69 research outputs found

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Using Topological Data Analysis for diagnosis pulmonary embolism

    Full text link
    Pulmonary Embolism (PE) is a common and potentially lethal condition. Most patients die within the first few hours from the event. Despite diagnostic advances, delays and underdiagnosis in PE are common.To increase the diagnostic performance in PE, current diagnostic work-up of patients with suspected acute pulmonary embolism usually starts with the assessment of clinical pretest probability using plasma d-Dimer measurement and clinical prediction rules. The most validated and widely used clinical decision rules are the Wells and Geneva Revised scores. We aimed to develop a new clinical prediction rule (CPR) for PE based on topological data analysis and artificial neural network. Filter or wrapper methods for features reduction cannot be applied to our dataset: the application of these algorithms can only be performed on datasets without missing data. Instead, we applied Topological data analysis (TDA) to overcome the hurdle of processing datasets with null values missing data. A topological network was developed using the Iris software (Ayasdi, Inc., Palo Alto). The PE patient topology identified two ares in the pathological group and hence two distinct clusters of PE patient populations. Additionally, the topological netowrk detected several sub-groups among healthy patients that likely are affected with non-PE diseases. TDA was further utilized to identify key features which are best associated as diagnostic factors for PE and used this information to define the input space for a back-propagation artificial neural network (BP-ANN). It is shown that the area under curve (AUC) of BP-ANN is greater than the AUCs of the scores (Wells and revised Geneva) used among physicians. The results demonstrate topological data analysis and the BP-ANN, when used in combination, can produce better predictive models than Wells or revised Geneva scores system for the analyzed cohortComment: 18 pages, 5 figures, 6 tables. arXiv admin note: text overlap with arXiv:cs/0308031 by other authors without attributio

    Performance of the wavelet-transform-neural network based receiver for DPIM in diffuse indoor optical wireless links in presence of artificial light interference

    Get PDF
    Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI

    An Exercise and Sports Equipment Recognition System

    Get PDF
    Most mobile health management applications today require manual input or use sensors like the accelerometer or GPS to record user data. The onboard camera remains underused. We propose an Exercise and Sports Equipment Recognition System (ESRS) that can recognize physical activity equipment from raw image data. This system can be integrated with mobile phones to allow the camera to become a primary input device for recording physical activity. We employ a deep convolutional neural network to train models capable of recognizing 14 different equipment categories. Furthermore, we propose a preprocessing scheme that uses color normalization and denoising techniques to improve recognition accuracy. Our best model is able to achieve a a top-3 accuracy of 83.3% on the test dataset. We demonstrate that our model improves upon GoogLeNet for this dataset, the state-of-the-art network which won the ILSVRC 2014 challenge. Our work is extendable as improving the quality and size of the training dataset can further boost predictive accuracy

    Non-linear adaptive equalization based on a multi-layer perceptron architecture.

    Get PDF

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    Recursive backpropagation algorithm applied to a globally recurrent neural network

    Full text link
    In general, recursive neural networks can yield a smaller structure than purely feedforward neural network in the same way infinite impulse response (IIR) filters can replace longer finite impulse response (FIR) filters. This thesis presents a new adaptive algorithm that trains recursive neural networks. This algorithm is based on least mean square (LMS) algorithms designed for other adaptive architectures. This algorithm overcomes several of the limitations of current recursive neural network algorithms, such as epoch training and the requirement for large amounts of memory storage; To demonstrate this new algorithm, adaptive architectures constructed with a recursive neural network and trained with the new algorithm are applied to the four adaptive systems and the results are compared to adaptive systems constructed with other adaptive filters. In these examples, this new algorithm shows the ability to perform linear and nonlinear transformations and, in some cases, significantly outperforms the other adaptive filters. This thesis also discusses the possible avenues for future exploration of adaptive systems constructed of recursive neural networks

    A study of generative adversarial networks to improve classification of microscopic foraminifera

    Get PDF
    Foraminifera are single-celled organisms with shells that live in the marine environment and can be found abundantly as fossils in e.g. sediment cores. The assemblages of different species and their numbers serves as an important source of data for marine, geological, climate and environmental research. Steps towards automatic classification of foraminifera using deep learning (DL) models have been made (Johansen and Sørensen, 2020), and this thesis sets out to improve the accuracy of their proposed model. The recent advances of DL models such as generative adversarial networks (GANs) (Goodfellow et al., 2014), and their ability to model high-dimensional distributions such as real-world images, are used to achieve this objective. GANs are studied and explored from a theoretical and empirical standpoint to uncover how they can be used to generate images of foraminifera. A multi-scale gradient GAN is implemented, tested and trained to learn the distributions of four high-level classes of a recent foraminifera dataset (Johansen and Sørensen, 2020), both conditionally and unconditionally. The conditional images are assessed by an expert and a deep learning classification model and is found to contain mostly valuable characteristics, although some artificial artifacts are introduced. The unconditional images measured a Fréchet Inception distance of 47.1. From the conditionally learned distributions a total of 10 000 images are sampled from the four distributions. These images are used to augment the original foraminifera training set in an attempt to improve the classification accuracy of (Johansen and Sørensen, 2020). Due to limitations of computational resources, the experiments were carried out with images of resolution 128 × 128. The synthetic image augmentation lead to an improvement in mean accuracy from 97.3 ± 0.4 % to 97.4 ± 0.7 % and an improvement in best achieved accuracy from 97.7 % to 98.5 %

    Efficient channel equalization algorithms for multicarrier communication systems

    Get PDF
    Blind adaptive algorithm that updates time-domain equalizer (TEQ) coefficients by Adjacent Lag Auto-correlation Minimization (ALAM) is proposed to shorten the channel for multicarrier modulation (MCM) systems. ALAM is an addition to the family of several existing correlation based algorithms that can achieve similar or better performance to existing algorithms with lower complexity. This is achieved by designing a cost function without the sum-square and utilizing symmetrical-TEQ property to reduce the complexity of adaptation of TEQ to half of the existing one. Furthermore, to avoid the limitations of lower unstable bit rate and high complexity, an adaptive TEQ using equal-taps constraints (ETC) is introduced to maximize the bit rate with the lowest complexity. An IP core is developed for the low-complexity ALAM (LALAM) algorithm to be implemented on an FPGA. This implementation is extended to include the implementation of the moving average (MA) estimate for the ALAM algorithm referred as ALAM-MA. Unit-tap constraint (UTC) is used instead of unit-norm constraint (UNC) while updating the adaptive algorithm to avoid all zero solution for the TEQ taps. The IP core is implemented on Xilinx Vertix II Pro XC2VP7-FF672-5 for ADSL receivers and the gate level simulation guaranteed successful operation at a maximum frequency of 27 MHz and 38 MHz for ALAM-MA and LALAM algorithm, respectively. FEQ equalizer is used, after channel shortening using TEQ, to recover distorted QAM signals due to channel effects. A new analytical learning based framework is proposed to jointly solve equalization and symbol detection problems in orthogonal frequency division multiplexing (OFDM) systems with QAM signals. The framework utilizes extreme learning machine (ELM) to achieve fast training, high performance, and low error rates. The proposed framework performs in real-domain by transforming a complex signal into a single 2–tuple real-valued vector. Such transformation offers equalization in real domain with minimum computational load and high accuracy. Simulation results show that the proposed framework outperforms other learning based equalizers in terms of symbol error rates and training speeds

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    Abstract This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal ?soft‘ sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations
    corecore