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Summary

In the �eld of computational biology, microarryas are used to measure the activity of thousands

of genes at once and create a global picture of cellular function. Microarrays allow scientists

to analyze expression of many genes in a single experiment quickly and e�ciently. Even if

microarrays are a consolidated research technology nowadays and the trends in high-throughput

data analysis are shifting towards new technologies like Next Generation Sequencing (NGS), an

optimum method for sample classi�cation has not been found yet.

Microarray classi�cation is a complicated task, not only due to the high dimensionality of

the feature set, but also to an apparent lack of data structure. This characteristic limits the

applicability of processing techniques, such as wavelet �ltering or other �ltering techniques that

take advantage of known structural relation. On the other hand, it is well known that genes are

not expressed independently from other each other: genes have a high interdependence related

to the involved regulating biological process.

This thesis aims to improve the current state of the art in microarray classi�cation and

to contribute to understand how signal processing techniques can be developed and applied to

analyze microarray data. The goal of building a classi�cation framework needs an exploratory

work in which algorithms are constantly tried and adapted to the analyzed data. The developed

algorithms and classi�cation frameworks in this thesis tackle the problem with two essential

building blocks. The �rst one deals with the lack of a priori structure by inferring a data-driven

structure with unsupervised hierarchical clustering tools. The second key element is a proper

feature selection tool to produce a precise classi�er as an output and to reduce the over�tting

risk.

The main focus in this thesis is the binary data classi�cation, �eld in which we obtained

relevant improvements to the state of the art. The �rst key element is the data-driven structure,

obtained by modifying hierarchical clustering algorithms derived from the Treelets algorithm from

the literature. Several alternatives to the original reference algorithm have been tested, changing

either the similarity metric to merge the feature or the way two feature are merged. Moreover, the

possibility to include external sources of information from publicly available biological knowledge

and ontologies to improve the structure generation has been studied too. About the feature

selection, two alternative approaches have been studied: the �rst one is a modi�cation of the IFFS

algorithm as a wrapper feature selection, while the second approach involved an ensemble learning

focus. To obtain good results, the IFFS algorithm has been adapted to the data characteristics by



introducing new elements to the selection process like a reliability measure and a scoring system

to better select the best feature at each iteration. The second feature selection approach is based

on Ensemble learning, taking advantage of the microarryas feature abundance to implement a

di�erent selection scheme. New algorithms have been studied in this �eld, improving state of the

art algorithms to the microarray data characteristic of small sample and high feature numbers.

In addition to the binary classi�cation problem, the multiclass case has been addressed

too. A new algorithm combining multiple binary classi�ers has been evaluated, exploiting the

redundancy o�ered by multiple classi�ers to obtain better predictions.

All the studied algorithm throughout this thesis have been evaluated using high quality

publicly available data, following established testing protocols from the literature to o�er a proper

benchmarking with the state of the art. Whenever possible, multiple Monte Carlo simulations

have been performed to increase the robustness of the obtained results.



Resumen

En el campo de la biología computacional, los microarrays son utilizados para medir la actividad

de miles de genes a la vez y producir una representación global de la función celular. Los

microarrays permiten analizar la expresión de muchos genes en un solo experimento, rápidamente

y e�cazmente. Aunque los microarrays sean una tecnología de investigación consolidada hoy en

día y la tendencia es en utilizar nuevas tecnologías como Next Generation Sequencing (NGS),

aun no se ha encontrado un método óptimo para la clasi�cación de muestras.

La clasi�cación de muestras de microarray es una tarea complicada, debido al alto número

de variables y a la falta de estructura entre los datos. Esta característica impide la aplicación

de técnicas de procesado que se basan en relaciones estructurales, como el �ltrado con wavelet

u otras técnicas de �ltrado. Por otro lado, los genes no se expresen independientemente unos de

otros: los genes están inter-relacionados según el proceso biológico que les regula.

El objetivo de esta tesis es mejorar el estado del arte en la clasi�cación de microarrays y

contribuir a entender como se pueden diseñar y aplicar técnicas de procesado de señal para

analizar microarrays. El objetivo de construir un algoritmo de clasi�cación, necesita un estudio

de comprobaciones y adaptaciones de algoritmos existentes a los datos analizados. Los algoritmos

desarrollados en esta tesis encaran el problema con dos bloques esenciales. El primero ataca la

falta de estructura, derivando un árbol binario usando herramientas de clustering no supervisado.

El segundo elemento fundamental para obtener clasi�cadores precisos reduciendo el riesgo de

over�tting es un elemento de selección de variables.

La principal tarea en esta tesis es la clasi�cación de datos binarios en la cual hemos obtenido

mejoras relevantes al estado del arte. El primer paso es la generación de una estructura, para

eso se ha utilizado el algoritmo Treelets disponible en la literatura. Múltiples alternativas a este

algoritmo original han sido propuestas y evaluadas, cambiando las métricas de similitud o las

reglas de fusión durante el proceso. Además, se ha estudiado la posibilidad de usar fuentes de

información externas, como ontologías de información biológica, para mejorar la inferencia de la

estructura. Se han estudiado dos enfoques diferentes para la selección de variables: el primero

es una modi�cación del algoritmo IFFS y el segundo utiliza un esquema de aprendizaje con �

ensembles". El algoritmo IFFS ha sido adaptado a las características de microarrays para obtener

mejores resultados, añadiendo elementos como la medida de �abilidad y un sistema de evaluación

para seleccionar la mejor variable en cada iteración. El método que utiliza �ensembles" aprovecha

la abundancia de features de los microarrays para implementar una selección diferente. En este



campo se han estudiado diferentes algoritmos, mejorando alternativas ya existentes al escaso

número de muestras y al alto número de variables, típicos de los microarrays.

El problema de clasi�cación con más de dos clases ha sido también tratado al estudiar un

nuevo algoritmo que combina múltiples clasi�cadores binarios. El algoritmo propuesto aprovecha

la redundancia ofrecida por múltiples clasi�cadores para obtener predicciones más �ables.

Todos los algoritmos propuestos en esta tesis han sido evaluados con datos públicos y de alta

calidad, siguiendo protocolos establecidos en la literatura para poder ofrecer una comparación

�able con el estado del arte. Cuando ha sido posible, se han aplicado simulaciones Monte Carlo

para mejorar la robustez de los resultados.
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Chapter 1

Introduction

The developed work in this thesis lies in the �eld of automatic microarray data analysis-

analysis and �ts well the National Institute of Health, NIH, de�nition of bioinformatics

Bioinformatics: Research, development, or application of computational tools

and approaches for expanding the use of biological, medical, behavioral or

health data, including those to acquire, store, organize, archive, analyze, or

visualize such data.

More in detail, this research work consists in developing a novel, global approach, with

which high-throughput data like microarrays can be classi�ed. To this end, signal pro-

cessing techniques have been developed, applied and evaluated to improve the current

results within the microarray analysis �eld. In[110], the usefulness of signal processing

techniques in the bioinformatics �eld is well described:

The recent development of high-throughput molecular genetics technologies

has brought a major impact to bioinformatics and systems biology. These

technologies have made possible the measurement of the expression pro�les of

genes and proteins in a highly parallel and integrated fashion. The examina-

tion of the huge amounts of genomic and proteomic data holds the promise

for understanding the complex interactions between genes and proteins, the

functional processes of a cell, and the impact of various factors on a cell, and

ultimately, for enabling the design of new technologies for intelligent manage-

ment of diseases. . . . The importance of signal processing techniques is due

1



to their important role in extracting, processing, and interpreting the infor-

mation contained in genomic and proteomic data. It is our hope that signal

processing methods will lead to new advances and insights in uncovering the

structure, functioning and evolution of biological systems.

Signal processing techniques are key in the analysis process, since the problems to solve in

the microarray data analysis are similar problems already faced in the telecommunication-

related signal processing �eld (e.g. analysis and compression of large data, noise cancel-

lation, pattern detection, feature selection and classi�cation). Moreover, a vast literature

already exists, in which a whole plethora of algorithms from the signal processing world

are taken, modi�ed and adapted for the analysis of high-throughput data such as mi-

croarrays. This thesis work aims to further improve the application of signal processing

techniques to the analysis of a widely adopted tool like microarrays.

The main tasks treated in this thesis are the classi�cation of incoming samples (e.g.

to determine whether a microarray sample represents a person with a certain disease type

or not), the relevant feature extraction of a microarray set (e.g. to identify the most

discriminating genes between two classes) and the improvement of results interpretability

from a biological point of view.

The developed techniques and tools focus on building a hierarchical data representa-

tion for the gene expression data able to produce useful features for classi�cation, either

using only the numerical information from microarray, or by including previous biological

knowledge to ease the results interpretation and to increase the biological coherence of

the generated structure. Algorithms have been developed for the binary classi�cation

problem, which is by far the most studied task in classi�cation. In this area, properly

tuned feature selection algorithms have been developed and tested to take into account

the microarray data characteristics. The multiclass classi�cation has also been consid-

ered by developing a novel ensemble classi�cation technique combining multiple binary

classi�er to obtain a more robust sample classi�cation.

Microarrays are an important and well established technology in the biomedical re-

search �eld, developed to allow researchers to gather a very large number of gene expres-

sions simultaneously. By measuring the mRNA level, the state of a cell can be determined
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and inferences about phenomena inside the cell can be made [138]. In each microarray

experiment, a large number of gene expressions are measured, typically tens of thousands,

with a relatively small sample number. Microarrays are an extreme example of sample

scarcity, or high-dimensionality of the feature set and this is a critical issue during the

data analysis step.

The �rst publication using microarrays for cancer classi�cation is from Golub in 1999

[52], where a gene subset with large mean value di�erence between classes and small vari-

ance within each class has been selected from the initial dataset and used as a predictor

classi�er. Since then, a wide variety of learning approaches have been proposed for mi-

croarray data analysis, like for example data normalization and correction, classi�cation

or regulatory network identi�cation.

1.1 Microarray Data

In the �eld of computational biology, microarrays are used for gene expression pro�ling,

which is the measurement of the activity (the expression) of thousands of genes at once,

to create a global picture of cellular function.

Microarrays allow scientists to analyze expression of many genes in a single experiment

quickly and e�ciently. They represent a major methodological advance and are a powerful

research tool, used by scientists to try to understand fundamental aspects of growth and

development as well as to explore the underlying genetic causes of many human diseases.

Microarrays data are usually visualized with the help of a heat map, like the example

shown in Figure 1-1, in which genes are arranged as columns, while each row represents

a sample. In �gure 1-1, the samples are sorted by their classes: the �rst 32 rows are

from a class while the last 30 are from another. In the adopted color scheme, red values

indicate high gene expression level, while blue values indicate low gene expression level.

The heat map gives a visual summary of the collected genetic information and, at the

same time, well visualizes the problem to be faced: there is too much information without

an associated knowledge to easily discriminate between classes.

Microarray classi�cation is a complicated task, not only due to the high dimensionality

of the feature set, but also to an apparent lack of data structure. Even if data are presented
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Figure 1-1: Microarray data visualization with heat map. Each columns represents a single
gene, while each row represents a sample and it visualizes the lack of apparent regularity in a
microarray dataset.

as a matrix, no a priori relation exists from the geometrical proximity, see for example

in Figure 1-1 where there is no local uniformity across the columns. This characteristic

limits the applicability of processing techniques, such as wavelet �ltering or other �ltering

techniques that take advantage of known structural relation. On the other hand, it is well

known that genes are not expressed independently from each other [50]: genes have a high

interdependence depending on the involved regulating biological process. Therefore, even

if gene expressions have no geometrical structure in the microarray data, the measured

values themselves do have an unknown structure, which could be used to process the data.

An additional issue when analyzing microarray data is the measurement noise. In mi-

croarray experiments, �uorescent intensities related to gene expression levels are measured

with sophisticated algorithms of image processing. Even so, an issue many researches �nd

compelling to solve is how to e�ectively discern the actual values from experimental noise

[68]. This is an issue even if in recent studies like [112] it is stated how the actual technical

noise is low. It still is not zero and data su�er from random gene expression �uctuation

which can alter the real expression value. To address the main noise e�ect due to some

systematic error, various normalization and batch e�ect correction techniques have been

developed throughout the literature [50, 107]. With some di�erences all of them manage

to obtain comparable data across various microarray samples (even if not noise free). To
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address the residual noise �uctuation, bene�ts would be obtained if the underlying data

structure for the gene expression was found.

1.2 Problem statement

As anticipated in Section 1.1, microarray data characteristics can add complexity to the

classi�cation task:

• High feature set dimension with respect to the sample number also known as curse

of dimensionality [11];

• Lack of a priori known data structural relations;

• Residual measurement noise even after applying normalization techniques.

The main problem to be solved is how to develop an algorithm able to output a precise

and reliable classi�er with repeatable result, considering the microarray data characteris-

tics. Even if microarrays are a consolidated research technology nowadays and the trends

in high-throughput data analysis are shifting towards new technologies like Next Gener-

ation Sequencing (NGS) [102], an optimum method for sample classi�cation has not yet

been found.

In recent studies from the microarray quality control study consortium, MAQC, [112],

an extensive evaluation of classi�cation algorithms has been performed. From MAQC

results in [112], no individual method resulted to be always the best in all datasets.

Furthermore, from the published results in [112], it can be observed how there is still a

lot of room for improvement for the classi�cation predictive properties. Moreover, the

research for a better microarray classi�cation algorithm is interesting for the current and

future sequencing techniques like NGS. With NGS, the output data are basically a�ected

by the same problems as microarrays, with the added inconvenience of not having neither

consolidated data normalization and correction techniques, nor a wide availability of data

or previous works to compare with. On the other hand, a new algorithm analyzing

microarray data can be compared with a large amount of preexisting literature. Moreover,

there is the possibility to analyze many public datasets from for example Gene Expression

5



Omnibus, GEO, [41], thus it is possible to focus on the algorithmic aspect without being

too conditioned by the data quality control like with the current state of NGS data

analysis. In this way, algorithms can be developed for microarrays, compared with the best

alternatives and later straightforwardly adapted to the next high-throughput sequencing

technology with good chance of maintaining the performances.

In the literature a plethora of microarray classi�cation methods have been developed

and a review of the most popular alternatives is presented in Chapter 2. In almost every

case, feature selection algorithms have been applied to reduce the impact of the feature

number. The aim of the feature selection task is to choose a subset of relevant features for

building robust learning models. By removing the most irrelevant and redundant features

from the data, the feature selection helps to improve the predictive performance. In this

way, the generalization capability and the model interpretability are enhanced.

The lack of structure a�ects the possibility to apply a whole set of learning techniques

based on some proximity measure, being it spatial, spectral or functional. The lack of

structure is also an issue for noise reduction techniques based on low-pass �ltering: the

lack of knowledge about features that are supposed to have a similar behavior limits the

applicability of low pass operators. In order to extract a structure from the numerical

data, unsupervised learning techniques have also been proposed in the literature, among

which an important subset are the clustering techniques. The clustering operation de�nes

sets of related genes by some similarity measure. A whole universe of alternatives exists,

and a review of them is included in Chapter 2.

Finally, a determinant role in the classi�cation process is played by the classi�cation

rule itself. A review of existing classi�cation techniques applied to microarray data analy-

sis is included in Section 2.3, but more complete information can be found in [58, 38, 50].

The panorama of classi�cation techniques is extremely diverse, from very simple clas-

si�cation rules to highly complex network systems. This thesis focus is to produce a

general purpose classi�cation methodology for microarray data. Di�erent classi�cation

rules have been studied and compared, like the Linear Discriminant Analysis classi�er

(LDA) [58], Support Vector Machines (SVM) [109], or k-Nearest Neighbors (kNN) [58],

but the proposed scheme can work with almost any existing classi�er.
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Figure 1-2: Current model framework for the binary classi�cation case. The feature set en-
hancement phase and the feature selection phase have been studied in multiple con�gurations.

Due to the large amount of data provided by Microarray technology, the data analysis

and feature extraction steps need the application of automatic and e�cient processing

techniques. The framework proposed in this thesis for binary classi�cation is visualized

in Figure 1-2. The core of the algorithm is the two-step process following the data pre-

processing. A �rst phase infers a structure from the numerical data and produces new

features called metagenes. Then, in a second step, di�erent feature selection algorithms

have been developed and compared. Finally, the algorithm output is the produced clas-

si�er. As far as the multiclass classi�cation is concerned, the classi�cation is obtained as

a combination of multiple binary classi�ers and it is detailed in Chapter 6 .

1.3 Contributions

This thesis aims at building an analysis framework for microarray data to output a precise

and reliable classi�er, improving the best alternatives in the state of the art. The goal is

to produce a valid candidate for microarray data classi�cation, which outputs an accurate

and interpretable prediction model when analyzing new samples also in terms of biological
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relevance. To achieve the proposed results, a variety of issues must be addressed to

e�ectively extract information from the numerical data. The next sections describe the

contributions from this thesis to each one of the faced microarray classi�cation issues.

1.3.1 Feature set enhancement with metagenes

The �rst step in the proposed framework is to process the original data and extract

a new set of features called metagenes. The objective is to infer a structure and to

create a set of metagenes to be added to the original gene expression values. The newly

created metagenes can improve the classi�cation ability by expanding the feature space

and reducing the noise when summarizing local clusters of correlated genes. Furthermore,

since a data structure is created, it can be used to interpret the obtained results or to

look for alternatives in case of practical implementation problems.

Metagenes are built from hierarchical clustering and are obtained as linear combi-

nation of the original features (i.e. gene expressions). This elaboration step aims at

expanding the original feature set with useful alternatives. Algorithms like Tree Harvest-

ing, [57], or Pelora, [35], highlight the usefulness of hierarchical clustering as a method

to extract interesting new variables to expand the original feature set. The possibility to

summarize groups of similar genes in a single feature as input for the classi�er has many

advantages. First, the interpretability of the selected feature as a combination of corre-

lated genes that may be involved in the same biological process. Second, the robustness to

chance because a group of correlated genes useful for classi�cation is less likely to be due

to chance than an individual gene. Third and last, classifying with a cluster-representing

feature can highlight linear relations among groups of correlated genes.

The unsupervised analysis algorithm applied in this work aims at extracting new

features representative of the original set. A structure is assigned to the data based on a

similarity metric (details are included in Chapter 3) and this has a double utility:

• It de�nes the neighbors1 of each gene, thus allowing a noise �ltering e�ect when the

metagene is de�ned. The common behavior of a gene cluster is encoded into the

representing metagene. The result is a new set of features which emphasizes the

1The neighbor term, here, is used to de�ne a gene close to another in the inferred structure.
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common traits of gene groups, simultaneously reducing the residual noise on the

measured values.

• It eases the results interpretation once the model is de�ned and also eases the

model rede�nition in case of practical inapplicability. Results can be more easily

interpreted because, for each gene, groups of genes showing similar behavior are

highlighted together with the extent of their similarity. The relations among genes

are quanti�ed by the similarity metric. About the practical issues once the model is

de�ned, an example could be the high cost of a con�rmation experiment for a speci�c

gene. Thanks to the inferred structure by the clustering operation, alternatives to

critical genes in the model can be found by looking at the produced tree.

The studied hierarchical clustering algorithm is one, but the actual inferred structure can

change signi�cantly depending on how it is implemented. We have performed studies

to compare di�erent clustering implementations, changing the similarity metric or the

metagene generation rule, switching from the local Principal Component Analysis, PCA,

proposed in [78], to a Haar-base feature fusion. From this study it emerged how the

metagene generation allows producing better classi�ers when compared to state of the art

alternatives like those from [112].

Moreover, a knowledge integration scheme has been studied to include some speci�c

prior knowledge in the clustering process. The objective is to produce a more interpretable

and biologically meaningful clustering.

1.3.2 Feature selection

Feature selection is a compelling task when classifying microarray data to reduce the risk

of over�tting. Its aim is to select an informative feature subset to be used for classi�cation

and it can be pursued in di�erent fashions. Feature selection can be independent of the

classi�er as in the t-test [38]. This set of methods is usually referred to as �lters. If

the feature selection uses the classi�er to evaluate the performance of each subset as in

Sequential Floating Forward Selection (SFFS) [104], it is called wrapper. Otherwise, if the

feature selection is coupled with the classi�er design, as in recursive ridge regression [79], it

is referred to as embedded methods. Di�erent methodologies of feature selection exist, each
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of which has bene�ts and drawbacks, and a more detailed discussion is reported in Section

2.2. In this thesis, wrapper methods have been implemented. Innovation elements have

been introduced inside the selection phase, considering the microarray data characteristics

in order to improve the �nal predictive ability. The main reason for modifying a feature

selection algorithm is that, in microarray analysis, there is no fully reliable error estimator

[19, 21, 20] due to the sample scarcity.

In addition to developing a novel wrapper algorithm, an indirect feature selection tech-

nique has also been studied. More precisely, it is an ensemble technique for classi�cation

based on the accuracy in diversity algorithm from [8], which is detailed in Section 4.3.

It iteratively classi�es samples with a majority voting scheme by selecting a subset of so

called experts. Each expert has been chosen to be a classi�er trained on a single feature,

gene expression or microarray, and this is why it is an indirect form of feature selection.

By selecting a subset of experts, a subset of features is selected since they are used to train

the ensemble experts. This form of feature selection results in a signi�cant improvement

of the prediction properties of the classi�ers when compared to state of the art alternatives

on publicly available data.

1.3.3 Binary classi�cation

This is the primary objective of this thesis: to correctly classify as many samples as possi-

ble. A key element for this task is the choice of the classi�cation rule. It implies to choose

a classi�er which is precise, robust to over�t and with consistent results when applied

to independent validation data. Numerous classi�cation rules have been proposed during

the last years and many comparative studies exist [58, 138, 74]. It is shown how good

results can be obtained with both complex rule based classi�ers (e.g. a neural network

with hundreds of nodes [19], and with simple rule classi�ers like linear discriminant anal-

ysis (LDA). [19] states that simple rules should be preferred in the absence of a reliable

error estimator. As this is the case for microarray data classi�cation, a set of simple rule

classi�ers like the linear discriminant analysis classi�er (LDA) or linear Support Vector

Machines SVM has been chosen. The choice is motivated by the rules simplicity, by their

robustness to small training set changes and by the interpretability of the output results
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as linear combinations.

From the performed experiments, it has been observed, coherently with previously gath-

ered results [19, 58, 112], how the adopted simple classi�cation rules allow obtaining results

comparable, or even better, than state of the art alternatives. This without needing any

�ne parameter tuning or complex training schemes. The LDA classi�er has been chosen

as preferred method to compare all the di�erent tested algorithm �avors, in terms of hi-

erarchical clustering algorithm, feature selection algorithm or the multiclass classi�cation

scheme. Even so, once one speci�c alternatives has been selected, implementations with

SVM or KNN has also been considered to evaluate possible bene�ts.

1.3.4 Multiclass classi�cation

Multiclass cancer classi�cation is still a challenging task in the �eld of machine learning.

A novel multiclass approach has been developed as a combination of multiple binary

classi�ers. It is an example of Error Correcting Output Codes algorithms, applying data

transmission coding techniques to improve the classi�cation as a combination of binary

classi�ers. ECOC codes showed interesting properties but su�er of some issues which do

not allow a remarkable prediction ability improvement. The proposed method combines

the One Against All, OAA, approach with a set of classi�ers separating each class-pair

from the rest, called Pair Against All, PAA. The OAA+PAA approach has been tested on

seven publicly available datasets and compared with the common OAA approach and with

state of the art alternatives. The obtained results showed how the OAA+PAA algorithm

consistently improves the OAA results, unlike other ECOC algorithms presented in the

literature which did not lead to better results than OAA.

1.4 Thesis organization

This thesis work is organized as follows:

• In Chapter 2, a review of the state of the art concerning the studied elements in mi-

croarray classi�cation is presented. A review of di�erent classi�cation approaches, as

well as feature selection techniques or unsupervised learning techniques is presented
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to o�er a panorama of some of the most relevant developed algorithms.

• Chapter 3 presents the studied feature set enhancement algorithms to obtain a

hierarchical structure from the data and to generate new features called metagenes,

from the base Treelets algorithm [78], to all the studied variants.

• Chapter 4, is the core of this thesis and it is dedicated to the binary classi�cation

case. The studied feature selection algorithms are presented, as well as all the

adaptations to the microarray scenario. In Chapter 4, the experiments to compare

all the developed algorithms are presented, as well as the comparison with the state

of the art.

• In Chapter 5, the knowledge integration scheme is introduced to explain how to

integrate the numerical data with a priori known biological information. The pro-

posed integration framework has been compared among its alternatives, with the

state of the art and with the original Treelets implementation from Chapter 3.

• In Chapter 6, the developed algorithm for the multiclass classi�cation case is pre-

sented and compared with baseline algorithms and with state of the art alternatives.

• Chapter 7 includes the conclusions for this thesis work and future research directions.
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Chapter 2

State of the art

Through the last years, many methods tackled the high-throughput biological data clas-

si�cation problem with di�erent angles, addressing the most relevant issues to produce an

e�cient classi�er which conjugates high prediction performance with robustness to over-

�tting and with an interpretable biological meaning. In this thesis, the classi�cation task

is addressed by implementing a system composed of three main parts: the hierarchical

data representation, the feature selection and the classi�cation rule. The state of the art

about the three main parts of this thesis work is summarized here to o�er a panoramic

view of the available techniques, with their strengths and limitations.

2.1 Hierarchical data representation

Microarrays do not have a known data structure that can be used to implement e�cient

�ltering techniques for noise reduction. They provide unordered data which are consid-

erably hard to read and interpret, due to the enormous amount of available variables.

A large number of algorithms have been developed to make order from the unstructured

gene expression data without using any previous information about the samples categories

and are called unsupervised learning algorithms.
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2.1.1 Unsupervised learning

Unsupervised learning refers to the problem of trying to �nd a hidden structure in unla-

beled data. In the proposed framework, unsupervised learning techniques are implemented

to �nd a hierarchical structure for the gene expression data and to generate a new set

of features called metagenes. Unsupervised learning encompasses many techniques that

seek to summarize and to explain key features from the data. Approaches to unsupervised

learning include clustering algorithms (e.g. k-means, mixture models, hierarchical clus-

tering) or blind signal separation using feature extraction techniques for dimensionality

reduction (e.g. Principal component analysis, Independent component analysis, Non-

negative matrix factorization, Singular value decomposition), for a detailed survey about

these and more techniques refer to [38, 58, 93].

The goal of clustering is, roughly said, to assign a set of objects into groups called clus-

ters so that objects in the same cluster are more similar to each other than to those in other

clusters. Clustering algorithms di�erentiate themselves in the adopted similarity metric,

which de�nes when two object are close to each other, and in the procedure to de�ne

the cluster number and their composition (i.e. the actual clustering algorithm). Popular

clustering algorithms applied in microarray analysis are hierarchical clustering[42], k-

means[85], partitioning around medioids (PAM)[120], self-organizing maps (SOM)[70], or

bi-clustering methods [91]. A detailed explanation of these algorithms can be found in [38]

and information about their utilization in microarray analysis is presented in [99, 63, 93].

Among the most popular clustering algorithms, the closest to this thesis objective is

hierarchical clustering. It has been the �rst algorithm to be used in microarray research

to group genes [42]. It is an iterative process in which, at �rst, each object is assigned

to its own cluster, then, the two most similar clusters are joined, representing a new

node of the clustering tree. This process is repeated until only a single cluster remains,

including all the data. Variants to this algorithm exist, among which the simple process

inversion is called top-down hierarchical clustering: the process starts from one cluster

only, which is iteratively split into two clusters until one cluster for each feature is obtained.

Hierarchical clustering outputs a tree of nested clusters. Each node in the tree represents

a group of similar genes (i.e. the group composition depends on the chosen similarity
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metric). Taking advantage from the tree resulting from hierarchical clustering, Lee's

work in [78] presents a multi-resolution representation and eigen-analysis of the original

data through an iterative pairwise hierarchical clustering algorithm called Treelets. This

method produces a tree in which, at each level, the two most similar features are chosen

and replaced by a coarse-grained approximation feature and a residual detail feature.

This characteristic from Treelets will be used in the metagene creation process because it

allows a local representation of common behavior of a gene cluster and more details are

provided in Section 3.1.

2.1.2 Knowledge integration for clustering

A relevant theme addressed in this thesis within the hierarchical data representation and

metagene generation, is the opportunity to include prior biological knowledge to drive the

hierarchical clustering process. A relevant issue with high-throughput biological data is

how to extract reliable knowledge from the vast amount of available data [3]. A whole set of

analysis tools have been developed to help the interpretation task and to infer relationships

between the gene signatures and biological knowledge databases [115, 82, 27, 67, 30].

Including and integrating prior biological knowledge has gained importance in the

omics data analysis �eld throughout the years [3, 30]. Knowledge databases have been

used in many directions, for example, to identify biologically relevant activated pathways

by integrating Gene Ontology (GO) in the analysis process [105], or to integrate a gene

ranking tool in the analysis [127]. Moreover, biological knowledge is also used in tools like

Hanalyzer [77] to identify gene-to-gene relationships and facilitate the data interpretation.

Knowledge integration for microarray classi�cation has been recently applied in mod-

i�cations of classi�cation methods like Nearest shrunken centroids [122] and Penalized

partial least squares (PPLS) [133] called mPAM and mPLS, respectively [117]. Both

methods implicitly contain a mechanism for selecting genes based on a penalty applied

according to the discriminatory power of the gene. In [134, 98, 49] too, the biological

information has been used to improve the gene-ranking and the �ltering feature selection,

increasing the classi�cation results interpretability and robustness.

Prior knowledge has already been used to analyze microarray data. In [28] the prior
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information has been used to analyze the patient survival prediction rather than for clas-

si�cation. The prior information in form of gene sets representing metabolic pathways has

been used to summarize functionally related genes in a single variable called supergene by

means of Supervised Principal Component Analysis (SPCA) [29]. In [25] the biological

information is used to extract the common behavior of functionally related groups, gener-

ating supergenes like in [28] to be used for feature selection as substitutes of the original

gene expressions and applied to the microarray classi�cation rather than regression.

A common trait of all these works is that including some prior biological knowledge

led to more interpretable results from a biological viewpoint, easing the scientist's task to

formulate new hypotheses.

In this thesis, the biological information integration has been studied in a more ex-

tensive model than [25] or [77]. The information has been used to generate a whole

hierarchical structure to generate a new set of features that do not substitute the original

gene expressions. Moreover, in this work, the tested algorithms have been compared to

a wide variety of state of the art classi�cation algorithm on multiple publicly available

datasets with a repeatable evaluation procedure recommended in [112].

Two key elements must be considered in including prior biological knowledge in a

clustering process. The �rst on is the knowledge database and the second is how to

determine the concept of biological similarity, so to include it in the actual clustering

algorithm.

Concerning the knowledge database, in the last years many online and publicly acces-

sible repositories have been implemented and maintained. Some relevant examples are the

Gene Ontology database, GO [6], which annotates genes by three categories: Biological

Process, Cellular Component, and Molecular Function, the KEGG database [65] which is

a database resource for understanding high-level functions and utilities of the biological

system, the Molecular signature Database [115] or the DAVID knowledge base [60]. The

last two datasets are collections of external knowledge databases, processed and ordered in

a computer friendly form, easier to use for data mining application. For a more complete

and thorough list of knowledge databases and analysis tools, refer to [3, 13].

The biological similarity de�nition for the inclusion in the clustering process reduces
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to �nding an appropriate similarity measure for the biological data, which usually are in

a binary or categorical form. The fundamental issue is then to �nd an appropriate cate-

gorical data similarity measure that considers the characteristics of a knowledge database

like sparsity and incompleteness of the available data. Examples of categorical measures

used to evaluate the similarity in microarrays can be found in [14, 77].

2.2 Feature selection

Feature selection is the process of choosing relevant features from the data set with respect

to the task to be performed. In addition to the main goal of obtaining predictive and

generalizable classi�ers, two additional goals are pursued by feature selection: overcoming

the curse of dimensionality and increasing the interpretability. The former is a concept

introduced in [10] which is related to the relative amount of available training points

and data dimensions. When there are too many dimensions compared to the available

sample points, it is easy to �nd data discriminative patterns which are accidental and not

generalizable, falling into data over�tting. The latter concept is related to making sense

out of the data. A classi�cation rule involving fewer features is easier to interpret and

understand than a classi�er using thousands of genes.

The selection of the best feature subset could be a solved problem if the problem

would not be unfeasible computationally. Optimum subset selection algorithms already

exist [48, 95, 58], which consist in testing every possible feature subset and �nally choosing

the best one in terms of some cost function.

Being this unfeasible, less computationally expensive methods must be considered.

Some of the existing methods are introduced in the following Section using a commonly

adopted taxonomy from - [54, 108], which divides the algorithms in three classes: �lters,

wrappers and embedded. In Section 4.3, methods adopting a di�erent feature selection

strategy are described. They are called Ensemble methods and are introduced since some

of them are used within this thesis.

Filters are de�ned by a preprocessing step completely disconnected from the learning

phase. A representative example are the ranking criteria such as [46, 129, 54], in which

correlation, mutual information or other univariate criteria are used to assign a score to
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each feature. Statistical tests like the Student t-test [38] or the Wilcoxon rank-sum test

[131, 86] are commonly used as �lters for feature selection. Filters methods typically

have a short execution time because they are easy to calculate. The calculation speed

is high because no classi�er needs to be trained in the �ltering phase. The �ltering

operation usually follows a univariate paradigm: the feature score is determined by the

feature values without analyzing possible multivariate interactions. This independent

feature evaluation leads to a feature ranking list, from which the top scoring features are

chosen to train the classi�er. Such univariate paradigm limits the interaction analysis

in the classi�cation phase, precluding a posterior interaction discovery by a multivariate

classi�er. The feature preselection limits the classi�er to use features that usually are

correlated, due to the univariate nature of the �ltering phase selection. Numerous �lter

methods exist in the literature and for more details [75] can be referred as an exhaustive

review.

Wrapper methods include the classi�er results in the selection process. They search

through the possible feature subsets and use the learning algorithm (i.e. the classi�er) to

evaluate the suitability of each candidate [69]. Wrappers have an advantage over �lters,

because they can identify multivariate interactions. However, when dealing with high

dimensional data, this processing can be computationally expensive. Di�erent families of

wrapper algorithms exist, mainly divided into optimal and suboptimal. Optimal methods

like extensive search or branch and bound algorithm are infeasible for microarray data

[47]. The suboptimal family is then divided into deterministic and stochastic methods.

The stochastic group includes evolutionary search algorithms like genetic algorithm [66],

genetic programming [43] or NSGAA II [33]. These algorithms have shown good predic-

tive ability [33] thanks to the mutation possibility of the selected feature subset during the

search process. A typical framework for the search strategy implies evolutionary steps. At

the beginning, many individual solutions are randomly generated to form an initial pop-

ulation and each solution is a feature subset. Each solution is evaluated and, afterwards,

the best part of the population is more likely to be used to breed a new generation. In

the generation process, the solutions can mutate and mix with some de�ned probabilities

[126]. The process mimics the natural selection process, aiming at having a �nal popu-
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lation well �tted for the classi�cation task. This process, for its own nature, is random

and strongly depends on the initial population, which can limit the solution space. That

is why, usually, many parallel runs are needed to obtain a �nal solution. Furthermore,

as noticed in [104], the performance of evolutionary tends to degrade when the feature

number increases.

The deterministic algorithms group includes many commonly used algorithms like the

Sequential Forward Selection (SFS) [130] or Sequential Backward Selection (SBS) [87].

The SFS algorithm starts from an empty set of selected features Y0 = ∅ , and sequentially

adds the feature fx that results in the highest objective functionJ(fx, Yk) when combined

with the features Yk = {f i|i selected before} that have already been selected. In this

way Yk is a set composed of k sequentially selected features. The SBS algorithm is the

opposite of SFS and starts by selecting all the p available features, Y0 = {f 1 . . . fp} and

sequentially removing the worst feature from the subset Yk. The worst feature is the one

whose removal from Yk allows to obtain the highest objective function J(Yk \ fx).

Deterministic search strategies like SFS or SBS always choose the same feature set if

the starting conditions do not change, thus ensuring the result replication in successive

tests. Within this group, algorithms introducing �exibility in the search have led to very

competitive results [112, 39]. Common examples are the Sequential Floating Forward

Selection algorithm (SFFS) [104], which is an evolution of SFS, allowing a backward cor-

rection stage in the search process, or the Improved Sequential Floating Forward Selection

[94] which additionally includes a replacing step. Details about SFFS and IFFS are in-

cluded in Chapter 4, since they are the reference wrapper algorithms adopted for feature

selection.

Finally, embedded methods incorporate feature selection as part of the training phase.

Examples are decision trees [24] or LASSO (Least Absolute Shrinkage and Selection Oper-

ator) [121, 135] or random forests [22, 23, 32]. These feature selection methods are strictly

dependent on the chosen classi�er and are not suited for the aim of this thesis, which is

to propose a more general framework, applicable to more than one classi�er. More details

about embedded methods can be found in [38, 121, 58].
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2.2.1 Ensemble learning for feature selection

In statistics and machine learning, ensemble methods use multiple experts to obtain bet-

ter predictive performance than could be obtained from any of the constituent experts

[103]. Ensemble techniques have been used in the literature to improve the stability and

performance of feature selection and classi�cation results [8, 136, 72]. In this thesis, a

branch of ensemble techniques for classi�cation has been studied to select a proper subset

of classi�ers to merge and produce a global classi�cation outcome for microarray samples.

The idea is to use ensemble learning techniques by merging the prediction of a set

of experts to produce a �nal outcome with improved generalization and precision [72].

The idea behind ensemble learning techniques is that the ensemble prediction ability can

improve the one of the single classi�ers. Many ensemble methods exist and they are

applied in many research �elds, for a review of ensemble methods and their applications

in bioinformatic refer to [72, 97, 36]. To produce expert ensembles the adopted approaches

in the literature can be categorized as follows, from [97]:

• Using di�erent feature subsets for di�erent experts

• Using di�erent sample subsets for the di�erent experts

• Using di�erent types of classi�ers to produce the di�erent experts

• Using di�erent parameters for the same classi�er type

• Any combination of the above methods

The ensemble selection methods studied in this thesis pertain to the �rst category in

the list. A set of expert is produced by applying the same classi�er trained on di�erent

subsets. In Section 4.3, the details about the implemented algorithms are presented. As

a general rule, the key elements in determining the expert selection are a �tness function,

(e.g. training error), and the notion of diversity [73, 72]. Many diversity measures have

been developed to capture how much an expert produces di�erent decisions compared

to another. Examples are the k-measure, yuleQ, PCDM [72]. Depending on the chosen

diversity measure and the its integration with the �tness function, a plethora of ensemble

selection algorithms have been evaluated and reviewed in [72]. Relevant examples are the
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Pareto-optimal search [72], the Convex-Hull search in a properly de�ned search space [72]

or the accuracy in diversity algorithm (AID) [8]. Among these, the AID algorithm will

be detailed in Section 4.3, because it is the base of all the developed ensemble selection

algorithms in this thesis thanks to both its good results in [72], and to its computational

cost which eases the implementation [8].

For a deeper discussion on the other ensemble generation categories, [72, 97] can be

referred, as well as for the description of popular ensemble methods to improve feature

selection stability like bootstrapping [58], boosting [58] and many other variants that have

been developed in the literature.

2.3 Classi�ers

Sample classi�cation assigns a class label to incoming samples following a precise rule.

Such rule is obtained from a learning phase in which the classi�er is trained on known data

with previously assigned labels. The high dimensionality of the feature set of microarrays

is an issue since the vast majority of classi�ers are thought for cases in which the sample

number is greater than the feature dimension. This problem is usually addressed through

a feature selection operation and, sometimes, in developing new classi�ers as adapted

versions for the new scenario. Some standard algorithms have been more commonly

adopted among all the possible techniques [138] and for more detailed surveys refer to

[38, 58, 74]. These techniques include from simpler classi�cation rules like K nearest

neighbor (KNN) or discriminant analysis, to more complex systems like support vector

machines (SVM) or arti�cial neural networks.

Simpler algorithms like KNN assign a class label depending on the classes of the K

closest known samples to the current sample. Usually K is odd and, the classi�cation

boundaries are not robust to small training set variations [19]. KNN has been used

in many works for microarray analysis [34, 112, 101] with some success. Nevertheless,

KNN is a nonlinear classi�er, whose boundaries can change importantly depending on the

training set, making of KNN more sensitive to training set di�erences than other, more

regularized, classi�cation rules. The reduced robustness of KNN in a small sample scenario

like microarrays classi�cation, results in classi�ers harder to replicate, thus making its

21



performances less stable [19, 112].

Another class of classi�ers are discriminant analysis methods, which assume that dif-

ferent classes generate data based on di�erent Gaussian distributions. The most popularly

adopted algorithm among them is the Linear Discriminant Analysis (LDA). Linear dis-

criminant analysis is also known as the Fisher discriminant, named for its inventor, Sir R.

A. Fisher [58]. It is a statistical learning method which �nds the best linear combination

of features to separate two or more classes, under the Gaussian distribution assumption

of the sample classes, moreover it considers that all classes have the same covariance

matrix. [58]. This classi�er usually obtains good predictive results with stable classi�-

cation boundary and reliable performance estimation [112, 19, 15] and for these reasons

has been chosen as a reference classi�er throughout this thesis. Other relevant examples

of discriminant analysis classi�ers are the Quadratic Discriminant Analysis [38], QDA,

which removes the identical covariance matrix assumption and includes quadratic compo-

nents to the classi�er training. It has also been used in microarray classi�cation, [19]. It

produces more �exible classi�ers than LDA at a price of a higher computational cost. An

important mention is also for a whole algorithm family born to overcome LDA limitation

when the sample number is smaller than the classi�er dimension. To do so, regularization,

shrinkage or diagonalization techniques have been applied to evolve the original LDA, and

QDA. Some relevant examples are the regularized LDA introduced in Friedman's work

in [96], or the diagonalized LDA, DLDA, [39, 137], or the Shrinkage-based DLDA [123],

and some application of these methods in the microarray analysis [53, 111]. Further LDA

evolutions are known as generalized discriminant analysis [9] and kernel discriminant anal-

ysis,[81] is a kernelized version of linear discriminant analysis. Using the kernel trick, LDA

is implicitly performed in a new feature space, which allows non-linear mappings to be

learned to produce more complex classi�cation boundaries. Such nonlinear classi�ers can

be very powerful but there is an increased risk of over�tting in a small sample scenario

and it may be particularly tricky to obtain generalizable classi�ers.

Support vector machines classi�er was �rst proposed by Vapnik and Chervonenkis in

[125]. The goal of the algorithm, in case of linearly separable data, is to �nd the hyperplane

which maximizes the shortest distance from a sample point. When data are not linearly
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separable, they might be transformed in a higher dimension space where data can be

separable. SVM techniques encompass a universe of solution depending on the kernel

function used for data transformation. Usually, the more complex the kernel, the more

�exible and sensible is the classi�er boundary. SVMs are commonly applied techniques

and generally obtain good predictive results when linear, polynomial or Gaussian radial

basis functions are used as kernels [58, 19, 112]. The SVM classi�ers are chosen as a very

popular alternative in high-throughput data analysis due to their properties of robustness

to over�tting and good generalization properties [58]. Nevertheless, some of the best

results are obtained when simple kernel are adopted [19], because the training of nonlinear

SVM classi�ers is indeed very susceptible to model parameter choices, which are harder

to setup properly when only few samples are available [125, 109].

Other relevant classi�ers are neural networks, which are a set of connected input/output

units, like neurons in a biological neural network. There are many kinds of neural net-

works and neural networks algorithms, for a detailed introduction refer to [5]. Neural

networks algorithms are usually tolerant to noisy data and obtain very good results on

the training set when many samples are available. Drawbacks when using this kind of

classi�ers are the high number of parameters that need to be determined (typically empir-

ically) [138], the long learning time and the possible over�tting due to the high complexity

of the algorithm [19].

Conclusions from classi�er surveys in the context of microarray analysis agree that

better classi�cation accuracy can be obtained with simple and robust methods like LDA

or SVM with simple kernels [138, 19, 58, 112] along with a proper feature selection method.

Training error estimations done with simpler rules are more likely to be maintained in a

validation scenario, with respect to very complex methods estimations [19, 112].

2.4 Multiclass classi�cation

Machine learning techniques have been extensively applied on microarray data for cancer

classi�cation, obtaining interesting prediction performances [112, 16, 138]. Most of the

work in the �eld is focused on the binary classi�cation, considering the multiclass case as

a straightforward generalization. Di�erent studies suggest however that in the multiclass
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case, it is more complicated to obtain good prediction rates, especially when the class

number is high and the class distribution is skewed [80, 114, 119, 128]. Many di�erent

approaches exist to tackle the problem and the majority proposes a combination of binary

classi�ers. In [106] a review is presented and it is explained how, among the plethora of

developed algorithms, the most commonly adopted approaches are two simple algorithms:

the One Against All (OAA) and the One Against One (OAO).

The OAA algorithm is composed of N binary classi�ers, one for each sample class.

Each classi�er tries to separate one class from the rest and the �nal classi�cation is then

performed by predicting using each binary classi�er, and choosing the prediction with

the highest con�dence score. Supposing fi(x) is the con�dence for the ith classi�er in

assigning the samples x to class i, the OAA decision is de�ned by Eq. 2.1

f(x) = argmax
i

(fi(x)) (2.1)

The OAO classi�ers builds N(N − 1) classi�ers, one classi�er to distinguish each pair

of classes i and j. Let fij be the classi�er where class i corresponds to examples and class

j to negative so that fij = −fji. The �nal classi�cation can be de�ned from Eq.2.2.

f(x) = argmax
i

(∑
j

fij(x)

)
(2.2)

More recent works about multiclass classi�cation like [119, 128] introduce more so-

phisticated approaches applying data transmission algorithms for the sample classi�ca-

tion. These algorithms are named Error Correcting Output Codes (ECOC) algorithms,

which adopt a global approach which compares the sample classi�cation using N binary

classi�ers as a transmission of N bit codeword over a noisy channel. Each binary classi�er

is the receiver for one of the N bits of the codeword. The sample class is then assigned

depending on the received bits. With this parallelism, data transmission ideas can be

adopted to improve the "bit error rate". In detail, redundancy and error correcting codes

have been applied for the multiclass scenario.

An ECOC application example is discussed in [119], where recursive Low Density

Parity Check (LDPC) codes have been implemented to code the M sample classes in N-
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bits codewords. The application of LDPC codes for the multiclass classi�cation is due

to their outstanding performances in the data transmission �eld [92], where they can

approximate the Shannon limit. In [118], a recursive way to produce LDPC codes is

studied to apply for the multiclass case. The LDPC codes are used as ECOC approach

for the multiclass case in di�erent scenarios, showing interesting prediction abilities and

highlighting the possibility to improve the classi�cation performances with the adoption

of ECOC approaches.

The common ECOC approach consists in building a code table relating each of the M

sample classes to a N bit codeword to produce a suitable binary matrix (i.e. Hamming

code restrictions or LDPC restrictions). This focus works well for the bit transmission

but it does not take into account the aim of the classi�cation task, which is to distinguish

among elements pertaining to di�erent classes. In the code matrix generation, all the class

partitions are equally suitable, so a binary classi�er separating one class from the rest can

be chosen in the code table generation with the same probability of choosing a classi�er

separating three classes, with scarce biological relation, from the rest. This feature can

lead to very interesting numerical code tables which however does not translate into the

expected error correcting improvements at the time to classify microarray samples [106].

2.5 Discussion

In this state of the art review, the most relevant methods for the key points of the

proposed classi�cation framework have been presented. Spanning from the unsupervised

learning focused on inferring a hierarchical structure and on producing new features, to

the most relevant feature selection techniques, to the applied classi�cation rules and to

the adaptation for the multiclass classi�cation.

Many alternative solutions exist to tackle the classi�cation problem in microarrays

and it has been chosen to take top performing elements and to combine them. The aim

is to develop an organic framework which combines several key elements, tailored on the

microarray data characteristics to obtain good predictive classi�ers with generalization

ability.

For example, it has been chosen to study and implement the feature selection either
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with a wrapper algorithm or with an ensemble selection technique. Both these alter-

natives have greater potential than �lter algorithms in �nding multivariate interactions

between features, and greater �exibility than embedded methods in changing the adopted

classi�cation rule and they will both be detailed in Chapter 4.

Regarding the �rst element of the classi�cation framework, the feature set enhance-

ment, it is explained in Chapter 3. The unsupervised learning techniques showed that

they can make order out of the unstructured microarray data and that they can be used

to produce a meaningful structure, reducing the noise of the individual genes. Finally,

the integration of prior biological knowledge has been studied because it has obtained

improved results in several examples in the literature of microarray data analysis.
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Chapter 3

Hierarchical data representation

The hierarchical data structure inference is the �rst step in the presented framework

illustrated by Figure 1-2. The aim of this processing step is to obtain an ordered structure

from the unordered microarray data and from the structure generation process, a new

feature set is extracted and combined with the original gene expression data. As remarked

in Section 1.1, the original data are gene expression measurements which su�er from noise

and are not endowed with a priori known structure. The noise e�ect can be minimized by

inferring a structure from the numerical data. In such case, low-pass �ltering techniques

could be applied to correlated genes clusters.

The newly generated features are denominated metagenes, since they are aggregate

patterns of gene expressions aiming at summarizing the common behavior of similar genes.

The metagene notation has appeared with this de�nition in [61] in the context of the

de�nition of breast cancer predictors. The metagene notion has since then been used to

describe an aggregation of multiple gene expressions related by some closeness (numerical

and/or biological), like for example in [31, 44].

To produce this new set of features, a hierarchical data representation is obtained

through hierarchical clustering. Hierarchical clustering algorithms [93, 58] have been used

for organizing and grouping the dataset variables because they o�er an easily interpretable

description of the data structure, clearly representable with a dendrogram as can be

observed in Figure 3-1.

The only requirements to produce a tree structure are to de�ne an aggregation rule
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Figure 3-1: Example of a dendrogram representing a hierarchical structure for microarray data.

to form the clusters (i.e. the similarity metric) and to specify a generation rule for the

metagene calculation as a combination of the individual genes. In this thesis, the chosen

hierarchical clustering process is a bottom-up, pairwise approach based on Lee's work

in [78], where an adaptive method for multi-scale representation and eigen-analysis of

data called Treelets is presented. Treelets have been used as analysis tool to infer a

hierarchical data structure both to analyze gene expression data [78, 17] and to create

order to unstructured data in other research �elds too [124]. Treelets has proven to be

a powerful method to extract an underlying unknown structure from the data and this

is why several variants of the original method from [78] have been tried in this thesis to

analyze their potential in generating useful metagenes for classi�cation.

The original implementation from [78] has been tested, as well as a set of alternatives

to study possible improvements to the original algorithm. Among the in�nite number of

possibilities, a set of focused modi�cations have been chosen looking at previous results

from [12, 71], and selecting those setups that may lead to better performances and that

have a feasible computational implementation.

In Section 3.1, the original Treelets algorithm is introduced, while in Section 3.2, a

variant adopting Euclidean distance instead of the Pearson correlation in the clustering

process is described. In Section 3.3, a di�erent modi�cation is studied by applying Haar

wavelet transform as the metagene generation process instead of the original Principal
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Component Analysis decomposition. Such a modi�cation simpli�es the generation process

by using constant combination weights to generate the metagene expression.

All the studied modi�cations to the original Treelets algorithm have been tested and

compared, to analyze possible bene�ts for the predictive ability. The experiments setup

and the results are included in Chapter 4.

3.1 Treelets clustering

The �rst studied technique to infer a hierarchical structure from gene expression data is

the original Treelets algorithm, thus it has been chosen to call it Treelets clustering.

The clustering tree is produced in a bottom-up pairwise approach. At each level:

the two most similar features are chosen and replaced by two features, a coarse-grained

approximation feature and a residual detail feature. Taking advantage of this multi-

scale data representation, with Treelets clustering, at each iteration, the two features are

replaced by one feature only, the approximation one, while the residual detail feature is

discarded because it represents what is di�erent between the two merged features. This

new approximation feature is called metagene and it is obtained as a linear combination

of the two joined features. Afterwards, the newly created metagene is used as a feature to

be compared in the next iterations. If the initial condition is a feature set of p individual

genes, the �nal outcome from the feature set enhancement process is a metagene set of

p − 1 metagenes, one for each node in the hierarchical tree. This metagene set is then

added to the initial feature set.

In Figure 3-2, a pseudo code for the hierarchical clustering and the metagene generation

process is detailed. It is a general algorithm, which can be used to describe any of the

implemented algorithm variants. What di�erentiates a clustering algorithm from another

in this framework are either the similarity distance d(fa, f b) or the metagene generation

process g(fa, f b).

The Pearson correlation is the similarity metric used to evaluate pairwise relations

between features in the original Treelets clustering. It is a normalized correlation measure

between two features and it is de�ned as in Eq. 3.1 for generic feature vectors fa and

f b. Each feature vector represents the samples of a speci�c feature, that is a gene or

29



Original feature set G
0
= {g1, . . . , gp}

Active feature set F = G
0

Metagene set M = ∅

For i = 1 : p-1

1. Calculate pairwise similarity metric d(fa, f b) for all features in F

2. Find a,b : d(fa, f b) = max(d(·, ·))

3. New metagene mi = g(fa, f b) generation:

mi = αa fa + αb f b =
∑p

i=1 βi gi;
α ∈ <2 β ∈ <p

Each metagene can be seen either as a combination of its two child features

{fa, f b} or as a linear combination of all the original features gi

4. Add the new metagene to the active feature set

F := F ∪ {mi}

5. Remove the two features fa, f b from the active feature set

F := F\{fa, f b}

6. Join the metagene mi to the metagene set

M :=M ∪ {mi}

end

De�ne the new expanded feature set: F = G
0
∪ M as the union of metagenes and

original gene expression pro�les.

Figure 3-2: General hierarchical clustering algorithm adopted in this thesis.

metagene.

d(fa, f b) =
< fa, f b >

‖fa‖‖f b‖
(3.1)

The Pearson correlation d(fa, f b) ∈ [−1, 1], measures the scalar product between two

features (i.e. numerator in Eq. 3.1), divided by the product of l2 norm of the two involved

features. This criterion measures the pro�le-shape similarity of two features so that it is

30



invariant to a scaling factor: d(fa, f b) = d
(
kfa, f b

)
. The Pearson correlation assumes

value equal to 1 when two features have the exact same pattern, while a correlation value

of −1 implies a perfect pro�le anticorrelation, de�ning the farthest possible point in the

similarity space spanned by the Pearson correlation.

About the metagene generation process with Treelets, the clustering process produces

metagenes taking advantage of the multi-scale representation introduced in [78]. PCA

can be described as a data representation and it is mathematically described as a change

of basis in a vectorial space. It has been demonstrated that PCA can achieve a compact

representation of the analyzed data. In its original formulation, PCA is a global feature

transformation where the new representation is obtained as linear combination of its

child features, but also as a linear combination of all the original components (in the

microarray case it would be a combination of all the thousands of gene expressions). In

Treelets clustering, PCA is instead used locally, inside each clustering step to produce

a local data transformation, thus combining only two features at a time. In detail, for

each node in the tree, a local Principal Component Analysis (PCA) [64] is applied on the

child features. By this process, a hierarchical tree with multi-scale data representation is

obtained. In each iteration, the local PCA calculates a Jacobi rotation on the two features

fa, f b [51] as in Eq. 3.2.

m = fa cos θL + f b sin θL (3.2)

d = fa cos θL − f b sin θL

In Eq. 3.2, θL is the rotation angle which decorrelates the two features fa and f b so that

the two output features m and d will have 0 correlation. The m feature is the coarse-

grained approximation feature in [78] (i.e the �rst principal component) and it is chosen

as metagene in the Treelets clustering. On the other hand the d feature is the residual

detail feature, which is not taken into account for further processing. The fact that the

local PCA can be seen as a Jacobi rotation is visualized in Figure 3-3 in a case of two

very similar features. On the left, the initial two-dimensional space formed by the original

features fa and f b is visualized. On the right hand side, instead, data are visualized in

the coordinate system of the two principal components. As can be seen, in this case, the
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Figure 3-3: Example of how local PCA can be represented as a coordinate system rotation and
how the �rst component well represents two similar features.

�rst principal component (the m feature chosen as metagene) represents well the common

behavior of the two analyzed features.

A note about the linear coe�cients calculated with PCA in the metagene creation

algorithm in Figure 3-2: each metagene can be seen as a linear combination of all the

individual genes, and PCA is an unitary transform so that ‖β‖2 = 1. This l2 norm equal

to 1 states that PCA is an energy conservative transformation and this e�ect translates

into producing metagenes of growing dynamic range as the number of represented genes

grows.

The �nal output of the Treelets clustering is a hierarchical tree with a metagene for

each node. The original feature set is enhanced by the addition of new features able to

summarize the common behavior of gene clusters. This characteristic can reduce the noise

thanks to the low-pass �ltering e�ect from the linear combination of similar features.

3.2 Euclidean clustering

The second metagene creation technique is called Euclidean clustering. It adopts an

iterative process like the one explained in Figure 3-2, but it introduces changes in the

similarity metric d(, ) and in the metagene generation rule g(fa, f b) with respect to the

Treelets clustering technique.

The similarity metric adopted in the Euclidean clustering is the negative Euclidean

distance between features, de�ned in Eq. 3.3. The negative Euclidean distance has a

maximum in zero, when two features are equal. It has been chosen as alternative to the
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Initial feature set of three equal genes

F
0
=
{
f1, f2, f3

}
withf1 = f2 = f3

Two metagenes will be created

1. metagene m1 joining f1 and f2

m1 =
√
1/2f1 +

√
1/2f2

m1scaled = 1/2f1 + 1/2f2

2. metagene m2 joining m1 and f3

m2 =
√

2/3m1 +
√
1/3f3

m2 =
√
1/3f1 +

√
1/3f2 +

√
1/3f3

m2scaled = 1/3f1 + 1/3f2 + 1/3f3

Scaled versions m1scaled and m2scaled the scaled versions are used to de�ne the

similarity with the Euclidean distance because they preserve the components

dynamics. These versions are then used as metagenes, enhancing the original

feature set.

The non scaled versions, m1 and m2, are used to compute the metagene from

the two child features with PCA as they preserve the energy distribution among

the elementary components.

Figure 3-4: Example of metagene creation with Euclidean clustering.

Pearson correlation because the Euclidean distance can measure the point-wise closeness

rather than the pro�le-shape similarity.

d
(
fa, f b

)
= −

∥∥fa − f b
∥∥
2

(3.3)

The Euclidean distance has a di�erent point of view with respect to the correlation mea-

sure adopted in Treelets clustering and might be able to extract similarity related to the

actual gene expressions rather than to their pattern.

The change in the similarity measure implies a modi�cation in the metagene generation

rule g(fa, f b). Due to the PCA transformation, which is energy conservative, a scaling

factor is introduced on the produced metagenes. The obtained metagenes with Treelets

clustering are scaled weighted averages of the genes, with a scale factor greater than 1.
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To properly compare genes expression values (and not their shape as with the Pearson

correlation) with metagenes, the latter must be a pure weighted average of the genes. An

illustrative example of how the metagene creation process is performed with Euclidean

clustering is presented in Figure 3-4. In this �gure, a toy example with an initial feature

set of three equal genes is shown. It can be seen how the metagenes obtained with the

sole PCA transformation are scaled weighted average of the genes, moreover with a scale

factor proportional to the number of genes. This scaling factor is not an issue when the

Pearson correlation is concerned, but it a�ects the Euclidean distance measurement.

To obtain a proper comparison between genes and metagenes, when a metagene mx

is created, two versions of it are used. The �rst one is the same as in the Treelets

case from the PCA transformation, while the second is a scaled version of the former

mxscaled = mx/‖β‖1 The scaled version mxscaled results to be a pure weighted average of

the genes and it is used in the pairwise similarity measurement as metagene. The non

scaled version, instead, is maintained and it is used when a new metagene is built from mx

to preserve the energy distribution among the individual component, as can be observed

in Figure 3-4.

The di�erences in the similarity measure and in the generation rule lead to a di�erent

metagene set with respect to the Treelets clustering. To better visualize the di�erences

between the Treelets clustering and Euclidean clustering, Figure 3-5 is introduced. There,

it can be observed how the dendrograms are quite di�erent even if only 4 initial features

are considered. As expected, in Treelets clustering, the pro�le-shape prevails in de�ning

the merging features, while in Euclidean clustering, the point-wise distance rules the

process. It can be observed how, out of the three metagenes m1 m2 and m3, only m3

has the same pro�le in both the clustering techniques. This is an expected result because

the �nal combination includes only three genes and the energy distribution among the

individual components is determined in the same way by the two algorithms.

3.3 Haar wavelet for clustering

The possibility to change, simplifying, the metagene generation process inside the hierar-

chical clustering process has been evaluated by introducing Haar wavelet decomposition
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Figure 3-5: Example of metagene construction process di�erences between Treelets and Eu-
clidean clustering. The vertical axis represent the gene expression value, while the bullets in the
horizontal axis are the di�erent samples. In the �rst row the original data and the two obtained
clustering trees are shown. In the second and third rows, the created metagenes with Treelets or
Euclidean clustering are represented.
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[55] to de�ne the metagene generation criterion g(·, ·). In the Treelets original version,

each metagene is produced with a local PCA on the two merged features [78]. The stud-

ied alternative proposes to substitute the PCA with a Haar transformation on the two

merged features.

The main di�erence between the two rules is in the linear combination weight assign-

ment. Whether with PCA, the linear weights can be anything constrained to ‖α‖2 = 1,

being α the two dimensional coe�cient vector, with the Haar wavelet transformation, the

weights are �xed and equal to
√
2/2. Such weighting di�erence eases the structure infor-

mation storage and retrieval, because the only needed information is the merging order,

without caring about the coe�cient values. A side e�ect of the Haar basis transform is

the generation of a completely di�erent metagene set.

3.4 Discussion

In this Chapter, techniques to infer a hierarchical structure from microarray data have

been described. The produced output are binary trees associating genes in di�erent orders

and producing di�erent sets of metagenes.

This processing step is done to obtain new features more able to summarize the be-

havior of related genes. To evaluate if this metagene generation process is useful and

to decide which of the proposed alternative algorithms is the best, the inclusion of the

metagenes in a classi�cation framework must be done.

In the following Chapter, the proposed microarray classi�cation framework is intro-

duced with all the needed details to adapt the process to the microarray data character-

istics.Moreover, all the metagene generation algorithms have been uniformly compared

among them and with relevant state of the art alternatives. The results are measured in

terms of predictive ability and robustness.
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Chapter 4

Feature selection for binary

classi�cation

In Chapter 3, the metagene generation process has been used to enrich the gene expres-

sions with a whole new set of features called metagenes. Metagenes can improve the

classi�cation ability since they expand the available feature space and because they can

extract common traits of gene clusters, �ltering out the residual noise. After the feature

set enrichment, the main problem is to deal with the high dimensionality of the feature

set, choosing an appropriate subset for classi�cation. This task is even more compelling

due to the increased sample scarcity condition since the total feature number has almost

doubled. The feature selection task is needed to overcome the curse of dimensionality [10]

by selecting a small amount of relevant features or, at least, by excluding a vast majority

of irrelevant features, thereby improving generalization properties and the interpretability

of the output prediction model.

The objective of this chapter is to present the studied classi�cation frameworks for

microarray classi�cation and to compare them with the state of the art. As a general

overview, to produce a �nal prediction model for new samples it has been chosen to use

two fundamental building blocks: the metagene generation step and a subsequent feature

selection stage, whose output is a prediction model for classi�cation. The metagene gen-

eration process has been covered in Chapter 3, while in this chapter the two developed

feature selection approaches are detailed in Sections 4.1 and 4.3. The �rst one aims at
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developing and tuning a wrapper feature selection algorithm allowing mutation of previ-

ous choices, good stability and good scalability deriving from a deterministic approach.

Several alternatives have been studied by introducing speci�c elements in the search pro-

cess to deal with the small-sample scenario in microarray datasets. The second studied

feature selection strategy is described in Section 4.3 and it consists in applying ensemble

feature selection techniques for the speci�c case of microarray data.

In both cases, wrapper and ensemble feature selection, the opportunity to include

metagenes in the selection process is evaluated, as well as a comparison among the di�erent

studied alternatives and with state of the art techniques is performed.

4.1 Wrapper feature selection

Wrapper feature selection has been chosen because of its �exibility in choosing features

considering also multivariate relationships among them [46, 58]. Among the plethora of

existing methods, we focus on evolutions of the sequential forward selection method, SFS,

[130] because they add �exibility in the search process and in particular one algorithm

has been implemented

• Improved Sequential Floating Forward Selection (IFFS) [94]: it is a se-

quential algorithm that allows backtracking after each sequential step to identify

a better subset: after adding a feature to the subset, the algorithm looks for the

possible bene�ts of eliminating one or more features. Furthermore, it introduces a

replacing stage in case that backtracking does not improve the classi�cation perfor-

mance. The price to pay is a sensible increase of execution time in the replacing

phase that does not grow linearly with the feature subset dimension. In Figure 4-1,

the �owchart for the IFFS algorithm is presented.

4.1.1 The IFFS algorithm

The IFFS algorithm starts with an empty set and ends the search when a threshold value θ

is reached. This threshold value is reached either because the selected number of features

is equal to the desired maximum or because the algorithm is in a loop and has overcome
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Figure 4-1: The IFFS framework with the three phases of addition, backtracking and replacing.

the maximum allowed iteration number. In the initialization block, the system simply sets

to zero the cardinality of the feature set and begins a new search. After the initialization,

IFFS selection process enters in a loop of tasks:

1. Add Phase. The algorithm looks for the best feature to add to the current feature set.

It tests all the features that have not yet been selected one by one. The test implies

the expansion of a current feature set with a new feature, then a classi�er is trained

and the corresponding classi�cation score J(·) is calculated. After a comprehensive

test of all the candidate features, the one obtaining the best J(·) score is included

to the current feature set.

2. Backtracking phase. This is the block that di�erentiates IFFS from the greedy

forward selection algorithm [104]. In this phase, the algorithm does a backtracking of

its decisions and allows eliminating one of the already selected features. As a result,

the feature subset has more evolutionary possibilities. In this step, one backtracking

iteration is performed: it evaluates the potential bene�ts of removing one feature

from the current subset. To this end, one feature is removed and the classi�cation

performances are then evaluated. This block identi�es the weakest feature in the
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subset (i.e. the feature whose elimination implies the minimum performance loss, or

the maximum performance gain) and decides whether eliminating it or not. If the

elimination implies no performance improvement, the algorithm keeps the feature in

the current subset and goes to the Add phase again. Otherwise, if the classi�cation

gets better by eliminating the feature, the weak feature is removed from the subset

and the algorithm starts a new Backtracking phase to evaluate if more than one

feature can be eliminated.

3. Replacing Phase. Here, the algorithm looks for possible improvements by substitut-

ing one of the selected features. One feature at a time is removed from the current

set and then, the best substitute among all the remaining features is found analyz-

ing all features one at a time like in the Add phase. All the substitutions are ranked

and, if the best substitution is useful (i.e. the score J(·) value with the substitution

is better than without), the current set is updated and the algorithm then goes back

to a Backtracking phase. If the replacing has not found any positive substitution,

the subset remains unchanged and the algorithm goes to the Add phase.

In this thesis we chose to systematically adopt IFFS as wrapper feature selection

method because it consistently obtained better results in feature selection when compared

to simpler wrapper alternatives like the Sequential Floating Forward Selection, SFFS [104],

algorithm, as found in[94, 17]. Nevertheless, algorithms like SFFS [104] could be easily

applied to perform a much less computationally demanding feature selection than IFFS,

but without guaranteeing to reach the predictive accuracy of IFFS [94, 17].

4.1.2 Fitness measure de�nition and feature ranking criteria

Once chosen the wrapper algorithm, its application to microarray data must consider

the data characteristics and introduce elements to ensure that the feature selection is

properly done. The main data characteristic to consider is the small-sample and high

feature number present in microarrays which limits the number of features to be chosen

and that introduces concerns about the measure which should be adopted as �tness J(·)

in the search process. To adapt the feature selection process to microarrays, some novelty

elements have been introduced in the de�nition of the �tness measure: J(·) score, which
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measures the prediction ability of any proposed classi�er. In wrappers, the classi�er is

iteratively applied throughout the selection process. The reference classi�er in this thesis

is the Linear Discriminant Analysis (LDA), due to its good properties [19, 112]. During

the feature selection, then, LDA is applied multiple times and, in every case, a J(·) score

is extracted from the classi�cation results.

The most common way to measure the J(·) value in the literature is to use a classi�ca-

tion error rate estimation. When sample scarcity is not a problem, usually the error rate

is estimated on thousands of samples and a reliable (repeatable) evaluation is obtained.

In the current microarray classi�cation scenario, no such sample abundance is available,

so di�erent error estimation techniques have been developed [58, 19]. Among the possible

alternatives, the strati�ed cross validation estimator has been used during the training

phase. The cross validation estimation implies iterating several times the same process:

1. Divide the dataset in two parts, a training set usually composed of the majority of

the available samples, and an internal test set.

2. Train the classi�er on the training set.

3. Apply the obtained classi�er to predict the internal test set.

4. Extract the results.

After iterating the process N times, the global results are obtained as the mean of the

individual iteration outcomes. A common example is the 10-Fold cross validation, a 10

iterations process in which, for each iteration, the internal validation set is composed of

the 10% of the available samples, while the training set is the remaining 90%. The cross-

validation is an unbiased estimator of the error rate, but, in case of sample scarcity, it

can show high estimation variance [19]. In order to obtain more robust error estimations,

repeated runs of cross validation are performed, and the dataset partition is obtained in a

random but strati�ed way. The strati�ed word means that the partition tries to maintain

the same class distribution between the training set and the internal validation set.

Due to the microarray data characteristic involving few samples and many dimensions,

a J(·) criterion based only on the error rate may not be enough in ranking features.

Indeed, it is common to have a group of features with the same error rate, from which
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only one feature must be selected. Furthermore, slight error di�erences can derive from

an unfortunate data partition in the cross validation phase. For example, if a speci�c

sample is included in the validation set in more iterations than another, it gains more

weight in the error rate calculation. In this way, an apparently higher error rate might

not re�ect the actual prediction performance.

The reliability parameter

To overcome the error rate limitation as a �tness estimator in a small sample scenario,

an additional value is introduced in this thesis to de�ne the J(·) score: the reliability. It

takes into account that a feature obtaining well separated classes is better than a feature

in which the two classes are separated only by a very thin margin. It does so by trying to

include the univariate t-tests concept (i.e. give more importance to features having large

mean class separation and small intra class variance) to a multivariate scenario.

The reliability parameter r quanti�es the estimation goodness as a weighted sum of

sample distances from the classi�cation boundary. It is calculated on the test set samples

and the �nal value is the mean through the cross validation iterations. The reliability is

calculated inside a cross-validation iteration for a two-class problem. It is de�ned in Eq.

(4.1), where ntest is the test set dimension, cl is the class of sample l (it can be 1 or 2), and

p(cl) is the probability of class cl in the test set. The value dl is the Euclidean distance

of sample l from the classi�er boundary with positive sign in case of correct classi�cation

or negative sign otherwise.

r =
1

ntest · σ̂d

ntest∑
l=1

dl
p(cl)

(4.1)

Finally, σ̂d =
√

σ̂1
n1

+ σ̂2
n2
, is an estimation of intra class variance of the sample distances

from the classi�cation boundary. In order to get a more complete estimation, the intra-

class variance is estimated using all the samples from both the training and the test sets;

n1 and n2 are the number of samples in class 1 and 2 respectively. The σ̂d de�nition

recalls the independent two-sample t-test denominator with classes of di�erent size and

variance, as it is the most general case for a two-class problem. In detail σ̂1 and σ̂2 are

the estimated variances of sample distance from boundary for all samples of class 1 and
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2 respectively. Dividing by σ̂d guarantees that r is invariant to a scaling factor, thus

obtaining the same value for metagenes that are perfect scale replicas of genes. Dividing

by p(cl) assigns to each class the same relative weight and it is useful when the test set

distribution is highly skewed. Reliability value, r ∈ [−∞∞], is positively in�uenced by

large mean class separation in the perpendicular direction to the classi�er boundary, and

by small intra class data variance. It is penalized by a factor proportional to error value

so that greater errors produce greater penalties, allowing discrimination among features

with equal error rates as visualized in Figure 4-2 where two classi�ers with equal error

rate are compared: in both cases the error rate is 0 but, in the left part, classes are well

separated from the boundary in two close clusters while in the right side of Figure 4-2,

the two classes are very close to each other with many samples almost over the boundary.

Reliability= 8.3523 Realiability = 4,3921

Figure 4-2: Example of how the reliability parameter can discriminate between two classi�ers
with equal error rate. In both cases the error rate is 0 but, in the left part, classes are well
separated, while in the right part, the classes are very close to each other.

J(·) score calculation

The �nal J(·) value is determined by both the error rate and the reliability value along

the cross validation iterations. A classi�er is ranked to be better than another if its score

is higher. The score de�nition is a key point for the feature selection operation to perform

the best selection.

The �rst studied scoring scheme is introduced in [16] and it is a two-step ranking

process. Features are �rstly sorted by increasing error rate value, thereafter, reliability
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is taken into account to discriminate among features sharing the same error rate. This

criterion produces a lexicographic sorting of the features, in which the reliability parameter

has a secondary role. Applying this ranking rule to the analysis of small, publicly available

microarray datasets has produced interesting results [16], reducing the number of needed

features to get a 0 estimated error rate with respect to state of the art alternatives.

Nevertheless, the lexicographic sorting is by nature a rigid scheme. The derived bene�ts

by the introduction of the reliability parameter can fade when the test set cardinality

grows (either because the dataset has a fair number of samples or because more cross

validation iterations are implied). In such a case, the probability to use the reliability

information is reduced since it is harder to get features with the same error rate. This

hypersensitivity of the lexicographic sorting to small error rate di�erences has showed to

be a drawback when analyzing microarray datasets with higher number of samples, like

those in the Microarray quality control study phase II (MAQC) [112].

To overcome that limitation and to make better use of the reliability information, two

additional scoring rules have been designed. Both of them unify in a scalar value the two

sources of information. The proposed score de�nition rules are in�uenced both by error

rate and reliability, allowing a feature with higher reliability and slightly higher error rate

to be considered better than another with poor reliability but with a smaller error rate.

This �exibility is useful for small sample datasets like microarrays. It takes into account

the seen data distribution from the classi�er point of view, thus giving a higher score to

features showing high mean class separation and small intra-class variation. The �rst of

the two new scoring rules compares features in terms of the reliability value, properly

penalized depending on the estimated error rate. The aim of this penalization is to

introduce a �xed penalization factor to the reliability value for a constant error di�erence.

Such a behavior can be obtained introducing an exponential penalization to the reliability

value. For each feature, the J(e, r) score is obtained as in Eq. 4.2, where r is the reliability

value, e is the error rate value, and δ is a penalization parameter.

J = r · exp
(
−sign(r) · 100

δ
· e
)

(4.2)

J(e, r) is a product of the reliability value with a penalization coe�cient ≤ 1 and exponen-
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tial behavior depending on the error rate value. The −sign(r) factor in the exponent has

been included to highly penalize features with negative reliability, while the δ parameter

de�nes the steepness of the penalization. The δ value de�nes the e−1 penalization interval:

between two features with equal reliability value, a δ% di�erence in the error rate induces

a e−1 penalization in the �nal score. So, when δ is small, the dominant parameter is the

error rate (an extreme case is when δ → 0 the reliability has no in�uence at all), while

when δ is large the dominant parameter becomes the reliability (when δ → ∞ the error

rate is not taken into account).

The second scoring rule is a linear combination of error rate and normalized reliability.

The linear combination score is de�ned by Eq. 4.3. It is a weighted sum of error rate e

and normalized reliability value rn = (r −min(r))/max(r). The δ parameter is bounded

between 0 and 1 and it de�nes the relative weight of reliability with respect to the error

rate.

J = δ · rn + (1− δ) · (1− e) δ ∈ [0, 1] (4.3)

This simple scoring rule allows a more �exible comparison of reliability values among

features with di�erent error rates. It shows a linear trend both in the error rate and in the

reliability direction. The main change with respect to the former exponential penalization

scoring is that, here, a constant penalization is added (not multiplied) to a constant error

rate increase. Figure 4-3 illustrates the three score functions. It shows the score value

assigned to points in the Error-Reliability space for the exponential combination, the

linear combination and the lexicographic sorting case of [16].

From Figure 4-3 it can be observed how in the exponential combination case, the

score has an exponential decrease along the Error dimension, while it has a linear trend

in the Reliability dimension. For the linear combination case, the scores lie onto a rotated

plane in the space with the rotation axis passing through the (0, 1) and (1, 0) points. It

shows linear trends in both dimensions (Error and Reliability) with slopes equal to 1− δ

and δ respectively. The lexicographic scoring is here visualized in a very coarse scenario

in which only 10 di�erent error values are allowed (imagine a test set composed of 10

samples only) in order to visualize its behavior. It is a stairway-like surface showing how

the main dimension is the Error value. Only if two features share the same error value the
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Figure 4-3: Score surfaces in the error-reliability space depending on the three scoring rules.

reliability is taken into account (linear trend in the reliability direction), otherwise the

score of a feature with smaller error rate is higher, regardless of the reliability value. From

Figure 4-3 it can be observed how both the scoring rules combining reliability and error

rate radically change the score surface. From a stairway-like surface (with discontinuities

among error rate values), the score surface is transformed to a continuous surface in which

the reliability values have more decisional power. This change is more important in a case

with many test samples, because in such a scenario, the lexicographic scoring would be like

a stairway with many small steps, thus making the reliability parameter almost useless.

Furthermore it would be extremely sensible to small error rate changes while the new

scoring methods are able to mix error rate and reliability in a more �exible form.

As can be observed, the de�nitions of exponential combination and of linear combina-

tion in Eq. 4.2 and Eq. 4.3 depend both on a parameter (i.e. δ) that must be previously

chosen. This parameter dependence implies an optimization study to choose the best δ

value for classi�cation. Thus, both the linear combination and the exponential penal-

ization rules de�ne a whole set of alternatives. It will be shown in Section 4.2 how the

predictive ability also depends on the chosen parameter value too.
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4.2 Experimental results for wrapper feature selection

In this section, the classi�cation framework adopting the wrapper feature selection process

is evaluated to determine the best setup considering all the introduced elements. The

evaluation purpose is multiple: on one side, the usefulness of introducing the hierarchical

structure and the metagenes is assessed and, on the other side, an evaluation protocol

is de�ned to �nd the best setup in terms of clustering distance f(·, ·) (i.e. to compare

between Treelets and Euclidean clustering from Chapter 3) and �tness measure (i.e.

ranking score rules from 4.1.2).

The evaluation is performed by applying all the algorithms to analyze a data cohort of

publicly available data from MAQC study [112] and are compared by means of predictive

ability. Once the best alternative is chosen by de�ning the clustering type, Treelets or

Euclidean, and the ranking score rule, among lexicographic sorting, linear combination

or exponential penalization, additional studies are performed to assess the statistical

robustness of the obtained results with Monte Carlo simulations and analyses on synthetic

datasets.

In 4.2.3 and 4.2.4, di�erent sources of variation are studied and the top performing

algorithm is compared to alternatives changing the metagene generation rule g(·, ·) or

the wrapper classi�er. In 4.2.3, Haar wavelet is used instead of PCA to generate the

metagenes, while in 4.2.4, linear SVM is chosen as classi�er rather than LDA. In both

cases, results on publicly available data are compared to their corespondent applying PCA

with LDA classi�er, chosen from the analysis in 4.2.2.

4.2.1 Dataset cohort

The analyzed data are a set of high quality datasets, provided by the Micro Array Quality

Control study phase II as a common ground to test classi�cation algorithms [112]. The

analyzed data are a subset of the provided datasets by the MAQC II consortium: six

datasets containing 13 preclinical and clinical endpoints coded A through M; for more

information refer to [112]. Each endpoint corresponds to a di�erent sample classi�cation

so that the same dataset can be classi�ed following di�erent criteria (e.g. treatment,

outcome, sex, random, etc.). Four out of six datasets have been used, corresponding to
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endpoints A,C to I endpoints of [112], available at http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE16716. A detailed explanation of the endpoint composition is

included in Table 4.1. These data have been chosen because they are highly reliable,

selected after a quality control process in order to provide a common test ground and

because for each endpoint both a training set and an independent validation set are

provided [112]. Furthermore, many di�erent laboratories have tested their algorithm

on the same datasets with the same evaluation protocol (i.e. train the classi�ers on the

training set with performance assessment on the validation dataset) and published their

�nal outcome [112, 100, 83] thus an accurate benchmark can be performed to understand

how well does a proposed algorithm perform with respect to a large number of state of

the art alternatives. Results are compared in terms of Matthews Correlation Coe�cient

(MCC) [89] since, as stated in [112] it is informative when the distribution of the two

classes is highly skewed, it is simple to calculate and available for all models with which

the proposed method has been compared to. It is de�ned by:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.4)

where TP is the number of the true positives identi�ed by the classi�er, TN are the true

negatives, FP are the false positives and FN are the false negatives. With true positive

it is meant a sample categorized as positive, P, in Table 4.1 and correctly classi�ed

as positive by the classi�er. The remaining values of TN, FP and FN are consequently

de�ned. The MCC can assume values from 1 (perfect classi�cation) to −1 (perfect inverse

classi�cation).

4.2.2 Clustering distance & scoring measure comparison

The aim of this section is to assess the usefulness of the metagenes, comparing the predic-

tive results of classi�ers built with features obtained with Treelets clustering, Euclidean

clustering and without adding any metagenes. In all cases, the IFFS algorithm introduced

in Section 4.1.1 has been consistently adopted. Meanwhile, the three scoring systems for

IFFS feature selection presented in Section 4.1.2, (lexicographic sorting, exponential

penalization and linear combination), are evaluated too in parallel analyses.

The experimental setup is a sequence of four main steps: data preprocessing, metagene
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Table 4.1: Microarray datasets used for classi�cation.

Training set Validation set

Dataset Endpoint description
Microarray

platform
Samples P N Samples P N

Hamner
Lung tumorigen
vs. non tumori-
gen

A
A�ymetrix
Mouse 430.2.0

70 26 44 88 28 60

NIEHS
Liver toxicant
vs. non toxicant

C
A�ymetrix
Rat 230.2.0

214 79 135 204 78 126

Breast
cancer

Pre opera-
tive treatment
response

D
A�ymetrix
Human
U133A

130 33 97 100 15 85

Estrogen recep-
tor statur

E 130 80 50 100 61 39

Multiple
Myeloma

Overall sur-
vival milestone
outcome

F
A�ymetrix
Human
U133Plus 2.0

340 51 289 214 27 187

Event-free sur-
vival milestone
outcome

G 340 84 256 214 34 180

Sex of the pa-
tient

H 340 194 146 214 140 74

Negative con-
trol, random
assignation

I 340 200 140 214 122 92

creation, full-data analysis with some chosen δ values when the scoring depends on a

parameter and a �nal performance assessment in terms of MCC and predictive accuracy,

comparing the obtained results with state of the art alternatives.

The data preprocessing step for all the datasets, (except the Hamner), consists in

setting the minimum value to log210 in order to avoid considering small valued probe

sets followed by a log2(·) transformation and a mean removal operation along the samples

direction (i.e. each feature is set to have zero mean) as it is a common practice in mi-

croarray analysis. The Hamner dataset, instead, needs to be normalized at �rst because

an important batch e�ect has shown to worsen the performance of the validation analysis

( [112] supplementary material). For this reason, data are �rstly normalized using ro-

bust multi-array normalization (RMA) procedure on the whole data space, training and

validation sets. Subsequently they are processed exactly like the other datasets.

The metagene creation phase is performed as explained in Chapter 3 applying Treelets

clustering, the Euclidean clustering or without applying any clustering to assess the meta-

genes usefulness for classi�cation.
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In the following step, the predictive performance of the alternatives is measured. As

shown in subsection 4.1.2, both the exponential penalization and the linear combination

depend on a δ parameter, so the algorithm has been tested on multiple δ values, chosen

after a small study on a reduced version of the available data. For the linear combination

rule, a range of δ values between 0.05 and 1 with 0.05 interval has been tested. The best

selected values are [0.05, 0.10, 0.15]. About the exponential combination a range of δ

values from 5 to 100 with 5 interval has been tested, choosing δ = [5, 10, 15] for further

evaluation.

Once the δ values have been chosen, the analysis is performed on the complete datasets

(genes and metagenes) applying the feature selection algorithm to train classi�ers up

to �ve dimensions. In order to have a rigorous validation assessment, validation data

are properly processed by setting the minimum to log2(10), subtracting the gene means

calculated on the training set, and then producing the necessary metagenes using the

coe�cients from the hierarchical tree built on the training set. Results are collected for

each δ and the classi�er obtaining the best MCC value is considered as the measure of

the prediction potential of the method.

Results analysis and assessment

The experimental results following the experimental protocol are presented and discussed

here. In Table 4.2, the mean MCC and accuracy results across the analyzed endpoints

from [112], A C D E F G H I, are showed. Each datXX expression identi�es a di�erent

classi�er developed by a di�erent research group involved in the MAQC study. The datXX

values are those whose results are reported in [112]. As it can be observed, the MCC results

in Figure 4.2 span a range from 0.284 corresponding to dat3, to the 0.490 obtained by

dat24 group, while the accuracy values span from 65.43% of Dat3 to 83.86% of Dat20.

The best alternative is di�erent depending on the chosen measure. This variation is linked

to the class distribution skewness which can lead an algorithm to have a high accuracy

but a very low or null MCC value. This is exactly what happens to Dat20 analyzing

endpoint F: it has 87.38% accuracy while MCC= 0 because it considers all the samples

pertaining to a single class which corresponds to 87.38% of the validation set samples.
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Table 4.2: MAQC mean MCC and mean Accuracy results

Group MCC Accuracy Group MCC Accuracy

dat3 0.284 65.43% dat11 0.453 75.59%

dat33 0.300 66.04% dat36 0.457 79.18%

dat7 0.307 71.04% dat10 0.458 78.39%

dat19 0.384 79.52% dat4 0.468 81.49%

dat29 0.397 81.78% dat12 0.476 82.54%

dat35 0.419 77.69% dat25 0.477 80.81%

dat18 0.428 77.29% dat13 0.488 80.67%

dat32 0.431 78.89% dat24 0.490 81.13%

dat20 0.443 83.86%

The MCC value better evaluates the performances of the scheme, particularly in cases of

uninformative classi�cation. The I endpoint is not considered in the mean calculations

because it is a negative control dataset on which algorithms should produce bad results

because class memberships have been randomly de�ned (see Table 4.1). Results in Table

4.2 are organized by increasing MCC value along each column.

In tables 4.3, 4.4 and 4.5 the results applying the proposed framework on the

datasets from Table 4.1 are presented. Each table includes the results pertaining to a

di�erent scoring rule: the lexicographic sorting, the exponential penalization or the linear

combination.

In Table 4.3, the mean MCC and accuracy values with the lexicographic scoring are

showed. In each column the results corresponding to a di�erent metagene generation

method are reported: Treelets clustering, Euclidean clustering, or None. The None col-

umn corresponds to the results when no metagene has been considered. As for the method

reported in [112], the I endpoint is not considered in the mean calculation due to its ran-

dom nature. As can be seen, the introduction of metagenes allows obtaining higher mean

MCC and accuracy values, thus producing better classi�ers. With the lexicographic sort-

ing the best MCC result is 0.423, with 77.46% accuracy, if Treelets clustering as metagene

generation method is chosen.

Table 4.4 contains the collected values applying the exponential penalization scoring

rule. Results are organized in four columns. The left column speci�es the δ parameter,

while the remaining three columns are organized as in Table 4.3. Changing the scoring

rule leads to remarkably better results than those in Table 4.3. The simultaneous use
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of both the error rate and the reliability allows us to reach better performances. Here

also, results with metagenes are better than without and the best result is obtained when

Treelets clustering is adopted and δ is equal to 10. Finally, the best mean MCC value is

even higher than the best one of Table 4.2 from Dat24. There, the best MCC is 0.490,

while here 0.495 is reached, supporting the proposed framework as an excellent alternative

to state of the art methods. Concerning the accuracy values, with Treelets clustering and

δ = [5, 10], better results than those in Table 4.2 are obtained. The highest accuracy

value is 84.02%, obtained with δ = 5.

In Table 4.5, the results relative to the linear combination score are showed. The

organization is the same as in Table 4.4. In this case too, the metagenes have con�rmed

to be useful for classi�cation because the results obtained with Treelets or Euclidean

clustering are better than without. A comparison with the lexicographic sorting shows

how, generally, the mean results are higher. In this case, the best mean MCC is 0.486

when Euclidean clustering is adopted and the δ parameter is between 0.1 and 0.15, while

the highest accuracy value is 83.60% when δ is set to 10. Observing the results using both

linear combination and exponential penalization rule, the MCC values are quite stable to

small variation of the δ parameter. This is a good property because there is no need to

precisely optimize the alpha value.

To visualize the proposed algorithm performance in comparison with the state of the

art alternatives from [112], Figure 4-4 and 4-5 are introduced. In Figure 4-4, the results

are sorted by increasing mean MCC value and are represented as columns. The MCC

value for each alternative is printed above each column, and below the corresponding

method is indicated. In Figure 4-5, the accuracy values are presented, sorted by in-

creasing values. All the results from Table 4.2 are included and painted as uniform light

gray bars. For space and clarity reasons, not all the results obtained with the proposed

framework are included. A selection of them is proposed representing only the best three

results for the exponential penalization and for the linear combination rule, and the over-

all best result with the lexicographic sorting. The result from the lexicographic sorting

scheme is painted as a black bar and is identi�ed by the Lexicographic label. Results

applying the linear combination scheme are highlighted by a black and white horizontal

52



0.
28
4

0.
30

0

0.
30
7 0.

38
4

0.
39

7

0.
41

9

0.
42

3

0.
42
8

0.
43
1

0.
43

5

0.
44
4

0.
45
3

0.
45

7

0.
45
8

0.
46

8

0.
47

4

0.
47

6

0.
47

6

0.
48

3

0.
48

6

0.
48

6

0.
48

8

0.
49

0

0.
49

5

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
M
ea
n 
M
CC

 V
al
ue

MAQC results Lexicographic Linear combination score Exponential penalization score

Figure 4-4: Mean MCC values comparison between MAQC results and the best alternatives
for the di�erent scoring techniques adopted.
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Figure 4-5: Mean accuracy values comparison between MAQC results and the best alternatives
for the di�erent scoring techniques adopted.

lines pattern. The labels start with lin_xx_E, where _xx is the δ value multiplied by 100

and _E indicates that the Euclidean clustering has been used. The values corresponding

to the exponential penalization scoring rules are coded as dark gray columns. The labels

are coded by exp_xx_T, where _xx is the δ value and _T indicates that the Treelets

clustering has been adopted. As can be observed in Figure 4-4, the proposed framework

obtains results comparable to the best state of the art alternatives when the linear combi-

nation scoring or the exponential penalization rule are used. Furthermore, the exp_10_T

obtains the best overall mean MCC value. From Figure 4-5 it can be observed how

both exp_10_T and exp_5_T obtain better values than the compared state of the art

alternatives. Furthermore, it is shown how the accuracy value too is robust to small δ

variations.
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The mean number of chosen features by all the presented alternatives spans between

2.14 of exp_10_T to 3.43 of lin_10_E. As can be seen, the metagene creation process

has almost doubled the number of features compared to the original number of genes, but

the �nal classi�er actually uses a very low number of features to perform the classi�cation.

Statistical analysis of the top performing algorithm

The proposed framework provides competitive performances with respect to the state of

the art alternatives. To validate this result, a further study has been performed to assess

the robustness of the obtained performance. The study consists in a 50 runs Monte Carlo

analysis of the classi�cation endpoints. This 50 run setup has been proposed to have a

broader range of experiments to assess the performance stability linked to the use of cross

validation as performance estimation method, which is known to have a large variance [21].

In each run, the framework setup is the same as the best alternative: Treelets clustering

as metagene generation method and exponential penalization with δ = 10 as scoring rule

for feature selection.

The results are shown in Figure 4-6 as a boxplot where the gray box represent the

interval between the 25th and the 75th percentiles and the black crosses are values consid-

ered outliers. In Table 4.6 some statistical results are presented. Each column in Figure

4-6 corresponds to a di�erent endpoint, labeled along the x axis. For each column, an

asterisk identi�es the MCC value obtained in the previous study (the values used to ob-

tain the mean MCC value in Figure 4-4), whose values are included in the last column

of Table 4.6 under the label of run 0.

The values are collected in the same way as the run 0 iteration, for each endpoint,

classi�ers have been built up to �ve features and the best one is then considered in the

mean calculation. Results for each endpoint are presented separately to better identify

how the algorithm performance can change depending on the analyzed data.

What can be observed from both Figure 4-6 and Table 4.6 is that the results show a

high robustness in the analysis of most endpoints. The obtained values are tight around

their mean value for the endpoints A,C,D,E,H,G and I. The mean values are very close

to the run 0 results. The mean values in all these endpoints are slightly higher than the
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Figure 4-6: Boxplot of the obtained results along the 50 independent runs. Each column
corresponds to a di�erent endpoint.

run 0 results, except for the G and A endpoints, where the run 0 results are well above

the mean in the upper tail of the MCC distribution. About the F endpoint, it shows a

considerably higher variability in the MCC distribution and this is mainly due to the class

distribution skewness. In this endpoint, the positive class represents about the 15% of the

training set. This eases the choice of uninformative features during the feature selection

phase. The choice of an uninformative feature (a feature classifying all the samples to

one class) biases the feature selection process and can lead to very di�erent results. The

Monte Carlo simulation con�rmed that the predictive power is mainly determined by the

analyzed dataset [112]. About the G endpoint, the Monte Carlo results are quite robust

but inferior to the run 0 result. This lead to think that the formerly obtained MCC

value is due to some fortunate cross validation partition that allowed the selection of

more useful features. Such lucky case is not unique as other runs may obtain even better

values in the 50 run simulation (marked by the crosses outside the box). These results

can be interpreted as �outliers" in the population distribution which underlines how the

cross validation partition can change the �nal results. The MCC and accuracy values for

the remaining endpoints are good and very consistent. This is an important feature of

the proposed framework because it produces robust results. The results stability seems

to be connected with the class distribution skewness which can lead to the choice of
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uninformative features.

To analyze how the class distribution skewness in�uences the prediction performances,

a �nal test with synthetic data has been performed. The experimental process follows

the protocol introduced in [59], limiting the total feature number to 1000 and the Monte

Carlo iterations to 30 due to calculation time reasons. Moreover, a skewness dimension

has been introduced. In [59], the two classes have the same number of samples, while

here three di�erent setups have been tested. Class 1 may represent 50%, 70% or 90%

of all the available samples. For each Monte Carlo iteration, a di�erent dataset is built,

the hierarchical tree is built with Treelets clustering and classi�ers up to 10 features are

trained with the exponential penalization rule and δ = 10. For each iteration, the best

classi�er in terms of MCC is used for the following analysis.

Table 4.7 contains the summary of the study based on synthetic data. Results are

organized in three subtables, one for each data generation model. In [59], three data

generation models have been proposed: Redundant, Synergetic and Marginal, producing

data with di�erent distributions and detailed in [59] while a graphical representation

of the feature distributions in the three models for feature pairs is shown in Figure 4-

7. The general idea of the Redundant case is to divide features in blocks of similar

characteristics with no correlation, the Synergetic model introduces positive covariance

among each feature group introducing multivariate interactions, while Marginal is an

extreme case of synergetic model in which each feature alone is useless. Each subtable

in Table 4.7 presents the results organized by size of the training set because it is an

important variable about the possible over�tting, and organized by skewness, which is the

main variable in this study. For each, skewness-training set size, the mean MCC value, the

standard deviation of the MCC (Std), and the mean feature number (# F) are presented.

The mean is calculated not only along the Monte Carlo iterations, but also along the other

varying parameters. This is done for sake of synthesis and because the focus is on the

skewness. In a complete algorithm assessment, many more results should be presented

taking into account dependencies while varying each one of the possible parameters.

Analyzing the results in Table 4.7, it can be observed how in both the Redundant

and the Synergetic models, the high class skewness has a negative e�ect over the MCC
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Figure 4-7: Graphical illustration of the three synthetic models used to generate features for
feature pairs: Redundant, Synergetic and Marginal models are represented showing the densities
for samples of two classes.

value. When the training set size is not too small, 120 and 180 samples, the MCC

and skewness are inversely proportional along all the studied values. The marginal model

instead presents a di�erent behavior in which the best MCC values are constantly obtained

with the intermediate skewness value and in one case, 180 training samples, the 50% case

is the one obtaining the, slightly, worse performance. It can be stated how the skewness

negatively in�uences the performance when the data have a redundant or synergetic model

distribution, while with data represented by the marginal model, such direct relation does

not hold.

What holds throughout all the results in Table 4.7 is the mean standard deviation

of the MCC values. When the distribution is highly skewed (the 90% case) the standard

deviation is always higher than the other cases, regardless of the mean MCC, whether

it is better or worse. This is similar to what has been observed in the MAQC Monte

Carlo study where the F endpoint results showed a much higher variability than any

other endpoint.

About the mean selected feature number, the values span from 1.83 to 8.17. The best

classi�ers obtained by the proposed algorithm use also a reduced number of features in

the synthetic case. This behavior helps in the training phase since the maximum feature

number can be bounded by values of small magnitude.
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Analysis of the selected features and additional bene�t of the framework

The proposed analysis framework o�ers additional bene�ts other than the prediction

accuracy thanks to the introduction of the hierarchical metagene structure. These bene�ts

can make the use of this framework even more appealing from an analysis and hypothesis

generation point of view. To illustrate them, a more detailed look to the Run 0 results is

provided. Tables 4.3, 4.4 and 4.5, show how using metagenes improves the classi�cation

results. Almost 15% of the chosen features in Run 0 and in the Monte Carlo simulation

are metagenes. These features extract the common behavior of gene clusters, reducing the

noise thanks to the linear combination of individual genes. An example comes from the

E endpoint classi�cation, obtained applying LDA on two features: an individual probe

set, 205225_at, and a metagene merging three probe sets named: 213462_at, 39548_at

and 39549_at. These three probes show high pairwise correlation, higher than 90%, and,

after a gene list analysis with DAVID [60] and GSEA [115], all refer to the neuronal PAS

domain protein 2 (NPAS2). The chosen metagene is a summary of the NPAS2 behavior

by merging three di�erent probes expressing the same biological element.

Furthermore, the metagene structure can be useful for hypothesis formulation to infer

biological relations between probe sets. An example of this potential in Run 0 is the

endpoint C analysis where the chosen metagene is formed by two elements, 13763271_at

and 1379381_at. The �rst one, 13763271_at, corresponds to the tumor necrosis factor

receptor superfamily member 14, (TNFRSF14), while no additional information can be

found about the 1379381_at probe set neither in DAVID nor in GSEA. As a result, this

metagene may suggest that further analysis and experiments on the 1379381_at probe

set in relation with the tumor necrosis factor receptor superfamily could be initiated.

Finally, the proposed framework o�ers a model �exibility to deal with unpredictable

problems during the numerical analysis and feature selection such as the probe set avail-

ability for further validating experiments. A practical case is when one of the chosen

features is not available for a further validation with immunohistochemistry (IHC), due

to the unavailability of the respective antibodies [116]. In that condition, the inferred hi-

erarchical structure o�ers an e�cient way to �nd alternatives to the best proposed model.

Two cases are discussed here:
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1. One of the metagene components is not available for validation;

2. An individual gene is not available for validation.

Both cases are illustrated analyzing the Run 0 results about the E endpoint classi�cation.

The �nal system is a two dimensional classi�er composed of a metagene and the 205225_at

probe set. In the �rst scenario, assume that the metagene cannot be used because one

of its three probe sets is unavailable for validation. In such case, the chosen metagene

could be substituted by any of the available descendants in the hierarchical tree without

loosing too much in terms of the prediction performance: at worst, an error rate of 11%

and an MCC = 0.770 can be obtained instead that an error rate of 9% and MCC = 0.812

(see Figure 4-8). The second scenario is complementary to the �rst one. In this case,

Chosen Metagene 

MCC = 0.812 

Error rate = 9% 

Metagene 

MCC = 0.770 

Error rate = 11% 

213462_at 

MCC = 0.770 

Error rate = 11% 

39548_at 

MCC = 0.770 

Error rate = 11% 

39549_at 

MCC = 0.789 

Error rate = 10% 

Figure 4-8: Hierarchical structure with the chosen metagene as root. In each node, the obtained
MCC value and error rate are showed when the node is used instead of the chosen metagene.
The best values are obtained with the original feature, root node, but the substitution with one
of its descendant does not severely degrade the performances.

assume that the unavailable feature for validation is an individual probe set, 205225_at,

used jointly with the previously chosen metagene. In this case, the hierarchical structure

may be used to �nd the closest available nodes to the originally selected feature. The

obtained results are shown in Figure 4-9. As can be seen, the best results (obtained with

the 205225_at probe set) correspond to MCC = 0.812 and error rate = 9 %. The best

alternative is obtained with the sibling node which is a metagene. It gives a MCC =

0.756 and an error rate = 13%. The sibling node is a metagene composed of �ve probe

sets, 209602_at, 209603_at, 209604_at, 212956_at and 212960_at and obtains better

performance than any of its descendants in the hierarchical structure.
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Parent node 

205225_at

MCC = 0.812

Error rate = 9%

Sibling Metagene

MCC = 0.756

Error rate =13%

Metagene

MCC = 0.7018

Error rate = 15%

Metagene

MCC = 0.7391

Error rate = 13%

Figure 4-9: Substitution results for the 205225_at probe set. In each node the obtained MCC
value and error rate are showed when the node is used instead of the chosen probe set. The
best values are obtained with the original feature, 205225_at and the best substitution is with
the sibling node, Sibling Metagene. The root node has no available values because it cannot be
chosen as a substitute for the 205225_at node.

4.2.3 Metagene generation rule comparison

A side analysis has been performed evaluating the possibility to change, simplifying, the

metagene generation process inside the hierarchical clustering process to substitute the

default metagene generation rule g(·, ·). In the current version, each metagene is produced

with a local PCA on the two merged features [17]. The studied alternative proposes to

substitute the PCA with a Haar wavelet to be applied on the two merged features to

produce a metagene.

The main di�erence between the two rules is in the linear combination weight assign-

ment. With PCA, the linear weights can be anything constrained to ‖α‖2 = 1, being α

the two dimensional coe�cient vector. With the Haar basis transformation, the weights

are �xed and equal to
√
2/2. Such weighting di�erence eases the structure information

storage and retrieval, because the only needed information is the merging order, without

caring about the coe�cient values. A side e�ect of the Haar basis transform is the gen-

eration of a completely di�erent metagene set. To evaluate whether the Haar transform

is a valid alternative, a set of experiments have been performed.

In detail, a Monte Carlo simulation on the MAQC datasets has been performed. The

experimental conditions are exactly the same as the ones used for the results presented in

Section 4.2: a 50 run monte carlo simulation has been performed on the MAQC datasets.

The mean simulation results are reported in Figure 4-10, where the mean MCC results
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Figure 4-10: Mean MCC results comparison between PCA and Haar metagene generation
rules.

applying the original PCA transform are represented by orange columns, while the current

results applying the Haar basis transform are coded by blue bars. In Table 4.8, the same

mean MCC value from the Monte Carlo simulation are reported. It can be observed how

the Haar alternative obtains an overall MCC mean higher than the PCA original version.

Analyzing the results, it can be observed how there is little or no di�erence between

the mean performances applying either Haar or PCA transform in generating a metagene.

The di�erence is relevant in the F endpoint and, strictly speaking, using Haar basis to

produce metagenes, leads to better results in 5 out of 7 datasets. As a general conclusion,

Haar basis decomposition as metagene generation method can be a valid alternative to

the PCA as metagene generation rule since the mean results are slightly better and the

metagene generation process is easier than the original PCA implementation.

4.2.4 Classi�er comparison: LDA and linear SVM

SVMs are very powerful tools for the learning and classi�cation task. They are used in

a very broad spectrum of applications, including the microarray classi�cation with very

simple kernels [125, 58]. Since SVMs are commonly used in machine learning and for

microarray classi�cation [112, 114], they have been considered as a possible alternative to

the reference classi�er, LDA.

The predictive results applying LDA have been compared with new results by changing

LDA for a linear SVM. The reason for choosing linear SVM and not other nonlinear
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Figure 4-11: Mean MCC values on MAQC datasets comparing the LDA classi�er and the
linear SVM implementation.

kernels SVMs like radial basis functions or polynomial kernels [125] is due to the reliability

measure formulation. The reliability has been considered for linear boundary classi�ers

which work in the space covered by the gene expressions. Its behavior when the decision

space is augmented with a kernel is not known or well understood but there is a relevant

probability that it may be biased by the nonlinear components which would reduce the

discriminative e�ect of the current reliability formulation.

The linear SVM classi�er has then been used with the default parameter for the

libsvm implementation [26] because the sample size is too small to e�ectively perform

a parameter estimation through internal cross validation, and because such a parameter

estimation process would imply an enormous increase of the computation time.

The experimental process is the same as in Section 4.2, in which the MAQC datasets

are analyzed with a 50 run Monte Carlo simulation, but for the SVM case, the iteration has

been limited to 10 due to the much longer computation time than LDA implementation

The results in Figure 4-11 correspond to the mean Matthews Correlation Coe�cient

values (MCC) [89]. What can be observed on Figure 4-11 is that the results obtained

with LDA are signi�cantly better than those obtained using linear SVM. In 6 out of 7

datasets the mean MCC value is higher using LDA than using SVM.

Overall, it appears how the choice of LDA instead of SVM with linear kernel is the

good one for the proposed feature selection algorithm. Probably, SVM classi�cation can

be improved with a proper parameter tuning but that would require more samples to be
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e�ective and will surely imply an increase of the computation time (e.g. 10 fold for a 10

fold cross validation tuning).

4.3 Ensemble feature selection

Ensemble learning combines multiple learning algorithms, called experts, to improve the

overall prediction accuracy and have been extensively adopted in the literature [136]. A

plethora of ensemble methods has been developed to analyze biological data and there

exist many alternatives reviewed for example in [136, 72]. They became popular because

they allow to improve the classi�cation by aggregating multiple experts to make decision

over unseen data in a consensus way. In order to e�ectively improve the ensemble perfor-

mances the experts should be accurate, (i.e. better than random), and diverse from each

other [136].

An approach to ensemble learning called overproduce and select is described in [72]

as a method to obtain good ensemble learners. It consists in producing a big set of

experts and then select a subset which will be used for classi�cation via majority voting.

Several criteria of expert selection algorithms are studied in [72] and compared. Among

the considered algorithms, the one called Accuracy in diversity, AID, [8] was able to reach

the best prediction accuracy when compared to several alternatives [72].

In this thesis two versions of the AID algorithm from [8] have been implemented and

studied as reference ensemble algorithm. One is the original AID implementation and

the other is a simpli�ed version from Kuncheva's book [72] and that will be named Kun.

To produce a huge and diverse set of experts, we decided to use the overabundance of

features microarray data. For each one of the available features, a Linear Discriminant

Analysis classi�er, LDA, is built and used as an expert. The available feature set is not

only composed by the genes, but also by metagenes built as explained in Section 3.1 with

the Treelets algorithm.

The microarray characteristics of small sample size and large feature number have been

considered as possible issues for the ensemble search process, therefore novelty elements

have been introduced to adapt the original thinning algorithm to the microarray scenario.

In addition to including metagenes as experts, the notion of nonexperts that represent a
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set of experts excluded from the thinning process due to they poor properties has been

introduced as well as a rule to break ties in the thinning process.

4.3.1 The reference ensemble algorithms

The principles on which the AID algorithm is based are to include the most diverse and

accurate classi�ers by eliminating classi�ers that are most often incorrect on examples

that are misclassi�ed by many experts. A pseudo code for the AID algorithm is shown in

Figure 4-12. It is an iterative process in which, at each iteration, one expert is removed

from the ensemble. At each iteration we consider to have a set of n samples and p experts

[8]. To determine which expert Ei must be removed, some elements are calculated. The

�rst one is an ensemble diversity measure called Percentage Correct Diversity Measure

d [8], which is the percentage of samples which are correctly classi�ed by a percentage

of individual experts between 10 and 90 %. The d measure is then combined with other

parameters, µ and β, de�ned in Figure 4-12 which are used to identify a set of relevant

points Sp for the current iteration. The Sp set is composed of all samples which are

correctly classi�ed by a percentage of experts between the two calculated boundaries.

Finally, the expert Ei to be removed from the ensemble is the one with lowest accuracy

on the Sp set.

The rationale behind this is that the samples in Sp are those on which the ensemble is

most uncertain, thus are those for which the elimination of an expert can be more relevant

because it can change the ensemble majority voting. Therefore, excluding the expert that

more poorly performs on these samples a�ects more positively the ensemble accuracy than

simply excluding the expert with overall lowest accuracy. Since the ensemble changes

throughout the iterations, the d value changes, as well as the boundaries, thus meaning

that the set of relevant samples adapts to the ensemble changing characteristics.

In [8] is stated how the adaptive boundaries to de�ne the Sp set are de�ned by con-

sidering the known relationship between the experts mean accuracy and the ensemble

diversity [72]. On the other side, in [72] it is remarked how the AID algorithm could have

equivalent performances with �xed boundary values, suggesting to use the ones in the cal-

culation of the d measure: 10% and 90%. Since we could not �nd any works comparing
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Table 4.3: Mean results adopting the lexicographic scoring scheme

Lexicographic sorting

Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

0.423 77.46% 0.418 76.18% 0.381 75.48%

Table 4.4: Mean results adopting the exponential penalization scoring scheme

Exponential penalization

δ Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

5 0.475 84.02% 0.457 81.57& 0.442 82.99%

10 0.495 83.95% 0.460 83.61% 0.421 82.66%

15 0.483 83.67% 0.451 83.187% 0.457 83.30%

Table 4.5: Mean results adopting the linear combination scoring scheme.

Linear combination

δ Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

0.05 0.483 83.45% 0.437 81.58% 0.444 81.46%

0.10 0.468 83.31% 0.486 83.60% 0.444 81.46%

0.15 0.469 83.25% 0.486 83.19% 0.444 81.46%

Samples S = s1 . . . sn
Experts E = E1 . . . Ep

while #E > 1
Calculate Sd = {si} : 0.1 ≤ f(si) ≤ 0.9
where f(si) fraction of experts in the ensemble correctly classifying ith sample.
Calculate d = #Sd

n

Lower Bound lb = µ · d+ 1−d
n

Upper Bound Ub = β · d+ µ(1− d)
De�ne the set of relevant samples.
Sp = {si} : lb ≤ f(si) ≤ Ub
Ei = expert with lowest accuracy over the Sp set.
E := E − Ei
Remove Ei from E
end

µ = Mean experts accuracy
β = 0.9

Figure 4-12: Pseudocode for the AID algorithm.
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Table 4.6: Statistical properties of the Monte Carlo simulation.

Endpoint MCC Accuracy Run 0 Run 0

MCC Accuracy

A 0.2176 67.37% 0.2750 65.91%

C 0.7949 90.25% 0.7700 89.22%

D 0.3869 80.49% 0.3690 80.00%

E 0.7732 89.17% 0.7680 89.00%

F 0.1147 86.3% 0.1800 87.85%

G 0.1723 79.57% 0.2430 82.71%

H 0.8609 93.21% 0.8550 92.99%

I 0.0564 55.14% 0.0510 52.68%

the two alternatives, we chose to apply both and keep the one with better performances.

4.3.2 Microarray adaptations for thinning

Considering the microarray data characteristics we propose some key points to obtain a

good ensemble system:

Experts cohort We chose to build thousands of experts de�ning each expert as an

LDA classi�er trained on a di�erent feature. Both genes and metagenes, obtained with

the algorithm from Chapter 3 are considered as individual features since metagenes helped

in �nding better classi�er than with genes only.

Nonexperts We introduce the notion of nonexpert to remove a whole set of �experts"

with poor training characteristics. We decided to exclude from the thinning process all

those experts that classify all the training sample with the same label. Considering that

the expert is unable to distinguish two classes, it is not considered as a useful ensemble

component. The nonexpert number can vary depending on the data type and it increases

when the class distribution is highly skewed. Furthermore, the idea of nonexpert responds

to the microarray data characteristic of feature overabundance: the major part of the

available features is useless for prediction purposes since they are not related to the

classi�ed phenomenon. Thus, we included this simple criterion in the thinning process.

Tie breaking Considering the typical case of small sample number for microarrays and

considering that the Sp sample is smaller or equal to the whole training sample number,
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Table 4.7: Results of the study based on synthetic data. The three subtables correspond to
the three di�erent data distributions. Each subtable is organized showing the values depending
on the skewness value and the di�erent size of the training set. The Train column contains
the size of the training set, the MCC columns shows the mean MCC value across the di�erent
experimental conditions and Monte Carlo iterations while Std and #F columns contain the MCC
standard deviation and the mean number of selected features respectively.

Skewness - Class 1 percentage -

50% 70% 90%
Redundant model

Train MCC Std # F MCC Std # F MCC Std # F

60 0.509 0.120 4.50 0.431 0.140 4.83 0.319 0.193 3.58

120 0.532 0.086 2.58 0.468 0.117 4.67 0.323 0.143 3.50

180 0.545 0.071 2.75 0.492 0.086 3.33 0.346 0.120 7.33

Synergetic model
Train MCC Std # F MCC Std # F MCC Std # F

60 0.343 0.184 4.58 0.315 0.187 2.92 0.325 0.239 1.83

120 0.431 0.133 5.42 0.351 0.143 5.83 0.266 0.221 4.75

180 0.475 0.108 5.50 0.407 0.109 5.92 0.257 0.189 6.50

Marginal model
Train MCC Std # F MCC Std # F MCC Std # F

60 0.509 0.159 6.58 0.555 0.150 3.25 0.490 0.193 2.17

120 0.549 0.148 7.50 0.610 0.135 4.92 0.542 0.211 2.92

180 0.570 0.139 7.75 0.631 0.137 8.17 0.572 0.193 4.00

A C D E F G H AVG
PCA 0.253 0.788 0.291 0.769 0.088 0.155 0.863 0.458
Haar 0.251 0.797 0.337 0.769 0.095 0.156 0.871 0.468

Table 4.8: Mean MCC results from Monte Carlo simulation on MAQC datasets. The two
algorithms di�er from the metagene generation rule, PCA versus Haar basis decomposition.

there is a relevant probability to have ties when comparing experts accuracies. To deal

with this problem and introduce a rule, the metagene generation process is considered.

When ties occur, the excluded expert is the one which has been generated at a higher level

in the hierarchical tree, so that metagenes composed of many children with low similarity

will be eliminated instead of another metagene with more correlated components. Indeed

it is more likely that a metagene with more correlated children will replicate its behavior

than another one merging many di�erent individual genes. Finally, the ties between indi-

vidual genes are randomly resolved since they all are on the same level of the hierarchical

tree.

The usefulness of these three elements is assessed by experiments comparing the com-

plete algorithm with three modi�ed algorithms, each of which does not use one of the
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Table 4.9: MCC results comparing the studied AID and Kun algorithms.

A C D E F G H MEAN

AID 0.293 0.793 0.459 0.789 0.221 0.231 0.813 0.514

Kun 0.407 0.812 0.459 0.789 0.221 0.236 0.828 0.533
Kuntie 0.303 0.804 0.451 0.789 0.221 0.236 0.828 0.519
Kungenes 0.346 0.781 0.366 0.773 � 0.313 0.817 0.485
Kunall � 0.792 � 0.789 � � 0.031 0.230

proposed key elements.

4.3.3 Ensemble algorithms comparison

Two experiments are performed to evaluate the ensemble reference algorithms and to

evaluate the usefulness of the introduced microarray adaptation elements. The �rst ex-

periment evaluates whether the original AID algorithm [8] or the simpli�ed version in [72]

has better performances. They will be identi�ed by AID and Kun respectively. Both

algorithms are trained on the seven datasets. For each dataset they produce thousands of

nested ensembles, one for each iteration. These ensembles are then applied on indepen-

dent validation datasets and the best performing ensemble is taken as representative of

the predictive potential of the algorithm as in [84, 15]. In order to avoid voting artifacts,

only ensembles with an odd number of experts are considered.

The chosen performance metric is the Matthews Correlation Coe�cient (MCC) [89],

since, as stated in [112] it is informative when the distribution of the two classes is highly

skewed, it is simple to calculate and available for all models with which the proposed

method has been compared to. MCC values range from -1 (i.e. perfect inverse prediction)

to 1 (perfect prediction).

The second experiment has the same setup as the �rst one, but it evaluates the use-

fulness of the introduced elements in Section 4.3.2: the nonexpert notation, the metagene

inclusion and the tie breaking rule. Three algorithms are compared to the original one.

Each one applies two of the three elements and is identi�ed, for the Kun algorithm by:

• Kunall : This algorithm does not exclude the nonexperts from the thinning process.

• Kungenes : This algorithm excludes the nonexperts but it does not use any metagene.
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Figure 4-13: Mean MCC results comparison with state of the art results from [112] and from
Section 4.2.2.

• Kuntie : This algorithm resolves each tie without considering the tree structure,

thus eliminating the �rst expert it encounters with lowest accuracy on Sp set.

Finally, the best performing algorithm is compared to state of the art alternatives

from MAQC study [112] and from the best results in Section 4.2.2. In this way it is

also possible to compare the di�erences introduced by the ensemble thinning algorithm

with respect to the algorithm from Section 4.2.2, that uses the same features but with a

di�erent feature selection algorithm.

4.3.4 Comparison with state of the art

Table 4.9 shows the MCC results for all the studied algorithms in this work. Each dataset

corresponds to a column and the last column is the mean MCC value across the datasets,

the higher the value the better the algorithm is considered for prediction. The comparison

between the AID and the simpli�ed Kun algorithm can be done observing the �rst two

lines in Table 4.9. The Kun algorithm obtains better overall MCC mean value and in

every single dataset it obtains better or equal MCC values. It can be stated that the

simpler Kun algorithm achieves better prediction results and it should be preferred to the

AID algorithm.

In the last four rows of Table 4.9, the main proposed innovations are analyzed by

comparing the full Kun algorithm, with three algorithms, each one excluding a di�erent

aspect. They are organized by decreasing mean MCC, so that it can be straightforwardly

seen which algorithm obtains the best performances and how much each of the key ele-

ments a�ects the �nal results. Globally, the Kun algorithm obtains better results with
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an overall MCC of 0.533 and the introduced elements have di�erent impacts. The tie

breaking rule is the least a�ecting factor since Kuntie obtains a mean 0.519 MCC. The

metagene inclusion as individual feature has a signi�cant in�uence on the predictive abil-

ity, as an MCC of 0.485 is obtained. Here too, the metagenes are useful for classi�cation as

in Section 4.2.2 and not using them can lead to undesirable MCC values since the missing

values represent an undetermined MCC due to the null denominator. This is obtained

when all the validation samples are assigned to one class [15]. Finally, the most important

of the introduced elements is the nonexpert de�nition. Not including this concept leads

to very poor results and, more importantly, to undetermined MCC values in many of the

analyzed datasets. This is due to the fact that all nonexperts agree on every sample, thus

strongly biasing the ensemble vote.

From the results in Table 4.9, the best performing algorithm is the full Kun and all the

introduced adaptations helped in obtaining such results. In Figure 4-13, the mean MCC

value of Kun algorithm is compared with state of the art alternatives. The vast majority,

all the datxx columns, correspond to the mean MCC value from the MAQC study [112].

In addition to them, the column labeled as IFFS is the mean MCC value from the best

results from Section 4.2.2, which makes use of the same features, genes and metagenes,

but adopts the IFFS feature selection algorithm. The state of the art algorithms are

represented as solid gray columns, while the Kun mean MCC value is represented by a

black and white straight lines pattern.

It can be observed how the Kun algorithm obtains a remarkable improvement when

compared to state of the art alternatives and, comparing the shown results with the mean

values in Table 4.9, it can be observed how various of the tested algorithms would have

obtained better than state of the art results. This con�rms the goodness of ensemble

thinning as approach to combine multiple experts for classi�cation [72].

4.3.5 Tuning the ensemble

From the results in Section 4.3.4, it appears how the Kun algorithm is a valid alternative

for the feature selection task, and how the microarray adaptation elements have helped

in obtaining the �nal result. To further explore the potential of the Kun feature selection
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method, several alternatives have been implemented and analyzed. Changes have been

made to the used classi�er and to the nonexpert notation. The studied classi�ers to train

each expert are the following:

• LDA, which is the original Kun algorithm.

• SVM linear kernel implemented with libsvm [26] with a constant parameter C = 1

• SVM rbf kernel, implemented with libsvm [26] with default training parameters.

• K-Nearest Neighbors with 5 neighbors implemented with Matlab [88]. For this case

the 3 and 11 neighbors have also been tested but obtained lower overall MCC results,

so they are not shown.

The nonexpert notation has been switched among:

• Constant label, like the original Kun algorithm

• MCC ≤ 0 has been used as de�nition of a nonexpert because a random label as-

signment should give an MCC = 0.

• The binary Area Under the Curve [112] smaller than 0.5 :bAUC ≤ 0.5. The 0.5

threshold has been chosen because a random assignation should return a bAUC =

0.5.

In Figure 4-14 and in Table 4.10, the average MCC results by analyzing the MAQC

datasets are presented. The obtained results are organized depending on the combination

of nonexpert notation and the adopted classi�er.

Analyzing the di�erences related to the nonexpert de�nition, it can be observed from

Table 4.10 how the bAUC criterion constantly obtains lower results than the other two.

On the other hand, the di�erences between the constant criterion, already introduced

in the Kun algorithm in Section 4.3.1, and the criterion of MCC ≤ 0, are less evident.

Depending on the chosen classi�er, the best results is obtained with either the Constant

de�nition, or the MCC ≤ 0 de�nition.

Observing the adopted classi�er, it can be observed how the KNN classi�er consistently

obtains the lowest average MCC value, regardless of the nonexpert de�nition rule. The
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Figure 4-14: Mean MCC results comparison among all the tested alternatives for classi�er and
nonexpert condition. The values are the mean across the MAQC datasets.

Table 4.10: Mean MCC results comparing the alternatives in terms of nonexpert notation and
adopted classi�er.

Classi�er Nonexpert
bAUC ≤ 0 Const. MCC ≤ 0

LDA 0.447 0.533 0.534
KNN 0.442 0.457 0.445
SVM linear 0.534 0.552 0.547
SVM rbf 0.546 0.552 0.547

best performances are consistently obtained with the SVM with RBF kernel, even if it

obtains the exact same results as the linear SVM when the nonexpert notation is the

Constant criterion or the MCC ≤ 0 criterion.

Overall, considering all the studied variables, it can be concluded that both KNN

classi�er and the bAUC nonexpert de�nition should not be used, because they consistently

lead to worse MCC results. The best result is obtained using the Constant nonexpert

de�nition like in the Kun algorithm, and either the linear SVM classi�er or the SVM rbf

classi�er. Summarizing, the Kun algorithm can be improved by using a SVM classi�er,

either with a linear kernel or with a radial basis function kernel, thus pushing further the

di�erence from state of the art results shown in Figure 4-14.
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The obtained results with ensemble feature selection are better than those obtained

with IFFS in Sections 4.2, showing higher predictive potential in terms of MCC. A di�er-

ence from the results in Section 4.2 is that the ensemble algorithms have been tested on a

single run experiment due to time reasons, while the IFFS results con�rmed their robust-

ness of the results on Monte Carlo simulation. The selected feature composition between

best IFFS implementation from Section 4.2 and the Kun algorithm with SVM-RBF ker-

nel, show some relevant di�erences. Across the seven datasets, the IFFS algorithm chooses

always less than 5 features to produce a classi�er, 15% of which are metagenes, each of

which is composed of less than 10 genes on average. The Kun algorithm with SVM-RFE

kernel classi�er, chooses between 3 features for datasets E and H, up to more than 300

features for dataset D and G. The metagenes percentage increases up to a 50% and the

average number of genes composing the metagenes grows up to more than 100. As a global

comparison, the IFFS algorithm chooses less features and metagenes composed with less

features than the ensemble Kun algorithm. The number of selected features is less rel-

evant for over�tting in an ensemble algorithm than in a wrapper algorithm like IFFS

because the experts are trained independently. Nevertheless, choosing metagnes with

hundreds of composing genes should be avoided because the chance of having selected

a feature that reduces noise from a group of correlated genes is lower than a metagene

grouping only four or �ve genes.

4.4 Summary

In this chapter, the predictive ability of the proposed framework for binary classi�cation

has been evaluated. The overall classi�cation framework of feature set enhancement and

feature selection has been studied introducing the IFFS wrapper algorithm in multiple

Monte Carlo simulations.

Among all the studied possibilities to generate a hierarchical structure and produce

metagenes, the original Treelets formulation combined with LDA classi�er has shown to

have very good results and to improve state of the art alternatives when analyzing publicly

available data when the IFFS algorithm is used for feature selection. The application

of SVM classi�er instead of LDA within the IFFS feature selection framework did not
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suppose performance improvement but considerably increased the computation time.

Ensemble feature selection techniques have been studied to test the potential of such

an approach with very interesting results. The performed single run experiment with

di�erent con�gurations highlighted how the ensemble feature selection approach allows to

further improve the state of the art predictive ability when compared to the IFFS results.

The studied algorithm has been enriched with key elements like the nonexpert notion that

allows to boost the performance. Overall, the best results have been obtained with SVM

classi�er combined with the nonexpert notion introduced in Section 4.3.2.

Even if the ensemble techniques allowed to reach better prediction results in a single

run experiments, the IFFS approach has been preferred to analyze the results in the

following chapters to compare with the state of the art because its statistical robustness

has been validated and it can be straightforwardly replicated in di�erent scenarios like

the knowledge integration in Chapter 5 or for the multiclass classi�cation in Chapter 6.

For ensemble techniques, a validation experimental model has not been designed for the

multiclass case or to perform a sound Monte Carlo simulation.
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Chapter 5

Knowledge integration for hierarchical

clustering

Including and integrating prior biological knowledge has gained importance in the omics

data analysis �eld throughout the years [3, 30]. Knowledge databases have been used

in many directions, for example, to identify biologically relevant activated pathways by

integrating Gene Ontology (GO) in the analysis process [105], or to integrate a gene

ranking tool in the analysis [127]. Moreover, biological knowledge is also used in tools like

Hanalyzer [77] to identify gene-to-gene relationships and facilitate the data interpretation.

A common trait to all these works is that including some prior biological knowledge led

to more interpretable results from a biological viewpoint, easing the scientist's task to

formulate new hypotheses.

The aim of this chapter is to improve the microarray classi�cation by combining prior

biological knowledge with the numerical data when inferring a structure from the data

and generating metagenes. The expectations are to build a classi�cation framework able

to compete with the best alternatives in the state of the art, to improve the prediction

results robustness and the results biological interpretability.

To do so, we have studied modi�cations to the existing algorithm presented in Section

3.1, which demonstrated to have very good prediction performances when combined with

IFFS feature selection in 4.2 and that works exclusively with numerical data. It relies on

the same two-step approach, in the �rst step, a hierarchical clustering is applied over the
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data to create an extended feature space with new features called metagenes based on the

work on Treelets [78]. The second step takes care of the feature selection with a wrapper

algorithm. Through the hierarchical clustering a binary tree is generated.

The proposed modi�cation to the algorithm concerns the hierarchical clustering to

include prior biological knowledge and to de�ne the similarity between genes. A similar

concept of knowledge integration has been implemented in Hanalyzer [77], where pair-

wise gene similarity is de�ned as a combination of numerical similarity and of knowledge

similarity to infer gene regulatory networks. In [77], the pairwise similarities are used

only once applying a threshold, while here they are used to infer a complete hierarchical

structure and to produce new features. The aim is to generate metagenes, as in Chapter

4, able to help both in the noise reduction by inferring a structure and producing meta-

genes as combination of correlated genes, and in the data interpretation by summarizing

genes with related biological functions. Di�erent similarity metrics for the de�nition of

biological similarity have been studied and chosen from the literature for their charac-

teristics [14, 77]. Furthermore, the combination rule between biological similarity and

the numerical correlation has been studied, comparing a simple average operation with a

more elaborated value equalization which will be detailedly detailed in Section 5.3.

5.1 The knowledge database

There exist many available knowledge bases on the Internet, usually consulted to inter-

pret the analysis results [67, 14, 115]. A subset of the Molecular Signature Database

(MSigDB) [115] has been selected for this work. It is a collection of annotated gene sets

provided with the Gene Set Enrichment Analysis (GSEA) software [115]. This database

has been chosen because it is composed of high quality information, it is currently main-

tained and updated, and because it is publicly available and downloadable in an easy to

use format.

The complete MSigDB database is composed of six gene set collections varying from

manually curated gene sets, to motif sets or Gene Ontology terms related sets. Our choice

has been to consider the C2, C3 and C5 collections. The C2 gene sets are manually

curated sets from online pathway databases, publications in PubMed and knowledge of
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Figure 5-1: Toy example of a small knowledge database matrix where each row is a di�erent
gene while columns are attributes. Black dots represents that a gene has a speci�c attribute.

domain experts. C3 is composed of motif gene sets based on conserved cis-regulatory

motifs from a comparative analysis of the human, mouse, rat, and dog genomes. Finally,

C5 recollects gene sets sharing the same Gene Ontology term [115].

These data are publicly available and can be represented as a binary matrix M whose

rows are the di�erent genes, while the columns represent the MSigDB gene sets. A

toy example of a possible knowledge matrix is shown in Figure 5-1, where each black dot

represents the presence of a gene-gene-set correspondence. As can be observed, the matrix

is sparse and this is a characteristic of the real knowledge matrix from the MSigDB data.

The actual information from MSigDB C2, C3 and C5 gene sets is coded in a knowledge

matrix M composed of 22680 unique gene identi�ers and 5607 MSigDB gene sets. The

M matrix is then used as knowledge database for the clustering process.

5.1.1 The hierarchical clustering process

The hierarchical clustering process is a pair-wise iterative process merging feature pairs

to produce new hierarchical levels and new features called metagenes like described in

Section 3.1 and illustrated in Figure 3-2.

In Section 3.1, features are merged measuring the Pearson correlation between two

gene expressions and each metagene is built as the �rst principal component of the local

Principal Component Analysis (PCA) over the two features to be merged [78]. Starting

from the second merging step, metagenes and genes are considered as features, so the

similarity must be calculated for all genes and metagenes.

In order to incorporate the information from the knowledge matrix M , changes to the

similarity metric have been studied and are discussed in Sections 5.2 and 5.2. To this
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end, for each feature pair (f i, f j), two quantities are calculated: dn(f i, f j) which is the

numerical similarity as in Section 3.1 and dk(f i, f j) the knowledge similarity. The global

pairwise similarity is then de�ned as a combination of these two measures:

d(f i, f j) = f
(
dn(f i, f j), dk(f i, f j)

)
(5.1)

In Section 5.2, the studied similarity measures to de�ne dk(f i, f j) are presented and

discussed, while in Section 5.2, the combination of dn and dk is analyzed, proposing two

alternatives to de�ne the �nal pairwise similarity.

5.2 Biological similarity measures

The introduction of the biological similarity in the clustering process brings to light some

questions. The �rst one is, which measure should be adopted in quantifying how much

two genes are alike and a second one is related to the clustering process and regards how

the similarity measure can be integrated within the clustering process when generating

metagenes as linear combinations of genes.

In the literature, there are plenty of similarity measures that have been proposed

to work with binary data, categorical data or continuous data [14, 4, 132]. Since the

knowledge matrix format is binary, we chose to search the literature for suitable measures

in the binary and categorical �eld. From our research, we chose four di�erent measures

considering also the sparsity of the knowledge matrix and the computational feasibility

of the measures. The chosen measures are the following:

• Anderberg: This measure has been proposed in [4] and assigns more importance

to rare matches and rare mismatches. It ranges from [0; 1], the minimum value is

attained when there are no matches, while the maximum value is reached when all

attributes coincide between the compared features.

• Godall: This is an adaptation of the original measure proposed by Godall in [40],

as presented in [14] under the name of Godall3 to reduce the computational burden.

This measure assigns higher similarity to a match if the value is infrequent than if
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the value is frequent. Matches can be either of ones or zeros. Its range is between

[0; 1] and it reaches one when all the attributes are the same.

• NoisyOR: This measure has been adopted in di�erent works on microarray data

analysis [77, 76]. It assumes the attributes independence and it computes the in-

tegrated likelihood for each feature pair through a noisy-OR function over each

common attribute reliability. It is calculated with the consensus reliability estimate

from [76]. This measure ranges from 0 to in�nity, so it is normalized between [0 ;

1] by dividing by the maximum attribute reliability value as in [77].

• Smirnov: Smirnov [113] proposed a measure rooted in probability theory that not

only considers a given value's frequency, but also takes into account the distribution

of the other values taken by the same attribute. For a match, the similarity is

high when the frequency of the matching value is low and the other values occur

frequently. The range of this measure goes from [0; 2N] where N is the attribute

number, so it is divided by 2N to be bounded between [0; 1].

All four measures adopt di�erent criteria to de�ne each attribute importance in the

de�nition of a global similarity measure between two features. An additional concern

arises when the metagene generation process is considered and, precisely, when the new

metagene is generated via PCA. This step in the clustering process has not been touched

and the new metagene is obtained as a linear combination of the two merged features

considering only the expression value. This step has been preserved to maintain the

metagenes bene�t of noise reduction. As far as biological similarity is concerned, in

order for the clustering process to progress, a knowledge pro�le must be assigned to the

newly created metagene. The knowledge pro�le is represented by adding a new row

to the knowledge matrix M with the metagene corresponding attributes which are not

necessarily binary values. The metagene generation formula for the numerical data is

presented in Eq. (5.2) when it merges two features (f i, f j) to build the mk metagene.

mk = α1f i + α2f j with α2
1 + α2

2 = 1 (5.2)

For the knowledge pro�le of the metagene mk we chose to save as much as possible the
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linear combination from PCA forbidding negative values which may occur in a PCA. The

result is shown in Eq. (5.3), where Mi and Mj are the knowledge matrix rows for the ith

and kth features.

mk = (|α1|Mi+ |α2|Mj)/(|α1|+ |α2|) (5.3)

In this way the generated knowledge pro�le has non-negative values bounded between

[0 , 1] which allow to use the chosen similarity metrics after a slight adaptation to accept

continuous values instead of binary ones.

Table 5.1 shows the mathematical expression of the four studied similarity metrics.

For each similarity metric, two formulas are shown, the �rst one is the original de�nition,

while the second one is the continuous value adaptation. Some notations have to be

introduced to properly read Table 5.1. First of all, the knowledge matrix M is formed by

N features, genes, and d attributes. Each column is a di�erent attribute, while each row

is a di�erent feature. The notation Mi de�nes the ith row of matrix M , which includes

the attributes for an individual features. M
i,k

identi�es the element from the ith row

and kth column of the knowledge matrix. Table 5.1 presents the equations to measure

the similarity between the ith and jth features, thus meaning the ith and jth rows of the

matrix M . With K∩ij the subset of shared attributes between the feature i and j is

de�ned: K∩ij = {k} ∈ {1 ≤ k ≤ d : M
i,k

= M
j,k
}. While with Kc

∩ij, the complementary

subset of K∩ij is de�ned : Kc
∩ij = {k} ∈ {1 ≤ k ≤ d : M

i,k
6= M

j,k
}. We also de�ne the

notions of fk(x), p̂k(x), p2k and rk as in [14, 77]:

• fk(x) is the number of times that the kth attribute assumes the value x ∈ [0 1].

• p̂k(x) is the sample probability for the value x for the kth attribute.

p̂k(x) =
fx(x)

N

• p2k is another probability estimate for the value x within the kth attribute.

p2k =
fk(x)(fk(x)− 1)

N(N − 1)

• rk is the normalized consensus reliability estimate, r̂k for the kth attribute, calcu-
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Table 5.1: Biological similarity measures formulas. For each measure the original formula and
its adapted version for continuous variables are presented.

Method Sk(M i
,M

j
)

Anderberg

1
N

∑
k∈K∩

(
1

p̂k(Mi,k
)

)2

∑
k∈K∩

(
1

p̂k(Mi,k
)

)2

+
∑

k∈Kc
∩

(
1

2p̂k(Mi,k
)p̂k(Mj,k

)

)

1
N

∑d
k=1

[(
1

p̂k(0)

)2 (
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i,k
)(1−M

j,k
)
)
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1
p̂k(1)

)2 (
M

i,k
M

j,k

)]
∑d

k=1

[(
1

p̂k(0)

)2
(1−M

i,k
)(1−M

j,k
) +

(
1

p̂k(1)

)2
M

i,k
M

j,k
+ 1

2p̂k(0)p̂k(1)

(
M

i,k
+M

j,k
− 2M

i,k
M
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lated as in [77, 76] in order to bound its value between 0 and 1.

rk =
r̂k

maxk (r̂k)

The calculation of the parameters fk(x) , p̂k(x) , p2k(x) and rk are done over the initial

knowledge matrix M containing only the individual gene information. The information

from the metagenes is not considered because these parameters must have a �xed value

before starting to measure the feature similarity.
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5.3 Combination of numerical and biological similari-

ties

Once the di�erent similarity metrics for the biological information are de�ned, the focus

is on how to combine the two sources of information: numerical and biological. We

have studied two di�erent ways to combine the numerical correlation dn(f i, f j) and the

biological similarity dk(f i, f j).

The �rst and easiest combination rule is a simple average of the two values, so that

the overall similarity is de�ned as in Eq.(5.4).

d(f i, f j) =
1

2

(
dn(f i, f j) + dk(f i, f j)

)
(5.4)

In addition to the average combination, a more complex way to combine the two mea-

sures has been studied, based on the work from [77, 56], where the original similarity value

is mapped to the range [0 , 1] using a probability density function estimation assuming a

logistic distribution with mean µ and variance ν = 6/µ. From [77, 56], it is highlighted

how such a mapping can be bene�cial to the discovery of important relationships between

features. The underlying idea is to equalize the distribution of the calculated similarity

values between 0 and 1 and making a more uniform combination of the values from the

two sources of information. The equalization step would work if the assumption of the

underlying distribution is correct, or if it suits the actual data. From the results we gath-

ered the logistic assumption does not hold, in particular for the biological similarity data

and especially with the imposed �xed ratio between µ and ν.

In order to operate an equalization step, we chose not to limit ourselves to a speci�c

distribution type, but to estimate the density function on the real data. For this, 17

di�erent parametric distributions are compared over a set of 105 pairwise similarity data

as detailed in [90]. The best �tting distribution is then chosen in terms of Bayesian Infor-

mation Criterion, BIC, and the equalization function is then obtained. After equalization,

a new distribution d̃x(f i, f j) is obtained with a more uniform distribution of the values

between 0 and 1. This work is done independently for the numerical correlation and the

biological similarity so to equalize both distributions properly. The global similarity value
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is then de�ned as in Eq. (5.5) as an average of the two equalized similarities.

d(f i, f j) =
1

2

(
d̃n(f i, f j) + d̃k(f i, f j)

)
(5.5)

5.4 Knowledge integration evaluation for classi�cation

The evaluation of the usefulness of the knowledge integration framework for microarray

classi�cation is assessed in this section using the IFFS feature selection algorithm de-

scribed in 4.1.1. The knowledge integration algorithms have been described in Sections

5.2 and 5.3, and combine the numerical correlation with four biological similarity mea-

sures (Anderberg, Godall, Noisy-OR and Smirnov) and with two combination schemes

(average and distribution equalization).

The experimental protocol to evaluate both the predictive ability and the biological

relevance of the di�erent knowledge integrating schemes when classifying microarrays is

detailed here. All algorithms have been analyzed in terms of predictive power and in terms

of biological relevance of the found signatures. The objective of the study is to compare

the di�erent schemes to evaluate if introducing biological knowledge helps in obtaining

better results, more robust and interpretable than in the original Treelets implementation

using numerical data only.

5.4.1 Predictive power evaluation

To evaluate the predictive power of the di�erent algorithms, a 50 run Monte Carlo simu-

lation has been performed. For each run, the same protocol as in Section 4.2.2 has been

followed, classi�ers up to 5 dimensions have been built for each datasets. The best clas-

si�er in each case has been chosen by evaluating the Matthews Correlation Coe�cient,

MCC, [89] results when classifying the independent validation set.

Statistical properties of the algorithms predictive power have been extracted from the

population of 50 run simulations in order to draw conclusions about the general behavior of

each tested algorithm. The mean MCC value across the 50 iterations has been considered

as well as the standard deviation of the results. The comparison among all the variants

83



considered in this Chapter and the algorithm presented Section 4.2.2 combines both the

mean value and the standard deviation to consider also the stability and repeatability of

the prediction results throughout the iterations.

A score, S is extracted as de�ned by Eq.(5.6) and all the algorithms are then sorted

according to the S value.

S =
µMCC

σMCC + ε
: ε = 0.02 =

1

50
(5.6)

It is proportional to the mean MCC value so that higher means obtain higher scores, but

it also is inversely proportional to the MCC standard deviation, so that more robust and

stable results can obtain higher scores. The ε value at the denominator has been chosen

to reduce the risk of giving too much relevance to the results robustness that could make

the mean value irrelevant. The value has been chosen as the inverse of the Monte Carlo

runs (i.e. ε = 0.02 = 1
50
) and it is comparable to the obtained standard deviation values

collected in Section 5.5.

5.4.2 Biological relevance evaluation

Besides the prediction ability, an additional evaluation is performed studying the di�er-

ences among the found gene signatures about their biological usefulness. This kind of

analysis aims at assessing the interpretability of the di�erent solutions.

The aim is to see if the biological knowledge integration helps in selecting genes which

are good for classi�cation and also useful for biological interpretation. The biological use-

fulness assessment is an extremely complicated task. It is related to the speci�c problem

under study and depends on the scientists' experience. Nevertheless, an established prac-

tice in the literature is to evaluate the di�erent gene signatures with automatic analysis

tools, for example to �nd enriched functions or to �nd genes related to an investigation

topic from the literature. For each of the considered alternatives, the union of the used

genes to build the classi�ers throughout the Monte Carlo iterations is used as gene signa-

ture. When a metagene is chosen to be part of a classi�er, all the genes composing it are

included in the signature.

Four publicly available tools have been used to quantify the biological relevance of the
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gene lists. They assess di�erent characteristics of a gene list using di�erent databases and

references. The adopted tools are the following:

GSEA The �rst tool uses Gene Set Enrichment Analysis resources [115]http://www.

broadinstitute.org/gsea/msigdb/annotate.jsp. For each gene list, it calculates an

output p-value for each one of the selected MSigDB gene sets [115]. The p-values are

calculated as hypergeometric distributions of overlapping genes between the analyzed

gene signature and the MSigDB gene set. A low p-value indicates a high probability that

the MSigDB gene set is represented in the gene signature and therefore that genes used for

classi�cation have something in common from a biological viewpoint (function, position,

disease, etc.). For this analysis, the subsets C2, C4 and C5 from MSigDB have been

used. Gene sets can be collected from various sources such as on-line pathway databases,

publications in PubMed, knowledge of domain experts or from Gene Ontology databases.

Biograph The second tool is called Biograph [82] http://www.biograph.be/, it

quanti�es relationships between individual genes and a key term (e.g. the studied dis-

ease). Biograph analyzes each gene individually and quanti�es their relationship with the

key term based on a knowledge database. The output score is proportional to the gene

key-term relationship. The method is based on the integration of heterogeneous biomed-

ical knowledge bases and yields intelligible and literature-supported indirect functional

relations. By assessing the plausibility and speci�city of these hypothetical functional

paths within a user-provided research context, the unsupervised methodology is capable

of appraising and ranking of research targets, without requiring prior domain knowledge

from the user. Since this method analyzes the relations between each gene and a relevant

key-term, when analyzing the 7 MAQC datasets, di�erent key-terms have been chosen,

relating with the studied phenomenon: A dataset: lung neoplasms; C dataset: liver neo-

plasms; D and E datasets: malignant breast neoplasms; F dataset: Multiple Myeloma, G

dataset: Survival Analysis and H dataset: sex di�erentiation.

Enrichr The third used tool is Enrichr [27] http://amp.pharm.mssm.edu/Enrichr/

index.html, which is an integrative web-based and mobile software application that in-
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cludes gene-set libraries, an alternative approach to rank enriched terms, and various

interactive visualization approaches to display enrichment results. Enrichr contains 35

gene-set libraries where some libraries are borrowed from other tools while many other

libraries are newly created and only available in Enrichr. It has been used to analyze the

enrichment of the gene lists in terms of KEGG pathways. The chosen output for each

di�erent pathway is a combined score presented in [27].

Génie The fourth tool is Génie [45] http://cbdm.mdc-berlin.de/~medlineranker/

cms/genie. With Génie, genes are ranked using a text-mining approach based on gene-

related scienti�c abstracts. It prioritizes all of the genes from a species according to

their relation to a biomedical topic using all available scienti�c abstracts and ontology

information. Génie takes advantage of literature, gene and homology information from the

MEDLINE, NCBI Gene and HomoloGene databases. This tool, like Biograph, analyzes

each gene independently and its output is a p-value assessing the relevance of each gene

with a search term. The used search term - dataset pairs are: A dataset: lung cancer;

C dataset: liver cancer; D and E datasets: breast cancer; F and G datasets: multiple

myeloma and H: sex.

The four analysis tools evaluate di�erent characteristics of the gene lists. Tools like

GSEA or Enrichr perform a gene-set analysis as a whole, while Biograph and Génie

evaluate the individual gene relevance. To quantify in a simple way the collected results,

an evaluation protocol is proposed. For each analysis tool, the �rst �ve outputs are

averaged: for GSEA and Génie it is an average of the negative logarithm of the p-values

while with Biograph and Enrichr it is an average of the �rst �ve output scores. In this

way, the method with the highest average is the one obtaining the best result. The next

step is to average all the values across the 7 datasets to obtain an average score ranking

all the algorithms over multiple results.

Afterwards, to combine all the obtained results in terms of biological relevance and

of predictive ability a voting scheme is adopted. We chose to combine the biological

analysis results into a single score from the average of the Borda count of the four analysis

tools. In Figure 5-2, a toy example is shown with only two analysis tools for biological

information. For each tool, each method is assigned points depending on its ranking.
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Figure 5-2: Toy example of the adopted ranking scheme using only two biological relevance
analysis tools combined with Borda count.

Subsequently, the biological rankings are averaged to de�ne a real valued unique score.

Finally, the calculated scores are averaged with the rankings from the predictive power

analysis de�ned in Section 5.4.1, in order to obtain a global score for all the considered

methods. The one with the lowest �nal score is considered to be the best method in terms

of combined predictive accuracy and biological relevance of the found gene lists.

5.4.3 Comparison with state of the art

The proposed algorithms including biological information in the metagene generation

process have been compared with state of the art alternatives. Firstly, they have been

compared with the algorithm from Section 4.2.2 which uses Treelets with only numerical

correlation and that obtained very good predictive scores when compared with MAQC

results in Section 4.2.2 and in [15].

In addition to that, a comparison with state of the art algorithms adopting di�erent

techniques has been done too. The two best algorithms from [84] have been chosen for

comparison since they have been applied on the MAQC data and the relevant genes from

their gene lists are publicly available. The algorithms of [84] analyze a subset of the

MAQC datasets, in detail they are the two Breast Cancer datasets (called D and E)

and the two Multiple Myeloma datasets (called F and G), but the gene lists information

has been published only for the Breast Cancer datasets. Therefore, the comparison with

the studied algorithms in this work has been done only over the D and E datasets from
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MAQC.

The analysis protocol is the same, by applying the four biological analysis tools and

the predictive power evaluation. The two chosen algorithms from [84] are the Support

Vector Machine Recursive Feature Elimination with Support Vector Machine classi�er,

SVMRFE-SVM, because it is stated in [84] to be the one with the best gene lists, while

the second algorithm is called Gradient based Leave-one-out Gene Selection with Near-

est Mean Scale Classi�er, GLGS-NMSC, because it is the one with the best predictive

characteristics in [84].

5.5 Experimental results

After having introduced the experimental protocol in Section 5.4.3, the experimental re-

sults are here presented and discussed. There are eight studied algorithms for knowledge

integration which are compared among themselves in terms of predictive ability and bi-

ological interpretability of the selected gene lists for classi�cation in Section 5.5.1, and

are also benchmarked to state of the art alternatives in Section 5.5.3 with an uniform

experimental protocol. These eight algorithms are obtained from four di�erent biological

similarity metrics (i.e. Anderberg, Godall, NoisyOr and Smirnov), and two integration

schemes for the numerical and biological similarities (i.e. simple average and a probability

density function equalization scheme). The adopted notation to identify each algorithm

has the form X-yyy, where X is the initial letter of the similarity metric (e.g. A for Ander-

berg or G for Godall), while yyy represents the combination scheme: avg for the average

and pdf for the probability density function equalization. The studied algorithms in this

work have also been compared to the algorithm from Section 4.2.2 which uses only the

numerical correlation to de�ne the similarity and that will be named COR in the results

presentation.

5.5.1 Prediction results evaluation

In Table 5.2, the obtained results for the predictive ability are shown. For each dataset,

the mean MCC value µ and its standard deviation σ are shown on two di�erent rows,
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Table 5.2: Comparison of the obtained MCC statistics on MAQC datasets.

COR A-avg G-avg N-avg S-avg A-pdf G-pdf N-pdf S-pdf

A
Mean 0.278 0.255 0.291 0.271 0.249 0.249 0.264 0.251 0.253
Std 0.055 0.042 0.080 0.063 0.028 0.025 0.056 0.027 0.033

C
Mean 0.797 0.825 0.793 0.817 0.789 0.802 0.828 0.828 0.804
Std 0.025 0.018 0.013 0.015 0.023 0.016 0.010 0.010 0.007

D
Mean 0.315 0.285 0.276 0.279 0.294 0.266 0.334 0.297 0.288
Std 0.085 0.083 0.081 0.063 0.088 0.013 0.016 0.020 0.066

E
Mean 0.773 0.749 0.773 0.746 0.754 0.741 0.738 0.742 0.779
Std 0.019 0.019 0.012 0.033 0.017 0.016 0.013 0.017 0.018

F
Mean 0.249 0.060 0.065 0.060 0.036 0.008 0.180 0.067 0.048
Std 0.045 0.053 0.041 0.053 0.083 0.044 0.056 0.059 0.077

G
Mean 0.162 0.217 0.215 0.208 0.217 0.217 0.218 0.212 0.204
Std 0.042 0.033 0.032 0.037 0.031 0.028 0.038 0.031 0.041

H
Mean 0.866 0.786 0.782 0.866 0.863 0.869 0.862 0.863 0.784
Std 0.014 0.010 0.019 0.017 0.015 0.018 0.015 0.017 0.008

Score µ
σ+ε 10.879 11.225 11.286 10.265 10.865 12.012 13.439 12.731 12.997

while each column corresponds to a di�erent algorithm. The �nal row in Table 5.2 contains

the overall score calculated as in Eq. (5.6), with a combination of mean and standard

deviation: the higher the obtained score is, the better the algorithm is considered in terms

of predictive ability.

From the results in Table 5.2 we can observe how in terms of mean value all the

algorithms obtain similar values for the majority of the datasets. This states how including

biological information does not negatively a�ect the mean predictive power. In addition to

that, we can observe how the σ values are in general smaller when the biological similarity

is considered.

An exception of the observed behavior is represented by the datasets F and G, where

two symmetrical behaviors are present. The COR algorithm obtains a noticeably higher

mean value in the F dataset when compared to all the alternatives except G-pdf, in that

case the mean di�erence is smaller. On the contrary, with the G dataset the situation

is almost symmetrical, with the COR algorithm obtaining lower mean MCC values than

the rest of alternatives.

This behavior can be explained looking more in detail the selected features in both

the cases. About F dataset, the COR algorithm chooses a metagene as the �rst and most

relevant feature. This metagene is built at a high level of the tree and joins three genes,

MVP NCR1 and KLF11, that have a correlation smaller than 50%. What happens is
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that this metagene allows a better generalization in the validation dataset, even if the

probability of this result is low. The metagenes that are generated at higher levels of the

tree are combining features with low similarity between them and the probability that

the generated metagene is reducing the noise and extracting a robust common behavior

is low. This fact is corroborated when observing what happens in all the alternatives

except G-pdf. In all those cases, a metagene is chosen which has been built in a later

stage of the hierarchical structure generation. On the contrary, G-pdf selects the MVP

gene only as �rst feature and the LGLSE gene as second feature. The LGLSE gene is

recognized as important by the Biograph analysis for survival and it helps in improving

the classi�cation in the G-pdf case.

In the G dataset the observed situation is that all the algorithms choose as �rst relevant

gene the TGFA gene, which is found important by the Biograph analysis. As second

feature, the COR algorithm chooses the MLF2 gene while all the alternatives choose a

metagene in the lower levels of the tree. As example we consider the G-pdf metagene

which merges two probe sets both corresponding to the ANXA2 gene which con�rms that

merging those features can help in reducing the noise. Furthermore, the ANXA2 gene is

found as relevant by both the Biograph and the Génie analyses for the survival key term.

Metagenes high in the tree can bring poorer results with higher probability as in the F

dataset, while metagenes merging actually correlated genes more consistently improve the

prediction results as in the G dataset.

An overall consideration about the MCC results is that the algorithms using the pdf

combination rule achieve better scores, among which the G-pdf is the best one. On the

other side, the COR algorithm is in the lower half of the algorithms mainly due to the

high variance shown in the results. The methods including biological information allow

us to obtain more robust results without compromising the mean MCC value. This is

an interesting feature since the COR method showed to be better than the state of the

art alternative methods from the MAQC study in Section 4.2.2, showing also predictive

results robustness.
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Table 5.3: Results from the biological evaluation of the gene signatures and the global ranking
results.

GSEA BIOGRAPH ENRICHR GENIE Bio Avg MCC Global Score

COR
mean 3.917 1.05E-03 4.909 2.91E+02

7 8 7.5
rank 8 5 6 9

A-avg
mean 5.132 1.07E-03 4.607 2.80E+02

6.5 5 5.75
rank 7 4 7 8

G-avg
mean 5.167 1.33E-03 4.450 5.09E+02

4.75 6 5.375
rank 6 3 8 2

N-avg
mean 5.298 2.00E-03 2.313 5.06E+02

5 9 7
rank 5 1 9 5

S-avg
mean 5.825 1.40E-03 7.797 5.06E+02

3.5 7 5.25
rank 3 2 5 4

A-pdf
mean 6.755 1.88E-04 8.734 5.07E+02

3.25 4 3.625
rank 1 6 3 3

G-pdf
mean 6.424 1.63E-04 9.357 5.10E+02

3 1 2
rank 2 8 1 1

N-pdf
mean 5.656 1.40E-04 8.830 5.03E+02

5.5 3 4.25
rank 4 9 2 7

S-pdf
mean 3.825 1.74E-04 7.883 5.06E+02

6.5 2 4.25
rank 9 7 4 6

5.5.2 Biological relevance evaluation

The biological relevance analysis of the found gene signatures has been done using four

analysis algorithm: GSEA, Biograph, Enrichr and Génie. In Table 5.3, a summary of

the obtained results is shown, as well as the ranking from the MCC results and the �nal

global score.

The �rst four columns are dedicated to the adopted analysis tool, while the �fth

column, Bio score, includes the overall score for the biological information evaluation.

The sixth column, MCC score, contains the ranking for the MCC results from Table 5.2,

while the last column is the Global score as the average of the MCC score and Bio score.

The Global score values represent our evaluation of the algorithms ability to both predict

new samples, and to identify biologically relevant genes.

From the results in Table 5.3 we can observe how the pdf methods consistently obtain

better results than the other when gene sets as a whole are considered: GSEA and Enrichr

analyses. About the individual gene analysis tools, it can be stated that both pdf and

avg algorithm obtain good results, the pdf algorithms obtain better results when Génie

is used, while the situation is reversed when considering Biograph. Both these analysis

tools can have biased results since the scores are assigned individually and few relevant
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genes are su�cient to highly increase the average value. When looking at the overall

Bio score results, it can be observed how the COR algorithm is unsurprisingly last. This

is expectable since it is the only algorithm that does not make use of prior biological

information.

When looking at the �nal results, Global score, it is observed how the best algorithm

is the G-pdf, corresponding to the Godall measure and pdf combination scheme. An ad-

ditional observation is that the pdf combination achieves better scores than the avg meth-

ods, showing how the pdf equalization process led to better results. In synthesis, adding

biological information is bene�cial because it improves the biological interpretability of

the results as well as the results stability without negatively a�ecting the mean predictive

power.

5.5.3 Comparison with state of the art algorithms

The studied algorithms, including the COR algorithm, have been compared to state of

the art alternatives from [84]. The two considered algorithms have been introduced in

Section 5.4.3 and are from here on identi�ed as SVMRFE-SVM and GLGS-NMSC.

The comparison has only been possible on the two D and E datasets because there are

no published data about the selected gene lists for the other datasets. The obtained results

are shown in Figure 5-3 where for each algorithm 5 columns and the global score value are

presented. The algorithms have been analyzed with the same protocol as before. Columns

in Figure 5-3 show the rankings for the di�erent tools. The �rst 4 columns corresponds

to the biological analysis tools and the �fth is the ranking associated to the MCC. The

black line shows the global score for each algorithm, and it is used to sort the algorithms.

An algorithm is considered to be better than another if it obtains a lower global score.

Analyzing the results, we can observe how in terms of predictive ability, the SVMRFE-

SVM and GLGS-NMSC do not obtain good positioning and this is due to the high variance

the presented results. The GLGS-NMSC algorithm obtains the overall best mean, less

than a 2% improvement, but it has a standard deviation up to nine times higher than

G-pdf algorithm. About the biological relevance analysis, the SVMRFE-SVM obtains

an overall best score than the GLGS-NMSC as stated in [84], but even so it reaches the
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Figure 5-3: Score comparison with results from [84] on datasets D and E from MAQC datasets.
All the algorithms are sorted by increasing �nal score, the black line. The best result is the one
with the smallest overall score, which is G-pdf, consistently with the obtained results over a
wider selection of datasets.

worst global score among the studied alternatives due to its prediction performances. An

observation must be done about the Génie data because they are almost all the same. This

is due to the fact that almost all algorithms are able to identify genes with zero p-value for

both the datasets, (for example ESR1, IRS1, PHB or HRAS for dataset D and ESR1 for

dataset E, which is a known gene related to breast cancer as it is an estrogen receptor),

thus obtaining an ideally in�nite value. This has been considered when evaluating all the

datasets and a maximum threshold of 1000 has been set to avoid having in�nite values in

the algorithms comparison.

Looking at the global results, we observe how the G-pdf still is the best scoring algo-

rithm even if the global score order has changed with respect to Table 5.3.

5.6 Summary

In this Chapter, the studied techniques to infer a hierarchical structure from microarray

data combining both numerical information and prior biological information have been

described and evaluated. They have been compared to state of the art alternatives and

to the numerical information only solution from Section 4.2 which showed to have good

and robust predictive properties.
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The knowledge integration framework has been studied with di�erent implementations,

comparing four similarity metrics and two combination rules to merge the numerical

correlation and the biological similarity.

The algorithms have been compared with Monte Carlo experiments on public datasets

in terms of their predictive ability and biological interpretability of the chosen gene sig-

natures. The knowledge integration has shown to be bene�cial increasing the predictive

power robustness without losing the mean performance value when compared to the nu-

merical correlation only alternative, as well as producing more biologically interpretable

gene signatures.

Among the studied alternatives, the G-pdf algorithm combining Godall similarity

measure with the probability density function equalization is the best one. It consis-

tently obtained the best performances when compared to the other knowledge integration

alternatives as well as when it has been compared to state of the art algorithms.

As a general observation, a proper knowledge integration framework like G-pdf should

be preferred to the bare numerical treelets, when possible, since it obtains more robust

and interpretable results for classi�cation.
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Chapter 6

Multiclass classi�cation

Machine learning techniques have been extensively applied on microarray data for cancer

classi�cation, obtaining interesting prediction performances [112, 16, 138]. Most of the

work in the �eld is focused on the binary classi�cation, considering the multiclass case as

a straightforward generalization. Di�erent studies suggest however that in the multiclass

case, it is more complicated to obtain good prediction rates, especially when the class

number is high and the class distribution is skewed [80, 114, 119, 128].

A novel multiclass approach has been studied in this thesis as a combination of mul-

tiple binary classi�ers. It is an example of Error Correction Output Coding (ECOC)

algorithms [37] applied to the microarray analysis. The ECOC algorithms obtained in-

teresting results by applying built-in coding algorithms from the data transmission �eld

[119]. Their direct application on biological data like microarrays has some drawbacks

like the error independence assumption, the code matrix generation or the allowed binary

partitions which will be detailed in the following sections. A new approach is introduced

in this chapter to take advantage of the data transmission framework of ECOC algorithms

without forgetting that what is decoded are biological data. To do so, the redundancy

is used to reduce the error rate, but the binary classi�ers are bounded to class partitions

more likely to be signi�cant than with other ECOC approaches.

The proposed ECOC scheme adds to the classical One Against All (OAA) approach

a group of binary classi�ers called Pair Against All (PAA), each of which focuses in

separating a class-pair from the rest of the samples. The PAA choice is done because
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Figure 6-1: Example of OAO and OAA in a three classes problem with their associated classi-
�cation boundaries.1

class pairs are more likely to have common biological features than larger class groups

and it is common to �nd couples of variants of the same disease inside a microarray

experiment.

The OAA+PAA algorithm has been tested on seven publicly available datasets through

50 run Monte Carlo simulations. Its performances have been compared with state of the

art alternatives, showed in [119], where both the OAA approach and a state of the art

ECOC algorithm applying Low Density Parity Check (LDPC) codes are studied with the

application of linear SVM as classi�cation algorithm.

6.1 ECOC algorithms and the OAA + PAA algorithm

In this section, the Error Correcting Output Coding application for microarray multi-

class classi�cation is discussed and the proposed OAA+PAA algorithm is detailed. The

multiclass problem is addressed as a generalization of the two-class scenario in which

multiple binary classi�ers are used to obtain a �nal estimation. The two most common

approaches are One Against All (OAA) and One Against One (OAO) [80, 38, 106]. In

the OAA approach, M binary classi�ers are trained, each one separating samples of one

class from the rest of the samples. The �nal decision on the assignment of each sample

is determined by a combination of the M outputs. In the OAO approach, M(M − 1)/2

classi�ers are trained, one for each possible class pair without considering samples from

1Images from:http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/
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Table 6.1: Example of the ECOC representation of One Against All (OAA) classi�cation in a
4 class case. Each bit is the output as a classi�er separating one class from the rest.

Codeword: OAA1 OAA2 OAA3 OAA4

Class 1 1 0 0 0
Class 2 0 1 0 0
Class 3 0 0 1 0
Class 4 0 0 0 1

the other classes. The class assignment is done on the basis of the partition of the decision

space resulting from the combination of M(M − 1)/2 produced boundaries. These two

approaches are commonly used for multiclass classi�cation with fairly good performances

[128, 119] and a graphical representation of the di�erence between OAO and OAA is

shown in Figure 6-1. It can be observed how the classi�cation boundaries di�er between

the two cases and how OAO considers only a class-pair to de�ne a boundary, rather than

the whole samples population.

An interesting branch of multiclass classi�cation approaches applies data transmis-

sion algorithms for the sample classi�cation [119, 37]. These algorithms are called Error

Correcting Output Codes (ECOC) algorithms.

The general approach compares the sample classi�cation using N binary classi�ers as a

transmission of N bit codeword over a noisy channel. Each binary classi�er is the receiver

for a one of the N bits of the codeword. The sample class is then assigned depending on

the received bits. With this parallelism, data transmission solutions can be adopted to

improve the �bit error rate" such as error correcting codes.

In [119], recursive Low Density Parity Check (LDPC) codes have been implemented to

code theM classes in N -bits codewords. The application of LDPC codes for the multiclass

classi�cation is due to their outstanding performances in the data transmission �eld [119],

where they can approximate the Shannon limit. These codes showed very low bit error

rate when used in the actual data transmission and are a great choice for that task, but

their application to the sample classi�cation needs to take into account some issues. First

of all there is the error independence assumption, which assumes that errors on di�erent

bits are independent. This assumption is not true because here bits are connected to

the sample classi�cation [118]. Furthermore, LDPC codes are block codes which showed
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good results for long codewords [118], thus a direct LDPC application for the microarray

classi�cation task would imply the training of thousands of classi�ers, making their use

unpractical. A LDPC related issue is the code-table generation because there is no unique

and fast way to obtain them. These aspects are addressed in [118], where a recursive way

to produce LDPC codes is studied and applied to the multiclass case.

Here, an alternative ECOC approach is presented, dealing with an additional issue of

error correcting block codes: the equality of the binary classi�er partitions. The common

ECOC approach consists in building a code table relating each of theM sample classes to

a N bit codewords to produce a suitable binary matrix (e.g. Hamming code restrictions

or LDPC restrictions). This approach works well for data transmission but it does not

take into account the aim of the classi�cation task which is to distinguish among elements

pertaining to di�erent classes. In the code matrix generation, all the class partitions are

equally suitable. A binary classi�er separating one class from the rest can be chosen in the

code table generation with the same probability as a classi�er separating three classes with

scarce biological relation from the rest. This feature can lead to very interesting numerical

code tables but it does not translate into the expected error correcting improvements when

classifying microarray samples [118, 106].

In the proposed approach, a simple error correcting scheme is proposed by adding

redundancy to the OAA approach, which is the simplest ECOC approach and whose code

table is represented in Table 6.1. The redundancy is obtained through multiple binary

classi�ers with class partitions more likely to be signi�cant from a biological point of view

than those obtained with LDPC codes or other more elaborate algorithms. The presented

algorithm adds to the OAA approach a group of binary classi�ers called Pair Against All

(PAA), each of which focuses on separating a class-pair from the rest. Advantages of such

a choice are in the simplicity of the code table generation, as a di�erence with respect to

LDPC codes where the table generation is a complex process, and in the choice of possibly

more signi�cant class partitions. Limiting the possible binary partitions to single classes

or pairs of classes reduces the risk of choosing meaningless partitions, which should result

in the development of more reliable classi�ers.

The PAA choice is done because class pairs are more likely to have common biological
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Table 6.2: Code table for the OAA+PAA approach in a four classes scenario. There are four
codewords of 10 bits, corresponding to the OAA case plus one bit for each class pair.

Bits OAA1 OAA2 OAA3 OAA4 PAA1,2 PAA1,3 PAA1,4 PAA2,3 PAA2,4 PAA3,4

Cl. 1 1 0 0 0 1 1 1 0 0 0
Cl. 2 0 1 0 0 1 0 0 1 1 0
Cl. 3 0 0 1 0 0 1 0 1 0 1
Cl. 4 0 0 0 1 0 0 1 0 1 1

features than larger class groups, and it is common to �nd couples of variants of the same

disease inside a microarray experiment. Binary partitions grouping unrelated classes can

lead to the production of poor classi�ers because the two partitions are not well separable,

thus reducing the e�ectiveness of the code table redundancy. If some of the codeword bits

are not trustworthy the class assignation is less likely to produce correct outcomes. The

OAA+PAA forM di�erent classes produces a code table withM lines, one for each class,

formed of M + M(M − 1)/2 bits. The codeword length is determined by the M bits

deriving from the OAA approach, plus one bit for each possible class pair (M(M − 1)/2).

An example of how the code table is formed in a four classes case is shown in Table

6.2. As it can be observed, the code table from Table 6.2 includes the OAA code table,

represented in Table 6.1.

In the proposed approach, each bit is received by a di�erent classi�er, built with the

algorithm introduced in Section 4.1.1 with the IFFS feature selection algorithm. Each

classi�er can output a hard decision (i.e. a binary output of 1 or 0) or a soft estimation,

each bit is a real value ∈ [0, 1] representing estimated a posteriori probabilities from

the LDA classi�er. The code table represents the coding step of each sample before the

transmission, while the decoding phase consists in receiving each one of the transmitted

bits and in assigning an estimated codeword to each received block of bits. For each

classi�ed sample, a N dimensional word is received and the �nal class assignation depends

on the distance of the received word from each one of the codewords in the code table.

In practice, assume that xi is the produced word corresponding to the classi�cation of

the ith sample, whose actual class is Y (i) ∈ [1, . . . ,M ]. The decoding process can be seen

as a function f(xi)→ Ŷ (i) assigning an estimated class to the sample. The classi�cation

is correct if Y (i) = Ŷ (i), otherwise an error is produced. The class estimation is obtained

assigning the class whose codeword has the smallest distance from the received word:
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Ŷ (i) = minj∈[1,...,M ]‖xi − cj‖1, where cj is the codeword corresponding to the jth class. If

the classi�er output is a hard decision, the distance is a Hamming distance. Otherwise, if

the output is a soft distance like a posteriori probability, the distances can be measured

with L1 or L2 norm. More precisely, any N dimensional distance can be adopted to see

whether it introduces some changes in the �nal output. In this work the hard decision

has been paired with the Hamming distance and the soft decision case has been studied

applying L1 and L2 distances.

6.2 Experimental Protocol

To assess the classi�cation performance of the proposed algorithm in its two variants, Hard

and Soft decision, the multiclass classi�ers have been evaluated by means of a Monte Carlo

simulation over 7 publicly available datasets described in Section 6.2.1. The results are

then compared to those presented in [119]. Based on [39, 7] and similarly to what has

been done in [119], 50 Monte Carlo 4:1 (4/5 for training and 1/5 for testing) partitions of

the available data were considered. For each iteration, the single bit classi�ers have been

built up to 15 features as in Section 4.2. Afterwards the mean values for each feature

number are measured and the best result is kept as performance level potential.

The performance is measured as the mean error rate predicting the independent test

set along the 50 iterations of the Monte Carlo simulation. Inside each binary classi�er

training, a 10 fold cross validation process has been adopted.

The OAA+PAA algorithm has been studied in three variants, the Hard decision with

Hamming distance (OAA + PAA_Hard) the Soft decision version adopting the L1 dis-

tance in the class assignation task (OAA+PAA_L1) and the Soft decision version adopt-

ing the L2 distance in the class assignation task (OAA + PAA_L2). The simpler OAA

and OAO approaches have been tested too since the focus of the experimental evaluation

is to compare the performance of OAA+PAA with baseline methods.
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Table 6.3: Brief microarray datasets description.

Name Samples Genes Classes

SRBCT
63 2308 4

http://research.nhgri.nih.gov/microarray/Supplement/index.html

Brain
42 5597 5

http://www.broadinstitute.org/mpr/CNS/

NCI60
61 5244 5

http://genome-www.stanford.edu/nci60

Staunton
60 5726 9

http://www.gems-system.org/

Su
174 12533 11

http://www.gems-system.org/

GCM
190 16063 14

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

GCM RM
123 7129 11

http://expression.washington.edu/publications/kayee/shrunken_centroid/

6.2.1 The analyzed microarray datasets

Seven cancer microarray data sets were used in the evaluation of the analyzed multiclass

algorithms. They are called Small Round Blue Cell Tumor dataset (SRBCT), the Brain

dataset, the NCI60 dataset, the Staunton dataset, the Su dataset, the GCM dataset and

the GCM RM dataset, derived from the GCM dataset with the purpose of improving mul-

ticlass classi�cation with variability estimates of repeated gene expression measurements.

For a more detailed description of the datasets, the class distribution and the data

preprocessing steps, refer to [119]. A basic description of the dataset composition including

the sample number, the number of adopted genes, the class number and a public link to

access to the dataset are given in Table 6.3.

6.3 Results

In this section, the experimental results are shown and discussed. Table 6.4 presents the

mean Monte Carlo results over the seven datasets for the alternatives studied in this work,

OAA, OAA+PAA_Hard, OAA+PAA_L1 and OAA+PAA_L2, compared with the

results obtained in [119]. The results from [119] are divided by those obtained with an

OAA approach and those obtained adopting a recursive LDPC scheme for microarray

classi�cation. The di�erences between the OAA based method from [119] and the OAA

baseline method tested in this work lie in the feature set that does not include metagenes in

[119] OAA algorithm, in the classi�er (LDA vs SVM) and in the feature selection algorithm

to build the classi�er, making of the two OAA based algorithm signi�cantly di�erent. The
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Table 6.4: Experimental prediction error rates over the seven datasets.

Method Brain NCI60 SRBCT Su

OAA 25.16% 41.37% 1.73% 9.22%

OAO 21.33% 38.50% 2.27% 12.29%

OAA+PAA_ Hard 19.83% 29.87% 2.00% 6.48%

OAA+PAA_ L1 18.67% 28.37% 0.55% 4.19%

OAA+PAA_ L2 18.67% 30.38% 0.67% 4.14%

[119] OAA 12.5% 23.08% 0.00% 8.57%

[119] LDPC 12.5% 30.77% 0.00% 8.57%

Method Staunton GCM RM GCM Mean

OAA 56.75% 5.91% 38.78% 25.56%

OAO 45.88% 7.16% 34.24% 23.10%

OAA+PAA_ Hard 41.25% 0.75% 24.26% 17.78%

OAA+PAA_ L1 37.75% 0.54% 20.17% 15.75%

OAA+PAA_ L2 37.75% 0.40% 20.17% 16.03%

[119] OAA 46.15% 0.00% 28.63% 16.82%

[119] LDPC 46.15% 0.00% 36.24% 19.07%

proposed algorithms in [119] are recent state of the art alternatives with good prediction

results over a wide variety of datasets. Furthermore the validation procedure is clear and

detailed, allowing a realistic error estimation thanks to the Monte Carlo simulation on

independent test sets.

Table 6.4 indicates the mean prediction error rate for each dataset. In the last column,

the mean error rate across all datasets is given to have a global indicator of the prediction

ability of the di�erent algorithms.

From Table 6.4 it can be observed how the proposed algorithm OAA+PAA_L1 man-

ages to obtain the smallest mean prediction error. The best mean error rate result is

15.75%, while the second best result comes from the OAA+PAA_L2 , while the state

of the art alternative from [119] implementing the OAA algorithm is third in terms of

average error rate. As previously mentioned, the di�erences in error rates between the

current OAA results and the [119] OAA results are due to the di�erent feature selection

algorithms, feature sets and used classi�cation algorithms.

The proposed ECOC algorithm, OAA+PAA, is useful as a general method for mul-

ticlass classi�cation since it consistently performs better than the OAA alternative, re-

ducing the mean error rate of almost ten percent. This result is obtained with both the

OAA+PAA implementations adopting Hard and Soft decision. Furthermore, it can be ob-

served how using soft decision helps for the class assignment, since the OAA+PAA_Hard
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consistently obtains worse values than the OAA+PAA_L1 or OAA+PAA_L2 . This

result agrees with the data transmission parallelism, where the use of soft decision is gen-

erally better than relying on hard decision. An important di�erence of the OAA+PAA

algorithm with respect to the recursive LDPC codes adopted in [119] is that it improves

the OAA performance with equal experimental conditions (i.e. same feature selection and

classi�cation algorithms in the binary classi�ers training).

6.4 Summary

In this chapter, a new algorithm for multiclass classi�cation within the ECOC framework

has been introduced. It addresses the issue of ECOC algorithms that consider equally

probable all the possible class partitions. Here, it is proposed to restrict the partitions to

single classes and class pairs.

The OAA+PAA algorithm has been tested on seven publicly available datasets and it

has been compared to results obtained with the baseline OAA approach and with state

of the art algorithms from [119] applying LDPC codes for multiclass classi�cation.

The results showed how the OAA+PAA consistently outperforms the simple OAA

in all the analyzed datasets. The performance improvement is due to the redundancy

provided by the algorithm itself, and this is a di�erence with respect to other ECOC

approaches that did not obtain substantial performance improvement when compared to

OAA [119]. Applying OAA+PAA led to improve the best overall results when compared

to [119], thus providing a valid alternative for the multiclass classi�cation.
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Chapter 7

Conclusions

In this chapter, an overview of the contributions of this thesis to the microarray data

classi�cation problem is detailed, with conclusions and a discussion about future research

directions. The objective for this thesis was to develop algorithms for microarray data

classi�cation pursuing prediction accuracy, results robustness and biological interpretabil-

ity. The thesis premise is that with algorithms and techniques from the signal processing

world it is possible to develop prediction models for high throughput biological data like

microarrays. For that matter, di�erent strategies to tackle the classi�cation problem have

been developed and tested, showing how such a premise is right and that it is worth

working on.

In Section 7.1, the initial research problem is reviewed together with the reasons and

opportunities that motivated the whole research process. In Section 7.2, the thesis con-

tributions are collected and detailed. Finally in Section 7.3, the overall thesis conclusions

are drawn and the future research directions are suggested.

7.1 Microarray analysis: intersection between biology

and signal processing

High-throughput data technologies are the current paradigm in genetic research and mi-

croarrays are the most prominent example. Microarrays contributed in a determinant

way shift the gene-expression based research from hypothesis-based to data-based by pro-
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viding the researchers with a huge amount of data from which to extract the relevant

information.

With this new type of data, di�erent problems arose since the classical statistical

analysis tools are not suited to analyze this kind of matrices where noise is not negligible

and where there are more variables than samples. The research community has addressed

the microarray data analysis problem in a trial/error fashion, by applying algorithms that

worked in other domains to probe their validity with the new kind of data and extract

some sense about which techniques should be used or not. Through the years, a great deal

of work has been dedicated to this task of developing microarray classi�ers with several

approaches, varying from statistical test, to deterministic algorithms, to neural network

approaches and so on. Even if microarrays are considered as a consolidated research

technology nowadays and the trends in high-throughput data analysis are shifting towards

new technologies like Next Generation Sequencing (NGS) [102], an optimum method for

sample classi�cation has not been found yet.

This thesis went in the direction of improving the current state of the art in microar-

ray classi�cation and of contributing to understand how signal processing techniques can

be developed and applied to analyze microarray data. The goal of building a classi�ca-

tion framework needs an exploratory work in which algorithms are constantly tried and

adapted to the analyzed data. With this in mind, a signal processing approach to this

task has been tested, because many algorithms in the signal processing �eld exist that

try to make sense out of vast amount of data and techniques exist to make order out of

chaos.

To address the microarray classi�cation task, three key data characteristics have been

detected at �rst that contribute to the problem complexity:

• High feature set dimension with respect to the sample number also known as curse

of dimensionality [11];

• Lack of a priori known data structural relations;

• Residual measurement noise even after applying normalization techniques.

The developed algorithms and classi�cation frameworks in this thesis tackle the problem
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with two essential elements. The �rst one is to deal with the lack of a priori structure

by inferring a data-driven structure with unsupervised hierarchical clustering tools. The

second key element is a proper feature selection tool to produce a classi�er as an output

and to reduce the over�tting risk. The pursued goal, towards which all the research work

has been developed is a classi�er with high prediction accuracy, with stable performances

and able to output interpretable solutions.

7.2 Contributions

In this section, the obtained results throughout the thesis are analyzed in terms of con-

tribution to state of the art knowledge about microarray classi�cation.

7.2.1 Hierarchical structure and metagenes

The �rst key element that has been introduced is the structure inference from the data

applying the hierarchical clustering algorithms derived from Treelets [78]. The obtained

output is a binary tree iteratively merging the two most similar features and producing

new features called metagenes.

Several alternative methods to the original one proposed in [78] have been tested,

changing either the similarity metric to merge the feature, comparing Euclidean distance

with Pearson correlation, or the way that two feature are merged, comparing local PCA

with a Haar basis decomposition. The output features, the metagenes, are linear combi-

nation of similarly behaving genes. In this phase, almost no assumption is made on the

data itself to infer a structure except the way to compare the similarity between features.

The outcome from the hierarchical clustering phase and metagene generation is to

increase the available feature space by providing new features able to capture the common

behavior of related genes, thus obtaining a noise reduction e�ect which should lead to

better predictions.

The usefulness of metagenes has been evaluated comparing all the alternatives by

including them in classi�cation experiments. The chosen comparison metric has been

the predictive ability measured in terms of Matthews Correlation Coe�cient, MCC [89],
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when analyzing publicly available data from MAQC study [112]. About the metagenes,

they have proven to be useful for classi�cation, allowing to reach better prediction results

than using only the gene expression pro�les. In all the experiments in Chapters 4 and

5, including metagenes in the classi�cation framework led to better prediction rate than

using individual genes only. Among all the compared alternatives, the original Treelets

method was superior than the Euclidean distance alternative as shown in Section 4.2.2,

while, on the other hand, generating metagenes with Haar basis decomposition proved to

reach better overall MCC than the original PCA implementation.

Publications: The hierarchical structure generation has been described jointly with

the di�erent feature selection schemes in the following works: [17, 15, 1]

7.2.2 Binary classi�cation

The main task for this thesis work was to develop e�ective binary classi�cation tools

for microarray data. In this direction, once the metagenes have been generated, the key

element provided to complete the classi�cation framework was a proper feature selection

task. The global classi�cation framework is then composed of a �rst block in which the

metagenes are created, followed by a feature selection block in which features are selected.

For the feature selection, two alternative approaches have been studied: the �rst one is

a modi�cation of the IFFS algorithm [94] as a wrapper feature selection, while the second

approach involved an ensemble learning focus.

To obtain good results from the IFFS algorithm, this has been adapted to the data

characteristics by introducing two elements. The �rst one is the reliability parameter

which allows to have more information about the sample distribution in the training phase.

The reliability parameter helps to discern between classi�ers obtaining the same error

rate, which is a common case when dealing with the sample scarcity issue of microarray

datasets. The second one is a score de�nition rule to choose the selected features for

classi�cation which is the way in which features are measured in the selection phase

and it is a key factor to choose the right feature. The IFFS framework has been used to

compare all the di�erent metagene generation techniques as well as to compare alternative
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classi�cation algorithms like Linear Discriminant Analysis and linear-kernel SVM. From

this last comparison, it showed how LDA should be preferred to SVM since it obtained

better prediction performances analyzing MAQC datasets. As a global result, when IFFS

is used jointly with Treelets clustering and LDA classi�er, it obtained better results that

the alternatives classifying MAQC data [112], improving the current state of the art.

The other studied feature selection approach is based on Ensemble learning techniques.

In this direction, di�erent alternatives have been tested as a proof of concept very interest-

ing results. The performed single run experiment with di�erent con�gurations highlighted

how the ensemble feature selection approach allows to signi�cantly improve the state of the

art predictive ability when compared to the IFFS results in terms of predictive accuracy.

The studied algorithm has been enriched with key elements like the nonexpert notion that

allows boosting the performance. Overall, the best results for ensemble feature selection

have been obtained with SVM classi�er combined with the nonexpert notion introduced

in Section 4.3.2.

Publications: Publications: The following publications in international conferences

and journals are related to the aforementioned topics [17, 15, 1, 18].

7.2.3 Knowledge integration model for metagene generation

Techniques to infer a hierarchical structure from microarray data combining both numer-

ical information and prior biological information have been described and evaluated with

the aim to produce better metagenes and improve results stability and interpretability.

They have been compared to state of the art alternatives and to the numerical information

only solution from Section 4.2.2 which already showed to have good and robust predictive

properties implementing IFFS as feature selection.

The knowledge integration framework has been studied with di�erent implementations,

comparing four similarity metrics and two combination rules to merge the numerical

correlation and the biological similarity. The rationale behind it is to gather more high-

quality external information about the genes so that the hierarchical clustering process

can be more meaningful from a biological standpoint. In this way, the metagenes can
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summarize the behavior of genes that are similar in both numerical expression and in

biological functions.

Monte Carlo experiments on MAQC [112] datasets have been performed to evaluate the

resulting algorithms in terms of their predictive ability and biological interpretability of

the chosen gene signatures. When compared to the IFFS alternative using numerical data

only, including prior knowledge in the metagene generation allows to obtain more stable

prediction results and more biologically relevant signatures, all this without reducing the

overall mean predictive performance.

Among the studied alternatives, the G-pdf algorithm combining Godall similarity

measure with the probability density function equalization consistently obtained the best

performances also when compared to state of the art alternative from [84]

As a general observation, a proper knowledge integration framework should be pre-

ferred to the bare numerical treelets when possible, since it obtains more robust and

interpretable results for classi�cation.

Publications: The result of this work has been published in [62].

7.2.4 Multiclass classi�cation

Due to the good results for binary classi�cation, the IFFS based framework has been

generalized to work with multiclass problems. For that, a new algorithm for multiclass

classi�cation within the Error Correcting Output Coding framework [37] has been intro-

duced,. It addresses the issue of ECOC algorithms of considering equally probable all the

possible class partitions by limiting the partitions to single classes and class pairs and it

has been named One Against All + Pair Against All: OAA+PAA.

The OAA+PAA algorithm has been tested on seven publicly available datasets and it

has been compared with results obtained with the baseline OAA and OAO approaches,

as well as with state of the art algorithms from [119] applying LDPC codes for multiclass

classi�cation.

The proposed algorithm outperformed the baseline alternatives, showing how it can

improve simpler algorithms. Such an improvement is due to the provided redundancy
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from the algorithm by adding the Pair Against All part. This is a key di�erence with

respect to other ECOC approaches that did not manage to substantially improve the

performances when compared to the OAA approach [118, 106]. When compared to [119],

the OAA+PAA algorithm obtained better results, showing how it is a valid alternative

for the multiclass classi�cation.

Publications: The result of this work has been published in [2].

7.3 Overview and Next steps

In this section, the overall conclusions from this thesis are detailed, together with intu-

itions and ideas about future research directions from this work.

The most important element for the whole framework prediction performance is the

metagenes generation from gene expression data. In all the performed experiments, in-

troducing metagenes consistently led to improved performances for classi�cation. These

newly introduced features have more reproducible behaviors than single genes between

training and validation sets, supporting the statement that metagenes can reduce the

residual noise on gene-expression. As a desirable development from the metagenes intro-

duction, it is probably worth trying to further exploit the obtained hierarchical structure

because in this thesis all the metagenes are considered equal, regardless of how many genes

they merge. Making a better use of the inferred tree, for example to early eliminate some

metagenes because of their unreliability (e.g. the tree-root or the highest level metagenes

that combine thousands of features), or for example to drive the exploration of candidate

regulatory genes for certain problems, could bene�t the results. The tree structure is an

asset that has not been used and that may help in making more sense out of the data.

About metagenes and how it is possible to improve them as well as the inferred struc-

ture, it has been shown how including prior biological information led to an overall im-

provement of the results. The predictive accuracy remained unaltered, but both the

predictive stability and the interpretability are better than without it. These results

can be interpreted how including data sources external from the gene-expression, helps in

gaining more insight about the hidden data structure. A future work direction is therefore
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to build systems integrating more and more information, in an automatic way to better

de�ne the tree construction. From automatic processing of di�erent information sources,

like the used gene ontology databases but also from natural language processing tools, it

could be possible to extract meaning that otherwise would not be possible and it is an

opportunity to integrate di�erent signal processing areas.

Going from the structure to feature selection, feature selection algorithms are a key

factor for the performances. Two alternative methods proved to reach good results from

very di�erent perspectives. On one side, the results using the wrapper algorithm led to

predictive performance that are comparable with the best state of the art alternatives,

with good performance stability and results interpretability. On the other side, applying

ensemble feature selection led to a remarkable performance improvement, at a price of

less interpretable results. Nothing can be said yet about stability because of the di�culty

to design a proper experiment. Even if di�erent, both methods share one common feature

that should be remarked. In the development phase, both algorithms have been tailored

to the data rather than simply being applied as is. For the feature selection task, future

research works could be dedicated to deepen the knowledge of the ensemble learning

potential, to the creation of experiments to assess the stability and how to incorporate

the notion of stability in the selection process. Between ensemble learning and IFFS, the

former has more potential to grow and explore.

In this thesis, the multiclass scenario has been considered too with the study of a

new algorithm with interesting performances. Although we have proposed an improved

algorithm compared to the the state of the art, the binary class classi�cation should

be preferred for further studies. The main reason is that there still is lot of room for

improvement in that �eld and because the multiclass case could be reduced to multiple

binary comparisons.

Finally, as a global conclusion, the application of signal processing techniques to the

analysis of biological data like microarrays proved to be useful and interesting. It has been

possible to develop tools comparable, and even better, than state of the art alternatives

in both the binary and multiclass cases. The proposed frameworks led to good results

in terms of predictive ability, predictive stability and results interpretability, meeting the
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original thesis goal. Even though the theoretical optimum is still far from being reached,

it has been possible to test some key elements like metagenes and the feature selection

that are worth to be further studied.
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