111 research outputs found

    Time-Dependent Tourist Tour Planning with Adjustable Profits

    Get PDF
    Planning a tourist trip in a foreign city can be a complex undertaking: when selecting the attractions and choosing visit order and visit durations, opening hours as well as the public transit timetable need to be considered. Additionally, when planning trips for multiple days, it is desirable to avoid redundancy. Since the attractiveness of activities such as shopping or sightseeing depends on personal preferences, there is no one-size-fits-all solution to this problem. We propose several realistic extensions to the Time-Dependent Team Orienteering Problem with Time Windows (TDTOPTW) which are relevant in practice and present the first MILP representation of it. Furthermore, we propose a problem-specific preprocessing step which enables fast heuristic (iterated local search) and exact (mixed-integer linear programming) personalized trip-planning for tourists. Experimental results for the city of Berlin show that the approach is feasible in practice

    Search graph structure and its implications for multi-graph constrained routing and scheduling problems

    Get PDF
    Multi-graphs where several edges connect a pair of nodes are an important modelling approach for many real-world optimisation problems. The multi-graph structure is often based on infrastructure and available connections between nodes. In this study, we conduct case studies for a special type of constrained routing and scheduling problems. Using the airport ground movement problem as an example, we analyse how the number of parallel edges and their costs in multi-graph structure influence the quality of obtained solutions found by the routing algorithm. The results show that the number of parallel edges not only affects the computational complexity but also the number of trade-off solutions and the quality of the found solutions. An indicator is further proposed which can estimate when the multi-graph would benefit from a higher number of parallel edges. Furthermore, we show that including edges with dominated costs in the multi-graph can also improve the results in the presence of time window constraints. The findings pave the way to an informed approach to multi-graph creation for similar problems based on multi-graphs

    Dynamic Fuzzy Logic-Ant Colony System-Based Route Selection System

    Get PDF
    Route selection in metropolises based on specific desires is a major problem for city travelers as well as a challenging demand of car navigation systems. This paper introduces a multiparameter route selection system which employs fuzzy logic (FL) for local pheromone updating of an ant colony system (ACS) in detection of optimum multiparameter direction between two desired points, origin and destination (O/D). The importance rates of parameters such as path length and traffic are adjustable by the user. In this system, online traffic data are supplied directly by a traffic control center (TCC) and further minutes traffic data are predicted by employing artificial neural networks (ANNs). The proposed system is simulated on a region of London, United Kingdom, and the results are evaluated

    Dynamic trip planner for public transport using genetic algorithm

    Get PDF
    This paper reports the development of a public transport trip planner to help the urban traveller in planning and preparing for his commute using public transportation in the city. A Genetic Algorithm (GA) approach that handles real-time Global Positioning Systems (GPS) data from buses of the Metropolitan Transport Corporation (MTC) in Chennai City (India) has been used to develop the planner. The GA has been shown to provide good solutions within the problem’s computation time constraints. The developed trip planner has been implemented for static network data first and subsequently extended to use real-time data. The “walk mode” and Chennai Mass Rapid Transit System (MRTS) have also been included in the geospatial database to extend the route-planner’s capabilities. The algorithm has subsequently been segmented to speed up the prediction process. In addition, a temporal cache has also been introduced during implementation, to handle multiple queries generated simultaneously. The results showed that there is promise for scalability and citywide implementation for the proposed real-time route-planner. The uncertainty and poor service quality perceived with public transport bus services in India could potentially be mitigated by further developments in the route-planner introduced in this paper

    Modelo Matemático e Meta-Heurística Simulated Annealing para Elaboração de Roteiros Turísticos com base no Tourist Trip Design Problem

    Get PDF
    Muito embora existam diversos pacotes de viagens com destinos predefinidos contemplando locais mais populares, nos últimos anos tem crescido a procura por soluções que criem roteiros personalizados voltados às necessidades de cada turista. Para suprir essa nova demanda surge o Problema de Elaboração de Rotas Turísticas (PERT) ou TouristTrip Design Problem (TTDP) o qual Van Oudheusden e Vansteenwegen (2007) sugerem o uso do OrienteeringProblem (OP) e suas extensões para resolução desta classe de problemas. Esta dissertação tem por objetivo o desenvolvimento de um modelo matemático e de uma meta-heurística SimulatedAnnealing (SA) para resolução do TouristTrip Design Problem (TTDP)

    Data-Driven Optimization Models for Feeder Bus Network Design

    Get PDF
    Urbanization is not a modern phenomenon. However, it is worthwhile to note that the world urban population growth curve has up till recently followed a quadratic-hyperbolic pattern (Korotayey and Khaltourina, 2006). As cities become larger and their population expand, large and growing metropolises have to face the enormous traffic demand. To alleviate the increasing traffic congestion, public transit has been considered as the ideal solution to such troubles and problems restricting urban development. The metro is a type of efficient, dependable and high-capacity public transport adapted in metropolises worldwide. At the same time, the residents from crowded cities migrated to the suburban since 1950s. Such sub-urbanization brings more decentralized travel demands and has challenged to the public transit system. Even the metro lines are extended from inner city to outer city, the commuters living in suburban still have difficulty to get to the rail station due to the limited transportation resources. It is becoming inevitable to develop the regional transit network such as feeder bus that picks up the passengers from various locations and transfer them to the metro stations or transportation hubs. The feeder bus will greatly improve the efficiency of metro stations whose service area in the suburban area is usually limited. Therefore, how to develop a well-integrated feeder system is becoming an important task to planners and engineers. Realizing the above critical issues, the dissertation focus on the feeder bus network design problem (FBNDP) and contributes to three main parts: 1. Develop a data-mining strategy to retrieve OD pair from the large scale of the cellphone data. The OD pairs are able to present the users’ daily behaver including the location of residence, workplace with the timestamp of each trip. The spatial distribution of urban rail transit user demand from the OD pair will help to support the establishment and optimization of the feeder bus network. The dissertation details the procedure of data acquisition and utilization. The machine leaning is applied to predict the travel demand in the future. 2. Present a mathematical model to design the appropriate service area and routing plans for a flexible feeder transit. The proposed model features in utilizing the real-world data input and simultaneously selecting bus stops and designing the route from those targeted stops to urban rail stops. 3. Propose an improved feeder bus network design model to provide precise service to the commuters. Considering the commuters are time-sensitive during the peak hours, the time-windows of each demand is taken in to account when generating the routes and the schedule of feeder bus system. The model aims to pick up the demand within the time-windows of the commuters’ departure time and drop off them within the reasonable time. The commuters will benefit from the shorter waiting time, shorter walking distance and efficient transfer timetable

    Adaptive mobility: a new policy and research agenda on mobility in horizontal metropolises

    Get PDF

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front
    • …
    corecore