 5 5 8 8 4 ,0 4 8 5 5 8 9 0 ,0 4 8 5 5 8 9 6 ,0 4 8 5 6 8 8 4 ,0 4 8 5 6 8 9 0 ,0 4 8 5 6 8 9 6 ,0 4 8 5 7 8 7 4 ,

0 4 8 5 7 8 8 0 ,0 4 8 5 9 8 2 4 ,0 4 8 6 3 8 5 8 ,0 4 8 6 3 8 6 4 ,0 4 8 6 5 8 1 0 4 ,0 4 8 5 5 8 1 1 0 ,0 4 8 6 5 8 9 4 ,0 4 8 6 8 8 7 2 ,0 4 8 6 8 8 7 8 ,0 4 8 6 8 8 8 4 ,0 4 8 6 9 8 5 4 ,0 4 8 6 9 8 6 2 ,  

0 4 8 7 0 8 8 4 ,0 4 8 7 0 8 9 0 ,0 4 8 7 0 8 9 6 ,0 4 8 7 2 8 4 4 ,0 4 8 7 3 8 4 1 ,0 4 8 7 4 8 2 4 ,0 4 8 7 6 8 6 6 ,0 4 8 7 6 8 7 2 ,0 4 6 7 6 8 7 8 ,0 4 8 8 0 8 3 7 ,0 4 8 8 1 8 1 0 0 ,0 4 8 8 1 8 1 0 6 ,  

0 4 8 6 1 8 9 0 ,0 4 8 8 1 8 9 6 ,0 4 8 8 3 8 8 4 ,0 4 8 8 3 8 9 0 ,0 4 8 8 3 8 9 6 ,0 4 8 8 7 8 7 4 ,0 4 8 8 7 8 8 0 ,0 4 8 8 7 8 8 6 ,0 4 8 8 8 8 4 0 ,0 4 8 8 9 8 5 1 ,0 4 8 9 2 8 1 0 0 ,0 4 8 9 2 8 1 0 6 ,

0 4 8 9 2 8 9 2 ,0 4 8 9 3 8 6 6 ,0 4 8 9 3 8 7 2 ,0 4 8 9 4 8 6 4 ,0 4 8 9 4 8 7 0 ,0 4 8 9 4 8 7 8 ,0 4 8 9 8 8 6 2 ,0 4 8 9 8 8 6 8 ,0 4 8 9 9 8 8 2 ,0 4 8 9 9 8 8 8 ,0 4 9 0 0 8 1 0 0 ,0 4 9 0 0 8 8 8 ,  

0 4 9 0 0 8 9 6 ,0 4 9 0 3 8 3 2 ,0 4 9 0 5 8 5 4 ,0 4 9 0 5 8 6 0 ,0 4 9 0 7 8 7 6 ,0 4 9 0 7 8 8 2 ,0 4 9 0 7 8 8 8 ,0 4 9 1 0 8 6 7 ,0 4 9 1 4 8 4 2 ,0 4 9 1 4 8 4 8 ,0 4 9 1 5 8 5 0 ,0 4 9 1 5 8 5 6 ,

0 4 9 1 7 8 1 0 0 ,0 4 9 1 7 8 8 8 ,0 4 9 1 7 8 9 4 ,0 4 9 2 1 8 4 0 ,0 4 9 2 1 8 4 8 ,0 4 9 2 2 8 6 4 ,0 4 9 2 2 8 7 2 ,0 4 9 2 3 8 5 0 ,0 4 9 2 3 8 5 6 ,0 4 9 2 5 8 3 0 ,0 4 9 2 5 8 3 6 ,0 4 9 2 7 8 4 0 ,

0 4 9 2 7 8 4 6 ,0 4 9 2 9 8 4 6 ,0 4 9 2 9 8 5 2 ,0 4 9 3 2 8 4 0 ,0 4 9 3 4 8 5 0 ,0 4 9 3 4 8 5 8 ,0 4 9 3 6 8 1 0 2 ,0 4 9 3 6 8 8 8 ,0 4 9 3 6 8 9 4

A. 1.3 Evaluation Impostor Set

800 images:

04200874 ,042028438 ,042028440 ,042028442 ,042028444,042028446,042028448,042028450,042028452,042028454,042028456,042028582, 

042028554 ,042028566 ,042028558 ,042028560 ,042028562,042028564,042028566,042028568,042028570,042028572,042028574,042268357, 

042268359 ,042268351 ,042368164 ,042368166 ,042368168,042368160,042398378,042398380,042398382,042398384,042398386,042398388, 

042398390 ,042398460 ,042398482 ,042398484 ,042398486,042398488,042398490,042398492,042398494,042398496,042398498,042888252,

0 4 2 8 8 8 2 5 4 ,0 4 2 8 8 8 2 5 6 ,0 4 2 8 8 8 2 5 8 ,0 4 2 8 8 8 2 6 0 ,0 4 2 8 8 8 2 9 2 ,0 4 2 8 8 8 2 9 4 ,0 4 2 8 8 8 2 9 6 ,0 4 2 8 8 8 2 9 8 ,0 4 2 8 8 8 3 0 0 ,0 4 2 9 9 8 1 9 1 ,0 4 2 9 9 8 1 9 3 ,0 4 3 1 1 8 2 2 6 ,  

0 4 3 1 1 8 2 2 8 ,0 4 3 1 1 8 2 3 0 ,0 4 3 1 1 8 2 3 2 ,0 4 3 1 1 8 2 3 4 ,0 4 3 1 1 8 2 3 6 ,0 4 3 1 1 8 2 8 0 ,0 4 3 1 1 8 2 8 2 ,0 4 3 1 1 8 2 8 4 ,0 4 3 1 4 8 5 3 ,0 4 3 1 4 8 6 1 ,0 4 3 2 1 8 1 0 8 ,0 4 3 2 1 8 1 1 0 ,  

0 4 3 2 1 8 1 1 2 ,0 4 3 2 1 8 1 1 4 ,0 4 3 2 1 8 1 1 6 ,0 4 3 2 1 8 1 1 8 ,0 4 3 2 9 8 1 0 0 ,0 4 3 2 9 8 1 0 2 ,0 4 3 2 9 8 1 0 4 ,0 4 3 2 9 8 1 0 6 ,0 4 3 2 9 8 1 0 8 ,0 4 3 2 9 8 1 1 0 ,0 4 3 2 9 8 1 1 2 ,0 4 3 3 6 8 2 9 1 ,  

0 4 3 3 6 8 2 9 3 ,0 4 3 3 6 8 2 9 5 ,0 4 3 3 6 8 2 9 7 ,0 4 3 3 6 8 2 9 9 ,0 4 3 3 6 8 3 0 1 ,0 4 3 3 6 8 3 0 3 ,0 4 3 3 6 8 3 9 3 ,0 4 3 3 6 8 3 9 5 ,0 4 3 3 6 8 3 9 7 ,0 4 3 3 6 8 4 0 1 ,0 4 3 3 6 8 4 0 3 ,0 4 3 3 6 8 4 0 5 ,
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0 4 3 3 6 8 4 0 7 ,0 4 3 3 6 8 4 0 9 ,0 4 3 4 9 8 3 1 2 .0 4 3 4 9 8 3 1 4 ,0 4 3 4 9 8 3 1 6 ,0 4 3 4 9 8 3 1 8 ,0 4 3 4 9 8 3 2 0 .0 4 3 4 9 8 3 2 2 ,0 4 3 4 9 8 3 2 4 ,0 4 3 4 9 8 3 2 6 ,0 4 3 4 9 8 3 2 8 ,0 4 3 4 9 8 3 3 0 ,

0 4 3 4 9 8 4 0 6 ,0 4 3 4 9 8 4 0 8 ,0 4 3 4 9 8 4 1 0 ,0 4 3 4 9 8 4 1 2 ,0 4 3 4 9 8 4 1 4 ,0 4 3 4 9 8 4 1 6 ,0 4 3 4 9 8 4 1 8 ,0 4 3 7 4 8 2 1 1 ,0 4 3 7 4 8 2 1 3 ,0 4 3 7 9 8 2 8 0 ,0 4 3 7 9 8 2 8 2 ,0 4 3 7 9 8 2 8 4 .

0 4 3 7 9 8 2 8 6 ,0 4 3 7 9 8 2 8 8 ,0 4 3 7 9 8 2 9 0 ,0 4 3 7 9 8 2 9 2 ,0 4 3 7 9 8 2 9 4 ,0 4 3 7 9 8 2 9 6 ,0 4 3 7 9 8 3 6 7 ,0 4 3 7 9 8 3 5 9 ,0 4 3 7 9 8 3 6 1 .0 4 3 7 9 8 3 6 3 ,0 4 3 7 9 8 3 6 5 ,0 4 3 7 9 8 3 6 7 ,

0 4 3 9 4 8 2 9 5 ,0 4 3 9 4 8 2 9 7 ,0 4 3 9 4 8 2 9 9 ,0 4 3 9 4 8 3 0 1 ,0 4 3 9 4 8 3 0 3 ,0 4 3 9 4 8 3 0 5 ,0 4 3 9 4 8 3 0 7 ,0 4 3 9 4 8 3 0 9 ,0 4 3 9 4 8 3 9 5 ,0 4 3 9 4 8 3 9 7 ,0 4 3 9 4 8 3 9 9 ,0 4 3 9 4 8 4 0 1 ,

0 4 3 9 4 8 4 0 3 ,0 4 3 9 4 8 4 0 5 ,0 4 3 9 4 8 4 0 7 ,0 4 3 9 4 8 4 0 9 ,0 4 3 9 4 8 4 1 1 ,0 4 3 9 4 8 4 1 3 ,0 4 3 9 4 8 4 1 5 ,0 4 3 9 4 8 4 1 7 ,0 4 4 0 7 8 2 6 1 ,0 4 4 0 7 8 2 6 3 ,0 4 4 0 7 8 2 6 5 ,0 4 4 0 7 8 2 6 9 ,

0 4 4 0 7 8 2 7 1 ,0 4 4 0 7 8 2 7 3 ,0 4 4 0 7 8 3 1 5 ,0 4 4 0 7 8 3 1 7 ,0 4 4 0 7 8 3 1 9 ,0 4 4 0 7 8 3 2 1 ,0 4 4 1 2 8 1 0 7 ,0 4 4 2 2 8 2 3 8 ,0 4 4 2 2 8 2 4 0 ,0 4 4 2 2 8 2 4 2 ,0 4 4 2 2 8 2 4 4 ,0 4 4 2 4 8 2 1 9 ,

0 4 4 2 4 8 2 2 1 ,0 4 4 2 4 8 2 2 3 ,0 4 4 2 4 8 2 2 5 ,0 4 4 2 4 8 2 2 7 ,0 4 4 2 4 8 2 2 9 ,0 4 4 2 4 8 2 3 1 ,0 4 4 2 4 8 2 3 3 ,0 4 4 3 0 8 2 7 1 ,0 4 4 3 0 8 2 7 3 ,0 4 4 3 0 8 2 7 5 ,0 4 4 3 0 8 2 7 7 ,0 4 4 3 0 8 2 7 9 ,

0 4 4 3 0 8 2 8 1 ,0 4 4 3 0 8 3 6 7 ,0 4 4 3 0 8 3 6 9 ,0 4 4 3 0 8 3 7 1 ,0 4 4 3 0 8 3 7 3 ,0 4 4 3 0 8 3 7 5 ,0 4 4 3 0 8 3 7 7 ,0 4 4 3 0 8 3 7 9 ,0 4 4 3 0 8 3 8 1 ,0 4 4 3 0 8 3 8 3 ,0 4 4 3 0 8 3 8 5 ,0 4 4 4 7 8 1 2 5 ,

0 4 4 4 7 8 1 2 7 ,0 4 4 4 7 8 1 2 9 ,0 4 4 4 7 8 1 3 1 ,0 4 4 4 7 8 1 3 3 ,0 4 4 4 7 8 1 3 5 ,0 4 4 4 7 8 1 3 7 ,0 4 4 4 7 8 1 5 7 ,0 4 4 4 7 8 1 5 9 ,0 4 4 5 3 8 2 8 5 ,0 4 4 5 3 8 2 8 7 ,0 4 4 5 3 8 2 9 1 ,0 4 4 5 3 8 2 9 3 ,

0 4 4 5 3 8 2 9 5 ,0 4 4 5 3 8 2 9 7 ,0 4 4 6 3 8 3 5 7 ,0 4 4 5 3 8 3 5 9 ,0 4 4 5 3 8 3 6 1 ,0 4 4 5 3 8 3 6 3 ,0 4 4 5 3 8 3 6 5 ,0 4 4 5 3 8 3 6 7 ,0 4 4 7 0 8 2 8 9 ,0 4 4 7 0 8 2 9 1 ,0 4 4 7 0 8 2 9 3 ,0 4 4 7 0 8 2 9 5 ,

0 4 4 7 0 8 2 9 7 ,0 4 4 7 0 8 2 9 9 ,0 4 4 7 0 8 3 0 1 ,0 4 4 7 0 8 3 0 3 ,0 4 4 7 0 8 3 0 5 ,0 4 4 7 0 8 3 9 7 ,0 4 4 7 0 8 3 9 9 ,0 4 4 7 0 8 4 0 1 ,0 4 4 7 0 8 4 0 3 ,0 4 4 7 0 8 4 0 5 ,0 4 4 7 0 8 4 0 7 ,0 4 4 7 0 8 4 0 9 ,

0 4 4 7 0 8 4 1 1 ,0 4 4 7 0 8 4 1 3 ,0 4 4 7 0 8 4 1 5 ,0 4 4 7 0 8 4 1 7 ,0 4 4 7 0 8 4 1 9 ,0 4 4 8 1 8 2 8 7 ,0 4 4 8 1 8 2 8 9 ,0 4 4 8 1 8 2 9 1 ,0 4 4 8 1 8 2 9 3 ,0 4 4 8 1 8 2 9 5 ,0 4 4 8 1 8 2 9 7 ,0 4 4 8 1 8 2 9 9 ,

0 4 4 8 1 8 3 0 1 ,0 4 4 8 1 8 3 9 5 ,0 4 4 8 1 8 3 9 7 ,0 4 4 8 1 8 3 9 9 ,0 4 4 8 1 8 4 0 1 ,0 4 4 8 1 8 4 0 5 ,0 4 4 8 1 8 4 0 7 ,0 4 4 8 1 8 4 0 9 ,0 4 4 8 1 8 4 1 1 ,0 4 4 8 1 8 4 1 3 ,0 4 4 9 6 8 2 4 0 ,0 4 4 9 6 8 2 4 2 ,

0 4 4 9 6 8 2 4 4 ,0 4 4 9 6 8 2 4 6 ,0 4 4 9 6 8 2 4 8 ,0 4 4 9 6 8 2 5 0 ,0 4 4 9 6 8 2 5 2 ,0 4 4 9 6 8 2 5 4 ,0 4 4 9 6 8 2 6 8 ,0 4 4 9 6 8 2 9 0 ,0 4 5 0 4 8 1 0 5 ,0 4 6 0 4 8 8 6 ,0 4 5 0 7 8 2 9 1 ,0 4 5 0 7 8 2 9 3 ,

0 4 5 0 7 8 2 9 5 ,0 4 6 0 7 8 2 9 7 ,0 4 6 0 7 8 2 9 9 ,0 4 5 0 7 8 3 0 1 ,0 4 5 0 7 8 3 0 3 ,0 4 5 0 7 8 3 0 5 ,0 4 5 0 7 8 3 0 7 ,0 4 5 0 7 8 3 0 9 ,0 4 5 0 7 8 4 0 2 ,0 4 5 0 7 8 4 0 4 ,0 4 5 0 7 8 4 0 6 ,0 4 5 0 7 8 4 0 8 ,

0 4 5 0 7 8 4 1 0 ,0 4 5 0 7 8 4 1 4 ,0 4 5 0 7 8 4 1 8 ,0 4 5 0 7 8 4 2 0 ,0 4 5 0 7 8 4 2 2 ,0 4 6 0 7 8 4 2 4 ,0 4 5 1 9 8 2 0 4 ,0 4 6 1 9 8 2 0 6 ,0 4 5 1 9 8 2 0 8 ,0 4 5 1 9 8 2 1 0 ,0 4 5 1 9 8 2 1 2 ,0 4 5 1 9 8 2 3 2 ,

0 4 5 1 9 8 2 3 4 ,0 4 5 1 9 8 2 3 6 ,0 4 5 3 7 8 3 2 0 ,0 4 5 3 7 8 3 2 2 ,0 4 5 3 7 8 3 2 4 ,0 4 5 3 7 8 3 2 6 ,0 4 5 3 7 8 3 2 8 ,0 4 5 3 7 8 3 3 0 ,0 4 5 3 7 8 3 3 2 ,0 4 5 3 7 8 4 1 0 ,0 4 5 3 7 8 4 1 2 ,0 4 5 3 7 8 4 1 4 ,

0 4 5 3 7 8 4 1 6 ,0 4 5 3 7 8 4 1 8 ,0 4 5 3 7 8 4 2 0 ,0 4 5 4 0 8 2 5 3 ,0 4 5 4 0 8 2 5 5 ,0 4 5 6 7 8 3 2 9 .0 4 5 5 7 8 3 3 1 ,0 4 5 5 7 8 3 3 3 ,0 4 5 5 7 8 3 3 5 ,0 4 8 5 7 8 3 3 7 ,0 4 5 5 7 8 3 3 9 ,0 4 6 5 7 8 3 4 1 ,

0 4 5 5 7 8 3 4 3 ,0 4 5 5 7 8 3 4 5 ,0 4 6 5 7 8 3 4 7 ,0 4 5 5 7 8 4 4 3 ,0 4 5 6 7 8 4 4 5 ,0 4 5 5 7 8 4 4 7 ,0 4 5 5 7 8 4 4 9 ,0 4 5 5 7 8 4 5 1 ,0 4 5 5 7 8 4 5 3 ,0 4 5 5 7 8 4 5 5 ,0 4 5 5 7 8 4 5 7 ,0 4 5 5 7 8 4 5 9 ,

0 4 5 5 7 8 4 6 1 ,0 4 6 5 7 8 4 6 3 ,0 4 5 7 8 8 2 2 ,0 4 5 7 8 8 2 4 ,0 4 5 8 5 8 1 8 4 ,0 4 5 8 5 8 1 8 6 ,0 4 5 8 5 8 1 8 8 ,0 4 5 8 5 8 1 9 0 ,0 4 5 8 5 8 1 9 2 ,0 4 5 8 5 8 1 9 4 ,0 4 5 8 5 8 2 6 6 ,0 4 5 8 5 8 2 6 8 ,

0 4 5 8 5 8 2 7 0 ,0 4 5 8 5 8 2 7 2 ,0 4 5 8 5 8 2 7 4 ,0 4 5 8 5 8 2 7 6 ,0 4 5 8 5 8 2 7 8 ,0 4 5 8 5 8 2 8 0 ,0 4 5 8 5 8 2 8 2 ,0 4 5 9 5 8 1 4 3 ,0 4 5 9 6 8 1 4 5 ,0 4 5 9 5 8 1 4 7 ,0 4 5 9 5 8 1 4 9 ,0 4 5 9 5 8 1 5 1 ,

0 4 5 9 5 8 1 5 3 ,0 4 5 9 5 8 8 7 ,0 4 5 9 5 8 8 9 ,0 4 5 9 5 8 9 1 ,0 4 5 9 5 8 9 3 ,0 4 5 9 5 8 9 5 ,0 4 5 9 5 8 9 9 ,0 4 6 0 2 8 1 0 4 ,0 4 6 0 2 8 1 0 6 ,0 4 6 0 4 8 9 6 ,0 4 6 0 4 8 9 8 ,0 4 6 0 5 8 2 3 9 ,

0 4 6 0 6 8 2 4 1 ,0 4 6 0 5 8 2 4 3 ,0 4 6 0 5 8 2 4 5 ,0 4 6 0 5 8 2 4 7 ,0 4 6 0 5 8 2 4 9 ,0 4 6 0 5 8 2 5 1 ,0 4 6 0 5 8 2 5 3 ,0 4 6 0 5 8 2 5 5 ,0 4 6 0 5 8 2 7 9 ,0 4 6 0 5 8 2 8 1 ,0 4 6 0 5 8 2 8 3 ,0 4 6 1 5 8 1 7 8 ,

0 4 6 1 5 8 1 8 0 ,0 4 6 1 6 8 1 8 2 ,0 4 6 1 5 8 1 8 4 ,0 4 6 1 5 8 1 8 6 ,0 4 6 1 5 8 1 8 8 ,0 4 6 1 5 8 1 9 0 ,0 4 6 1 5 8 1 9 2 ,0 4 6 1 5 8 1 9 4 ,0 4 6 1 5 8 1 9 6 ,0 4 6 1 5 8 1 9 8 ,0 4 6 1 5 8 2 0 0 ,0 4 6 1 5 8 7 8 ,

0 4 6 1 5 8 8 0 ,0 4 6 1 5 8 8 2 ,0 4 5 1 5 8 8 4 ,0 4 6 1 5 8 8 6 ,0 4 6 3 1 8 1 6 6 ,0 4 6 3 1 8 1 6 8 ,0 4 6 3 1 8 1 7 0 ,0 4 6 3 1 8 1 7 2 ,0 4 6 3 1 8 1 7 4 ,0 4 6 3 1 8 1 7 6 ,0 4 6 3 1 8 1 7 8 ,0 4 6 3 1 8 1 8 0 ,

0 4 6 3 1 8 1 8 2 ,0 4 6 3 1 8 2 5 4 ,0 4 6 3 1 8 2 5 6 ,0 4 6 3 1 8 2 5 8 ,0 4 6 3 1 8 2 6 0 ,0 4 6 3 1 8 2 6 4 ,0 4 6 3 1 8 2 6 8 ,0 4 6 3 1 8 2 7 0 ,0 4 6 3 5 8 4 7 ,0 4 6 3 5 8 4 9 ,0 4 6 4 3 8 2 0 ,0 4 6 4 6 8 4 1 ,

0 4 6 4 7 8 1 6 0 ,0 4 6 4 7 8 1 7 0 ,0 4 6 5 1 8 1 2 8 ,0 4 6 5 1 8 1 3 0 ,0 4 6 5 7 8 1 6 4 ,0 4 6 5 7 8 1 5 6 ,0 4 6 6 4 8 1 4 3 ,0 4 6 6 4 8 1 4 5 ,0 4 6 6 4 8 1 4 7 ,0 4 6 6 4 8 1 4 9 ,0 4 6 6 4 8 1 5 1 ,0 4 6 6 4 8 1 5 3 ,

0 4 6 6 4 8 1 5 5 ,0 4 6 6 4 8 1 8 7 ,0 4 6 6 4 8 1 8 9 ,0 4 6 6 4 8 1 9 1 ,0 4 6 7 5 8 2 4 7 ,0 4 6 7 5 8 2 4 9 ,0 4 6 7 5 8 2 6 1 ,0 4 6 7 5 8 2 5 3 ,0 4 6 7 5 8 2 6 5 ,0 4 6 7 5 8 3 3 9 ,0 4 6 7 5 8 3 4 1 ,0 4 6 7 5 8 3 4 3 ,

0 4 6 7 6 8 3 4 5 ,0 4 6 7 5 8 3 4 7 ,0 4 6 7 5 8 3 4 9 ,0 4 6 7 5 8 3 5 1 ,0 4 6 7 5 8 3 5 3 ,0 4 6 8 4 8 2 2 6 ,0 4 6 8 4 8 2 2 8 ,0 4 6 8 4 8 2 3 0 ,0 4 6 8 4 8 2 3 2 ,0 4 6 8 4 8 2 3 4 ,0 4 6 8 4 8 2 3 6 ,0 4 6 8 4 8 2 3 8 ,

0 4 6 8 4 8 2 4 0 ,0 4 6 8 4 8 2 4 2 ,0 4 6 8 4 8 3 0 2 ,0 4 6 8 4 8 3 0 4 ,0 4 6 8 4 8 3 0 6 ,0 4 6 8 4 8 3 0 8 ,0 4 6 8 4 8 3 1 0 ,0 4 6 9 3 8 4 8 ,0 4 6 9 3 8 5 0 ,0 4 6 9 3 8 5 2 ,0 4 6 9 3 8 5 4 ,0 4 6 9 3 8 5 6 ,

0 4 6 9 3 8 5 8 ,0 4 6 9 3 8 7 0 ,0 4 6 9 4 8 0 6 ,0 4 6 9 9 8 1 0 6 ,0 4 6 9 9 8 1 0 8 ,0 4 6 9 9 8 1 1 0 ,0 4 6 9 9 8 1 1 2 ,0 4 6 9 9 8 1 1 4 ,0 4 6 9 9 8 4 2 ,0 4 6 9 9 8 4 4 ,0 4 6 9 9 8 4 6 ,0 4 6 9 9 8 4 8 ,

0 4 7 0 3 8 1 1 2 ,0 4 7 0 3 8 1 1 4 ,0 4 7 0 3 8 1 1 6 ,0 4 7 0 3 8 1 1 8 ,0 4 7 0 3 8 1 2 0 ,0 4 7 0 3 8 1 2 2 .0 4 7 0 3 8 4 2 ,0 4 7 0 3 8 4 4 ,0 4 7 0 3 8 4 6 ,0 4 7 1 0 8 0 6 ,0 4 7 1 2 8 1 0 1 ,0 4 7 1 2 8 1 0 3 ,

0 4 7 1 2 8 1 0 5 ,0 4 7 1 2 8 4 7 ,0 4 7 1 2 8 4 9 ,0 4 7 1 2 8 5 1 ,0 4 7 1 2 8 5 3 ,0 4 7 1 2 8 9 7 ,0 4 7 1 2 8 9 9 ,0 4 7 1 3 8 0 6 ,0 4 7 1 5 8 1 2 ,0 4 7 1 5 8 1 4 ,0 4 7 1 6 8 7 4 ,0 4 7 1 5 8 7 6 ,

0 4 7 1 5 8 7 8 ,0 4 7 1 5 8 8 0 ,0 4 7 1 6 8 8 2 ,0 4 7 2 1 8 4 2 ,0 4 7 2 1 8 4 4 ,0 4 7 2 1 8 4 6 ,0 4 7 2 1 8 4 8 ,0 4 7 2 1 8 8 0 ,0 4 7 2 1 8 8 2 ,0 4 7 2 1 8 8 4 ,0 4 7 2 6 8 1 3 2 ,0 4 7 2 6 8 1 3 4 ,

0 4 7 2 6 8 1 3 6 ,0 4 7 2 6 8 1 3 8 ,0 4 7 2 6 8 1 4 0 ,0 4 7 2 6 8 1 4 2 ,0 4 7 2 6 8 1 4 4 ,0 4 7 2 6 8 1 4 6 ,0 4 7 2 6 8 1 4 8 ,0 4 7 2 6 8 1 5 0 ,0 4 7 2 6 8 1 5 2 ,0 4 7 2 6 8 4 2 ,0 4 7 2 6 8 4 4 ,0 4 7 2 6 8 4 6 ,

0 4 7 3 2 8 0 6 ,0 4 7 3 2 8 1 4 ,0 4 7 3 5 8 3 0 ,0 4 7 3 5 8 3 2 ,0 4 7 3 5 8 3 4 ,0 4 7 3 5 8 3 6 ,0 4 7 3 5 8 3 8 ,0 4 7 3 8 8 4 2 ,0 4 7 3 8 8 4 4 ,0 4 7 3 8 8 4 6 ,0 4 7 3 8 8 4 8 ,0 4 7 3 6 8 5 0 ,

0 4 7 3 8 8 9 2 ,0 4 7 3 8 8 9 4 ,0 4 7 3 8 8 9 6 ,0 4 7 3 8 8 9 8 ,0 4 7 4 6 8 4 2 ,0 4 7 4 6 8 4 4 ,0 4 7 4 6 8 4 6 ,0 4 7 4 6 8 8 5 ,0 4 7 4 6 8 8 9 ,0 4 7 4 7 8 1 0 0 ,0 4 7 4 7 8 1 0 2 ,0 4 7 4 7 8 1 0 4 ,

0 4 7 4 7 8 1 0 6 ,0 4 7 4 7 8 1 0 8 ,0 4 7 4 7 8 1 1 0 ,0 4 7 4 7 8 1 1 2 ,0 4 7 4 7 8 3 6 ,0 4 7 4 7 8 3 8 ,0 4 7 4 7 8 4 0 ,0 4 7 5 2 8 0 6 ,0 4 7 5 5 8 1 8 ,0 4 7 5 5 8 2 0 ,0 4 7 5 6 8 1 1 1 ,0 4 7 6 6 8 1 1 3 ,

0 4 7 5 6 8 1 1 5 ,0 4 7 5 6 8 1 1 7 ,0 4 7 5 6 8 6 7 ,0 4 7 5 6 8 6 9 ,0 4 7 5 6 8 7 1 ,0 4 7 6 6 8 7 3 ,0 4 7 5 6 8 7 5 ,0 4 7 5 6 8 7 7 ,0 4 7 5 6 8 7 9 ,0 4 7 5 6 8 8 1 ,0 4 7 6 1 8 4 2 ,0 4 7 6 1 8 4 4 ,

0 4 7 6 1 8 4 6 ,0 4 7 6 1 8 4 8 ,0 4 7 6 4 8 2 4 ,0 4 7 6 4 8 2 6 ,0 4 7 6 4 8 2 8 ,0 4 7 6 5 8 1 6 6 ,0 4 7 6 5 8 1 5 8 ,0 4 7 6 5 8 1 6 0 ,0 4 7 6 5 8 1 6 2 ,0 4 7 6 5 8 1 6 4 ,0 4 7 6 5 8 1 6 6 ,0 4 7 6 5 8 1 6 8 ,

0 4 7 6 5 8 1 7 0 ,0 4 7 6 5 8 1 7 2 ,0 4 7 6 5 8 5 4 ,0 4 7 6 5 8 5 6 ,0 4 7 6 5 8 5 8 ,0 4 7 6 5 8 6 0 ,0 4 7 6 5 8 6 2 ,0 4 7 6 9 8 0 6 ,0 4 7 7 1 8 0 6 ,0 4 7 7 5 8 1 3 8 ,0 4 7 7 6 8 1 4 0 ,0 4 7 7 5 8 1 4 2 ,

0 4 7 7 6 8 7 2 ,0 4 7 7 5 8 7 4 ,0 4 7 7 5 8 7 6 ,0 4 7 7 5 8 7 8 ,0 4 7 7 5 8 8 0 ,0 4 7 7 5 8 8 2 ,0 4 7 7 5 8 8 4 ,0 4 7 7 5 8 8 6 ,0 4 7 7 5 8 8 8 ,0 4 7 7 5 8 9 0 ,0 4 7 8 3 8 3 6 ,0 4 7 8 3 8 3 8 ,

0 4 7 8 3 8 7 4 ,0 4 7 8 3 8 7 6 ,0 4 7 8 4 8 3 6 ,0 4 7 8 4 8 3 8 ,0 4 7 8 4 8 4 0 ,0 4 7 8 4 8 4 2 ,0 4 7 8 4 8 6 6 ,0 4 7 8 4 8 6 8 .0 4 7 5 4 8 7 0 ,0 4 7 8 8 8 1 2 ,0 4 7 8 8 8 1 4 ,0 4 7 8 9 8 1 2 ,

0 4 7 8 9 8 1 4 ,0 4 7 9 1 8 1 2 ,0 4 7 9 3 8 1 2 ,0 4 7 9 4 8 2 4 ,0 4 7 9 4 8 3 8 ,0 4 7 9 5 8 3 6 ,0 4 7 9 5 8 3 8 ,0 4 7 9 7 8 1 4 4 ,0 4 7 9 7 8 1 4 6 ,0 4 7 9 7 8 1 4 8 ,0 4 7 9 7 8 1 5 0 ,0 4 7 9 7 8 1 5 2 ,

0 4 7 9 7 8 1 5 4 ,0 4 7 9 7 8 1 5 6 ,0 4 7 9 7 8 1 5 8 ,0 4 7 9 7 8 1 6 0 ,0 4 7 9 7 8 1 6 2 ,0 4 7 9 7 8 1 6 4 ,0 4 7 9 7 8 4 2 ,0 4 7 9 7 8 4 4 ,0 4 7 9 7 8 4 6 ,0 4 7 9 7 8 4 8 ,0 4 7 9 7 8 5 0 ,0 4 7 9 7 8 5 2 ,

0 4 7 9 7 8 5 4 ,0 4 8 1 2 8 4 2 ,0 4 8 1 2 8 4 4 ,0 4 8 1 2 8 7 2 ,0 4 8 1 4 8 1 8 ,0 4 8 1 4 8 2 0 ,0 4 6 1 4 8 2 2 ,0 4 8 1 6 8 0 6 ,0 4 8 1 6 8 6 0 ,0 4 8 1 6 8 6 2 ,0 4 8 1 6 8 6 6 ,0 4 8 1 6 8 6 8 ,

0 4 8 1 5 8 7 0 ,0 4 8 1 9 8 1 2 ,0 4 8 1 9 8 1 4 ,0 4 8 2 2 8 1 4 4 ,0 4 8 2 2 8 1 4 6 ,0 4 8 2 2 8 1 4 8 ,0 4 8 2 2 8 1 5 0 ,0 4 8 2 2 8 1 5 2 ,0 4 8 2 2 8 1 5 4 ,0 4 8 2 2 8 1 5 6 ,0 4 8 2 2 8 1 5 8 ,0 4 8 2 2 8 1 6 0 ,

0 4 8 2 2 8 1 6 2 ,0 4 8 2 2 8 4 8 ,0 4 8 2 2 8 5 0 ,0 4 8 2 2 8 5 2 ,0 4 8 2 2 8 6 4 ,0 4 8 2 6 8 2 4 ,0 4 8 2 8 8 0 6 ,0 4 8 3 2 8 1 4 0 ,0 4 8 3 2 8 1 4 2 ,0 4 8 3 2 8 1 4 4 ,0 4 8 3 2 8 1 4 6 ,0 4 8 3 2 8 1 4 8 ,

0 4 8 3 2 8 1 5 0 ,0 4 8 3 2 8 1 5 2 ,0 4 8 3 2 8 7 8 ,0 4 8 3 2 8 8 0 ,0 4 8 3 2 8 8 2 ,0 4 8 3 2 8 8 4 ,0 4 8 3 2 8 8 6 ,0 4 8 3 2 8 8 8 ,0 4 8 3 2 8 9 0 ,0 4 8 3 2 8 9 2 ,0 4 8 3 4 8 0 6 ,0 4 8 3 7 8 0 6 ,

0 4 8 4 1 8 1 4 0 ,0 4 8 4 1 8 1 4 2 ,0 4 8 4 1 8 1 4 4 ,0 4 8 4 1 8 1 4 6 ,0 4 8 4 1 8 1 4 8 ,0 4 8 4 1 8 1 5 0 ,0 4 8 4 1 8 1 5 2 ,0 4 8 4 1 8 4 8 ,0 4 8 4 1 8 5 0 .0 4 8 4 1 8 5 2 ,0 4 8 4 4 8 0 6 ,0 4 8 4 5 8 0 6 ,

0 4 8 4 7 8 1 6 0 ,0 4 8 4 7 8 1 6 2 ,0 4 8 4 7 8 1 6 4 ,0 4 8 4 7 8 1 6 6 ,0 4 8 4 7 8 1 6 8 ,0 4 8 4 7 8 1 7 0 ,0 4 8 4 7 8 1 7 2 ,0 4 8 4 7 8 1 7 4 ,0 4 8 4 7 8 1 7 6 ,0 4 8 4 7 8 1 7 8 ,0 4 8 4 7 8 5 4 ,0 4 8 4 7 8 5 6 ,

0 4 8 4 7 8 5 8 ,0 4 8 4 7 8 6 0 ,0 4 8 4 7 8 6 2 ,0 4 8 4 7 8 6 4 ,0 4 8 5 4 8 1 4 0 ,0 4 8 5 4 8 1 4 2 ,0 4 8 6 4 8 1 4 4 ,0 4 8 6 4 8 1 4 6 ,0 4 8 5 4 8 1 4 8 ,0 4 8 5 4 8 1 5 0 ,0 4 8 5 4 8 1 5 2 ,0 4 8 5 4 8 4 8 ,

0 4 8 5 4 8 5 0 ,0 4 8 5 4 8 5 2 ,0 4 8 6 4 8 5 4 ,0 4 8 6 4 8 5 6 ,0 4 8 6 0 8 0 6 ,0 4 8 6 2 8 0 6 ,0 4 8 6 6 8 1 0 0 ,0 4 8 6 6 8 1 0 2 ,0 4 8 6 6 8 1 0 4 ,0 4 8 6 6 8 8 4 ,0 4 8 6 6 8 8 6 ,0 4 8 6 6 8 8 8 ,

0 4 8 6 6 8 9 0 ,0 4 8 6 6 8 9 2 ,0 4 8 6 6 8 9 4 ,0 4 8 6 6 8 9 6 ,0 4 8 6 6 8 9 8 ,0 4 8 7 5 8 0 6 ,0 4 8 7 7 8 1 8 ,0 4 8 7 7 8 2 0 ,0 4 8 7 7 8 2 2 ,0 4 8 7 9 8 0 6 ,0 4 8 8 2 8 6 4 ,0 4 8 8 2 8 6 6 ,

0 4 8 8 2 8 6 8 ,0 4 8 8 2 8 7 0 ,0 4 8 8 2 8 7 2 ,0 4 8 8 2 8 7 4 ,0 4 8 8 5 8 4 6 ,0 4 8 8 5 8 4 8 ,0 4 8 8 5 8 5 0 ,0 4 8 8 5 8 5 2 ,0 4 8 8 5 8 5 4 ,0 4 8 9 0 8 7 2 ,0 4 8 9 0 8 7 4 ,0 4 8 9 0 8 7 6 ,

0 4 8 9 0 8 7 8 ,0 4 8 9 0 8 8 0 ,0 4 8 9 0 8 8 2 ,0 4 8 9 0 8 8 4 ,0 4 8 9 5 8 3 0 ,0 4 8 9 5 8 3 2 ,0 4 8 9 5 8 3 4 ,0 4 8 9 5 8 3 6 ,0 4 8 9 5 8 3 8 ,0 4 8 9 7 8 0 6 ,0 4 9 0 1 8 7 2 ,0 4 9 0 1 8 7 4 ,

0 4 9 0 1 8 7 6 ,0 4 9 0 1 8 7 8 ,0 4 9 0 1 8 8 0 ,0 4 9 0 1 8 8 2 ,0 4 9 0 1 8 8 4 ,0 4 9 0 6 8 0 6 ,0 4 9 0 8 8 4 2 ,0 4 9 0 8 8 4 4 ,0 4 9 0 8 8 4 6 ,0 4 9 0 8 8 4 8 ,0 4 9 1 2 8 0 6 ,0 4 9 1 6 8 1 0 0 ,

0 4 9 1 6 8 8 2 ,0 4 9 1 6 8 8 4 ,0 4 9 1 6 8 8 6 ,0 4 9 1 6 8 8 8 ,0 4 9 1 6 8 9 0 ,0 4 9 1 6 8 9 2 ,0 4 9 1 6 8 9 4 ,0 4 9 1 6 8 9 6 ,0 4 9 1 6 8 9 8 ,0 4 9 2 6 8 1 2 ,0 4 9 2 6 8 1 4 ,0 4 9 2 8 8 1 0 0 ,

0 4 9 2 8 8 1 0 2 ,0 4 9 2 8 8 1 0 4 ,0 4 9 2 8 8 1 0 6 ,0 4 9 2 8 8 9 0 ,0 4 9 2 8 8 9 2 ,0 4 9 2 8 8 9 4 ,0 4 9 2 8 8 9 6 ,0 4 9 2 8 8 9 8



156 Appendix A. Experimental Protocols

A. 1.4 Test Client Set

801 images:

0 2 4 6 3 8 5 5 0 ,0 2 4 6 3 8 5 5 6 ,0 2 4 6 3 8 5 6 2 ,0 2 4 6 3 8 6 5 6 ,0 2 4 6 3 8 6 6 2 ,0 2 4 6 3 8 6 6 8 ,0 2 4 6 3 8 6 7 4 ,0 4 2 0 3 8 4 4 0 ,0 4 2 0 3 8 4 4 6 ,0 4 2 0 3 8 4 5 2 ,0 4 2 0 3 8 5 4 0 ,0 4 2 0 3 8 5 4 8 ,

0 4 2 0 3 8 6 5 4 ,0 4 2 1 7 8 4 0 1 ,0 4 2 1 7 8 4 0 7 ,0 4 2 1 7 8 4 1 3 ,0 4 2 1 7 8 4 5 9 ,0 4 2 1 9 8 4 1 5 ,0 4 2 2 1 8 4 2 9 ,0 4 2 2 1 8 4 3 5 ,0 4 2 2 1 8 4 4 1 ,0 4 2 2 1 8 5 4 1 ,0 4 2 2 1 8 5 4 7 ,0 4 2 2 1 8 5 5 3 ,

0 4 2 3 3 8 3 9 2 ,0 4 2 3 3 8 3 9 8 ,0 4 2 3 3 8 4 9 8 ,0 4 2 3 3 8 5 0 4 ,0 4 2 3 3 8 5 1 0 ,0 4 2 3 7 8 1 3 9 ,0 4 2 3 7 8 1 4 5 ,0 4 2 3 7 8 1 5 3 ,0 4 2 6 1 8 2 9 7 ,0 4 2 6 1 8 3 0 3 ,0 4 2 6 1 8 3 3 3 ,0 4 2 6 5 8 2 6 5 ,

0 4 2 6 6 8 3 3 7 ,0 4 2 6 5 8 3 4 3 ,0 4 2 7 3 8 2 4 6 ,0 4 2 7 3 8 2 6 2 ,0 4 2 7 3 8 2 8 6 ,0 4 2 7 3 8 2 9 4 .0 4 2 8 4 8 5 7 ,0 4 2 8 6 8 2 6 5 ,0 4 2 8 6 8 2 7 1 ,0 4 2 8 6 8 2 7 7 ,0 4 2 8 6 8 3 7 1 ,0 4 2 8 6 8 3 7 7 ,

0 4 2 8 6 8 3 8 3 ,0 4 2 9 8 8 7 1 ,0 4 3 0 0 8 2 2 0 ,0 4 3 0 0 8 2 2 6 ,0 4 3 0 0 8 2 6 0 ,0 4 3 0 1 8 2 4 4 ,0 4 3 0 1 8 2 5 0 ,0 4 3 0 1 8 2 5 6 ,0 4 3 0 1 8 3 5 1 ,0 4 3 0 1 8 3 5 7 ,0 4 3 0 9 8 1 6 1 ,0 4 3 0 9 8 1 6 7 ,

0 4 3 0 9 8 1 7 3 ,0 4 3 0 9 8 2 4 7 ,0 4 3 0 9 8 2 5 3 ,0 4 3 1 3 8 6 0 ,0 4 3 1 9 8 1 8 8 ,0 4 3 1 9 8 1 9 4 ,0 4 3 1 9 8 2 6 4 ,0 4 3 1 9 8 2 7 0 ,0 4 3 1 9 8 2 7 6 ,0 4 3 2 0 8 2 7 2 ,0 4 3 2 0 8 2 7 8 ,0 4 3 2 0 8 3 4 2 ,

0 4 3 2 0 8 3 5 0 ,0 4 3 2 4 8 2 8 0 ,0 4 3 2 4 8 2 8 6 ,0 4 3 2 4 8 3 4 6 ,0 4 3 2 4 8 3 5 4 .0 4 3 3 4 8 3 0 2 ,0 4 3 3 4 8 3 0 8 ,0 4 3 3 4 8 3 1 4 ,0 4 3 3 4 8 4 1 4 ,0 4 3 3 4 8 4 2 0 ,0 4 3 3 4 8 4 2 6 ,0 4 3 3 4 8 4 3 2 ,

0 4 3 3 8 8 9 0 ,0 4 3 3 9 8 2 3 0 ,0 4 3 3 9 8 2 9 4 ,0 4 3 3 9 8 3 0 0 ,0 4 3 4 1 8 1 8 9 ,0 4 3 4 3 8 3 1 9 ,0 4 3 4 3 8 3 2 5 ,0 4 3 4 3 8 3 3 1 ,0 4 3 4 3 8 3 3 7 ,0 4 3 4 3 8 4 3 1 ,0 4 3 4 3 8 4 3 7 ,0 4 3 4 7 8 2 8 9 ,

0 4 3 4 7 8 2 9 5 ,0 4 3 4 7 8 3 0 1 ,0 4 3 4 7 8 3 8 7 ,0 4 3 4 7 8 3 9 3 ,0 4 3 4 7 8 3 9 9 .0 4 3 4 7 8 4 0 7 ,0 4 3 5 0 8 2 6 2 ,0 4 3 5 0 8 2 6 8 ,0 4 3 5 0 8 3 2 6 ,0 4 3 5 0 8 3 3 2 ,0 4 3 6 1 8 1 7 9 ,0 4 3 6 1 8 1 9 7 ,

0 4 3 6 5 8 3 2 4 ,0 4 3 6 9 8 2 4 8 ,0 4 3 7 0 8 2 2 3 ,0 4 3 7 0 8 2 2 9 ,0 4 3 7 0 8 2 3 5 ,0 4 3 7 0 8 2 9 9 ,0 4 3 7 0 8 3 0 5 ,0 4 3 7 3 8 5 8 ,0 4 3 7 8 8 2 0 1 ,0 4 3 7 8 8 2 0 7 ,0 4 3 7 8 8 2 2 9 ,0 4 3 8 1 8 1 0 8 ,

0 4 3 8 1 8 1 1 4 ,0 4 3 8 2 8 1 7 4 ,0 4 3 8 2 8 1 9 2 ,0 4 3 8 5 8 3 2 7 ,0 4 3 8 5 8 3 3 3 ,0 4 3 8 5 8 3 3 9 ,0 4 3 8 5 8 4 3 5 ,0 4 3 8 5 8 4 4 1 ,0 4 3 8 5 8 4 4 7 ,0 4 3 8 8 8 2 8 3 ,0 4 3 8 8 8 2 8 9 ,0 4 3 8 8 8 2 9 5 ,

0 4 3 8 8 8 3 0 1 ,0 4 3 8 8 8 3 7 7 ,0 4 3 8 8 8 3 8 3 ,0 4 3 9 5 8 1 9 4 ,0 4 3 9 5 8 2 0 0 ,0 4 3 9 5 8 2 0 6 ,0 4 3 9 5 8 2 6 9 ,0 4 3 9 7 8 3 3 4 ,0 4 3 9 7 8 3 4 0 ,0 4 3 9 7 8 3 4 6 ,0 4 3 9 7 8 4 4 6 ,0 4 3 9 7 8 4 5 2 ,

0 4 3 9 7 8 4 5 8 ,0 4 3 9 7 8 4 6 4 ,0 4 4 0 0 8 2 9 8 ,0 4 4 0 0 8 3 0 4 ,0 4 4 0 0 8 3 7 8 ,0 4 4 0 0 8 3 8 4 ,0 4 4 0 0 8 3 9 0 ,0 4 4 0 6 8 8 8 ,0 4 4 0 6 8 9 4 ,0 4 4 0 9 8 1 6 5 ,0 4 4 1 0 8 1 8 4 ,0 4 4 1 1 8 1 9 4 ,

0 4 4 1 8 8 2 8 9 ,0 4 4 1 8 8 2 9 5 ,0 4 4 1 8 8 3 0 1 ,0 4 4 1 8 8 3 9 0 .0 4 4 1 8 8 3 9 6 ,0 4 4 1 8 8 4 0 2 ,0 4 4 1 0 8 2 5 4 ,0 4 4 1 9 8 2 6 0 ,0 4 4 1 9 8 3 2 0 ,0 4 4 1 9 8 3 2 6 ,0 4 4 2 3 8 1 8 8 ,0 4 4 2 3 8 1 9 4 ,

0 4 4 2 3 8 2 7 2 ,0 4 4 2 3 8 2 7 8 ,0 4 4 2 8 8 2 4 5 ,0 4 4 2 9 8 3 3 3 ,0 4 4 2 9 8 3 4 1 ,0 4 4 2 9 8 3 4 7 ,0 4 4 2 9 8 4 4 7 ,0 4 4 2 9 8 4 5 3 ,0 4 4 2 9 8 4 5 9 ,0 4 4 3 3 8 1 8 2 ,0 4 4 3 4 8 1 5 2 ,0 4 4 3 4 8 1 8 9 ,

0 4 4 3 5 8 3 4 0 ,0 4 4 3 5 8 3 4 6 ,0 4 4 3 5 8 3 5 2 ,0 4 4 3 5 8 3 7 4 ,0 4 4 3 6 8 3 1 2 ,0 4 4 3 6 8 3 1 8 ,0 4 4 3 6 8 3 6 4 ,0 4 4 4 0 8 1 0 1 ,0 4 4 4 0 8 1 2 5 ,0 4 4 4 0 8 9 5 ,0 4 4 4 6 8 2 6 9 ,0 4 4 4 6 8 2 7 5 ,

0 4 4 4 6 8 2 8 1 ,0 4 4 4 6 8 3 6 9 ,0 4 4 4 5 8 3 7 7 ,0 4 4 4 6 8 3 8 3 ,0 4 4 4 9 8 1 7 1 ,0 4 4 4 9 8 1 7 7 ,0 4 4 4 9 8 2 4 9 ,0 4 4 4 9 8 2 5 6 ,0 4 4 4 9 8 2 6 1 ,0 4 4 5 6 8 2 6 9 ,0 4 4 5 6 8 2 7 5 ,0 4 4 5 6 8 2 8 1 ,

0 4 4 5 6 8 3 5 1 ,0 4 4 6 0 8 2 0 0 ,0 4 4 6 0 8 2 6 6 ,0 4 4 6 0 8 3 3 0 ,0 4 4 6 0 8 3 3 6 ,0 4 4 6 1 8 2 9 3 ,0 4 4 6 1 8 2 9 9 ,0 4 4 6 1 8 3 0 5 ,0 4 4 6 1 8 4 0 5 ,0 4 4 6 1 8 4 1 1 ,0 4 4 6 1 8 4 1 7 ,0 4 4 5 1 8 4 2 3 ,

0 4 4 7 1 8 2 5 7 ,0 4 4 7 1 8 2 7 3 ,0 4 4 7 2 8 2 2 2 ,0 4 4 7 2 8 2 2 8 ,0 4 4 7 2 8 3 1 4 ,0 4 4 7 2 8 3 2 0 ,0 4 4 7 2 8 3 2 8 ,0 4 4 7 2 8 3 3 4 ,0 4 4 7 5 8 1 1 8 ,0 4 4 7 5 8 1 2 6 ,0 4 4 7 6 8 1 1 8 ,0 4 4 7 6 8 1 2 4 ,

0 4 4 7 6 8 2 1 2 ,0 4 4 7 6 8 2 1 8 ,0 4 4 7 6 8 2 2 4 ,0 4 4 7 6 8 2 3 0 ,0 4 4 7 9 8 2 2 6 ,0 4 4 7 9 8 2 6 6 ,0 4 4 8 2 8 3 0 8 ,0 4 4 8 2 8 3 1 4 ,0 4 4 8 2 8 4 0 8 ,0 4 4 8 2 8 4 1 4 ,0 4 4 8 2 8 4 2 0 ,0 4 4 8 4 8 1 8 5 ,

0 4 4 8 4 8 1 9 1 ,0 4 4 8 5 8 2 8 4 ,0 4 4 8 5 8 2 9 0 ,0 4 4 8 6 8 2 9 6 ,0 4 4 8 6 8 3 9 6 ,0 4 4 8 5 8 4 0 2 ,0 4 4 8 5 8 4 0 8 ,0 4 4 8 6 8 4 1 4 ,0 4 4 9 3 8 2 2 4 ,0 4 4 9 5 8 3 0 7 ,0 4 4 9 5 8 3 1 3 ,0 4 4 9 5 8 3 1 9 ,

0 4 4 9 5 8 3 2 5 ,0 4 4 9 5 8 4 2 5 ,0 4 4 9 5 8 4 3 1 ,0 4 4 9 5 8 4 3 7 ,0 4 5 0 2 8 5 4 ,0 4 5 0 2 8 6 0 ,0 4 5 0 5 8 2 1 8 ,0 4 5 0 5 8 2 2 4 ,0 4 6 0 5 8 2 3 0 ,0 4 5 0 5 8 3 2 4 ,0 4 5 0 6 8 3 3 0 ,0 4 5 0 5 8 3 3 6 ,

0 4 5 0 8 8 8 3 ,0 4 5 0 9 8 2 7 4 ,0 4 6 0 9 8 2 8 0 ,0 4 6 0 9 8 2 8 6 ,0 4 5 0 9 8 3 8 6 ,0 4 5 0 9 8 3 9 2 ,0 4 6 0 9 8 3 9 8 ,0 4 6 1 2 8 3 2 2 ,0 4 5 1 2 8 3 2 8 ,0 4 5 1 2 8 3 3 4 ,0 4 5 1 2 8 4 3 4 ,0 4 5 1 2 8 4 4 0 ,

0 4 5 1 2 8 4 4 6 ,0 4 5 1 4 8 3 1 8 ,0 4 5 1 4 8 3 2 4 ,0 4 5 1 4 8 3 3 0 ,0 4 5 1 4 8 3 3 6 ,0 4 5 1 4 8 4 3 6 ,0 4 5 1 4 8 4 4 2 ,0 4 5 1 4 8 4 4 8 ,0 4 5 3 1 8 2 8 3 ,0 4 5 3 1 8 2 8 9 ,0 4 6 3 1 8 2 9 5 ,0 4 5 3 1 8 3 8 9 ,

0 4 5 3 1 8 3 9 5 ,0 4 5 3 1 8 4 0 1 ,0 4 5 3 6 8 2 1 7 ,0 4 5 3 5 8 2 2 3 ,0 4 5 3 5 8 2 6 3 ,0 4 5 4 2 8 1 1 6 ,0 4 5 4 2 8 1 9 2 ,0 4 5 4 2 8 1 9 8 ,0 4 5 4 6 8 7 3 ,0 4 6 6 3 8 2 3 4 ,0 4 5 5 3 8 2 6 2 ,0 4 5 6 6 8 3 0 5 ,

0 4 5 5 6 8 3 1 1 ,0 4 5 6 6 8 3 1 7 ,0 4 5 5 6 8 4 0 9 ,0 4 5 5 6 8 4 1 5 ,0 4 5 5 6 8 4 2 1 ,0 4 5 5 6 8 4 2 7 ,0 4 5 6 0 8 2 6 9 ,0 4 5 6 0 8 2 7 5 ,0 4 5 6 0 8 2 8 1 ,0 4 5 6 0 8 3 8 2 ,0 4 5 6 0 8 3 8 8 ,0 4 5 6 0 8 3 9 4 ,

0 4 5 6 8 8 8 9 ,0 4 5 6 8 8 9 5 ,0 4 5 7 5 8 2 9 8 ,0 4 5 7 5 8 3 9 4 ,0 4 5 7 5 8 4 0 0 ,0 4 5 7 5 8 4 0 6 ,0 4 5 7 5 8 4 1 4 ,0 4 5 7 7 8 2 8 6 ,0 4 5 7 7 8 2 9 2 .0 4 5 7 7 8 2 9 8 ,0 4 5 7 7 8 3 4 4 ,0 4 5 7 9 8 2 5 8 ,

0 4 5 8 0 8 2 9 1 ,0 4 5 8 0 8 2 9 7 ,0 4 5 8 0 8 3 0 3 ,0 4 5 8 0 8 3 0 9 ,0 4 5 8 0 8 4 0 9 ,0 4 5 8 0 8 4 1 5 ,0 4 5 8 0 8 4 2 1 ,0 4 5 8 0 8 4 2 7 ,0 4 5 8 7 8 1 1 4 ,0 4 5 8 7 8 5 4 ,0 4 6 8 8 8 1 3 3 ,0 4 5 8 8 8 1 3 9 ,

0 4 5 8 8 8 2 3 6 ,0 4 5 8 8 8 2 4 1 ,0 4 5 8 8 8 2 4 7 ,0 4 5 9 3 8 1 9 4 ,0 4 5 9 3 8 2 0 0 ,0 4 5 9 3 8 2 0 6 ,0 4 5 9 3 8 2 6 0 ,0 4 5 9 3 8 2 6 6 ,0 4 5 9 3 8 2 7 2 ,0 4 5 9 6 8 1 7 0 ,0 4 5 9 6 8 1 7 8 ,0 4 5 9 6 8 7 8 ,

0 4 5 9 6 8 8 4 ,0 4 5 9 6 8 9 0 ,0 4 5 9 8 8 2 5 5 ,0 4 5 9 8 8 2 6 1 ,0 4 5 9 8 8 3 5 5 ,0 4 6 9 8 8 3 6 1 ,0 4 6 0 3 8 1 3 3 .0 4 6 0 3 8 1 3 9 ,0 4 6 0 3 8 1 4 5 ,0 4 6 0 3 8 1 5 1 ,0 4 6 0 3 8 2 5 1 ,0 4 6 0 3 8 2 5 7 ,

0 4 5 0 3 8 2 6 3 ,0 4 6 0 6 8 1 7 6 ,0 4 6 0 6 8 1 8 2 ,0 4 6 0 9 8 1 0 0 ,0 4 6 0 9 8 1 9 3 ,0 4 6 0 9 8 1 9 9 ,0 4 6 0 9 8 2 0 5 ,0 4 6 0 9 8 9 2 ,0 4 6 0 9 8 9 8 ,0 4 6 1 2 8 6 7 ,0 4 6 1 3 8 1 8 0 ,0 4 6 1 3 8 1 8 8 ,

0 4 6 1 8 8 1 6 4 ,0 4 6 2 2 8 2 3 6 ,0 4 6 2 2 8 2 4 2 ,0 4 6 2 2 8 2 4 8 ,0 4 6 2 2 8 3 3 0 ,0 4 6 2 2 8 3 3 6 ,0 4 6 2 6 8 2 3 3 ,0 4 6 2 6 8 2 3 9 ,0 4 6 2 6 8 2 4 5 ,0 4 6 2 6 8 3 4 5 ,0 4 6 2 6 8 3 5 1 ,0 4 6 2 6 8 3 5 7 ,

0 4 6 2 6 8 3 6 3 ,0 4 6 2 9 8 1 3 8 ,0 4 6 2 9 8 1 4 4 ,0 4 6 2 9 8 1 5 0 ,0 4 6 2 9 8 2 4 4 ,0 4 6 2 9 8 2 6 0 ,0 4 6 2 9 8 2 5 8 ,0 4 6 3 3 8 1 7 8 ,0 4 6 3 3 8 1 8 4 ,0 4 6 3 3 8 1 9 0 ,0 4 6 3 3 8 1 9 6 ,0 4 6 3 3 8 2 9 2 ,

0 4 6 3 3 8 2 9 8 ,0 4 6 3 3 8 3 0 4 ,0 4 6 3 7 8 1 9 4 ,0 4 6 3 8 8 1 9 1 ,0 4 6 4 1 8 1 7 3 ,0 4 6 4 1 8 1 7 9 ,0 4 6 4 1 8 2 4 3 ,0 4 6 4 1 8 2 4 9 ,0 4 6 4 4 8 1 9 8 .0 4 6 4 4 8 2 0 4 ,0 4 6 4 4 8 2 1 0 ,0 4 6 4 4 8 2 5 6 ,

0 4 6 4 4 8 2 6 2 ,0 4 6 5 0 8 1 4 6 ,0 4 6 5 0 8 1 5 2 ,0 4 6 5 2 8 1 5 4 ,0 4 6 5 2 8 1 6 0 ,0 4 6 6 2 8 1 2 1 ,0 4 6 6 2 8 1 2 7 ,0 4 6 6 2 8 1 3 5 ,0 4 6 6 7 8 1 9 8 ,0 4 6 6 7 8 2 0 4 ,0 4 6 6 7 8 2 1 0 ,0 4 6 6 7 8 3 0 6 ,

0 4 6 6 7 8 3 1 2 ,0 4 6 6 7 8 3 1 8 ,0 4 6 6 7 8 3 2 4 ,0 4 6 7 3 8 1 9 0 ,0 4 6 7 3 8 2 7 5 ,0 4 6 7 3 8 2 8 1 ,0 4 6 7 3 8 2 8 7 ,0 4 6 7 6 8 1 6 1 ,0 4 6 8 1 8 1 4 7 ,0 4 6 8 1 8 1 5 3 ,0 4 6 8 1 8 1 5 9 ,0 4 6 8 2 8 1 1 8 ,

0 4 6 8 2 8 1 2 4 ,0 4 5 8 2 8 1 3 0 ,0 4 6 8 2 8 2 1 6 ,0 4 6 8 2 8 2 2 2 ,0 4 6 8 2 8 2 2 8 ,0 4 6 8 3 8 2 2 9 ,0 4 6 8 3 8 2 3 5 ,0 4 6 8 3 8 2 4 1 ,0 4 6 8 3 8 2 4 7 ,0 4 6 8 3 8 3 4 3 ,0 4 6 8 3 8 3 4 9 ,0 4 6 8 3 8 3 5 5 ,

0 4 6 8 8 8 3 8 ,0 4 6 8 9 8 1 0 0 ,0 4 6 8 9 8 2 8 ,0 4 6 8 9 8 9 4 ,0 4 6 9 1 8 1 2 2 ,0 4 6 9 1 8 1 2 8 ,0 4 6 9 1 8 1 3 6 ,0 4 6 9 1 8 5 0 ,0 4 6 9 5 8 5 6 ,0 4 6 9 5 8 7 2 ,0 4 6 9 5 8 7 8 ,0 4 6 9 6 8 3 6 ,

0 4 6 9 6 8 4 2 ,0 4 6 9 7 8 1 8 0 ,0 4 6 9 7 8 1 8 6 ,0 4 6 9 7 8 1 9 2 .0 4 6 9 7 8 8 2 ,0 4 6 9 7 8 8 8 ,0 4 7 0 0 8 1 8 ,0 4 7 0 1 8 1 5 3 ,0 4 7 0 1 8 1 5 9 ,0 4 7 0 1 8 1 6 5 ,0 4 7 0 1 8 6 8 ,0 4 7 0 1 8 7 4 ,

0 4 7 0 1 8 8 0 ,0 4 7 0 4 8 2 2 ,0 4 7 0 5 8 4 6 ,0 4 7 0 7 8 5 0 ,0 4 7 0 8 8 1 6 1 .0 4 7 0 8 8 1 6 7 ,0 4 7 0 8 8 1 7 5 ,0 4 7 0 8 8 1 8 1 ,0 4 7 0 8 8 6 8 ,0 4 7 0 8 8 6 4 ,0 4 7 1 1 8 1 5 3 ,0 4 7 1 1 8 1 5 9 ,

0 4 7 1 1 8 1 6 5 ,0 4 7 1 1 8 4 7 ,0 4 7 1 1 8 5 3 ,0 4 7 1 4 8 1 9 0 ,0 4 7 1 4 8 1 9 8 ,0 4 7 1 4 8 2 0 4 ,0 4 7 1 4 8 8 2 ,0 4 7 1 4 8 8 8 ,0 4 7 1 4 8 9 4 ,0 4 7 1 7 8 4 3 ,0 4 7 1 7 8 4 9 ,0 4 7 1 8 8 2 2 ,

0 4 7 1 9 8 1 8 1 ,0 4 7 1 9 8 1 8 9 ,0 4 7 1 9 8 7 6 ,0 4 7 1 9 8 8 4 ,0 4 7 1 9 8 9 0 ,0 4 7 2 2 8 4 2 ,0 4 7 2 2 8 4 8 ,0 4 7 2 4 8 1 3 4 ,0 4 7 2 4 8 1 4 0 ,0 4 7 2 4 8 1 4 6 ,0 4 7 2 4 8 1 5 2 ,0 4 7 2 4 8 4 6 ,

0 4 7 2 8 8 1 0 0 ,0 4 7 2 8 8 9 2 ,0 4 7 2 8 8 9 8 ,0 4 7 2 9 8 5 2 ,0 4 7 3 0 8 1 2 6 ,0 4 7 3 0 8 1 3 2 ,0 4 7 3 0 8 5 4 ,0 4 7 3 0 8 6 0 ,0 4 7 3 1 8 1 3 1 ,0 4 7 3 1 8 1 3 7 ,0 4 7 3 1 8 1 4 3 ,0 4 7 3 1 8 3 9 ,

0 4 7 3 3 8 3 2 ,0 4 7 3 4 8 1 8 2 ,0 4 7 3 4 8 1 8 8 ,0 4 7 3 4 8 1 9 4 ,0 4 7 3 4 8 7 8 ,0 4 7 3 4 8 8 4 ,0 4 7 3 7 8 3 8 ,0 4 7 3 7 8 4 4 ,0 4 7 4 2 8 1 0 6 ,0 4 7 4 2 8 8 2 ,0 4 7 4 2 8 8 8 ,0 4 7 4 2 8 9 4 ,

0 4 7 4 3 8 1 3 8 ,0 4 7 4 3 8 1 4 4 ,0 4 7 4 3 8 1 5 0 ,0 4 7 4 3 8 6 2 ,0 4 7 4 5 8 1 6 6 ,0 4 7 4 5 8 1 7 2 ,0 4 7 4 6 8 1 7 8 ,0 4 7 4 5 8 7 4 ,0 4 7 4 5 8 8 0 ,0 4 7 4 5 8 8 6 ,0 4 7 4 8 8 1 0 9 ,0 4 7 4 8 8 1 1 5 ,

0 4 7 4 8 8 1 2 1 ,0 4 7 6 0 8 6 0 ,0 4 7 6 0 8 6 6 ,0 4 7 5 1 8 4 0 ,0 4 7 6 1 8 6 0 ,0 4 7 5 3 8 2 2 ,0 4 7 6 4 8 1 8 0 ,0 4 7 5 4 8 1 8 8 ,0 4 7 5 4 8 1 9 4 ,0 4 7 6 4 8 7 4 ,0 4 7 5 4 8 8 0 ,0 4 7 6 4 8 8 6 ,

0 4 7 5 7 8 1 5 5 ,0 4 7 5 7 8 1 6 3 ,0 4 7 5 7 8 7 1 ,0 4 7 5 7 8 7 7 ,0 4 7 5 7 8 8 3 ,0 4 7 5 8 8 1 2 7 ,0 4 7 5 8 8 1 3 3 ,0 4 7 5 8 8 5 9 ,0 4 7 5 8 8 6 5 ,0 4 7 6 0 8 1 5 6 ,0 4 7 6 0 8 1 7 2 ,0 4 7 6 0 8 1 7 8 ,

0 4 7 6 0 8 7 8 ,0 4 7 6 0 8 8 4 ,0 4 7 6 3 8 1 5 6 ,0 4 7 6 3 8 1 6 2 ,0 4 7 6 3 8 1 6 8 ,0 4 7 6 3 8 7 0 ,0 4 7 6 6 8 2 6 ,0 4 7 6 7 8 1 0 0 ,0 4 7 6 7 8 1 0 6 ,0 4 7 6 7 8 3 8 ,0 4 7 6 7 8 9 8 ,0 4 7 7 0 8 4 6 ,

0 4 7 7 2 8 3 8 ,0 4 7 7 3 8 1 7 9 ,0 4 7 7 3 8 1 8 5 ,0 4 7 7 3 8 1 9 3 ,0 4 7 7 3 8 7 8 ,0 4 7 7 3 8 8 4 ,0 4 7 7 3 8 9 0 ,0 4 7 7 3 8 9 6 ,0 4 7 7 4 8 1 6 2 ,0 4 7 7 4 8 6 8 ,0 4 7 7 4 8 7 4 ,0 4 7 7 4 8 8 0 ,

0 4 7 7 7 8 1 8 4 ,0 4 7 7 7 8 1 9 0 ,0 4 7 7 7 8 1 9 6 ,0 4 7 7 7 8 2 0 4 ,0 4 7 7 7 8 7 6 ,0 4 7 7 7 8 8 2 ,0 4 7 7 7 8 8 8 ,0 4 7 7 8 8 5 2 ,0 4 7 7 9 8 4 8 ,0 4 7 7 9 8 5 4 ,0 4 7 8 2 8 1 9 3 ,0 4 7 8 2 8 1 9 9 ,

0 4 7 8 2 8 2 0 5 ,0 4 7 8 2 8 2 1 1 .0 4 7 8 2 8 7 9 ,0 4 7 8 2 8 8 5 ,0 4 7 8 2 8 9 1 ,0 4 7 8 5 8 6 6 ,0 4 7 8 5 8 7 2 ,0 4 7 8 5 8 7 8 ,0 4 7 8 5 8 9 4 ,0 4 7 8 7 8 5 2 ,0 4 7 8 7 8 5 8 ,0 4 7 9 0 8 1 0 4 ,

0 4 7 9 0 8 4 4 ,0 4 7 9 0 8 9 6 ,0 4 7 9 2 8 4 3 ,0 4 7 9 2 8 6 5 ,0 4 7 9 6 8 1 4 0 ,0 4 7 9 6 8 1 4 6 ,0 4 7 9 6 8 7 2 ,0 4 7 9 6 8 7 8 ,0 4 7 9 6 8 8 4 ,0 4 7 9 9 8 4 0 ,0 4 8 0 1 8 6 4 ,0 4 8 0 1 8 7 0 ,

0 4 8 0 2 8 1 8 ,0 4 8 0 3 8 1 6 4 ,0 4 8 0 3 8 1 7 0 ,0 4 8 0 3 8 1 7 6 ,0 4 8 0 3 8 7 2 ,0 4 8 0 3 8 7 8 .0 4 8 0 3 8 8 4 ,0 4 8 0 6 8 3 8 ,0 4 8 0 8 8 3 0 ,0 4 8 0 9 8 4 8 ,0 4 8 0 9 8 5 4 ,0 4 8 1 1 8 1 1 0 ,

0 4 8 1 1 8 1 1 6 ,0 4 8 1 1 8 4 8 ,0 4 8 1 1 8 5 4 ,0 4 8 1 3 8 1 4 2 ,0 4 8 1 3 8 1 4 8 ,0 4 8 1 3 8 1 5 4 ,0 4 8 1 3 8 4 4 ,0 4 8 1 5 8 1 9 2 ,0 4 8 1 5 8 1 9 8 ,0 4 8 1 5 8 2 0 4 ,0 4 8 1 5 8 2 1 0 ,0 4 8 1 6 8 8 0 ,
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04815886,04815892,04820836,04821.8102,048218108,04821842 ,04821848 ,04824858 ,048278120 ,048278126 ,04827842 .048298106 ,

048298114,048298120,04829846 ,048308142 ,04830878 ,04830884 ,04830890 ,04830896 ,048338154 ,048338160 ,048338166 ,04833850 ,

04836843,04836849,048388152 ,048388158 ,048388164 ,04838848 ,04838854 ,048398178 ,048398184 ,048398192 ,04839882 ,04839888 ,

04839894,048428162,048428170 ,048428176 ,04842856 ,04842862 ,048438163 ,048438161 ,04843873 ,04843879 ,048468142 ,04846872 ,

04846878,048488136,048488142,048488148 ,048488164 ,04848844 ,04848850 ,04850832 ,04850868 ,048518158 ,048518164 ,048518170 ,

048518176,04861856 ,04851862 ,04852864 ,04852870 ,04855886 ,04865892 ,048568100 ,04856886 ,04856892 ,04856898 ,04857876 ,

04857882,04850826 ,04863860 ,048658100 ,048658106 ,04865890 ,04865896 ,04868874 ,04868880 ,04868886 ,04869856 ,04869864 ,

04870886,04870892 ,04870898 ,04872846 ,04873843 ,04874826 ,04876868 ,04876874 ,04876880 ,04880839 ,048818102 ,048818108 ,

04881892,04881898 ,04883886 ,04883892 ,04883898 ,04887876 ,04887882 ,04888836 ,04888842 ,04889853 ,048928102 ,04892888 ,

04892896,04893868 ,04893874 ,04894866 ,04894872 ,04894880 ,04898864 ,04899878 ,04899884 ,04899890 ,049008102 ,04900890 ,

04900898,04903834 ,04905866 ,04905862 ,04907878 ,04907884 ,04907890 ,04910869 ,04914844 ,04914850 ,04915852 ,04915858 ,

049178102 ,04917890 .04917896 ,04921842 ,04921860 ,04922868 ,04922874 ,04923852 ,04923858 ,04925832 ,04927836 ,04927842 ,

04929842,04929848,04932836,04932842 ,04934852 ,04934860 ,049368104 ,04936890 ,04936896

A.1.5 Test Impostor Set

803 images:

0 4 2 0 1 8 3 6 8 ,0 4 2 0 1 8 3 7 0 ,0 4 2 0 1 8 3 7 2 ,0 4 2 0 1 8 3 7 4 ,0 4 2 0 1 8 3 7 6 ,0 4 2 0 1 8 3 7 8 ,0 4 2 0 1 8 4 3 4 ,0 4 2 0 1 8 4 3 6 ,0 4 2 0 1 8 4 3 5 ,0 4 2 0 1 8 4 4 2 ,0 4 2 0 1 8 4 4 4 ,0 4 2 1 3 8 2 8 0 ,

0 4 2 1 3 8 2 8 2 ,0 4 2 1 3 8 3 3 8 ,0 4 2 1 3 8 3 4 0 ,0 4 2 1 3 8 3 4 4 ,0 4 2 1 3 8 3 4 8 ,0 4 2 1 4 8 1 5 5 ,0 4 2 2 2 8 3 9 1 ,0 4 2 2 2 8 3 9 3 ,0 4 2 2 2 8 3 9 5 ,0 4 2 2 2 8 3 9 7 ,0 4 2 2 6 8 2 9 1 ,0 4 2 2 5 8 2 9 3 ,

0 4 2 2 5 8 2 9 5 ,0 4 2 2 5 8 2 9 7 ,0 4 2 2 5 8 2 9 9 ,0 4 2 2 5 8 3 0 1 ,0 4 2 2 5 8 3 0 3 ,0 4 2 2 5 8 3 0 5 ,0 4 2 2 5 8 3 0 7 ,0 4 2 2 5 8 3 9 6 ,0 4 2 2 5 8 3 9 8 ,0 4 2 2 6 8 4 0 0 ,0 4 2 2 5 8 4 0 2 ,0 4 2 2 5 8 4 0 4 ,

0 4 2 2 5 8 4 0 8 ,0 4 2 6 7 8 1 4 9 ,0 4 2 7 4 8 1 7 6 ,0 4 2 7 9 8 2 8 3 ,0 4 2 7 9 8 2 8 5 ,0 4 2 7 9 8 2 8 7 ,0 4 2 7 9 8 2 8 9 ,0 4 2 8 7 8 4 5 ,0 4 2 8 7 8 4 7 ,0 4 2 8 7 8 4 9 ,0 4 2 8 7 8 5 1 ,0 4 2 8 7 8 5 3 ,

0 4 2 9 7 8 2 6 1 ,0 4 2 9 7 8 2 6 3 ,0 4 2 9 7 8 2 6 5 ,0 4 2 9 7 8 2 6 7 ,0 4 2 9 7 8 2 6 9 ,0 4 2 9 7 8 3 0 5 ,0 4 2 9 7 8 3 0 7 ,0 4 2 9 7 8 3 0 9 ,0 4 2 9 7 8 3 1 1 ,0 4 3 0 2 8 1 1 6 ,0 4 3 0 2 8 1 4 2 ,0 4 3 0 2 8 1 4 4 ,

0 4 3 0 2 8 1 4 6 ,0 4 3 0 2 8 1 4 8 ,0 4 3 1 2 8 2 0 7 ,0 4 3 1 2 8 2 0 9 ,0 4 3 1 2 8 2 1 1 ,0 4 3 1 2 8 2 1 5 ,0 4 3 1 2 8 2 1 7 ,0 4 3 1 2 8 2 1 9 ,0 4 3 1 2 8 2 2 1 ,0 4 3 1 2 8 2 2 3 ,0 4 3 1 2 8 2 2 5 ,0 4 3 2 2 8 1 3 0 ,

0 4 3 2 2 8 1 3 2 ,0 4 3 2 2 8 1 3 4 ,0 4 3 2 2 8 1 3 6 ,0 4 3 2 7 8 2 9 0 ,0 4 3 2 7 8 2 9 2 ,0 4 3 2 7 8 2 9 4 ,0 4 3 2 7 8 2 9 6 ,0 4 3 2 7 8 2 9 8 ,0 4 3 2 7 8 3 0 0 ,0 4 3 2 7 8 3 9 2 ,0 4 3 2 7 8 3 9 4 ,0 4 3 2 7 8 3 9 6 ,

0 4 3 2 7 8 3 9 8 ,0 4 3 2 7 8 4 0 0 ,0 4 3 2 7 8 4 0 2 ,0 4 3 2 7 8 4 0 4 ,0 4 3 2 7 8 4 0 6 ,0 4 3 2 7 8 4 0 8 ,0 4 3 2 7 8 4 1 0 ,0 4 3 4 4 8 2 4 5 ,0 4 3 4 4 8 2 4 7 ,0 4 3 4 4 8 2 4 9 ,0 4 3 4 4 8 2 5 1 ,0 4 3 4 4 8 2 5 3 ,

0 4 3 4 4 8 3 3 5 ,0 4 3 4 4 8 3 3 7 ,0 4 3 4 4 8 3 3 9 ,0 4 3 4 4 8 3 4 1 ,0 4 3 4 4 8 3 4 5 ,0 4 3 4 4 8 3 4 7 ,0 4 3 4 4 8 3 4 9 ,0 4 3 4 4 8 3 5 1 ,0 4 3 4 4 8 3 5 3 ,0 4 3 5 1 8 1 0 0 ,0 4 3 6 1 8 1 0 2 ,0 4 3 5 1 8 1 0 4 ,

0 4 3 5 1 8 1 0 6 ,0 4 3 5 1 8 1 0 8 ,0 4 3 5 1 8 9 6 ,0 4 3 5 1 8 9 8 ,0 4 3 6 6 8 8 2 ,0 4 3 7 2 8 2 6 9 ,0 4 3 7 2 8 2 7 1 ,0 4 3 7 2 8 2 7 3 ,0 4 3 7 2 8 2 7 5 ,0 4 3 7 2 8 2 7 7 ,0 4 3 7 2 8 3 3 1 ,0 4 3 7 2 8 3 3 3 ,

0 4 3 7 2 8 3 3 5 ,0 4 3 7 2 8 3 3 7 ,0 4 3 7 2 8 3 4 1 ,0 4 3 7 2 8 3 4 3 ,0 4 3 8 6 8 1 5 9 ,0 4 3 8 6 8 1 6 1 ,0 4 3 8 6 8 1 6 3 ,0 4 3 8 6 8 1 6 5 ,0 4 3 8 7 8 3 2 2 ,0 4 3 8 7 8 3 2 4 ,0 4 3 8 7 8 3 2 6 ,0 4 3 8 7 8 3 2 8 ,

0 4 3 8 7 8 3 3 0 ,0 4 3 8 7 8 3 3 2 ,0 4 3 8 7 8 3 3 4 ,0 4 3 8 7 8 3 3 6 ,0 4 3 8 7 8 4 2 5 ,0 4 3 8 7 8 4 2 7 ,0 .4 3 8 7 8 4 2 9 ,0 4 3 8 7 8 4 3 1 ,0 4 3 8 7 8 4 3 3 ,0 4 3 8 7 8 4 3 5 ,0 4 3 8 7 8 4 3 7 ,0 4 3 8 7 8 4 3 9 ,

0 4 3 8 7 8 4 4 1 ,0 4 3 8 7 8 4 4 3 ,0 4 4 0 4 8 2 0 9 ,0 4 4 0 4 8 2 1 1 ,0 4 4 0 4 8 2 1 3 ,0 4 4 0 4 8 2 1 7 ,0 4 4 0 4 8 2 1 9 ,0 4 4 0 4 8 2 2 3 ,0 4 4 0 8 8 2 6 6 ,0 4 4 0 8 8 2 6 8 ,0 4 4 0 8 8 2 7 0 ,0 4 4 0 8 8 2 7 2 .

0 4 4 0 8 8 2 7 4 ,0 4 4 0 8 8 2 7 6 ,0 4 4 0 8 8 2 7 8 ,0 4 4 0 8 8 2 8 0 ,0 4 4 0 8 8 2 8 2 ,0 4 4 0 8 8 3 6 0 ,0 4 4 0 8 8 3 5 2 ,0 4 4 0 8 8 3 6 4 ,0 4 4 0 8 8 3 6 6 ,0 4 4 0 8 8 3 6 8 ,0 4 4 0 8 8 3 7 0 .0 4 4 0 8 8 3 7 2 ,

0 4 4 0 8 8 3 7 4 ,0 4 4 2 7 8 2 6 4 ,0 4 4 2 7 8 2 6 6 ,0 4 4 2 7 8 2 6 8 ,0 4 4 2 7 8 2 7 0 ,0 4 4 2 7 8 2 7 2 ,0 4 4 2 7 8 2 7 4 ,0 4 4 2 7 8 2 7 6 ,0 4 4 2 7 8 2 7 8 ,0 4 4 2 7 8 2 8 0 ,0 4 4 2 7 8 3 6 2 ,0 4 4 2 7 8 3 6 4 ,

0 4 4 2 7 8 3 6 6 ,0 4 4 2 7 8 3 6 8 ,0 4 4 2 7 8 3 7 2 ,0 4 4 2 7 8 3 7 4 ,0 4 4 2 7 8 3 7 6 ,0 4 4 2 7 8 3 7 8 ,0 4 4 2 7 8 3 8 0 ,0 4 4 4 4 8 2 0 6 ,0 4 4 4 4 8 2 0 8 ,0 4 4 4 4 8 2 1 0 ,0 4 4 4 4 8 2 1 2 ,0 4 4 4 4 8 2 1 4 ,

0 4 4 4 4 8 2 4 0 ,0 4 4 4 4 8 2 4 2 ,0 4 4 4 4 8 2 4 4 ,0 4 4 4 4 8 2 4 6 ,0 4 4 5 1 8 2 4 3 ,0 4 4 5 1 8 2 4 6 ,0 4 4 5 1 8 2 4 7 ,0 4 4 5 1 8 2 4 9 ,0 4 4 5 1 8 2 5 1 ,0 4 4 5 1 8 2 5 3 ,0 4 4 6 1 8 2 5 5 ,0 4 4 5 1 8 3 1 1 ,

0 4 4 5 1 8 3 1 3 ,0 4 4 5 1 8 3 1 5 ,0 4 4 5 1 8 3 1 7 ,0 4 4 5 1 8 3 1 9 ,0 4 4 5 1 8 3 2 1 ,0 4 4 5 9 8 7 4 ,0 4 4 6 3 8 2 0 1 ,0 4 4 6 3 8 2 0 3 ,0 4 4 6 3 8 2 0 5 ,0 4 4 6 3 8 2 0 7 ,0 4 4 6 3 8 2 5 5 ,0 4 4 6 3 8 2 6 7 ,

0 4 4 6 3 8 2 5 9 ,0 4 4 6 3 8 2 6 1 ,0 4 4 7 3 8 1 8 3 ,0 4 4 7 3 8 1 8 5 ,0 4 4 7 3 8 1 8 7 ,0 4 4 7 3 8 1 8 9 ,0 4 4 7 3 8 1 9 1 ,0 4 4 7 3 8 1 9 3 ,0 4 4 7 3 8 1 9 5 ,0 4 4 7 3 8 1 9 7 ,0 4 4 7 3 8 1 9 9 ,0 4 4 7 3 8 2 4 1 ,

0 4 4 7 3 8 2 4 3 ,0 4 4 7 3 8 2 4 5 ,0 4 4 7 3 8 2 4 7 ,0 4 4 7 7 8 1 0 3 ,0 4 4 7 7 8 1 0 5 ,0 4 4 7 7 8 1 0 7 ,0 4 4 7 7 8 1 0 9 ,0 4 4 7 7 8 1 1 1 ,0 4 4 7 7 8 1 1 3 ,0 4 4 7 7 8 1 1 5 ,0 4 4 7 7 8 1 > 7 ,0 4 4 7 7 8 1 5 9 ,

0 4 4 7 7 8 1 6 1 ,0 4 4 8 8 8 2 8 0 ,0 4 4 8 8 8 2 8 2 ,0 4 4 8 8 8 2 8 4 ,0 4 4 8 8 8 2 8 6 ,0 4 4 8 8 8 2 8 8 ,0 4 4 8 8 8 2 9 0 ,0 4 4 8 8 8 2 9 2 ,0 4 4 8 8 8 3 8 4 ,0 4 4 8 8 8 3 8 6 ,0 4 4 8 8 8 3 8 8 ,0 4 4 8 8 8 3 9 0 ,

0 4 4 8 8 8 3 9 2 ,0 4 4 8 8 8 3 9 4 ,0 4 4 8 8 8 3 9 6 ,0 4 4 8 8 8 3 9 8 ,0 4 4 8 8 8 4 0 0 ,0 4 4 8 8 8 4 0 2 ,0 4 4 8 8 8 4 0 4 ,0 4 5 0 3 8 5 1 ,0 4 5 0 6 8 1 9 4 ,0 4 5 0 6 8 1 9 6 ,0 4 5 0 6 8 1 9 8 ,0 4 5 0 6 8 2 0 0 ,

0 4 5 0 6 8 2 0 2 ,0 4 5 0 6 8 2 2 6 ,0 4 5 0 6 8 2 2 8 ,0 4 5 1 1 8 1 7 6 ,0 4 5 1 1 8 1 7 8 ,0 4 5 1 1 8 2 4 0 ,0 4 6 1 1 8 2 4 2 ,0 4 5 1 1 8 2 4 4 ,0 4 5 1 1 8 2 4 6 ,0 4 5 1 1 8 2 4 8 ,0 4 5 1 1 8 2 5 0 ,0 4 5 1 3 8 2 9 9 ,

0 4 6 1 3 8 3 0 1 ,0 4 5 1 3 8 3 0 3 ,0 4 5 1 3 8 3 0 5 ,0 4 5 1 3 8 3 0 7 ,0 4 5 1 3 8 3 0 9 ,0 4 5 1 3 8 3 1 1 ,0 4 5 2 9 8 1 0 1 ,0 4 5 3 0 8 3 1 3 ,0 4 5 3 0 8 3 1 5 ,0 4 5 3 0 8 3 1 7 ,0 4 5 3 0 8 3 1 9 ,0 4 5 3 0 8 3 2 1 ,

0 4 5 3 0 8 3 2 3 ,0 4 6 3 0 8 3 2 5 ,0 4 5 3 0 8 3 2 7 ,0 4 5 3 0 8 3 2 9 ,0 4 5 3 0 8 3 3 1 ,0 4 5 3 0 8 4 2 5 ,0 4 5 3 0 8 4 2 7 ,0 4 5 3 0 8 4 2 9 ,0 4 5 3 0 8 4 3 1 ,0 4 5 3 0 8 4 3 3 ,0 4 5 3 0 8 4 3 7 ,0 4 5 3 0 8 4 3 9 ,

0 4 5 3 0 8 4 4 1 ,0 4 5 3 0 8 4 4 3 ,0 4 5 3 0 8 4 4 5 ,0 4 5 3 0 8 4 4 7 ,0 4 5 5 4 8 7 1 ,0 4 5 5 9 8 3 1 0 ,0 4 5 5 9 8 3 1 2 ,0 4 5 5 9 8 3 1 4 ,0 4 5 6 9 8 3 1 6 ,0 4 5 5 9 8 3 1 8 ,0 4 5 5 9 8 3 2 0 ,0 4 5 5 9 8 3 2 2 ,

0 4 5 6 9 8 2 8 0 ,0 4 5 6 9 8 2 8 2 ,0 4 5 6 9 8 2 8 4 ,0 4 5 6 9 8 2 8 6 ,0 4 5 6 9 8 2 8 8 ,0 4 5 6 9 8 2 9 0 ,0 4 5 6 9 8 2 9 2 ,0 4 5 6 9 8 3 7 4 ,0 4 5 6 9 8 3 7 6 ,0 4 5 6 9 8 3 8 0 ,0 4 6 6 9 8 3 8 2 ,0 4 5 6 9 8 3 8 4 ,

0 4 5 6 9 8 3 8 6 ,0 4 5 7 2 8 1 3 8 ,0 4 5 8 1 8 1 9 2 ,0 4 5 8 1 8 1 9 4 ,0 4 5 8 1 8 1 9 6 ,0 4 5 8 1 8 1 9 8 ,0 4 5 8 1 8 2 0 0 ,0 4 5 8 1 8 2 0 2 ,0 4 5 8 1 8 2 0 4 ,0 4 5 8 1 8 2 0 6 ,0 4 5 8 1 8 2 4 7 ,0 4 5 8 1 8 2 4 9 ,

0 4 5 8 1 8 2 5 1 ,0 4 5 8 1 8 2 5 3 ,0 4 5 8 9 8 2 3 8 ,0 4 5 8 9 8 2 4 0 ,0 4 5 8 9 8 2 4 2 ,0 4 5 8 9 8 2 4 4 ,0 4 5 8 9 8 2 4 6 ,0 4 5 8 9 8 2 4 8 ,0 4 5 8 9 8 2 5 0 ,0 4 5 8 9 8 2 6 8 ,0 4 5 8 9 8 2 7 0 ,0 4 5 9 7 8 1 0 5 ,

0 4 5 9 7 8 1 0 7 ,0 4 5 9 7 8 1 2 1 ,0 4 5 9 7 8 1 2 3 ,0 4 6 0 0 8 2 4 3 ,0 4 5 0 0 8 2 4 5 ,0 4 6 0 0 8 2 4 7 ,0 4 6 0 0 8 2 4 9 ,0 4 6 0 0 8 2 5 1 ,0 4 6 0 0 8 2 5 3 ,0 4 6 0 0 8 2 5 5 ,0 4 6 0 0 8 2 5 7 ,0 4 6 0 0 8 2 6 9 ,

0 4 6 0 0 8 3 5 1 ,0 4 6 0 0 8 3 5 3 ,0 4 6 0 0 8 3 5 5 ,0 4 6 0 0 8 3 5 7 ,0 4 6 0 0 8 3 5 9 ,0 4 6 0 0 8 3 6 1 ,0 4 6 0 0 8 3 6 3 ,0 4 6 0 0 8 3 6 7 ,0 4 6 0 0 8 3 6 9 ,0 4 6 0 0 8 3 7 1 ,0 4 6 0 8 8 7 6 ,0 4 6 0 8 8 8 4 ,

0 4 6 1 9 8 1 6 1 ,0 4 6 1 9 8 1 6 3 ,0 4 6 1 9 8 1 6 5 ,0 4 6 1 9 8 1 6 7 ,0 4 6 2 1 8 8 9 ,0 4 6 2 4 8 1 1 4 ,0 4 6 2 8 8 2 1 9 ,0 4 6 2 8 8 2 2 1 ,0 4 6 2 8 8 2 2 3 ,0 4 6 2 8 8 2 2 5 ,0 4 6 2 8 8 2 2 7 ,0 4 6 2 8 8 2 2 9 ,

0 4 6 2 8 8 2 3 1 ,0 4 6 2 8 8 2 3 3 ,0 4 6 2 8 8 2 7 5 ,0 4 6 2 8 8 2 7 7 ,0 4 6 2 8 8 2 7 9 ,0 4 6 3 2 8 1 3 2 ,0 4 6 3 2 8 1 3 4 ,0 4 6 3 2 8 1 3 6 ,0 4 6 3 2 8 1 3 8 ,0 4 6 3 2 8 1 4 0 ,0 4 6 3 2 8 1 4 2 ,0 4 6 3 2 8 1 4 4 ,

0 4 6 3 2 8 2 3 0 ,0 4 6 3 2 8 2 3 2 ,0 4 6 3 2 8 2 3 4 ,0 4 6 3 2 8 2 3 6 ,0 4 6 3 2 8 2 3 8 ,0 4 5 3 2 8 2 4 0 ,0 4 6 3 2 8 2 4 2 ,0 4 6 3 2 8 2 4 6 ,0 4 6 4 2 8 4 6 ,0 4 6 4 2 8 4 8 ,0 4 6 4 5 8 8 7 ,0 4 6 4 5 8 8 9 ,

0 4 6 4 5 8 9 1 ,0 4 6 4 5 8 9 3 ,0 4 6 4 5 8 9 5 ,0 4 6 5 3 8 3 6 ,0 4 6 6 1 8 1 6 7 ,0 4 6 6 1 8 1 6 9 ,0 4 6 6 1 8 1 7 1 ,0 4 6 6 1 8 1 7 3 ,0 4 6 6 1 8 1 7 5 ,0 4 6 6 1 8 1 7 7 ,0 4 6 6 9 8 4 7 ,0 4 6 7 0 8 1 6 1 ,

0 4 6 7 0 8 1 6 3 ,0 4 6 7 0 8 1 6 5 ,0 4 6 7 0 8 1 6 7 ,0 4 6 7 0 8 1 6 9 ,0 4 6 7 0 8 1 7 1 ,0 4 6 7 0 8 1 7 3 ,0 4 6 7 0 8 1 7 5 ,0 4 6 7 0 8 1 7 7 ,0 4 6 7 0 8 1 7 9 ,0 4 6 7 0 8 2 6 9 ,0 4 6 7 0 8 2 7 1 ,0 4 6 7 0 8 2 7 3 ,

0 4 6 7 0 8 2 7 5 ,0 4 6 7 0 8 2 7 7 ,0 4 6 7 0 8 2 7 9 ,0 4 6 7 0 8 2 8 1 ,0 4 6 7 0 8 2 8 3 ,0 4 6 7 0 8 2 8 5 ,0 4 6 8 6 8 4 9 ,0 4 6 8 7 8 1 1 1 ,0 4 6 8 7 8 1 1 3 ,0 4 6 8 7 8 1 1 5 ,0 4 6 8 7 8 1 1 7 ,0 4 6 8 7 8 1 3 1 ,
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0 4 6 8 7 8 1 3 3 ,0 4 6 9 0 8 4 2 ,0 4 6 9 0 8 4 4 ,0 4 6 9 0 8 4 6 ,0 4 6 9 2 8 1 3 6 ,0 4 6 9 2 8 1 3 8 ,0 4 6 9 2 8 1 4 0 ,0 4 6 9 2 8 1 4 2 ,0 4 6 9 2 8 1 4 4 ,0 4 6 9 2 8 1 4 6 ,0 4 6 9 2 8 1 4 8 ,0 4 6 9 2 8 4 2 ,

0 4 6 9 2 8 4 4 ,0 4 6 9 2 8 4 6 ,0 4 6 9 8 8 8 0 ,0 4 6 9 8 8 8 2 ,0 4 6 9 8 8 8 4 ,0 4 6 9 8 8 8 6 ,0 4 6 9 8 8 8 8 ,0 4 6 9 8 8 9 0 ,0 4 6 9 8 8 9 2 ,0 4 6 9 8 8 9 4 ,0 4 7 0 2 8 1 2 6 ,0 4 7 0 2 8 1 2 8 ,

0 4 7 0 2 8 1 3 0 ,0 4 7 0 2 8 1 3 2 ,0 4 7 0 2 8 1 3 4 ,0 4 7 0 2 8 1 3 6 ,0 4 7 0 2 8 1 3 8 ,0 4 7 0 2 8 4 8 ,0 4 7 0 2 8 5 0 ,0 4 7 0 2 8 5 2 ,0 4 7 0 9 8 1 5 3 ,0 4 7 0 9 8 1 5 5 ,0 4 7 0 9 8 1 5 7 ,0 4 7 0 9 8 1 6 9 ,

0 4 7 0 9 8 1 6 1 ,0 4 7 0 9 8 1 6 3 ,0 4 7 0 9 8 1 6 5 .0 4 7 0 9 8 1 6 7 ,0 4 7 0 9 8 1 6 9 ,0 4 7 0 9 8 5 4 ,0 4 7 0 9 8 5 6 ,0 4 7 0 9 8 5 8 ,0 4 7 0 9 8 6 0 ,0 4 7 0 9 8 6 2 ,0 4 7 1 6 8 2 4 ,0 4 7 1 6 8 2 6 ,

0 4 7 2 0 8 3 6 ,0 4 7 2 0 8 3 8 ,0 4 7 2 0 8 7 0 ,0 4 7 2 0 8 7 2 ,0 4 7 2 0 8 7 4 ,0 4 7 2 0 8 7 6 ,0 4 7 2 3 8 0 6 ,0 4 7 2 5 8 2 4 ,0 4 7 2 5 8 2 6 ,0 4 7 2 5 8 2 8 ,0 4 7 2 5 8 5 4 ,0 4 7 2 7 8 1 6 2 ,

0 4 7 2 7 8 1 6 4 ,0 4 7 2 7 8 1 6 6 ,0 4 7 2 7 8 1 6 8 ,0 4 7 2 7 8 1 7 0 ,0 4 7 2 7 8 1 7 2 ,0 4 7 2 7 8 1 7 4 ,0 4 7 2 7 8 1 7 6 ,0 4 7 2 7 8 1 7 8 ,0 4 7 2 7 8 1 8 0 ,0 4 7 2 7 8 6 6 ,0 4 7 2 7 8 6 8 ,0 4 7 2 7 8 7 0 ,

0 4 7 2 7 8 7 2 ,0 4 7 2 7 8 7 4 ,0 4 7 2 7 8 7 6 ,0 4 7 2 7 8 7 8 ,0 4 7 3 6 8 4 8 ,0 4 7 3 6 8 5 0 ,0 4 7 3 6 8 5 2 ,0 4 7 3 6 8 7 0 ,0 4 7 3 9 8 0 6 ,0 4 7 4 0 8 1 2 ,0 4 7 4 0 8 1 4 ,0 4 7 4 1 8 0 6 ,

0 4 7 4 4 8 1 4 2 ,0 4 7 4 4 8 1 4 4 ,0 4 7 4 4 8 1 4 6 ,0 4 7 4 4 8 1 4 8 ,0 4 7 4 4 8 1 5 2 ,0 4 7 4 4 8 1 5 4 ,0 4 7 4 4 8 1 5 6 ,0 4 7 4 4 8 1 5 8 ,0 4 7 4 4 8 4 8 ,0 4 7 4 4 8 5 0 ,0 4 7 4 4 8 5 2 ,0 4 7 4 4 8 5 4 ,

0 4 7 4 9 8 1 7 4 ,0 4 7 4 9 8 1 7 6 ,0 4 7 4 9 8 1 7 8 ,0 4 7 4 9 8 1 8 0 ,0 4 7 4 9 8 1 8 2 ,0 4 7 4 9 8 1 8 4 ,0 4 7 4 9 8 1 8 6 ,0 4 7 4 9 8 1 8 8 ;0 4 7 4 9 8 1 9 0 ,0 4 7 4 9 8 1 9 2 ,0 4 7 4 9 8 7 2 ,0 4 7 4 9 8 7 4 ,

0 4 7 4 9 8 7 6 ,0 4 7 4 9 8 7 8 ,0 4 7 4 9 8 8 0 ,0 4 7 4 9 8 8 2 ,0 4 7 4 9 8 8 4 ,0 4 7 4 9 8 8 6 ,0 4 7 4 9 8 8 8 ,0 4 7 4 9 8 9 0 ,0 4 7 5 9 8 2 9 ,0 4 7 5 9 8 3 1 ,0 4 7 5 9 8 3 5 ,0 4 7 6 2 8 1 0 1 ,

0 4 7 6 2 8 1 0 3 ,0 4 7 6 2 8 4 1 ,0 4 7 6 2 8 4 3 ,0 4 7 6 2 8 9 3 ,0 4 7 6 2 8 9 5 ,0 4 7 6 2 8 9 7 ,0 4 7 6 2 8 9 9 ,0 4 7 6 8 8 1 4 4 ,0 4 7 6 8 8 1 4 6 ,0 4 7 6 8 8 1 4 8 ,0 4 7 6 8 8 1 5 0 ,0 4 7 6 8 8 1 5 2 ,

0 4 7 6 8 8 1 5 4 ,0 4 7 6 8 8 1 5 6 ,0 4 7 6 8 8 1 6 8 ,0 4 7 6 8 8 6 6 ,0 4 7 6 8 8 6 8 ,0 4 7 6 8 8 7 0 ,0 4 7 6 8 8 7 2 ,0 4 7 6 8 8 7 4 ,0 4 7 6 8 8 7 6 ,0 4 7 7 6 8 1 0 3 ,0 4 7 7 6 8 1 0 5 ,0 4 7 7 6 8 1 0 7 ,

0 4 7 7 6 8 3 0 ,0 4 7 7 6 8 3 2 ,0 4 7 7 6 8 3 4 ,0 4 7 7 6 8 3 6 ,0 4 7 7 6 8 3 8 ,0 4 7 7 6 8 9 5 ,0 4 7 7 6 8 9 7 ,0 4 7 7 6 8 9 9 ,0 4 7 8 0 8 1 0 0 ,0 4 7 8 0 8 1 0 2 ,0 4 7 8 0 8 1 0 4 ,0 4 7 8 0 8 1 0 6 ,

0 4 7 8 0 8 1 0 8 ,0 4 7 8 0 8 1 1 0 ,0 4 7 8 0 8 4 2 ,0 4 7 8 0 8 4 4 ,0 4 7 8 0 8 4 6 ,0 4 7 8 6 8 1 4 2 ,0 4 7 8 6 8 1 4 4 ,0 4 7 8 6 8 1 4 6 ,0 4 7 8 6 8 1 4 8 ,0 4 7 8 6 8 1 5 0 ,0 4 7 8 6 8 1 5 2 ,0 4 7 8 6 8 1 5 4 ,

0 4 7 8 6 8 1 5 6 ,0 4 7 8 6 8 1 5 8 ,0 4 7 8 6 8 1 6 0 ,0 4 7 8 6 8 4 8 ,0 4 7 8 6 8 5 0 ,0 4 7 8 6 8 5 2 ,0 4 7 8 6 8 5 4 ,0 4 7 8 6 8 5 6 ,0 4 7 9 8 8 1 8 ,0 4 7 9 8 8 7 8 ,0 4 7 9 8 8 8 0 ,0 4 7 9 8 8 8 2 ,

0 4 7 9 8 8 8 4 ,0 4 7 9 8 8 8 6 ,0 4 8 0 0 8 1 2 ,0 4 8 0 4 8 0 6 ,0 4 8 0 5 8 5 6 ,0 4 8 0 5 8 5 8 ,0 4 8 0 6 8 6 0 ,0 4 8 0 5 8 6 2 ,0 4 8 0 5 8 6 4 ,0 4 8 0 7 8 0 6 ,0 4 8 1 0 8 1 1 9 ,0 4 8 1 0 8 1 2 1 ,

0 4 8 1 0 8 1 2 3 ,0 4 8 1 0 8 1 2 9 ,0 4 8 1 0 8 1 3 1 ,0 4 8 1 0 8 1 3 3 ,0 4 8 1 0 8 1 3 5 ,0 4 8 1 0 8 4 2 ,0 4 8 1 0 8 4 4 ,0 4 8 1 0 8 4 6 ,0 4 8 1 0 8 4 8 ,0 4 8 1 0 8 5 0 ,0 4 8 1 7 8 0 6 ,0 4 8 1 8 8 3 6 ,

0 4 8 1 8 8 3 8 ,0 4 8 1 8 8 4 0 ,0 4 8 1 8 8 4 2 ,0 4 8 1 8 8 4 4 ,0 4 8 1 8 8 4 6 ,0 4 8 1 8 8 5 4 ,0 4 8 2 3 8 1 3 4 ,0 4 8 2 3 8 1 3 6 ,0 4 8 2 3 8 1 3 8 ,0 4 3 2 3 8 1 4 0 ,0 4 8 2 3 8 1 4 2 ,0 4 8 2 3 8 4 8 ,

0 4 8 2 3 8 5 0 ,0 4 8 2 3 8 5 2 ,0 4 8 2 3 8 5 4 ,0 4 8 2 3 8 5 6 ,0 4 8 2 5 8 1 2 ,0 4 8 2 5 8 1 4 ,0 4 8 3 1 8 1 5 2 ,0 4 8 3 1 8 1 5 4 ,0 4 8 3 1 8 1 5 6 ,0 4 8 3 1 8 1 5 8 ,0 4 8 3 1 8 1 6 0 ,0 4 8 3 1 8 1 6 2 ,

0 4 8 3 1 8 1 6 4 ,0 4 8 3 1 8 1 6 6 ,0 4 8 3 1 8 1 6 8 ,0 4 8 3 1 8 1 7 0 ,0 4 8 3 1 8 1 7 2 ,0 4 8 3 1 8 4 8 ,0 4 8 3 1 8 5 0 ,0 4 8 3 1 8 5 2 ,0 4 8 3 1 8 5 4 ,0 4 8 3 1 8 5 6 ,0 4 8 3 5 8 0 6 ,0 4 8 4 0 8 1 4 8 ,

0 4 8 4 0 8 1 5 0 ,0 4 8 4 0 8 1 5 2 ,0 4 8 4 0 8 1 5 4 ,0 4 8 4 0 8 1 5 6 ,0 4 8 4 0 8 1 5 8 ,0 4 8 4 0 8 1 6 0 ,0 4 8 4 0 8 1 6 2 ,0 4 8 4 0 8 1 6 4 ,0 4 8 4 0 8 1 6 6 ,0 4 8 4 0 8 1 6 8 ,0 4 8 4 0 8 6 3 ,0 4 8 4 0 8 5 5 ,

0 4 8 4 0 8 5 7 ,0 4 8 4 0 8 5 9 ,0 4 8 4 0 8 6 3 ,0 4 8 4 9 8 1 2 6 ,0 4 8 4 9 8 1 2 8 ,0 4 8 4 9 8 1 3 0 ,0 4 8 4 9 8 1 3 2 ,0 4 8 4 9 8 1 3 4 ,0 4 8 4 9 8 1 3 6 ,0 4 8 4 9 8 1 3 8 ,0 4 8 4 9 8 1 4 0 ,0 4 8 4 9 8 4 8 ,

04 8 4 9 8 5 0 ,0 4 8 4 9 8 6 2 ,0 4 8 4 9 8 5 4 ,0 4 8 5 3 8 1 4 6 ,0 4 8 5 3 8 1 4 8 ,0 4 8 5 3 8 1 5 0 ,0 4 8 5 3 8 1 5 2 ,0 4 8 5 3 8 1 6 6 ,0 4 8 5 3 8 1 5 8 ,0 4 8 5 3 8 1 6 0 ,0 4 8 6 3 8 1 6 2 ,0 4 8 5 3 8 1 6 4 ,  

0 4 8 5 3 8 4 8 ,0 4 8 5 3 8 5 0 ,0 4 8 5 3 8 5 2 ,0 4 8 5 8 8 0 6 ,0 4 8 6 1 8 0 6 ,0 4 8 6 4 8 0 6 ,0 4 8 6 7 8 7 2 ,0 4 8 6 7 8 7 4 ,0 4 8 6 7 8 7 6 ,0 4 8 6 7 8 8 0 ,0 4 8 6 7 8 8 2 ,0 4 8 6 7 8 8 6 ,  

0 4 8 7 1 8 5 8 ,0 4 8 7 1 8 6 0 ,0 4 8 7 1 8 6 2 ,0 4 8 7 1 8 6 4 ,0 4 8 7 1 8 6 6 ,0 4 8 7 1 8 6 8 ,0 4 8 7 8 8 7 8 ,0 4 8 7 8 8 8 0 ,0 4 8 7 8 8 8 2 ,0 4 8 7 8 8 8 4 ,0 4 8 7 8 8 8 6 ,0 4 8 7 8 8 8 8 ,  

0 4 8 7 8 8 9 0 ,0 4 8 7 8 8 9 2 ,0 4 8 7 8 8 9 4 ,0 4 8 8 4 8 5 3 ,0 4 8 8 4 8 5 5 ,0 4 8 8 4 8 5 7 ,0 4 8 8 4 8 5 9 ,0 4 8 8 4 8 6 1 ,0 4 8 8 6 8 0 6 ,0 4 8 9 1 8 7 5 ,0 4 8 9 1 8 7 7 ,0 4 8 9 1 8 7 9 ,

0 4 8 9 1 8 8 1 ,0 4 8 9 1 8 8 5 ,0 4 8 9 1 8 8 7 ,0 4 8 9 1 8 8 9 ,0 4 8 9 6 8 1 0 0 ,0 4 8 9 6 8 1 0 2 ,0 4 8 9 6 8 8 8 ,0 4 8 9 6 8 9 0 ,0 4 8 9 6 8 9 2 ,0 4 8 9 6 8 9 4 ,0 4 8 9 6 8 9 6 ,0 4 8 9 6 8 9 8 ,  

0 4 9 0 2 8 0 5 ,0 4 9 0 4 8 3 6 ,0 4 9 0 4 8 3 8 ,0 4 9 0 4 8 4 0 ,0 4 9 0 4 8 4 2 ,0 4 9 0 4 8 4 4 ,0 4 9 0 9 8 0 6 ,0 4 9 1 1 8 6 5 ,0 4 9 1 1 8 6 7 ,0 4 9 1 1 8 5 9 ,0 4 9 1 1 8 7 3 ,0 4 9 1 1 8 7 5 ,  

0 4 9 1 1 8 7 7 ,0 4 9 1 1 8 7 9 ,0 4 9 1 1 8 8 1 ,0 4 9 1 8 8 1 2 ,0 4 9 1 8 8 1 4 ,0 4 9 1 9 8 0 6 ,0 4 9 2 0 8 0 6 ,0 4 9 2 4 8 6 6 ,0 4 9 2 4 8 6 8 ,0 4 9 2 4 8 7 0 ,0 4 9 2 4 8 7 2 ,0 4 9 2 4 8 7 4 ,  

0 4 9 2 4 8 7 6 ,0 4 9 2 4 8 7 8 ,0 4 9 3 1 8 0 6 ,0 4 9 3 3 8 5 4 ,0 4 9 3 3 8 5 6 ,0 4 9 3 3 8 5 8 ,0 4 9 3 3 8 6 0 ,0 4 9 3 3 8 6 2 ,0 4 9 3 3 8 6 4 ,0 4 9 3 3 8 6 6 ,0 4 9 3 3 8 6 8

A .2 JAFFE Database

Each image in the JA FFE database (see Chapter 5) is assigned a unique name of the 

form subject, expression.session where subject is a 2-letter code that uniquely identifies 

the subject of the image, expression is a 2-letter code followed by a version number digit 

that signifies the facial expression, and session is a 1-3 digit code that distinguishes the 

image from all other images of the same subject.

A.2.1 Training Client Set

57 images:

K A .A fil.39,K A .D I1.42,K A .FE1.45,K A .FE4.48,K A .H A 3.31,K A .H E2.27,K A .SA 2.34,K A .SU 2.37,K L.A N 2.168,K L.D I2.171,K L.FE1.174,K L.H A 1.158,

K 1..H E1.165,KL.SA 1.161,KL.SU1.164,KH.AN 1.17,KM .DI1.20,K H.FE2.24,K H.HA2.5,K M .N E1.1,KM .SA 1.9,K«.SA5.13,KM .SU 3.16,KR.AN3.85,

KR.0I3.88,KR.FB3.91,K R,H E1.71,KR,SA1.77.K R.SU1.80,KK .AN1.12S,HK.DI1.128,M K,FE2.131,M K .HA1.116,M K.SE1.113,M K.SA1.119,M K.SU1.122,

!IA.AK1.211,M A.D ll,214,H A .rE1.217,N A .K A 1.202,N A .N El,199,N A .SA 1.205,N A .S01.208,N M .A H 1.104,H H .D I1.107,N M .FE2.111,N M .H A 2.96,N M .N E2.93,

!m .SA2.93,KM .SU 2.102,TH .A H 2.191,TH .D I2.194,TH .FE2.197,TH .H A 2.181,TM .H E2.178,TM .SA 2.185.TK .SU 2.188
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A .2.2 Evaluation Client Set

57 images:

K A .A H a .4 0 .K A .D I2 .4 3 ,K A .F E 2 .4 6 ,K A .H A 1 .2 9 ,K A .H A 4 .3 2 ,K A .M E 3 .2 8 ,K A ,S A 3 .3 S ,K A .S U 3 .3 8 ,K L .A lf3 .1 6 9 ,K L .D I3 .1 7 2 ,K L .F E 2 .1 7 6 ,

K L .H A 2 .1 5 9 ,K L .N E 2 .1 6 6 ,K L .S A 2 .1 6 2 ,K L .S U 2 .1 6 5 ,K M .A N 2 .1 8 ,K M .D I3 .2 2 ,K M .F E 3 .2 5 ,K M .K A 3 .6 ,K M .N E 2 .2 ,K M .S A 2 .1 0 ,K M .S U 1 .1 4 ,

K R .A N 1 .8 3 ,K R .D I1 .8 6 ,K R .F E l.8 9 ,K R ,H A 1 .7 4 ,K R .N E 2 .7 2 ,K R .S A 2 ,7 8 .X H .S U 2 .8 1 ,M K .A N 2 .1 2 6 ,M K .D I2 .1 2 9 ,H K .F E 2 .1 3 2 ,M K .H A 2 .1 1 7 ,

M K .K E 2 .1 1 4 ,H K .S A 2 .1 2 0 ,M K .S 9 2 .1 2 3 ,M A .A N 2 .2 1 2 ,H A .D I2 .2 1 B ,N A .F E 2 .2 1 B ,IIA .H A 2 .2 0 3 ,N A .N E 2 .2 0 0 ,K A .S A 2 .2 0 6 ,N A .S U 2 .2 0 9 ,N M .A N 2 .1 0 B ,

H H .D I3 .1 0 9 ,K H .F E 3 .1 1 2 ,H M .H A 3 .9 7 ,M H .N E 3 .9 4 .H M .S A 3 .1 0 0 ,N H .S U 3 ,1 0 3 ,T H .A N 3 .1 9 2 ,T M .D I3 .1 9 5 ,T M .F E 3 .1 9 8 ,T H ,H A 3 .1 8 2 ,T M .N E 3 .1 7 9 ,

T H .S A 3 .1 8 6 ,T M .S U 3 .1 8 9

A .2.3 Evaluation Impostor Set

21 images:

U Y .A N 1 .1 4 6 .U Y .A N 2 .1 4 7 ,U Y .A M 3 .1 4 8 ,U Y .D I1 .1 4 9 ,U Y .D I2 .1 6 0 ,U Y .D I3 .1 S 1 .U Y .F E 1 .1 B 2 ,U Y .F E 2 .1 5 3 .U Y .F E 3 .1 5 4 ,U Y .H A 1 .1 3 7 ,0 Y .H A 2 .1 3 8 ,

U Y .H A 3 .1 3 9 ,U Y .N E 1 .1 3 4 ,U Y .N E 2 .1 3 5 ,U Y .N E 3 .1 3 6 .0 Y .S A 1 .1 4 0 ,U Y .S A 2 .1 4 1 ,U Y .S A 3 .1 4 2 .U Y .S U 1 .1 4 3 ,U Y .S U 2 .1 4 4 ,U Y .S U 3 .1 4 5

A.2.4 Test Client Set

56 images:

K A .A N 3 .4 1 ,K A .D r3 .4 4 ,K A .F E 3 .4 7 ,K A .H A 2 .3 0 ,K A .N E 1 .2 6 ,K A .S A 1 .3 3 ,K A .S U 1 .3 6 ,K L ,A N 1 .1 6 7 ,K L .D I1 .1 7 0 ,K L .D I4 .1 7 3 .K L .F E 3 ,1 7 6 ,

K L .H A 3 .1 6 0 ,K L .N E 3 .1 5 7 ,K L .S A 3 .1 6 3 ,K L .S U 3 .1 6 6 ,K H .A N 3 .1 9 ,K M .F E 1 .2 3 ,K H .H A 1 .4 ,K H .H A 4 .7 ,K H .ÎIE 3 .3 ,K M ,S A 3 .1 1 ,K H .S U 2 .1 5 ,

K R .A N 2 .8 4 ,K R .D I2 .8 7 .K R .F E 2 .9 0 ,K R .H A 2 .7 5 ,K R ,N E 3 .7 3 ,K R .S A 3 .7 9 ,K R .S U 3 .8 2 .M K .A N 3 .1 2 7 ,M K .D I3 .1 3 0 ,M K .F E 3 .1 3 3 ,« K .H A 3 .U 8 .

M K . N E 3 . 1 i e . H K , S A 3 . 1 21 , M K , S U 3 . 124 , N A . A N 3 . 2 1 3 , N A . D I 3 . 2 1 6 . N A . F E 3 . 2 1 9 , N A . H A 3 . 2 0 4 , H A . N E 3 . 2 0 1 , N A . S A 3 . 2 0 7 , N A . S U 3 . 2 10 , H M . A K 3 . 106 .

N H .F E l.H O ,N M .H A 1 .9 5 ,N M .N E 1 .9 2 ,H M .S A 1 .9 8 ,N H .S U 1 .1 0 1 ,T H .A N 1 .1 9 0 ,T M .D I1 .1 9 3 ,T M .F E l. ig 6 ,T M .H A l.l8 0 ,T H .N E l. l7 7 ,T M .S A 1 .1 8 4 ,

T H .S U 1 .187

A .2.5 Test Impostor Set

22 images:

Y M .A N 1 .6 1 ,Y « .A K 2 .6 2 ,Y M .A N 3 .6 3 ,Y M ,D Il,6 4 .Y H ,D I2 .6 5 .Y M .D I3 .6 6 ,Y H .F E 1 .6 7 ,Y H .F E 2 .6 8 ,Y H .F E 3 ,6 9 ,Y M .F E 4 .7 0 ,Y M ,H A t.5 2 ,Y M .H A 2 .5 3 .

Y H ,H A 3.54 ,Y M .N E 1 .4 9 ,Y M .N E 2 .5 0 ,Y H .N E 3 .5 1 ,Y M .S A 1 .5 5 ,Y M .S A 2 .S 6 ,Y M .S A 3 .B 7 ,Y M .S U l.5 8 ,Y M .S 0 2 .5 9 ,Y M .S U 3 .6 0
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A .3 UIUC Vehicle Database

Each image in (training set of) the UIUC vehicle database (see Chapter 5) is assigned a 

unique name of the form neg-id or pos-id where the prefix indicates whether the image 

is a negative example (i.e. does not contain a car) or a positive example (i.e. contains 

a car) respectively and id is a unique identifier within the set of negative or positive 

examples. As explained in Chapter 5, only “client” images are defined for this data  set.

A.3.1 Training Client Set

350 images:

,n o g - ll l ,n o g -1 1 4 ,n o g -1 1 7 ,n B g -1 2 ,n o g -1 2 2 ,n o g -1 2 5 ,n « g -1 2 8 ,n o g -1 3 0 ,n o g - l  

47 ,n o g -1 5 ,n < !g -1 6 2 ,n a g -lS 5  ,n B g -l& S ,n < ig -1 6 0 ,n eg -1 6 3 ,n e g -1 6 6 ,n ag -1 6 9 ,n o g  

5 ,n sg -1 8 8 ,n a g -1 9 0 ,n B g -1 9 3 ,n B g -1 9 6 ,n a g -1 9 9 ,n e g -2 0 0 ,n B g -2 0 3 ,n sg -2 0 6 ,n B g

10 0 ,nog-103,nB g-106 ,nB g 122, nog

n s g -2 S , nog-2S 2 , nB g-255, nag 2 5 8 ,nog-

299, n o g -3 0 0 ,n B g -3 0 3 ,  n ognog-288 , n o g -290 ,nog 2 9 3 ,n o g -2 9 6 , nog 3 0 6 ,nog

-3 3 9 ,n o g -3 4 1 , n o g -3 4 4 , nog -3 4 7 ,n o g -3 5 ,n o g -3 6 2 ,n o g -3 5 5 ,n o g3 3 0 ,n o g -3 3 3 , n o g -3 3 6 , nog -3 5 8 ,nogn o g —3 2 5 1 n o g —3 2 8 ,  n o g — ^  ———, @ o  ^  o  .  - - ^  „  — , - . .  „  ———, o  ———, -—o  — —, — o

g - 3 6 3 ,n o g - 3 6 6 ,n o g - 3 6 9 ,  n o g - 3 7 1 ,n o g - 3 7 4 ,  n o g - 3 7 7 , n o g - 3 8 ,  n o g - 3 8 2 ,n o g - 3 8 5 ,  n o g - 3 8 8 ,  n o g - 3 9 0 ,n e g - 3 9 3 ,n o g - 3 9 5 ,n o g -  

n o g - 4 0 0 ,n o g - 4 0 3 ,n o g - 4 0 6 ,  n o g - 4 0 9 ,n o g - 4 1 1 , n o g - 4 1 4 ,n o g - 4 1 7 ,  n o g - 4 2 ,n o g - 4 2 2 ,  n o g - 4 2 5 ,  n o g - 4 2 8 ,n o g - 4 3 0 ,  n o g - 4 3 3 ,n o g - o o o ,  

n o g -4 3 9 ,  n o g -4 4 1 ,  n o g - 4 4 4 ,n o g - 4 4 7 ,  n o g - 4 5 ,n o g - 4 5 2 ,n o g - 4 5 5 ,n o g - 4 5 8 ,n o g - 4 5 0 ,  n o g - 4 6 3 ,n e g - 4 6 6 ,n o g - 4 6 9 ,n o g - 4 7 1 ,  n o g -4 7 4 ,  

n o g -4 7 7 ,  n o g - 4 8 ,  n o g - 4 8 2 ,  n o g - 4 8 5 ,  n o g - 4 8 8 ,  n o g - 4 9 0 ,  n o g -4 9 3 ,  n o g - 4 9 6 ,  n o g - 4 9 9 ,  n o g - 6 1 ,  n o g - 5 4 ,  n o g - 6 7 ,  n o g - 6 ,  n o g - 6 2 ,  

n o g - 6 5 ,n o g - 6 8 ,n o g - 7 0 ,  n o g - 7 3 ,n o g - 7 6 , n o g - 7 9 ,n o g - 8 1 ,  n o g - 8 4 ,  n o g - 8 7 , n o g - 9 ,n o g - 9 2 , n o g - 9 5 ,n o g - 9 8 ,  p o o - 1 ,  

p o o - i0 1 ,p o s - 1 0 4 ,p o s - 1 0 7 ,p o i i - l l , p o i i - 1 1 2 ,p o 6 - 1 1 5 ,p o B - 1 1 8 ,p o B - 1 2 0 ,p o B - 1 2 3 ,p o B - 1 2 6 ,p o s - 1 2 9 ,p o D - 1 3 1 ,p o s - 1 3 4 .p o B  

p o o - 1 4 ,p o o - 1 4 2 ,p o o -1 4 6 ,  p o o - 1 4 8 ,p o o - 1 5 0 ,  p o o - 1 5 3 ,p o o - 1 5 6 ,  p o o - 1 5 9 ,p o o - 1 6 1 ,p o o - 1 6 4 ,  p o o - 1 6 7 ,p o o - 1 7 ,p o o - 1 7 2 ,  p o o -  

p o o - 1 7 6 ,p o o - 1 8 0 ,p o o - 1 8 3 ,p o o - 1 8 6 ,p o o - 1 8 9 ,p o G - 1 9 1 ,p O B - 1 9 4 ,p o B - 1 9 7 ,p o o - 2 ,p o 8 - 2 0 1 ,p o o - 2 0 4 ,p o o - 2 0 7 ,p o a - 2 1 ,p o o - 2 1 2

- 2 2 0 ,poo-2 2 3 ,p o o -2 2 6 ,p o o -2 2 9 ,p o o -2 3 1 ,p o 8 -2 3 4 ,p o o -2 3 7 , p o o -2 4 ,p o o -2 4 2 ,p o o -2 4 5 ,p o o -2 4 8 ,p o o -2 5 0  

- 2 5 9 ,poo-2 6 1 ,p o o -2 6 4 ,p o s -2 6 7 ,p o o -2 7 ,p o o -2 7 2 ,p o s -2 7 5 ,p o o -2 7 8 ,p o o -2 8 0 ,p o o -2 8 3 ,p o o -2 8 6 ,p o o -289

-3 2 0 ,p o o -3 2 3 ,p o o -3 2 6 ,

1-137,

1-175 ,

poo-215,poo 2 1 8 ,poo

p o o -2 5 3 ,p o o -2 5 6 ,poo

poB -31 |p0B -312jpO 6 '»315,p06-318,pos3 0 l,p o s-3 0 4 ,p o B -3 0 7 ,p o Bjp o a -2 9 7 ,p o s -3 ,p o 8p o 8 -2 9 1 ,p o

348 tp o s-3 S 0 .p o s-3 5 3 > p o s 369 ,poB -361 ,po8- 3 4 5 , poB 3 5 6 ,pos

-3 9 7 ,p o s -4 ,p o s -4 0 13 9 4 ,poB

-4 3 4 ,p o B -4 3 7 ,p o s

44 5 ,p o B -4 4 8 ,p o s-4 5 0 ,p o B p o 8 -4 7 2 ,p o 8 -4 7 5 ,p o spo8 -4 4 2 ,p o s ̂ ; ,p o B -4 5 0 ,p o fl-4 5 3 ,p o s -4 6 6 ,p o s -4 5 9 ,p o s -4 6 l,p o a -4 b 4 ,p O B -4 6 7 ,p

p o s-4 8 0 ,p O fi-4 8 3 ,p o fi-4 8 6 ,p o B -4 8 9 ,p o B -4 9 l,p o s-4 9 4 ,p o s-4 9 7 ,p o s-S ,p O B -5 0 1 ,p O 8 -6 0 4 ,p o s  

p o s-5 1 B ,p o s-5 2 0 ,p o s-5 2 3 ,p o 6 -6 2 6 ,p o s -5 2 9 ,p O 8 -5 3 i ,p o 8 -5 3 4 ,p o s -5 3 7 ,p o B -5 4 ,p o s -5 4 2 ,p o

p o 8 -S l,p o -5 1 2 ,pos

-5 4 8 ,p o s - 5 6 ,p o s - 5 9 ,p o s-5 1 8 ,p o s 5 4 5 ,poB5 2 0 ,pos 5 2 3 ,poB

s -6 7 ,p o f l- 7 ,p o s -7 2 ,p o s -7 5 ,p 0 8 -7 B ,p o f i-6 0 ,p o s 9 1 |p o B -9 4 ,p o a -9 7,p o s -8 6 ,p o 8 -8 9 ,p o spofi-61,poo

A.3.2 Evaluation Client Set

350 images:

n o g -1 3 4 .n o g -1 ,n o g -1 0 1 , n o g -1 0 4 , n o g -1 0 7 ,n o g -1 1 ,n o g -1 1 2 , n o g -1 1 5 ,n o g -1 1 8 ,n o g -1 2 0 , n o g -123 , n o g -1 2 6 ,n o g -1 2 9 , n o g -131, _ 

n o g -1 3 7 ,n o g - l4 ,n o g -1 4 2 ,n o g -1 4 5 ,n o g -1 4 8 ,n o g -1 5 0 ,n o g -1 5 3 ,n o g -1 5 6 .n o g -1 5 9 ,n o g -1 6 1 ,n o g -1 6 4 ,n o g -1 6 7 ,n o g -1 7 ,n o g -172, 

n o g -175 ,n o g -1 7 8 ,n o g -1 8 0 , n o g -1 8 3 , n o g -1 8 6 ,n o g -1 8 9 , n o g -1 9 1 , n o g -1 9 4 ,n o g -1 9 7 ,n o g -2 , n o g -2 0 1 ,n o g -2 0 4 ,n o g - 2 0 7 ,n o g -2 1 , 

n o g -2 1 2 ,n o g -2 1 5 ,n o g -2 1 8 , n o g -2 2 0 , n o g -2 2 3 , n ag -2 2 6 ,n o g -2 2 9 , n o g -2 3 1 , n o g -2 3 4 ,n o g -2 3 7 ,n o g -2 4 , n o g -2 4 2 , n o g -2 4 5 ,n o g -2 4 8 , 

n o g -2 5 0 ,n o g -2 8 3 ,n o g -2 5 6 , n o g -2 5 9 , n o g -2 6 1 , n o g -2 6 4 ,n o g -2 6 7 ,n e g -2 7 ,n o g -2 7 2 , n o g -2 7 6 ,n o g -2 7 8 ,n o g -2 8 0 , n o g -2 8 3 ,n o g -2 8 6 ,
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-3 1 5 ,n e g -3 1 8 ,n o g -3 2 0 , nog- 2 9 4 ,n o g -2 9 7 , no g -3no g -2 8 9 , n o g -2 9 1 , nog

3 2 6 ,n o g -3 2 9 , n o g -3 3 1 , nog 3 3 4 ,nog

3 7 ,n o g -3 7 2 ,n o g -3 7 6 ,n o gn o g -364 , nog 3 6 7 ,nog 3 7 8 ,nog

4 0 4 ,n og-4 0 7 ,n o g -4 1 , nog 4 1 2 ,n o g -4 1 5 , n o g -4 1 8 , nog 4 2 3 ,n o g -4 2 6 , n o g -4 2 9 , nogn o g -401 , nog - 4 2 0 ,nog

- 4 4 5 ,n o g -4 4 8 ,n e g -4 6 0 ,n o g 4 5 3 ,n o g -4 5 6 , n o g -4 5 9 , nog -4 6 1 ,n o g -4 6 4 , n o g -4 6 7 , nogn o g -4 4 , n o g -4 4 2 , nog - 4 7 2 ,nog

4 8 0 ,n o g -4 8 3 , n o g -4 8 6 ,n o g 4 9 7 ,n o g -5 ,n o g -5 2 ,n o g - 5 5 ,n o g -6 8 , nog- 6 0 ,nog4 9 1 ,n o g -4 9 4 , nog- 4 8 9 ,nog

- 8 8 ,n o g -9 0 , n o g -9 3 , nog , n o g -9 9 ,p o s -1 0 .

1 3 2 ,p c s -1 3 5 ,p o

-1 4 0 ,no - 1 7 3 ,poo

-1 8 1 ,p oo-1 8 4 ,poop o o -179 ,poo - 1 8 7 ,poo

2 1 6 ,p o o -2 1 9 ,p o o - 2 2 1 ,poo 2 2 4 ,poo- 2 2 7 ,p o e -2 3 ,p o s , p o o -2 3 8 ,p o o -2 4 0 ,p- 2 3 2 ,poo

- 2 6 8 ,p o o -2 7 0 ,p o o -2 7 3 ,p o o2 5 4 ,p o o -2 5 7 ,p o o - 2 6 ,poo 2 7 6 ,p o o -2 7 9 , p o o -2 8 1 ,p o - 2 8 4 ,p oo- 2 8 7 ,po- 2 6 5 ,poo2 6 2 ,poo

3 1 0 ,poo-3 1 3 ,poo -3 1 6 ,p o o2 9 5 ,p o o -2 9 8 ,p o o -3 0 , poo 3 1 9 ,p o o -3 2 1 , poo- 3 0 2 ,po - 3 2 4 ,poO -3 0 5 ,p o o -3 0 8 ,p o e-

p o o -3 3 ,p o 0 -3 3 2 ,p o o -3 3 5 ,p o s -3 3 8 ,p o o -3 4 0 ,p o o -3 4 3 1 p o o - 3 4 6 ,poo- 3 4 9 ,poo-3 5 1 ,poo-3 6 4 ,p o o -3 5 7 ,p o o -3 6 ,po o - 3 6 2 ,p oo-366 , 

p o o -3 6 8 ,p o s -3 7 0 ,p o e -3 7 3 ,p o o -3 7 6 ,p o o -3 7 9 ,p o o -3 8 1 ,p o o -3 8 4 ,p o o -3 8 7 ,p o s -3 9 ,p o o -3 9 2 ,p o e -3 9 5 ,p o o -3 9 8 ,p o o -4 0 ,p o o -4 0 2 , 

p o o -4 0 5 ,p o o -4 0 8 ,p o s -4 1 0 ,p o o -4 1 3 ,p o o -4 1 6 , p o o -4 1 9 ,p o o -4 2 1 , poo- 4 2 4 ,p o o -4 2 7 , p o o -4 3 ,p o o -4 3 2 , p o o -4 3 5 ,p o o -4 3 8 ,p o o -4 4 0 , 

p o o -4 4 3 ,p o fl-4 4 6 ,p o s-4 4 9 ,p o e -4 6 1 ,p o Q -4 5 4 ,p o e -4 5 7 ,p o o -4 6 ,p o G -4 6 2 ,p o B -4 6 5 ,p o e -4 6 8 ,p o G -4 7 0 ,p o o -4 7 3 ,p o o -4 7 6 ip o e -4 7 9 , 

p o s-4 8 1 Ip o o -4 B 4 ,p o o - 4 8 7 ,p o o -4 9 ,poo- 4 9 2 ,p oo-4 9 5 ,p o o -4 9 8 ,p o o -5 0 ,p o o -5 0 2 ,p o o -5 0 5 ,p o s -5 0 8 ,p o o - 5 1 0 ,p o o -5 1 3 ,p o o -5 16, 

p o s-5 1 9 ,p o s -5 2 1 ,p o B - 5 2 4 ,p o o -5 2 7 ,p oo- 5 3 ,p oo-5 3 2 ,p o o -5 3 5 ,p o o -5 3 8 ,p o o - 5 4 0 ,p o o -5 4 3 ,p o o -5 4 6 ,p o s -5 4 9 ,p o o - 5 7 ,p o o -6 , 

p o o -6 2 , poo-6 5 ,p oo- 6 8 ,poo- 7 0 ,p o 0 -7 3 ,p o o -7 6 ,po o - 7 9 ,poo- 8 1 ,poo- 8 4 ,p o o -8 7 ,p o o - 9 , poo- 9 2 ,po o - 9 5 ,poo-98

A .3.3 Test Client Set

350 images:

n o g -1 0 ,n o g -1 0 2 p X io g -1 0 5 ,n o g -1 0 8 ,n e g -1 1 0 » n o g -1 1 3 ,n © g -1 1 6 ,n e g -ll9 ,n o g -1 2 1 ,n o g -1 2 4 ,n e g "1 2 7 ,n o g -1 3 ,n o g -1 3 2 ,n o g -1 3 5 , 

n « g -1 3 8 ,n o g -1 4 0 ,n e g - 1 4 3 ,n e g -1 4 6 ,n a g - 1 4 9 ,n e g -1 5 1 ,n o g -1 5 4 ,n Q g -157Inog-1 6 ,n o g -1 6 2 ,n o g -1 6 5 ,n a g -1 6 8 ,n o g -1 7 0 ,n e g -173, 

n o g -i7 6 ,n G g -1 7 9 ,n B g -1 8 1 ,n o g -1 8 4 ,n flg -lS 7 ,n a g -l9 ,n o g -1 9 2 ,n e g -1 9 5 ,n o g -1 9 8 ,n e g -2 0 ,n o g -2 0 2 ,n a g -2 0 5 ,n B g -2 0 8 ,n o g -2 1 0 , 

n o g -213 ,nG g-216 1n e g -2 1 9 ,n o g -2 2 1 ,n B g -2 2 4 ,n o g -2 2 7 ,n o g -2 3 ,n a g -2 3 2 ,n o g -2 3 6 ,n a g -2 3 B ,n o g -2 4 0 , n o g -2 4 3 ,n o g -2 4 6 ,n o g -2 4 9 , 

n o g -2 6 1 ,n G g -2 5 4 ,n e g -2 5 7 ,n o g -2 6 ,n a g -2 6 2 ,n e g -2 6 5 ,n o g -2 6 S ,n o g -2 7 0 ,n sg -2 7 3 ,n o g -2 7 6 ,n o g -2 7 9 , n o g -2 8 1 ,n o g -2 8 4 ,n e g -2 8 7 , 

n 6 g -2 9 ,n o g -2 9 2 ,n B g -2 9 5 ,n B g -2 9 8 ,n Q g -3 0 ,n e g -3 0 2 ,n o g -3 0 5 ,n o g -3 0 8 ,n o g -3 1 0 ,n G g -3 1 3 ,n o g -3 1 6 ,n o g -3 1 9 , n ag -3 2 1 ,n o g -3 2 4 , 

nog-327 , n o g -3 3 ,n B g -3 3 2 ,n e g -3 3 5 ,n o g -3 3 8 ,n o g -3 4 0 ,n o g -3 4 3 ,n a g -3 4 6 ,n o g -3 4 9 ,n o g -3 5 1 ,n o g -3 5 4 ,n o g -3 6 7 ,n e g -3 6 ,n o g -3 6 2 , 

n o g -3 6 5 ,n e g -3 6 8 .n o g -3 7 0 , n o g -3 7 3 ,n o g -3 7 6 ,n o g -3 7 9 ,n o g -3 8 1 ,n o g -3 8 4 ,n o g -3 8 7 ,n o g -3 9 ,n o g -3 9 2 , n a g -3 9 5 ,n o g -3 9 8 ,n o g -4 0 , 

n o g -4 0 2 ,n e g -4 0 5 ,n o g -4 0 8 ,n o g -4 1 0 ,n o g - 4 1 3 ,n a g -4 1 6 ,n a g -4 1 9 , n o g -4 2 1 ,n a g -4 2 4 ,n e g -4 2 7 ,n o g -4 3 ,n a g -4 3 2 ,n e g -4 3 5 ,n o g -4 3 8 , 

n o g-440 , n o g -4 4 3 ,n o g - 4 4 6 ,n a g -4 4 9 ,n o g -4 5 1 ,n o g -4 6 4 ,n a g -4 6 7 ,n e g -4 6 ,n o g -4 6 2 ,n o g -4 6 5 ,n o g -4 6 8 ,n o g -4 7 0 ,n o g -4 7 3 ,n o g -4 7 6 , 

n o g -4 7 9 ,n a g -4 8 1 ,n e g -4 8 4 ,n o g -4 8 7 ,n a g -4 9 , n o g -4 9 2 ,n a g -4 9 5 ,n a g - 4 9 8 ,n o g -5 0 ,n a g - 5 3 ,n a g -5 6 ,n a g -5 9 ,n a g - 6 1 ,n a g -6 4 , 

n o g -6 7 ,n o g -7 , n o g -7 2 ,n o g -7 5 ,n o g -7 8 ,n e g - 8 0 ,n a g -8 3 ,n a g -8 6 ,n a g - 8 9 ,n a g -9 1 ,n a g -9 4 ,n a g -9 7 ,poB-0,poB ~100j 

p O 6 -1 0 3 ,p o 8 -1 0 6 ,p o & -1 0 9 ,p o s - l l l ,p o 8 -1 1 4 ,p o e - 1 1 7 ,p o B -1 2 ,p o 8 -i2 2 ,p o 6 -1 2 5 y p o B -1 2 8 ,p o fi-1 3 0 ,p O B -1 3 3 ,p o B -1 3 6 ,p o B -1 3 9 , 

p o s -1 4 1 ,p o s -1 4 4 ,p o s - 1 4 7 ,p o 6 -1 5 ,p o 8 -1 5 2 ,p o s - i5 5 ,p o B -1 5 8 ,p o s -1 6 0 ,p O 8 -1 6 3 ,p o B -1 6 6 ,p o s -1 6 9 ,p o B -1 7 1 ,p o s - l7 4 ,p o s -1 7 7 , 

p o s - 1 8 ,p o 5 - 1 8 2 ,p o s -1 8 5 ,p o 8 -1 8 8 ,p o 8 -1 9 0 ,poB -1 9 3 ,p o s - 1 9 6 ,pOB-1 9 9 ,poB -2 0 0 ,pOB-2 0 3 ,p o 8 -2 0 6 ,p o B -2 0 9 ,p o B -2 1 1 ,p o 8 -2 1 4 , 

p o s -2 1 7 ,p o s -2 2 ,p o s -2 2 2 ,p o s -2 2 5 ,p o B -2 2 8 ,p o B -2 3 0 ,p o a -2 3 3 ,p O B -2 3 6 ,p o B -2 3 9 ,p o B -2 4 1 ,p o s-2 4 4 ,p o B -2 4 7 ,p O B -2 5 ,p o c -2 5 2 , 

p o e -2 5 5 ,p o s -2 S 8 ,p o s-2 6 0 ,p o s -2 6 3 ,p o B -2 6 6 ,p o s -2 6 9 ,p o B -2 7 1 ,p o e -2 7 4 ,p o 8 -2 7 7 ,p o & -2 8 ,p o s -2 d 2 ,p o s -2 8 5 ,p o B -2 8 6 ,p o E -2 9 0 , 

p o B -2 9 3 ,p o s -2 9 6 ,p o s -2 9 9 ,p o 8 -3 0 0 ,p o B -3 0 3 ,p o a -3 0 6 ,p o B -3 0 9 ,p o f l-3 1 1 ,p o s -3 1 4 ,p o B -3 1 7 ,p o s -3 2 ,p o 8 -3 2 2 ,p o s-3 2 5 ,p o s -3 2 8 | 

p o 8 -S 3 0 ,p o s -3 3 3 ,p o s -3 3 6 ,p o s-3 3 9 ,p o B -3 4 1 ,p o s -3 4 4 ,p o a -3 4 7 ,p o B -36 ,poB -3 5 2 ,p 0 8 -3 5 5 ,p o s - 3 5 8 ,p o 8 -3 6 0 ,poB-3 6 3 ,po8~366, 

p o B -3 6 9 ,p o s -3 7 1 ,p o s -3 7 4 ,p o s -3 7 7 ,p o 5 -3 8 |p o fl-3 8 2 ,p o s -3 8 5 ,p o B -3 8 8 ,p o B -3 9 0 ,p o s-3 9 3 ,p o s -3 9 6 ,p o s -3 9 9 ,p O B -4 0 0 ,p o 8 -4 0 3 , 

poS“4 0 6 ,p o s -4 0 9 ,p o s -4 1 1 ,p o a -4 l4 ,p o B -4 1 7 ,p o 8 -4 2 ,p o s -4 2 2 ,p o B -4 2 6 ,p o B -4 2 8 ,p O 8 “4 3 0 ,p o s -4 3 3 ,p o B -4 3 6 ,p o s -4 3 9 ,p o s -4 4 l, 

p o B -4 4 4 ,p o B -4 4 7 ,p o s -4 5 ,p o B -4 6 2 ,p o B -4 5 6 ,p o s -4 5 8 ,p o B -4 6 0 ,p o 8 -4 6 3 ,p o fl-4 6 6 ,p o s -4 6 9 ,p o s -4 7 i,p o B -4 7 4 ,p o B -4 7 7 ,p o s -4 8 , 

p o 6 -4 8 2 ,p o 8 -4 8 6 ,p o s -4 8 8 ,p o s -4 9 0 ,p o B -4 9 3 ,p o s -4 9 6 ,p o B -4 9 9 ,p o B -5 0 0 ,p o s -5 0 3 ,p o B -5 0 6 ,p o 8 -6 0 9 ,p o s -5 1 1 ,p o B -5 1 4 ,p O 8 -5 1 7 , 

p o 8 -5 2 ,p o s - 6 2 2 ,p o s-5 2 5 ,p o B -5 2 8 ,p o 8 -5 3 0 ,p o s -6 3 3 ,p o s -5 3 6 ,p o a -5 3 9 ,p O B -5 4 1 ,p o s -5 4 4 ,p o s -5 4 7 ,p o s -5 5 ,p o o -6 8 ,p o s -6 0 , 

p o s-6 3 ,p o 8 -6 6 ,p o 8 -6 9 ,p o B -7 1 ,p o 8 -7 4 ,p O 6 -7 7 ,p O B -8 ,p O B -8 2 ,p o B -8 5 ,p o & -8 8 ,p o 8 -9 0 ,p o B -9 3 ,p o B -9 6 ,p 0 8 -9 9
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