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Abstract 

 

Our modern society has transformed to an information-demanding system, seeking voice, 

video, and data in quantities that could not be imagined even a decade ago. The mobility of 

communicators has added more challenges. One of the new challenges is to conceive highly reliable 

and fast communication system unaffected by the problems caused in the multipath fading wireless 

channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and 

reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of 

which makes the channel noise inconsequential. 

The theoretical background for wireless channels modeling and adaptive signal processing are 

covered in first two chapters of dissertation. 

The approach of this thesis is not based on one methodology but several algorithms and 

configurations that are proposed and examined to fight the ISI problem. There are two main 

categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) 

modes. We have studied the application of a new and specially modified neural network requiring 

very short training period for the proper channel equalization in supervised mode. The promising 

performance in the graphs for this network is presented in chapter 4. 

For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the 

concept of multiple “cooperative” algorithms for the cases of two and three cooperative algorithms. 

The “select absolutely larger equalized signal” and “majority vote” methods have been used in 2- 



 
 

and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further 

research. 

Chapter 5 involves the application of general concept of simulated annealing in blind mode 

equalization. A limited strategy of constant annealing noise is experimented for testing the simple 

algorithms used in multiple systems. Convergence to local stationary points of the cost function in 

parameter space is clearly demonstrated and that justifies the use of additional noise. The capability 

of the adding the random noise to release the algorithm from the local traps is established in several 

cases. 
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Thesis Outlook 

 Our modern society has transformed to an information-demanding system, seeking voice, 

video, and data in quantities that could not be imagined even a decade ago. Mobility of 

communicators has added new challenges in the path to accomplish the goal of providing all the 

information asked for in any possible location. One of the new challenges is to conceive highly 

reliable and fast communication system unaffected by the problems caused in the multipath fading 

wireless channel. 

Our quest in this thesis is to help remove one of the obstacles in the way of achieving ultimately fast 

and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the severity of 

which makes the channel noise inconsequential. 

An introduction to wireless channel characteristics and modeling is given in chapter one. This 

includes the large scale and small scale fading phenomena in section 1.2 and 1.3 respectively, and 

the mathematical models for wireless channels in section 1.5. An emerging ISI cancellation 

technique by space diversity is also discussed in the last section of chapter one. 

Since most of the techniques used to achieve the aforementioned goal are adaptive in nature, chapter 

two is dedicated to a review of the main adaptive algorithms as well as some other methods to invert 

a-priori known channels. The deconvolution technique for inverting known channels (by their 

approximate impulse response) is discussed in section 2.3; when other techniques for the known 

channel are given in section 2.4. Blind equalization techniques with relatively low computational 

cost are discussed in section 2.5. A major family of these techniques that are collectively called 

Bussgang algorithms are reviewed in the concluding section of chapter 2. 

Our contributions are mainly in chapter 3 and 4. A new methodology to approach the blind 

equalization which was mentioned in the research proposal by using diverse algorithms is treated in 

chapter 3. First a few more algorithms with relatively simple computations that are being 
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incorporated in diversified systems in chapter 3 are given in section 3.2. These include RLS, 

EWRLS, and Quantized State recursive methods. In section 3.3 the general idea of cooperation of 

two or more algorithms is discussed and with some very optimistic expectations the effectiveness of 

them are shown. Section 3.4 introduces the configuration that uses two algorithms with 

corresponding simulation results, while the main idea of majority vote among the algorithms 

contributing to the systems with 3 simultaneous ones is given in section 3.5. The latter section 

includes the important simulation results for the system of three that is the pinnacle of this chapter. 

Chapter 3 concludes with a brief summary of the results. 

An alternative to blind methods that can use a very short training period seems attractive in practice. 

Especially if the proposed method is simple in architecture, it can be employed to replace the less 

reliable blind equalization techniques. After an introduction, and the review of the fundamental 

theory of neural networks in sections 4.1 and 4.2 the well-known back propagation algorithm for 

neural networks is presented in section 4.3. The application of the proposed architecture to the 

problem of wireless channel equalization is formulated in section 4.4. The learning algorithm details 

for the proposed network are summarized in section 4.5. The performance and the simulation results 

are included in section 4.6 of this chapter. A weak convergence analysis of the output layer is 

discussed in section 4.7 (this is different from the well-known Rosenblatt perceptron convergence 

that does not include any activation function, such as the hyperbolic tangent blocks in our proposed 

network). While the input layer convergence analysis seems out of reach at present, it is left to the 

future research. 

Another concept that was originally intended to be developed also for blind mode systems as a 

promising methodology is approached in chapter 5 under the Adaptive Simulated Annealing 

terminology. After an introduction to the elements of simulated annealing and a short history of its 

application are given in section 5.2, in section 5.3 we argue that this technique should facilitate the 

convergence, at least in theory. Some preliminary results are shown in the following section. 
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Finally chapter 6 presents an overall collective summary of the results obtained in this thesis and 

delineates the path for future continuation of related research by the author and the research 

community, in particular in the field of adaptive signal processing.
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Chapter 1: Wireless Channel Models and Diversity techniques 

1.1 Introduction 

Wireless communication has gone through major changes in the last few decades. While it 

mostly had been used for satellite, terrestrial links and broadcasting until the 1970s, cellular and 

wireless networking and other Personal Communication Systems (PCS) presently dominate the 

technology of modern wireless communications. 

The generally used Additive White Gaussian Noise (AWGN) model does not adequately represent 

the channel for these modern applications. Moreover, the Line-Of-Sight (LOS) path between the 

transmitter and the receiver may or may not exist in such a channel. 

An important characteristic of the wireless channel is the presence of many different paths between 

the transmitter and the receiver (See Figure 1-1). 

* Reflection

* Scattering

* Diffraction
 

Figure 1-1 Multipath channel in wireless communications. 

Basic Electromagnetic (EM) wave propagation phenomena such as scattering that occurs along these 

paths further increases the number of the paths between the communicators.  
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Common propagation phenomena encountered are: 

1. Reflection: EM waves are reflected when impinging on objects in their paths if the physical 

size of the objects are much greater than the wavelength   of the EM waes. 

2. Diffraction: Characterized as the sharp changes in the propagation path of EM waves that 

occur when they hit an obstacle with surface irregularities such as sharp edges. 

3. Scattering: Occurs when EM waves visit a cluster of objects smaller in size than the 

wavelength, such as water vapor and foliage. Scattering causes many copies of the EM wave 

to propagate in different directions. 

There are other infrequent phenomena such as absorption and refraction that might take place in 

common wireless channels. 

The signal power is the critical parameter in a communication channel. The power reducing effects 

have been studied in two major cases: 

1. Large-scale effect characterizes the signal power usually with respect to long propagation 

distances and results in the mean path loss of the signal. 

2. Small-scale effect or fading concerns the relatively fast changes in the signal amplitude and 

its power. It characterizes the signal power fluctuations over short distance and time 

intervals around the mean signal power. 

1.2 Large Scale Fading or Attenuation 

In general, the average power of the received signal decreases logarithmically with the 

distance between the transmitter and the receiver. The attenuation caused by the distance is called 

large scale effect or path loss. The propagation medium and the environment would also have some 

effect on the total loss of the signal strength. 
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The averaged received power at a certain distance from the transmitted is measured by keeping the 

distance to the transmitter constant (as the radius of a circle) and moving the mobile antenna on the 

circle. The difference between the transmitted power    and the averaged received signal power 

 ( ) (expressed in dBm) at certain distance   is the path loss in dB, which is denoted by  ( ). 

 ( )      ( )             (   ) 

The average of the path loss in dB units, with respect to a referenced distance    at which the path 

loss is measured and is known, is given by: 

 ̅( )   ̅(  )           (
 

  
)        (   ) 

The order   has the constant value of 2 for LOS links but is usually higher than 2 for multipath 

channels in cities and urban areas. The model in (1-20 is known as the log-distance path loss model. 

The measured path loss  ( ) at distance   can be significantly different from the average value due 

to, for example, shadowing effects, and in fact, is a Gaussian random variable given by: 

 ( )   ̅(  )           (
 

  
)           (   ) 

   is a zero-mean Gaussian random variable (in dB) with standard deviation   also in dB. The path 

loss so described is known as log-normal shadowing. 

The various measurements of path loss at different distances are collected in a graph of the loss in      

dB versus the distance in dB (                ). The constant   can be approximated by the best 

fitted line (Least-Squares, for example) of the data.
1
  

With the distance   equal to the radius of the wireless cellular network, the probability [  ( )   ] 

is equal to the likelihood of the coverage within the cell. 

                                                           
1
 See Jake, 1974, pp. 126-127 

         Rappaport, 2002, pp. 141-143 
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 The percentage of coverage area (that is, the fraction of the area within the cell that will have an 

acceptable power level) is: 

 ( )  
 

   
∫ ∫ [  ( )   ]             (   )

 

 

  

 

 

This percentage may be computed in terms of the error function erf as follows(see [6] and [7]): 

 ( )  
 

 
(     ( )     (  

   

  
) [     (  

  

 
)])        (   ) 

          
  ̅̅̅̅ ( )

 √ 
   

         

 √ 
         ( )  

 

√ 
∫   

 
  

 

 

  

When the signal level is     ̅̅̅̅ ( )    (that is    ), then: 

 ( )  
 

 
[     (

 

  
) (     (

 

 
))]         (   ) 

1.3 Small Scale Fading 

 Due to multipath propagation, more than one version of the transmitted signal arrive at the 

mobile receiver at slightly different times. The interference induced by these multiple copies, also 

known as multipath waves, has become the most significant cause of distortion known as fading and 

Inter-Symbol Interference (ISI). The radio signal experiences rapid changes of its amplitude over a 

relatively short period of time (See Figure 1-2). 

The waves travelling different paths, therefore travelling different distances, sum up at the receiver 

antenna (or antenna array in some cases) to generate ISI of such a magnitude that the effects of large-

scale path loss can be completely ignored by comparison. 
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d1

d2

d0
θ

θ

Rx

Tx

 

Figure 1-2 Example of two-ray geometry 

There are a variety of ways to statistically model the wireless channels in order to represent the 

random behavior of multipath fading. One simple and popular model represents the fading channel 

with a linear and time-varying Channel Impulse Response (CIR) denoted by the function  (   )  

s (t) r (t)h (t,τ)

 

Figure 1-3 Channel modeling by Channel Impulse Response (CIR) 

Time Dispersion Parameters 

A perfect channel from a communications point of view is one that has a constant gain and a 

linear phase response, or at least possesses these features over a desired frequency range or 

bandwidth. 
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Such a frequency range should be larger than the frequency spectrum of the transmitted signal to 

preserve the signal spectral characteristics. Consequently, such an ideal channel can be symbolically 

shown as  (   )      ( ) (See Figure 1-4), with    as a constant. 

goδ(t)

τ0
t

 

Figure 1-4 An ideal Channel Impulse Response (CIR) 

Such channel impulse response implies only one received signal (delayed by  ), causing no ISI even 

when the gain varies with time as the varying CIR of  (   )   ( ) ( ) where  ( ) is relatively 

slowly varying function of time and in general may be complex valued. If we assume that the 

multipath channel includes   different paths, and let the power and delay of     path be given by 

          respectively, then the weighted average delay (also known as mean excess delay) is 

defined as: 

 ̅  
∑   

   
 
   

∑   
  

   

                           (   ) 

The second statistical moment of the delay may also be computed by: 

  ̅̅ ̅  
∑   

   
  

   

∑   
  

   

                        (   ) 

The channel delay spread, that is the rms value of the delay, is given by: 

   √ 
 ̅̅ ̅  ( ̅)                     (   ) 
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The channels with time-dependent response (CIR) given by  (   ) will have time-dependent 

frequency response  (   ) (In fact, as will be stressed later, the CIRs change very slowly with 

respect to time in most practical cases) with 

 (   )  ∫  (   )       

  

  

                    (    ) 

To determine the wireless channel characteristics in the frequency domain, first we need to 

determine the correlation coefficient or factor of the channel frequency response, based on a change 

in frequency of the size    or     . 

 (  )  
 {  (   ) (      )}

 {  (   ) (   )}
 
 {  (   ) (      )}

 {| (   )| }

 
∫ | (   )|          
  

  

∫ | (   )|   
  

  

    (    ) 

The coherence bandwidth is the counterpart of the delay spread in the frequency domain, and it is the 

range of frequencies over which the channel gain remains about the same, or as is commonly known, 

over the range of frequencies the gain is flat, with a linear phase. Fortunately, the coherence 

bandwidth of the channel denoted by    can be approximated based on the specified correlation 

coefficient value. 

The case when the correlation coefficient is about zero,  (  )           . The coherence 

bandwidth for this case is approximated by        , which implies that changing the frequency by 

   results in a completely different (and statistically independent) gain. 

For the more common value of  (  )      (      ),the coherence bandwidth is estimated by 

           , which implies that the channel gain at   and      are similar.  
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Finally, when considering  (  )      (      ), the coherence bandwidth can be approximated as 

           . In this case, the channel gain at   is almost exactly the same as the gain at     . 

Based on the value of coherence bandwidth   , and given signal bandwidth   , one can evaluate the 

channel category. When      , the channel is considered flat or flat fading. 

Denoting the symbol time duration by    then the minimum signal bandwidth can be estimated as 

   
 

  
. This signal bandwidth therefore has to be quite a bit less than the channel coherence 

bandwidth so that the channel can be assumed to be flat fading. A rule of thumb is given by 

   
 

  
 

 

    
                      

  
  
      

In the case of a flat fading channel, no compensation for the channel distortion is required. 

Consequently, the symbol rate in the channel has an upper bound    
   

  
. 

When the above condition is not met, that is,        the ISI exists and the received signal is 

distorted. 

In most common multipath channels the ISI distortion effects are significant and dominate the 

channel noise. Such channels are said to be highly dispersive, and engineering efforts are focused on 

eliminating ISI by a process known as equalization in communication discipline, or de-convolution 

in some other applications such as geophysics. 

In conclusion, we divide the channel behavior with respect to the signal bandwidth and according to 

the channel delay spread as follows: 

 When       and       the channel is known as flat fading or frequency-not-selective. 

 When       and       the channel is known as non-flat or frequency-selective. 
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1.4 Frequency Dispersion Parameters 

 The mobility of the communicator originates another parameter known as Doppler shift in 

frequency, or simply some change in frequency due to the mobile velocity. 

When denoted by   , the Doppler shift is computed as    
 

 
    , in which   is the relative mobile 

speed,   is the radio wavelength, and   is the angle between the wave direction and the mobile 

direction. The change in frequency is positive when the mobile approaches the transmitter and 

negative when the mobile is departing. 

Radio 

Wave

θ

v

 

Figure 1-5 Doppler shift geometry 

It is obvious that different paths have different Doppler shifts that possess random natures, as the 

angle   can be considered random and in most cases uniformly distributed. 

There are a number of copies of the transmitted waves at the mobile antenna, each travelling along 

different paths, which are characterized by various relative speeds and angles. Moreover, in specific 

scenarios, the surrounding objects might be moving and generating time varying Doppler shifts on 

multiple components. 

The corresponding random change in frequency causes spectral broadening known as Doppler 

spread. Doppler spread is therefore defined as the range of frequencies over which the Doppler shift 
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is not zero. We denote by    the maximum Doppler shift or Doppler spread of a specific wireless 

channel. 

It is possible to categorize the wireless channel with respect to Doppler spread    as follows: 

 If the signal bandwidth is much greater than Doppler spread, that is      , the fading is 

known as slow fading and, hence, the effects of Doppler spread are negligible. In this case, 

the channel (in particular, CIR) changes at a much slower rate and can be assumed to be 

static over several symbol time durations. 

 If, on the contrary, the effects of the Doppler spread are significant and cannot be ignored in 

the case that      , the CIR changes rapidly with respect to the symbol time duration. 

Such channel is called fast fading. 

The time domain properties of the wireless channel can be further specified by defining another 

parameter, coherence time, which is the duration of time in which the CIR is invariant. Two samples 

of the channel are highly correlated if their time separation is less than the coherence time.  The 

given definition itself depends on the time correlation coefficient.  

The correlation coefficient in the time domain as a function of time difference    is given by: 

 (  )  
 { ( )  (    )}

 {| ( )| }
              

Generally, the coherence time is inversely proportional to the Doppler spread. 

   
 

  
              

If the coherence time for which the time correlation coefficient of Equation (1-12) remains above     

or     it is approximated by: 
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As a rule of thumb, the geometric average of 1-13 and 1-14 is used for digital communication. 

   √
 

  
 

 

     
 
     

  
       (    ) 

The channel characteristics can be categorized using the coherence time   , and the symbol time 

duration    as follows: 

 When       , the complete signal or symbol is affected similarly by the channel, and the 

channel is known as slow fading. 

 When       , different parts of a signal are affected differently because the channel 

changes faster compared to a symbol duration. Consequently, the channel is called fast 

fading. 

In summary, wireless channels can be divided into four types. Based on the delay spread, the channel 

is either flat (not frequency selective) or frequency selective, and based on Doppler spread (or, 

equivalently, coherence time) the channel is known as slow or fast fading. 

As we will see, commonly encountered wireless channels in modern mobile communication systems 

are determined to be selective and slow fading. That is, the channels are usually highly dispersive. 

However, the variation of channels is slow with respect to time. 

To investigate the time variation of typical wireless channels, consider the scenario of Figure 1-6 in 

which the mobile is travelling at 50 mph (approximately 23 m/s) at an angle of 40° to the cardinal 

East-West direction. 
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Figure 1-6 Example of the channel time-variation computing 

The path length for the ray shown in the figure is computed by    √  
  (     )

  in meters 

and the corresponding delay in seconds by    
  

 
. Given the geometric distances:    

                           , the delay         . If we assume a symbol rate of    

     ksps that is equivalent of symbol time           the time delays after 10,000 symbols (     

s) is computed as              . That is a change of less than      in the time delay of the 

travelling ray. This example justifies the assumption that time variation of the wireless channels are 

significantly slow in comparison to common symbol rates (we have used a worst case scenario here.) 
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1.5 Wireless Channel Models 

 Analytical modeling of wireless channel variations and the evaluation of their effects on 

transmitted signals is essential for capacity and coverage optimization including radio resource 

management. One simple model based on the previous discussions is given in Figure 1-7. In this 

model large-scale path loss is compensated for by adjusting the signal amplitude with √ ̅( ) factor. 

s (t) r (t)
h (t,τ)

)(dL

Σ

n (t)

 
Figure 1-7 Simple wireless channel model 

The small-scale variations are collected in CIR part of the model, namely  (   ). The received signal 

characteristics, including the amplitude and the phase, depend on the distance from the transmitter  , 

and the azimuth (horizontal plane) angle   of the receiver with respect to a reference. The latter is 

justified even in cases when the transmitter antenna (or antenna array) is omni-directional due to the 

fact that the physical channel might not be azimuthally symmetric. When the dependence on the 

distance was explicitly shown in equation (1-3), the azimuth angle was ignored since an angular 

average of the pass loss at each specific distance was taken into account. 

In the following, the dependence on         is assumed to be implied and explicit notation is 

omitted in order to keep the mathematical expressions sharp and simple. 

The dependence on time must also be acknowledged. So for the Channel Impulse Response (CIR), 

which in an accurate notation should be given as  (     ) or     ( ), it is simply shown by  ( ) in 

the discussion that follows. 



14 
 

The channel model of a linear time-varying impulse response is approximated by one or multiple 

delta functions for the flat-fading or frequency-selective cases respectively. The delta functions have 

variable and generally complex-valued amplitudes that need to be statistically modeled. 

 In the first case we assume that no Line-Of-Sight (LOS) path between the transmitter and the 

receiver exist. Considering   available paths in the channel, the received signal comprises a 

collection of weighted and delayed  signals (in terms of an unmodulated  sinusoidal carrier 

signal) and an independent random noise process: 

 ( )  ∑  

 

   

   (        )   ( )      (    ) 

 ( )     (     )∑     (  )

 

   

    (     )∑  

 

   

    (  )   ( )

    (     )   ( )     (     )   ( )   ( )     (    ) 

By using the central-limit-theorem and fair assumptions about the physical environment, 

 ( )      ( ) parameters are estimated as iid (identical and independently distributed) zero-

mean Gaussian random variables with their variance noted by   . 

The envelope  ( )  √  ( )    ( ) is distributed according to Rayleigh pdf (probability 

distribution function) and is usually independent of time. 

  ( )  
 

  
   ( 

  

   
)            (    ) 

The phase component is: 

 ( )       (
 ( )

 ( )
)         (    ) 
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The phase variable is commonly accepted to be uniformly distributed in [–    ] follows 

from iid assumption. The average power of the received signal can be evaluated as  [  ]  

 [  ]   [  ]       

The small-scale variations of the channel as collected in the CIR,  (   )  is modeled with 

one or multiple delta functions adjusted by a complex-valued path gain. The CIR is 

simplified and given by: 

 (   )  ∑   
    ( )

 

   

 (    )       (    ) 

The CIR equation reduces a single delta function in flat-fading channels as      

Moreover, the path gains    are assumed to be time-independent (in fact, slowly varying with 

time), when the phase components   ( ) may change rapidly in time. Their distributions 

have already been given in (1-19) and (1-20) for         respectively. The received 

baseband signal is usually normalized so that ∑   
    

   . When the channel is frequency-

selective, all but one of the components in (1-20) are undesired and interfere with the main 

desired component. The desired component is specified by (     ). The important measure 

of the quality of ISI-elimination is known as residual ISI computed in dB: 

            (
∑   

    
  

   

  
 )         (

    
 

  
 )        (    ) 

The last term in Equation (1-21) is valid when the signal power is normalized. 

The power-delay profile of multipath channels is defined by the square of the magnitude of 

path gains as a collection of delta or impulse functions  ∑   
  (    )

 
   . 
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 The second case of modeling path gains includes a dominant approximately stationary LOS 

component in addition to random multipath components. In this case the path gain 

 ( )     ( ) are no longer zero-mean, nonetheless they are Gaussian with equal variance. 

Let     [ ] and     [ ] with equal variance noted by   . We define   √  
    

  

as a non-centrality parameter, and   
  
    

 

   
 

  

   
 as the Rice factor. The pdf of the 

envelope   √      will be Ricean as follows: 

  ( )  
 

  
   (

      

   
)   (

  

  
)             (    ) 

The   ( ) part is the modified Bessel function of the 0
th
 order. This function, in closed form, 

can be written: 

  ( )  
 

 
∫     (     )   

 

  

 

 

 ∫    (     )  

  

 

       (    ) 

It is computed using series expansions with   ( )    (see for example, Jeffery 2005 or 

Abramowitz and Stegun 1964). 

Obviously, when the LOS disappears, the non-centrality     and the pdf converges to 

Rayleigh. 

 Finally, for urban zones and cities with closely spaced buildings where no dominant LOS or 

specular component exists, the small-scale multipath channel is more accurately modeled by 

the Nakagami distribution, which models the magnitude of the path gains relatively better as 

compared to the Rayleigh distribution. 

Considering  [  ]   (     ) and defining  
  

 [(    ) ]
 , the Nakagami pdf is given as: 
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  ( )  
 

 ( )
(
 

 
)
 

         ( 
   

 
)                    (    ) 

When  ( )  ∫    (  )      
 

 
 is Gamma function with  ( )     

The Nakagami distribution is equivalent to the well-known Gamma distribution with 

parameters           
 

 
  and if we substitute random variable    with   as in the 

following pdf: 

  ( )  
 

 ( )  
        ( 

 

 
)            (    ) 

Furthermore, the Nakagami reduces to the Rayleigh distribution when    . 

In concluding this section, we need to stress some important issues in the discussion presented 

above. 

a. As was mentioned, the two components of the channel path gains  ( )     ( ) are 

independent and can be dealt with separately. In some cases, the envelope   √      is 

assumed to be relatively constant in time (slowly varying) and the phase        (
 

 
) may 

be constant and ignored as it is tracked by the receiver. Such assumptions approximate the 

channel with a real impulse response. 

b. In digital communication, the baseband signals (received signal), after processing with 

matched filter and the sample and hold circuit are represented by a discrete-time impulse 

response or equivalently by a transversal filter of finite length. Such CIR is written by the 

sequence { [ ]}   
    , and in terms of unit impulses by ∑  [ ] [   ]   

    when the CIR is 

approximated by a finite-length sequence of size    In general, the components  { [ ]} can be 

complex or real-valued. 
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c. When the channel model is closer to a recursive filter representation, it can still be adequately 

modeled with an infinite, or more practically with a very large transversal filter. 

 

1.6 Inter-Symbol-Interface Cancellation and Diversity 

Highly dispersive channels require some advanced processes to reduce, and possibly eliminate 

the ISI effects. In practice, these channels are approximately invariant during the time that the 

necessary process is executed.  Moreover, some means of adaptation to compensate and adjust for 

the slow variations of the channel must be applied.  

a. The first of the algorithms introduced here can be one among various approaches employed 

to eliminate ISI in general. These techniques are all designed to nullify or at least mitigate 

the effect of the channel response. This group is known to perform channel equalization. 

When employing a training period the channel equalization has the form of a straightforward 

and relatively simple adaptive system. It is the blind equalization (no training period) that 

has generated a great amount of literature with regard to relevant research. Unsupervised 

(blind) channel equalization problems have been solved by many different approaches each 

employing different and possible-to-estimate channel characteristics. 

b. The Orthogonal Frequency Division Multiplexing (OFDM) Technique can be considered an 

independent solution to ISI problems. Although the channel equalization should also be 

performed in OFDM systems, it should be noted that the channels seem to be different by 

having narrow frequency band in OFDM systems. In particular, they reduce to flat-fading or 

frequency nonselective as the signal is segmented into many component …….. 

c. The performance measures, such as the probability of error in fading channels, can be 

improved by transmitting the same information through more than one (possibly many) 
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independent channels. The techniques exploiting this idea are known as diversity techniques, 

and the information copies can be obtained in time, space, or frequency. 

 

Modern digital communication systems incorporating diversity techniques are collectively MIMO 

(Multiple Input Multiple Output) systems. These systems can also have multiple inputs but single 

output (MISO), or only multiple outputs with single input (SIMO). 

One diversity gain has been defined by [1]: 

        
   

   (  )

   ( )
       (    ) 

Where    is the probability of bit error or Bit Error Rate (BER) and   is the Signal-to-Noise Ratio 

(SNR) entered in log-scale into the equation. 

MIMO systems should offer answers to two essential questions: how to create diversity (in time, 

space and frequency) and how to use the diversity to achieve the highest performance via reduction 

in the probability of error. 

The diversity can be gained by creating independently fading channels separated in time, frequency, 

or space as follows: 

a. Using different carrier frequencies when frequency separation must be much greater than 

coherence bandwidth (   
 

  
). 

b. Using different time slots (temporal diversity) when the separation must be greater than 

coherence time (   
 

  
). 
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c. Using different antennas (spatial diversity) when the spatial separation of the transmitter or 

the receiver antennas must be at least equal to or more than the half-wavelength of the 

carrier frequency (
  

 
) . 

It must be mentioned that exploiting temporal diversity is possible only when the mobile is in 

motion, otherwise when the mobile is stationary (the moving objects surrounding the receiver can 

also create Doppler shift), the Doppler shift is zero, and creating independent channels in time is 

consequently not feasible. 

Furthermore, polarization diversity, including vertical or horizontal polarization is not seriously 

accepted or considered, perhaps because it can only provide a diversity of order two. 

The second question seeks some invention of a method to take advantage of the existing diversity in 

an efficient way. To see how this has been achieved in what appears to be the classic literature (See 

Jake 1974), we first consider the cases with multiple antennas at the receiver only, collectively called 

SIMO (Single-Input-Multiple-Output). We will include a short introduction to the cases containing 

multiple transmitter antennas also to visit MIMO systems. 

The techniques employed to acquire high diversity gain in SIMO systems are based on the way the 

received signals are combined through different and independent channels. Combination methods 

include: 

 Maximum Ratio Combination (MRC) 

 Selective Combination (SC) 

 Hybrid Combination (using both of the above) 

Figure 1-8 illustrates MRC and SC systems in block diagrams picturing the basic concepts. 
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Figure 1-8 Basic diversity combination methods 

 

Maximum Ratio Combination 

 When there are R independent paths, each having the same copy of the signal, the decision 

statistic is computed as the weighted sum of path signals: 

 [ ]  ∑  
   [ ]

 

   

  [ ]       (    ) 

where we denote by   
  the optimum combining weights,   ( ) are the received signals through each 

path at the     sample time, and  ( ) is the overall noise. Equation (1-27) incorporates an ML 

(Maximum Likelihood) decoder with coherent detection assumptions. If we assume that each path 

has equal SNR defined as the ratio of symbol energy and PSD of noise          , the output SNR 

of the MRC system is given by: 

     ∑  

 

   

       (    ) 

Equation (1-28) indicates a possible  -      increase in SNR. In fact, the path SNRs are not equal, 

and one has to use the mean value  [  ] instead to get: 
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        [  ]       (    ) 

Selective Combination 

 MRC systems demand significant hardware for many Radio RF chains; SC is the design 

based on one single radio that picks the best received signal with respect to SNR of the channels. The 

selection can be realized, for example, by choosing one of the receiver antennas as the most efficient 

one. The diversity gain measured by SNR of the output signal has been determined, assuming 

Rayleigh fading and keeping other regular assumptions applied in derivation of Equation (1-29). 

The average SNR in SC systems is computed as: 

 ̅    [  ]∑
 

 

 

   

       (    ) 

The increase of ∑
 

 
 
    is the average of the output SNR that can be achieved (See Jake 1994). 

Hybrid Combination 

A mix of two combining methods results in a system shown in the block diagram of Figure 1-9. 
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Figure 1-9 Hybrid diversity combination method 

With similar assumptions, the average output SNR is computed by: 
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 ̅    [  ]  [  ∑
 

 

 

     

]        (    ) 

Spatial Multiplexing 

 In MIMO systems, diversity gain can be obtained by using multiple antennas at the 

transmitter and the receiver. These systems increase diversity and the capacity of the channels. If the 

number of the antennas at the transmitter is specified by   and the number of the antennas at the 

receiver by  , then the spatial multiplexing is possible by transmitting up to     {   } symbols per 

time slot. The MIMO system’s advantages can be used to increase the diversity to the highest spatial 

diversity of     or to increase the capacity by sending more symbols per time slot while 

maintaining the same level of diversity. 

Transmitter Receiver

]1,1[kh

],1[ Nhk

],[ NMhk

 

Figure 1-10 MIMO system basic configuration 

A measure for spatial diversity gain has been defined as follows. 

       
   

 

    
       (    ) 

In Equation (1-32),   represents the code rate given in bits/s and is equal to the number of bits per 

symbol times the number of symbols spatially multiplexed per time slot. 
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In conclusion, we specify two major types of MIMO systems. The systems in which the transmitter 

has no information about the channel are called open-loop systems. However, the receiver may 

estimate the channel information for equalization and decoding. In many systems, the receiver shares 

the channel information acquired by estimation with the transmitter through a special feedback 

channel. This second type of system is known as closed loop. The channel information can be used 

by the transmitter in closed-loop systems to improve the overall performance. 
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Chapter 2: Adaptive Algorithms and Channel Equalization 

2.1 Introduction 

 The application of adaptive algorithms is widespread among various scientific and 

engineering disciplines and has created an enormous amount of literature, both theoretical and 

applied. The common applications include topics such as system identification, channel equalization, 

adaptive control, adaptive filtering for signal processing, and pattern recognition. References [9] and 

[11] discuss numerous cases in medical and other scientific applications. 

Rapid development of computer technology in the second half of the last century has generated a 

great deal of interest in the applications of iterative adaptive procedures that potentially lead to 

desired solutions in reasonable time. 

Historically, Robbins and Monro (1951) introduced the basic concept of stochastic approximation. 

About the same time, Kiefer and Wolfowitz (1952) published a formal mathematical treatment of 

this new area of applied mathematics. The methodology can be further traced back to the work by 

Hotelling (1941) in “Experimental Determination of the Maximum of a Function”. 

 Stochastic approximation is the general method by which the value of a vector, known as the 

state or parameter vector, is iteratively adjusted through a stochastic difference equation
2
: 

 [   ]   [ ]    [ ]      (   ) 

In the difference equation (also called the update equation)  [ ] is the state vector at     step of 

the adaptation from which only an observation function  [ ] is available. The observation is 

usually contaminated by random noise. The step size or learning rate is denoted by   and it can 

be a small positive value or it can decrease as the procedure progresses and might go to zero as 

                                                           
2
 We use bold characters to denote a vector, e.g.,  ; the subscripts are used for vector indexing, e.g.,    and 

time steps are denoted by [ . ], as in  [ ]. 
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   . The process continues until some goal is met (or at least is asymptotically met). In most 

of the optimization cases, there is a scalar function denoted by  ( ) called objective or cost 

function. 

The common goal of recursive approximations is to find an optimum parameter vector    so that 

 (  )    (  is a known constant). For convenience and without loss of generality, one can try 

to minimize  ( ); that is equivalent to maximizing   ( )  

Considering the target to be    , the error at each step is given by 

 [ ]     ( [ ])  The adjustment term in the update equation,   [ ] must be proportional to 

the error  [ ] when the step size (or learning rate)   can be kept as a small constant or decrease 

as the process gets closer to the desired solution     

Different algorithms that have been devised to preform stochastic approximations are diverse in 

the way the error in the update equation is computed. In some interesting problems, the objective 

function is not completely known (or is heavily corrupted by noise) and perhaps has to be 

estimated, perhaps in an iterative way. 

 The quantized parameters or up-and-down method updates the parameter vector only by a 

constant-valued vector   that is not proportional to the error but aligns with its direction. The 

update equations are  [   ]   [ ]    or   [   ]   [ ]     at each step. 

 

The decision of which way (up or down) to go is based on some logical condition. This method 

simplifies the update operations in spite of the fact that in some experimental situations it is 

possible to change the parameter vector by only a fixed discrete amount. Quantized parameter 

algorithms have shown to be superior in the trade-off between computational simplicity and 

convergence speed. (See references [8] and [9] for examples.) 

 The Newton-Raphson method, rooted in numerical analysis, strives for the same goal as other 

algorithms of stochastic approximation, namely to find the solution state or weight factor    for 



28 
 

the objective function to attain the desired value  (  )     

The update equation in this method includes the inverse of the objective function derivative with 

respect to the state vector, denoted by [
  ( )

  
]
  

, also known as inverse of the gradient vector. 

 [   ]   [ ]  [
  ( [ ])

  [ ]
]

  

 [ ]      (   ) 

Similar to the case of finding roots of a function in numerical analysis, the inverse of the 

gradient, if it exists, substatially speeds up the convergence of the adaptation towards the 

solution. 

 The recursive least-squares method has been characterized by superior performance in 

comparison to general stochastic approximation methods. The required computational cost of 

each iteration, however, is significantly higher as the covariance matrix of the target process is 

being used to accelerate the algorithm convergence. 

In fact, the inverse of the covariance matrix, denoted here by   
   is used in the update equation 

( [ ] denotes the discrete output of the target process for which covariance is being computed). 

  
   is itself iteratively computed and updated at each step. Moreover, a constant parameter 

slightly less than unity,    , is often used as a forgetting factor that serves to reduce the 

dependence of the adaptation on extremely old observations. 

There also are other adaptive algorithms applied to variety of problems including, but not limited to, 

Quantized State that can obtain increased convergence speed with reduced computation efforts, 

simulated annealing with interesting historical background (see chapter 5), hidden Markov modeling, 

and definitely the algorithms based on neural networks architecture. 

Wasan (1969) has given important hints from Kushner quoted as: “Kushner has concluded that the 

least-squares method is superior to the stochastic approximation after discussing the efficiency of the 
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two methods. The main advantage with the stochastic-approximation method is that one does not 

know about the input of the system, all one needs to know is the output which is easily available in 

practice. Furthermore, it is unnecessary to know the form of the regression function or to estimate 

unknown parameters. Thus, stochastic approximation is a non-parametric technique which quite 

often generates a non-Markov stochastic process.” 

Wasan continues on the main problems associated with stochastic approximation procedures: 

“First, one will be interested in the convergence and mode of convergence of the sequence generated 

by the method to the desired solution of the equation. Secondly, one would like to know the 

asymptotic distribution of the sequence. Finally, since stochastic approximation is a sequential 

procedure, one will be interested to know an optimum stopping rule for a given situation.” 

Benveniste, et al., (1990) has asserted,  “It would be foolish to try to present a general theory of 

adaptive systems which created a framework sufficiently broad to encompass all models and 

algorithms simultaneously. These problems have a major common component: namely, the use of 

adaptive algorithms. This topic, which we shall now study more specifically, is the counterpart of the 

notion of stochastic approximation as found in statistical literature.” 

The last quotation to some extent clarifies the relation between stochastic approximation and 

adaptive algorithms. 

 
2.2 Channel Equalization 

 Dispersive channels with slow time-variation can be approximated by transversal (non-

recursive) filters. It is also possible to approximate a recursive model by a relatively large transversal 

filter with controlled approximation error. As was mentioned, the Inter-Symbol-Interference (ISI) 

created by multiple channels is far more destructive compared to channel and/or receiver noise so 
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that efforts are aimed at the goal of eliminating or at least mitigating the distortion caused by ISI. 

The distortion obviously begets some bit or symbol errors in digital communication systems. 

In addition to the slow time-varying assumption, we assume that the Channel Impulse Response 

(CIR) is a real-valued function with compact support. As it was shown in Chapter 1, the real and 

imaginary components of the channel fading model are independent and hence can be equalized 

independently. This justifies the real-valued assumption. The CIRs corresponding to recursive 

channel models are infinite (hence the name Infinite Impulse Response, IIR). However, when they 

are also stable, their CIR decays in time and the truncation used to keep only a finite support of CIR 

is technically justified. 

 The models and approximations formed for multipath wireless channels are based on the 

equivalent baseband model of the communication system. The baseband equivalent assumption 

remains as the case for the rest of our discussion. 

r(t)
h (t,τ) Σ

n(t)

s(t)

 

Figure 2-1 Continuous time channel method 

In general, we start with a continuous-time channel and corresponding CIR denoted by  (   )  as 

shown in Figure 2-1 in which  ( ) represents channel noise. Let us denote the CIR compact support 

time or duration by    and the continuous-time symbol duration by   , then the received signal is 

determined by a convolution and additive noise: 

 ( )   ( )   ( )   ( )   ( )   ( )   ( )       (   ) 
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 ( )  ∫  (   ) ( )    ( )

  

 

 ∫  (   ) ( )    ( )

  

 

        (   ) 

The convolution is symbolized by   in the above equation. The time duration of the received signal 

is        . We can adjust our derivation for digital communication in which signals are 

appropriately sampled and the baseband equivalent system is assumed to generate signal samples at 

each sample time      , where    is the sampling period. In digital communication systems the 

samples are taken at each symbol time (occasionally called baud rate or symbol rate systems) that is, 

the sampling period and the symbol time are equal. Consequently, the CIR can be written as a 

discrete-time impulse response   (              ) 
              . It is noteworthy that 

there are two main assumptions about CIR, that it can be considered constant relative to equalization 

time (slow-varying), and causal (the matter of the choice for the time reference). Furthermore, the 

transmitted and received signals are shown in discrete-time by their samples at the     time step, 

 [ ]   (   )      [ ]   (   ). 

r[k]
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n[k]

s[k] x[k]
w

Decision 

Device
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Figure 2-2 Discrete-time model of channel 

The channel transfer function is consequently denoted by  ( ) that in general can be of Infinite 

Impulse Response (IIR) when the model is recursive and of Finite Impulse Response when the model 

is non-recursive. In either case, the discrete-time channel is approximated by a transversal filter with 

finite length      

The ideal equalization, or channel inversion, is to estimate the weight vector of a transversal filter of 

finite length    denoted by   so that it approximately realizes the transfer function  ( )     ( ). 
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As was mentioned earlier, a perfect equalization requires a doubly-infinite equalizer. The ideal 

transfer function, or at least an approximation of it, is achieved when the weight or state vector of the 

equalizer attains some optimum value   . This means that  ( )     ( ) when  ( )  

 ( )|     (  ) and  ( )   ( )|     (  ) are the frequency responses of the channel and the 

equalizer respectively. It is obvious that a non-minimum phase channel transfer function cannot be 

satisfactorily equalized with sufficient equalizer delay as its inverse is unstable. Even with the help 

of stable linear transversal equalizers, a successful inversion by any possible measure might be far 

from the desired response. Even the channel transfer functions with zeros near the unit circle 

demonstrate deep-nulls (very low values close to zero) in their frequency response and are hard to 

equalize. The Zero-Forcing equalizer can be computed for the minimum phase channels if its 

transfer function or equivalently CIR is known in the MS (Minimum Squares) sense (see Chi, et.al. 

(2006), pp. 188, Ding (2001), pp. 39): 

   ( )  
  
   ( )

  
 | ( )|    

                   (   ) 

In Equation (2-5),   
  represents the zero-mean input data variance that is also assumed to be WSS 

(Wide Sense Stationary),   
  is the variance of the zero-mean channel noise process that is 

independent of the input data. The channel should be stable. 

The channel and the linear equalizer system functions   ( ) and   ( ); for the input signal and the 

channel noise can be expressed by: 

  ( )   ( ) ( )    ( )   ( )       (   ) 

In Equation (2-6) it has been assumed that the channel noise samples are iid and white. The ideal 

equalization can be symbolized by  ( ) ( )     
   for some positive integer delay  . In the 

time domain the equivalent of the channel (CIR) and the equalizer together is a convolution: 
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            (   ) 

The result of the convolution in Equation (2-7) has         components computed as: 

   ∑      

  

   

 ∑      

  

   

                (   ) 

The time-domain equivalent of the ideal equalization is therefore given by the desired response 

      . It means that the effect of the channel and the equalizer together generates      for 

    and      . The only non-zero component is also known as the cursor.  

The ideal target of the inversion cannot be achieved with finite-length equalizer filters, so instead of 

seeking perfectly zero components,    has many non-zero but hopefully very small weights other 

than the main delayed weight or the cursor.  

The operation of such inversion also has been known as seismic deconvolution (see Clarckson (1993, 

pp. 112), Chi, et.al. (2006, pp.188)). In seismic deconvolution, an acoustic waveform called seismic 

wavelet is applied at a shot point using special transducers, and then propagated through the terrain 

sub-layers. The collected seismic traces are carefully aligned and recorded in seismograms. The 

seismograms are then processed in an offline mode to discover the sub-layer’s structure. Seismic 

deconvolution is very similar to channel equalization in concept and provides a rich background of 

research literature. Kumar and Lau [31] have successfully applied the deconvolution technique to 

very important and commonly used Global Positioning Systems (GPS). Their work has been 

followed by other researchers in the GPS application that appeared in [29], [30]. 

The common algorithm in seismic application is Minimum Entropy Deconvolution (MED). The 

process is based on a new vector norm called variamax (see Wiggins (1977), Oldenburg (1981)), 

which was followed by Cabrelli’s (1984) studies on a different norm he called D-norm. In fact, MED 

methods belong to the class of solutions that utilize Higher-Order Statistics (HOS) implicitly. 
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However since MED is performed offline (performed on recorded seismic waveform traces), it is 

different in nature from the real-time and adaptive methods. 

Finally, similar to Equation (1-21), the common measure of equalization performance is called 

residual ISI, denoted here by     . Proakis (2001) has also applied what is called Peak Distortion as 

the worst-case residual ISI for the purpose of equalization quality measure. 

 
 
2.3 Deconvolution of A-Priori Known Systems 

 This is a general problem pertaining to any system that can be modeled by a linear 

transversal filter having a tap-weight vector of finite length. The important point in this case is the 

fact that the system impulse response is known given by  . We seek the best (optimum in the sense 

of      reduction) equalizer weight vector    so that: 

              (   ) 

The vector    here represents     standard basis, that is: 

   (              )
        (    ) 

One can expect the main component or cursor value to be one as compared to    because the system 

impulse response is usually normalized to unit power, that is      ‖  ‖  where    represents 

the response before normalization. 

A better formulation of the deconvolution problem can be obtained by the detailed expansion of 

Equation (2-9) as follows (assuming that      ): 
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Let us denote the matrix in Equation (2-9) by   (This matrix is often known as a filtering matrix). 

The filtering matrix has dimensions of (       )  (  ) that renders Equation (2-9) as an 

over-determined system of equations. The solution in Least Square (LS) sense is simply given by the 

normal equation, symbolically: 

   (   )             (    ) 

By inspecting Equation (2-11) for the filtering matrix, it is obvious that it has complete rank of    

order and hence the matrix     of the size       is positive-definite and has complete rank, 

consequently (   )   exists, and the normal equation in (2-12) has a solution (It is well-known in 

linear algebra that positive definite matrixes are invertible with positive-definite inverses). 

Although the matrix inversion is computationally costly, for the case of knowing the impulse 

response it will be done once, and most likely, in an offline mode. 

Efficient algorithms are available for numerical computation of the solution to the normal equations 

(see Golub (1996), pp. 237, 545) for numerical methods and analysis). 

In most of the practical cases, the system is not a priori-known; in our case for wireless channels that 

means the CIR is not known. 
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2.4 Adaptive Algorithm for Equalization of A Priori-Unknown Channels 

Although knowledge of the channel is necessary for reliable communication in most modern 

systems, this information is not a-priori known and has to be acquired usually by some recursive 

adaptation algorithm. One might try to discover, at the least, important channel characteristics by the 

application of an adaptive identification algorithm and subsequently apply one of the solutions for 

the equalizer filter if necessary. 

A more efficient and direct approach is to search for the best possible equalizer weight vector 

adaptively, without identifying the channel in advance. The equalization algorithms for unknown 

channels are divided into the supervised mode in which a training or pilot sequence known by the 

receiver is transmitted. Training period apparently takes part of the available air time and bandwidth, 

and it might be very inefficient or even unfeasible in multi-user environments. In spite of wasting 

resources, supervised techniques are simple and have guaranteed success in convergence. Qureshi 

(1982, 1985) has provided excellent references and tutorials on supervised adaptive equalization. 

The general concept of supervised algorithms is depicted in Figure 2-3, in which a linear 

(transversal) equalizer filter is adaptively trained for best possible weight or state vector   . 
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Figure 2-3 General diagram of supervised equalization system 
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Most cellular standards incorporate some kind of training signal. The training sequence in this case is 

used to estimate the CIR, then the inverse of the estimated CIR is determined in order to correct the 

distortion caused by ISI. Once the equalization is performed to attain a sufficiently low residual 

channel ISI, the receiver detected data replaces the training signal in the adaption process to correct 

for slow time-variation of the wireless multipath channel. 

In blind equalization techniques, the channel equalization or estimation is based solelyon the 

received signal samples. It is also assumed that statistical properties of the input data to the channel 

are known and incorporated in the corresponding computations. 

 

2.5 Blind Equalization Algorithms  

 There are several families of algorithms applied to the problem of blind (unsupervised) 

system identification or equalization. Here we concentrate on a large family of Bussgang algorithms. 

These algorithms implicitly use the Bussgang theorem stochastic processes. The theorem says 

(Papoulis (2002), pp. 397): “If the input to a memory-less possibly nonlinear system    ( ) is a 

zero-mean normal process  ( ), the cross-correlation of  ( ) with the resulting output  ( )  

 ( ( )) is proportional to the input correlation, namely: 

 [ ( ) (   )]    [ ( ) (   )]       (    ) 

where the constant is given by    [  ( ( ))] ”  

Y (t)
f ( )

X (t)

 

Figure 2-4 Bussgang Theorem 



38 
 

The Bussgang algorithms are named such since all of them use a non-linear (memory-less) function 

as a decision device to properly estimate the channel input data. In the case of binary data, the 

decision device is simply a slicer that is  [ ]     ( [ ]) where    ( ) represents signum or sign 

function (see Figure 2-4). The estimated data is often used instead of any a-priori known training 

sequence. 
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Figure 2-5 Basic linear equalization system 

In Figure 2-5, a switch is available to change the mode of the algorithm from supervised (training) to 

blind mode, or the other way around. We continue to assume that channel variation in time is slow 

and, for the purpose of the following discussion, constant. The received signal samples are computed 

as follows: 

 [ ]  ∑    [   ]   [ ] 

    

   

       (    ) 

 [ ]     [ ]   [ ]       (    ) 

In Equation (2-15),  [ ]  ( [ ]  [   ]    [      ])
  is the vector of the input symbols, or 

data to the channel in the size of the CIR. The equalizer output can be similarly computed by the 

received signals: 



39 
 

 [ ]  ∑   [ ] [   ]

    

   

        (    ) 

Or, in the short form: 

 [ ]    [ ]  [ ]     (    ) 

In Equation (2-15),  [ ]  (  [ ]   [ ]        [ ])
 

represents linear equalizer weight vector 

at     step of the adaptation, and  [ ]  ( [ ]  [   ]    [      ])
 , the vector of the input 

signal samples with the size of the equalizer. Finally, the estimate of the binary data is determined by 

the slicer, that is: 

 [ ]   ̂[   ]     ( [ ])       (    ) 

Similar to any optimization problem, one needs to define an objective or cost function. The common 

Mean Square Error (MSE) objective function, which implicitly depends on the equalizer weight 

vector, is defined as follows: 

 ( [ ])   {  [ ]}   {( [   ]   [ ]) }       (    ) 

In the blind mode when the actual channel input is not available its estimate is used instead. This 

mode is called decision-directed mode. 

 ( [ ])   {( ̂[   ]   [ ]) }       (    ) 

A class of equalizers starts the process in the training mode and switches to decision-directed mode 

after the channels are approximately equalized in order to track the small variation of the channel 

adaptively. 
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One important feature of blind methods in the Bussgang class is the relatively simple procedures. 

They can use the well-known Least Mean Squares (LMS) method that is probably the simplest 

technique among the recursive adaptation for optimization (Widrow, 1985). 

The basic gradient method of LMS offers a simple update equation as follows: 

 [   ]   [ ]    [ ]       (    ) 

The step size or learning rate is denoted by   in this equation. The gradient of the cost function is 

specified by 
  

  [ ]
   ( [ ]), when the dependence on the equalizer weight vector is explicitly 

shown.  

  ( [ ])  
  

  [ ]
 

 

  [ ]
 {  [ ]}  

 

  [ ]
 {( [ ]   [ ] }

  {
 

  [ ]
( [ ]   [ ]) }        (    ) 

The derivative of the error is computed as: 

 

  [ ]
 [ ]  

 

  [ ]
( [ ]   [ ])  

 

  [ ]
 [ ]  

 

  [ ]
 [ ]      (    ) 

 

  [ ]
   ( [ ])    [ ]       (    ) 

 

  [ ]
 [ ]  

 

  [ ]
(  [ ]  [ ])   [ ]        (    ) 

The result of Equation (2-24) is valid when  [ ] is extremely close to zero (this is unlikely as  [ ] 

has to be close to    or    when the equalizer has converged) and can be ignored. Consequently, 

the gradient of the objective function is given by: 

  ( [ ])     { [ ] [ ]}     {( [ ]   [ ]) [ ]}     { ̂[   ]   [ ]) [ ]}      (    ) 
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The simplicity of the LMS technique lies in the fact that it takes the simplest possible estimate (and 

probably not quite accurate gradient by just removing the expectation operator. That is 

 {
 

  [ ]
  [ ]}  

 

  [ ]
  [ ]     [ ] [ ]        (    ) 

Consequently, updating the equalizer weight vector simplifies to the following one (the coefficient 2 

in (2-27) is absorbed in the step size  :) 

 [   ]   [ ]     ( [ ])   [ ]    [ ] [ ]      (    ) 

 

2.6 Bussgang Algorithms  

 We consider the overall channel and the equalizer system for which a transversal filter with 

finite number of taps is used as the linear equalizer in Figure 2-6. 
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Figure 2-6 Basic equalization system 

As was mentioned earlier, the channel noise sample  [ ] is relatively small compared to ISI measure 

and its effects are not considerable until most of ISI has been removed. Consequently, one may 

ignore the channel noise: that means   ̃[ ]   [ ], where   ̃[ ] is the noise-free signal at the 

receiver. Once again, we assume that the CIR (Channel Impulse Response) represents the transmitter 

filter, multipath channel, and the receiver filter together. 
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 ̃[ ]     [ ]  ∑  [ ] [   ]

    

   

  [ ]       (    ) 

 ̃[ ]   [ ]  [ ]  ∑   [ ] [   ]

    

   

  [ ]       (    ) 

In the above equations the subscript k indicates the vector values at the k-th step. The subscript k in 

the equalizer weight vector    could be dropped for convenience and be considered as implied when 

it simplifies the equations. Equation (2-30) can be expanded as  

 ̃[ ]   [ ]    [ ]  ∑   [ ] ∑  [ ] [     ]

    

   

    

   

       (    ) 

Let   denote the best (optimal) weight vector of the linear equalizer. Equation (2-30) can be written 

including the optimum weight vector. 

 ̃[ ]  ∑   [ ] [   ]

    

   

 ∑   
  [   ]

    

   

 ∑ (  [ ]    
 ) [   ]

    

   

      (    ) 

The first term on the right-hand side in (2-32) is the optimum equalized signal representing the 

correct estimate of  [   ], the appropriately delayed input signal to the channel. 

∑   
  [   ]

    

   

    ̂[   ]           (    ) 

The constant coefficient    in (2-33) is the cursor value (see Equation (2-7)). The second term in (2-

32) is the undesired remainder and is known as convolution error. 

 [ ]  ∑ (  [ ]    
 ) [   ]

    

   

 ∑   [ ] [   ]

    

   

      (    ) 
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The convolution error is approximated to be zero-mean, Gaussian, and independent of the input 

sequence  [ ] (See Nandi 1999). 

The final block in Figure 2-5 in most of the implementations is a memoryless (zero-memory) 

nonlinear device, whose function is denoted by  ( ). As will be discussed the choice of nonlinear 

function has a major impact on the performance of the algorithm to which it belongs. In the case of 

the system with binary input data we used a slicer (   ( ) Function) for the zero-memory 

nonlinearity. 

Having explained the general setup for linear equalizers, we turn our attention to the Bussgang 

family of algorithms. Haykin (2002) and Ding, et.al. (2001) have provided great expositions of the 

general Bussgang algorithms as the foundation for most of the known techniques in linear 

equalization. Let us reconsider the effect of the channel and the equalizer together by their 

convolution denoted by  [ ]     [ ]: 

  [ ]  ∑       [ ]

    

   

                  (    ) 

 ̃[ ]  ∑   [ ] [   ]

   

   

   [ ] [   ]   [ ]             (    ) 

In (2-7) and (2-33) we have denoted the cursor value after the algorithm has converged by   [ ]  

   and then the convolution error is as follows: 

 [ ]  ∑   [ ] [   ]         (    )

   

    
   

 

Equation (2-37) is just a reformulation of (2-34) in terms of the convolution samples   [ ].  
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When the equalizer has converged to the final point, Equation (2-36) should become  ̃[ ]  

   [   ]   [ ] with the minimum possible value for the convolution error. When the distribution 

(pdf) of  [ ] is known the decision device is a Maximum A-Posteriori (MAP) estimator as defined in 

the following equation. 

 ̂[   ]          
 

  [ ]| [   ]( [ ]| )           (    ) 

When the distribution of  [ ] is not available, in particular the conditional probability in (2-38) is not 

known, the same approximations are made based on the assumptions that the input sequence  [ ] is 

zero-mean iid. Consequently the   [ ] [   ] terms in  [ ] (Equation 2-38) are independent and 

have finite variance so that the application of the central limit theorem implies that the  [ ]  

distribution is approximately Gaussian and is independent of  [   ]. The  [ ] process is also 

assumed to be zero-mean and its variance can be computed with the knowledge of the variance of the 

input data sequence (namely   
 ) as follows. 

  
    

 ∑|  [ ]|
 

   

   

         (    ) 

By considering  [ ] as the equalizer output noise with the variance given by (2-39), the optimum 

memoryless nonlinearity in the sense of MAP will be the minimum variance estimation as in 

Equation (2-40) (see Ding (2001), pp. 48): 

 ( [ ])   ̂[   ]     { [   ]| [ ]}        (    ) 

The signal-to-noise ratio at the output of the equalizer can now be computed easily by: 

  
  {| [ ]| }

  
            (    ) 
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 {| [ ]| } in (2-41) represents the input sequence power. The information in Equation (2-41) must 

be known in order to find the nonlinearity function  ( ) and when such information is not available 

or difficult to estimate, the Bussgang algorithms are no longer optimum (for detailed ZNL 

determination see Ding (2001), pp. 49). Finally when the nonlinearity has been determined, one can 

iteratively solve for the equalizer weights in the Least Squares (LS) sense using the following update 

equation: 

 [   ]  ( { [ ]  [ ]})   { [ ] (  [ ]  [ ])}         (    )  

The simple and popular adaptive method is the gradient descent algorithm that can be employed for 

finding the optimal weight vector with the following update equation. 

 [   ]   [ ]   ( ( [ ])   [ ]) [ ]       (    ) 

In the recursive methods of Equations (2-42) and (2-43)    is assumed to be the noise-free signal at 

the receiver.  

It has been shown that when the equalizer is converged, the output satisfies the Bussgang condition 

 { [ ] [   ]}   { [ ] ( [   ])}           (    ) 

A final point to be made is that the convergence of the Bussgang algorithm is mostly unknown. 

Godfrey (1981) has proved the local convergence of the Bussgang algorithms. 

Almost all of the linear equalization techniques that we review in this section are based on the same 

basic concept except for the choice of zero-memory nonlinearity device. They are similar in the use 

of gradient descent and LMS (Least Mean Square) algorithm for their iterative adaptation process. 
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The Sato Algorithm 

The Sato algorithm is perhaps the simplest technique used for the problem of blind equalization and 

was introduced early in the rich research history. It is also among the algorithms categorized as 

Decision-Directed Equalizers (see Figure 2-7.) 
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Figure 2-7 Basic Decision Feedback Equalizer diagram 

This algorithm and some improved versions of it that are mentioned here are appropriate for PAM 

(Pulse Amplitude Modulation), including the simple binary case (2-PAM) for which the nonlinearity 

is simply  ( )     ( ). The cost function that was chosen by Sato without any theoretical 

justification was: 

 ( [ ])   {( [ ]       ( [ ]))
 
}        (    ) 

The important parameter in (2-45) is the choice of    that is given in Equation (2-47). The update 

equation, based on gradient descent method will therefore be given by the following equation: 

 [   ]   [ ]   ( [ ]       ( [ ])) [ ]     (    ) 

In the update equation the coefficient of ½ of the gradient is absorbed in the step size  . The Sato 

choice for    was intuitively selected as: 
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 {| [ ]| }

 {| [ ]|}
       (    ) 

The only information necessary for this choice is the input data statistics that are assumed to be 

known in advance. The Sato algorithm can be compared to the simple LMS algorithm: 

 [   ]   [ ]   ( [ ]   ̂[   ]) [ ]       (    ) 

where the delayed input estimate is determined as  ̂[   ]     ( [ ]). Consequently, the only 

difference is that      in the LMS algorithm. In fact, the success (convergence) of the Sato 

algorithm has been attributed to the choice of   . Hence, it is clear that the convergence of the Sato 

algorithm depends on the probability of the event when the sign of the real error  [ ]   [   ] 

and its estimate  [ ]       ( [ ]) agree. Sato’s method was intended for one-dimensional multi-

level PAM, in particular for the case of binary 2-level signaling. The Benveniste-Goursat-Ruget 

theorem for convergence (Haykin (2002), pp 716, 717) with the assumption of doubly-infinite filter 

size applies to Sato’s method. The theorem states that the global convergence of the Sato can be 

gained for the input distributions of continuous non-Gaussian or sub-Gaussian in particular 

uniformly distributed input sequences. Macchi (1985) and Mazo (1980) have shown that the Sato 

algorithm converges to local minima for QAM (Quadratic Amplitude Modulation) input signals 

instead of the optimum global minimum. Moreover, Ding, et.al. (1989) have shown the possible 

convergence to any local minima for multi-level signaling as well. 

 
 
The Godard Algorithm 

Godard (1980) proposed a family of Constant-Modulus Algorithms (CMA) for blind equalization in 

general M-ary QAM systems. The QAM systems are collectively known as two-dimensional digital 

communications. The main idea is to use a cost function that depends only on the magnitude of the 
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equalizer output, that is to say that the cost function is independent of the equalizer output phase. The 

p-th order cost function (where p is a positive integer) is defined by: 

 ( [ ])  
 

 
 {(| [ ]|    )

 
}        (    ) 

The new Godard parameter    is a positive and real constant. 

   
 {| [ ]|  }

 {| [ ]| }
         (    ) 

It seems that the unavailable input sequence  [ ] in the error samples is replaced by the constant   , 

which contains the information about the input data distribution. In other words, the Godard 

algorithm is designed to measure the deviation of the equalizer output  [ ] from a constant modulus 

   and use it for adaption. 

The error signal for the general p-th order is given by 

 [ ]  (| [ ]|    )| [ ]|
    [ ]           (    )  

The corresponding update equation will be written as 

 [   ]   [ ]    [ ] [ ]          (    ) 

In the case of    , the cost function reduces to one that can be considered as a modified Sato 

algorithm. 

 ( [ ])   {(| [ ]|    )}    
 {| [ ]| }

 {| [ ]|}
       (    ) 
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The cost function for the case of      is CMA (Constant-Modulus Algorithm), which is well-

known in the literature. Equation (2-54) is the corresponding cost function and the modulus 

parameter for this important case: 

 ( [ ])   {(| [ ]|    )}             
 {| [ ]| }

 {| [ ]| }
         (    )  

The CMA algorithm is intended for systems in which the symbols have the same amplitude 

(constant) with different phases in the corresponding constellation of the QAM system and cannot be 

used for multi-level PAM cases. In conclusion, we remark that the Godard algorithm performs better 

than the other Bussgang algorithms in the MSE sense. The algorithm can equalize a dispersive 

channel even when the eye (of eye-pattern) is not initially open (Haykin (2002), pp 724). 

Many researchers have challenged the problem of blind equalization or of the system identification, 

and their effects have culminated in many algorithms, each with some advantages. Of these 

algorithms, many belong to the family of Bussgang algorithms in which the zero-memory 

nonlinearity has the Bussgang property. 

BGR (Benveniste-Goursat-Ruget) is an extension to the Sato algorithm with the goal of pushing the 

start-up adaptation from the local (that is near) of the optimal tap weights (it was mentioned that the 

Sato algorithm has sure convergence when the initial weights are close to the global optimum point.) 

Stop-and-Go algorithm by Picchi and Prati (1987) basically implements the same adaptation as 

Sato’s and the following technique except that the adaptation at each iteration can be skipped (no 

change to the state vector) based on the examination of some condition that flags possible incorrect 

estimates. This, for instance, can be done by comparing the sign of two different errors each 

belonging to a different algorithm of this family.  
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Chapter 3: Blind Channel Equalization using Diversified Algorithms 

3.1  Introduction 

 Blind techniques in wireless channel equalization are diversified and abundant; nonetheless, 

a robust and fast convergent technique with reasonably efficient computations remains as an open 

problem. We have briefly reviewed most of these techniques but not all of them in Chapter 2. In 

particular Fractionally-Spaced Equalization (FSE) and the algorithms using Higher Order Statistics 

(HOS) were not visited. The reason of such negligence is the fact that various techniques of FSE and 

HOS are computationally costly and our target systems with multiple algorithms need to employ 

relatively simple methods to keep overall computational cost of the system affordable. Our new 

conception in the blind or unsupervised equalization is to employ two or more of the simple 

algorithms in a cooperative scheme
3
 to increase the probability of convergence of the overall system 

comprising multiple of algorithms. Figure 3-1 shows the proposed arrangement that includes three 

separate equalizers generating and sharing one final estimate of binary data. 
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Figure 3-1 Blind equalizer system with diversified algorithms 

                                                           
3  The multiple algorithm architecture for adaptive signal processing was invented by Dr Rajendra Kumar, and is in the 

process of being patented. Here the performance analysis of one of the various possible forms of this architecture for the 

blind mode equalizer is presented. 
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3.2  Recursive Least Squares Adaptive Algorithms 

In this section we give a brief introduction to a family of algorithms known as Recursive 

Least Squares (RLS). RLS algorithms incorporate the inverse of the covariance matrix of the process 

(wireless channel in our case) in the update equation that resembles the Wiener optimum filter 

solution, or Newton-like algorithms in adaptive techniques. Its final performance measures are often 

poor as we will explore in sections 3.4 and 3.5 of this chapter.  RLS techniques and the resulting 

ramifications are well-known and long lasting. The references [1, 3, and 6] give comprehensive 

origin and proofs of the methods. A closely-related application of RLS in the area of digital 

communications is given in [2]. 

Consider the problem of iteratively adjusting the weight vector of a transversal filter used to equalize 

a wireless channel. Figure 3-2 depicts a general system setup in which the received signals are 

generated by a process that could be the unknown wireless communication channel. 
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Figure 3-2 General Recursive Least Squares algorithm 

The inputs to the transversal filter are collected in a vector of the size of the filter   denoted by 

 [ ]  ( [ ]  [   ]    [     ]) . We have used exactly the same vector as the baseband 

samples of the received signals input to the channel equalizer in Chapter 2. 
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An approximate estimate of the auto-covariance matrix of the process generating the input vector 

 [ ] at step k is computed by 

   
 

 
∑ [ ]  [ ]

 

   

                                                    (   ) 

The computation of the running estimate of       is simplified, commonly as follows. 

     (
 

   
)   (

 

   
)  [   ]  [   ]                             (   ) 

The basic weight vector update equation for the RLS type of algorithm includes the inverse of the 

covariance matrix. This equation for advancing to the next step from step   can be written as: 

          [ ]  
   [ ]                                      (   ) 

In Equation (3-3),   is the step size and in common RLS implementations is usually equal to one, 

and the error is computed as the difference of the desired output  [ ] and the filter output.  

 [ ]   [ ]    [ ] [ ]                                              (   ) 

The inverse covariance matrix required for the weight vector update equation needs to be updated in 

each step using the running update Equation (3-2). 

    
   (    [   ] 

 [   ])                             (   ) 

To avoid costly matrix inversion at each step of adaptation the famous Woodbury’s matrix inversion 

identity is used to obtain 

    
     

   
  
   [   ]  [   ]  

  

    [   ]  
   [   ]

                      (   ) 
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For simplicity the inverse matrix is denoted by      
   and the last equation simplifies to the 

following.  

        
   [   ] 

 [   ]  
    [   ]   [   ]

                     (   ) 

The update equation becomes 

          [ ]   [ ]                                      (   ) 

It has been recommended (See Clarkson [1]) to initialize the weight vector to a zero vector      

and the inverse covariance matrix to a large diagonal matrix     
    where   is a small constant .  

 

Exponentially Weighted Recursive Least Squares 

A popular variation of the RLS algorithm is the Exponentially Weighted version (EWRLS) in which 

a forgetting factor usually close to one is used to reduce the effects of relatively old received 

information. Specifically in the channels that are modeled by limited-size transversal filters the 

correlation between the recently received signals and the ones belonging to many steps backward is 

trivial if not zero, hence the application of forgetting factors in Exponentially Weighted RLS of the 

range of        to         has been shown to have favorable results, in particular n case of 

time-varying channels. The EWRLS algorithm equations incorporating the forgetting factor   are 

similar to those for regular RLS and are summarized in the following (     
  ). 

          [   ] 
 [   ]                               (   ) 

    
      

    [   ]  [   ]                             (    ) 

     
 

 
(   

   [   ] 
 [   ]  

    [   ]   [   ]
)             (    ) 
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          [ ]     [ ]                                       (    ) 

Quantized-State Recursive Least Squares  

Kumar and Moore in their 1981 paper [4] proposed four different algorithms that are similar in 

structure as the RLS algorithms to simplify the computational effort and speed up the convergence. 

These Quantized-State (QS) algorithms have been successfully applied to some problems ever since 

(for example see Kumar and Khor [5]). 

 The first two of the QS algorithms are based on a sliced version of the input signal vector  ̂[ ], in 

which each element is determined by   ̂ [ ]     (  [ ]). Consequently all elements of the input 

vector (also known as state) belong to the binary field of {     }, and together as a vector they are 

called the quantized state. The differences between the two proposed Quantized-State algorithms are 

easily seen in the following summary of the sets of recursive equations. 

Quantized-State 1 (QS-1): 

    
      

    [   ]  [   ]        
       (    ) 

     
 

 
(   

   ̂[   ] 
 [   ]  

   ̂ [   ]   [   ]
)             (    ) 

          [ ]     ̂[ ]                                        (    ) 

Quantized-State 2 (QS-2): 

    
      

    ̂[   ] ̂ [   ]        
       (    ) 

     
 

 
(   

   ̂[   ] ̂
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In all of the above equations the error at     step is  [ ]   [ ]    [ ] [ ]. It should be clarified 

that the learning rate   in QS algorithms has different effect and purpose compared to the LMS, and 

RLS algorithms. The learning rate or as often called step size in the LMS algorithm determines the 

stability (see Widrow [7] or [8]). 

It is well-known that for stationary processes the covariance matrix is symmetric and Toeplitz. The 

inverse of the covariance matrix however is symmetric but not completely Toeplitz. Kumar and 

Moore have used this fact to further speed up the required computation. This method leads to another 

two algorithms in their paper [4] that are not being applied in this chapter.  

The concentration of this chapter is not to evaluate the performance of the individual algorithms, 

which have their own distinguished advantages exemplified and documented in the corresponding 

literature. 

A good example is QS algorithms, form which the QS-2 is used in cooperation with other 

algorithms.  In practice for QS algorithms the step size   should be adjusted and the number of taps 

in the equalizer be increased to achieve quality performance, however QS-2 has been used for 

cooperation and no particular adjustment to corresponding parameters is made. 

 

3.3  General Cooperative Adaptive System with Diversified Algorithms 

 The concept of devising multiple-algorithm system to solve the problem of wireless channel 

equalization or other related problems that can be tackled by adaptive algorithms seeks carefully 

crafted plans for using the outcome of the contributing algorithms. Since we need to use two or more 

techniques, the participating algorithms should not be computationally intensive. Good candidates 

having the desired simplicity are LMS, RLS and Quantized-State techniques. The principle idea for 

cooperating algorithms is to use majority vote system; however this can only be done for the system 
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having 3 or more methods involved. Moreover, we have to keep the number of algorithms small to 

avoid excessive computation at each step of adaptation. Since the system of having only two 

algorithms is attractive in terms of required computations, we need to design a different plan for such 

systems (see section 3.4).  

First we consider the case of 3 algorithms for a binary data system (field of {     }): if 2 out of 3 

or more of the adaptive processes agree on the estimate of the data in step  , the majority wins and 

the wining estimate is used for computing the error at that step. Let us denote the probability of 

correct data estimate of each algorithm by            . The total probability of correct data 

estimate of the system based on the majority vote and denoted by    is determined as follows. 

        (    )     (    )   (    )                            (    ) 

To see how this technique improves the overall performance of the system we need to have a 

reasonable estimate for            . We argue that if one does not make any effort one can 

estimate the correct binary data with 0.5 probability, say using a uniform random number generator. 

We fairly assume that when one makes some effort by signal processing to perform better, the 

probability of a correct estimate goes up by a very small amount, say 0.5%. Now for simplicity we 

assume that the probability of the algorithms are equal and                 .  

      
                                                 (    ) 

We further assume that in theory the correct estimate of the data at step   leads to the correct error 

calculation used for updating the weight vector that in turn results in a slightly better estimation 

probability in next step    . Using this assumption we can run the system for a few steps and 

compute the probability of the correct performance as shown in Figure 3-3. As it can be seen in 

Figure 3-3 at least in theory we can achieve a fast improving system. In fact this needs to be 

evaluated by simulations (see section 3.5). 
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Figure 3-3 The improvement of the probability of correct estimate in 3-algorithm equalizer 

The case of 4-algorithm is not promising, first because it requires at least a vote of 3 to 1 (a ratio of 

3/1) when compared to the 3-algorithm system (it is only 2 to 1, a ratio of 2/1). Second, the 

simulation result (see Figure 3-4) indicates that the performance of the system deteriorates quickly. 

Applying the same convenient assumption of                    , the system 

performance probability of correct estimation is computed as 

      
                                                  (    ) 

Running the system for a few steps and computing the probability of the correct performance for the 

case of 4 algorithms is shown in Figure 3-4. Consequently the system of 4 different algorithms is not 

appealing for further work and investigation. 
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Figure 3-4 The degradation of the probability of correct estimate in 4-algorithm equalizer 

Contrary to the 4-algorithm case, the system composed of 5 different algorithms has the benefit of 

even lower minimum ratio of 3 to 2 (3/2) vote for majority. Using similar assumptions as in the other 

cases,                       , the system correct estimate probability becomes 

      
                                                       (    ) 

The improvement of the estimation, illustrated in Figure 3-5, grows faster with the number of steps 

compared to the 3-algorithm case. The drawback of the system with 5 algorithms is the increase in 

the amount of computation required, which may significantly reduce its practical application. 
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Figure 3-5  The improvement of the probability of correct estimate in 5-algorithm equalizer 
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3.4  Adaptive Systems with Two Algorithms 

As was mentioned in section 3.3 the majority vote approach cannot be applied to a system of two 

algorithms (Notice that the similar approach as for 3 and more algorithms of               

leads to     
        that is disappointing). Hence we need to create a different configuration. 

The proposed configuration w chooses the equalizer output with larger absolute value (        ) to 

be applied to the slicer that generates the final system estimate of the binary data by 

   (   (|  | |  |)). The corresponding system configuration is shown in Figure 3-6. 
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Figure 3-6 The configuration for cooperative 2-algorithm equalizer system 

The algorithms selected to be used here are: a very simple LMS algorithm specified in chapter 2 by 

Equation (2-21) and (2-28), repeated here for convenience and the computationally more intensive 

but faster EWRLS algorithm specified by Equation (3-11) and (3-12) in section 3.2. 

 [   ]   [ ]    [ ]       (    ) 

 [   ]   [ ]     ( [ ])   [ ]    [ ] [ ]      (    ) 
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We have examined the proposed configuration on different channels with the equalizers of equal 

channel-size (number of taps) in each algorithm. The equalizer can be larger in size, and the size 

equal to the length of the channel impulse response. The equalizers of larger size are frequently 

designed and used to get better performance (lower residual ISI for example). 

 

Channel 1 

The first channel is symmetric with five taps (non-minimum phase) specified by the following 

impulse response and the corresponding transfer function 

          [ ]         [   ]         [   ]         [   ]         [   ]  

 ( )                                                   

The four channel zeros are located at:                     , the complex zeros being on the unit 

circle. 

When the LMS (with        )  and EWRLS (with    )  are adapting independently, the 

corresponding residual ISI for two algorithms is given in Figure 3-7. 
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Figure 3-7  Independent residual ISI of LMS (top) and EWRLS (bottom) algorithms 

 

It can be seen from Figure 3-7 that EWRLS converges faster; however neither one achieves a 

residual ISI of better that     dB (the optimum LS equalizer for known CIR achieves the residual ISI 

of only       dB).  

 
The resulting residual ISI of the proposed configuration when the algorithms are sharing their 

equalizer outputs in this case are given in Figure 3-8.  

It is clearly shown that LMS algorithm has become faster, which to the contrary the EWRLS 

algorithm is relatively slower in convergence. Final residual ISI of the algorithms have not improved 

in value for this case. 
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Figure 3-8  Cooperative residual ISI of LMS (top) and EWRLS (bottom) algorithms 

 

The comparison of the results of the LMS and EWRLS algorithms of independent and cooperative 

processing of channel 1 are given in Figure 3-9 and 3-10 respectively. 
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Figure 3-9  Comparison of LMS algorithm residual ISI for independent (magenta) and 

cooperative (blue) modes  

 
Figure 3-10  Comparison of EWRLS algorithm residual ISI for independent (magenta) and 

cooperative (blue) modes  
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Channel 2 

The second channel with eleven taps is specified by the impulse response of 

       [ ]       [   ]       [   ]       [   ]      [   ]       [   ]

      [   ]       [   ]       [   ]       [    ]  

The corresponding transfer function is: 

 ( )                                                            

                   

The ten channel zeros are located at : 

                                                                        

       . This channel is also non-minimum phase.  

We let the LMS and EWRLS (with    )  algorithms adapt separately and the corresponding 

residual ISI of each algorithm in this case is shown in Figure 3-11. 
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Figure 3-11  Independent residual ISI of LMS (top) and EWRLS (bottom) algorithms 

 

It can be seen from Figure 3-11 that EWRLS converges relatively faster, however LMS achieves a 

better residual ISI of about     dB (the optimum LS equalizer residual ISI of       dB).  

The residual ISI of the proposed configuration with the cooperating algorithms in this case are given 

in Figure 3-12. It can be seen that LMS algorithm has become slightly faster with the same final 

residual ISI and so does the EWRLS algorithm that also converges faster with about the same final 

residual ISI.  
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Figure 3-12  Cooperative residual ISI of LMS (top) and EWRLS (bottom) algorithms 

 

The comparison of the results of LMS and EWRLS algorithms in the  independent and the 

cooperative processing for channel 2 are given in Figure 3-13 and 3-14 respectively. 
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Figure 3-13  Comparison of LMS algorithm residual ISI for independent (magenta) and 

cooperative (blue) modes  

 
 

Figure 3-14  Comparison of EWRLS algorithm residual ISI for independent (magenta) and 

cooperative (blue) modes  
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3.5  Adaptive Systems with Three Algorithms 

 With a system including 3 different cooperating algorithms the majority vote determines the 

final system estimate of the transmitted data and therefore the error for each algorithm is computed 

based on this estimate. The equalizer outputs are first applied to a hard-limiter before the votes are 

sensed and a minimum ratio of 2 to 1 suffices to win. We have shown with some optimistic 

assumptions that it can improve the overall system performance in terms of the probability by which 

the system attains the correct estimate (see Figure 3-3). The general set up for the systems employing 

3 algorithms is illustrated in Figure 3-15.  
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Figure 3-15  The configuration for cooperative 3-algorithm equalizer system 

The algorithms selected to be used here are the same simple LMS algorithm specified in chapter 2 by 

Equation (2-21) and (2-28), repeated here for convenience.   

 [   ]   [ ]    [ ]       (    ) 
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 [   ]   [ ]     ( [ ])   [ ]    [ ] [ ]      (    ) 

The second algorithm is the computationally more intensive but faster EWRLS specified by 

equations (3-11) and (3-12), and finally the third algorithm is the Quantized State-2 of the RLS type 

that is given by equation (3-17) and (3-18) both explained in section 3.2. The latter was selected 

based on more satisfactory results observed by simulations. 

Three different channels are examined by the proposed system and the results are summarized in the 

following. Each algorithm uses an equalizer of the size of the channel impulse response (CIR). 

 

Channel 1 

The first channel is symmetric with five taps and non-minimum phase specified by the impulse 

response of 

          [ ]         [   ]         [   ]         [   ]         [   ]  

The corresponding transfer function is: 

 ( )                                                   

The four channel zeros are located at:                     , the complex zeros being on the unit 

circle that make the equalization hard and questionable, if not impossible; hence one may try only to 

equalize the channel to a possible low residual ISI. 

When the LMS, EWRLS, and QS-2 are adapting separately the corresponding residual ISI of each 

algorithm is given in Figure 3-16. It can be seen that QS-2 is fastest to converge with the poorest 

final residual ISI. LMS and EWRLS achieve    dB and    dB residual ISI respectively when the 

EWRLS is faster in convergence. 
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Figure 3-16  Independent residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

When all three algorithms work cooperatively based on a majority vote strategy the resulting residual 

ISI graphs are varied in behavior as shown in Figure 3-17. It is clearly shown that LMS algorithm 

has become faster when the EWRLS and QS-2 algorithms have been steady in both convergence and 

performance. It is important to bear in mind that the channel 1 transfer function has two zeros on the 

unit circle that makes quality blind mode equalization nearly impossible.  
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Figure 3-17  Cooperative residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

Considering that the optimum Least-Squares equalizer when the CIR is known achieves only a 

residual ISI of        dB, reaching     dB in about 400 steps by the LMS algorithm is a significant 

improvement both in performance measure and convergence speed that is gained by cooperation of 

the other different algorithms. This result is better seen in the comparison made in Figure 3-18. 
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There is also a minor degradation in the final residual ISI when the adaptation process is allowed to 

carry on after 1500 steps. (DA3 stands for Diversified 3-Algorithm.) 

 
Figure 3-18  Comparison of LMS algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  

 
 
 
 
Channel 2 

The second channel with seven taps is specified by the impulse response of 
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 ( )                                                           
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The six channel zeros are located at:                                          

       . 

The channel is also non-minimum phase.  

First we let the LMS, EWRLS, and QS-2 algorithms adapt separately and the corresponding residual 

ISI of each algorithm is given in Figure 3-19. It can be seen that QS-2 is fastest to converge with the 

poorest final residual ISI. The LMS and EWRLS achieve    dB and    dB residual ISI respectively 

when the latter converges much faster.  

It is our desire to make LMS convergence faster while maintaining the same final residual ISI as in 

the independent mode. 
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Figure 3-19  Independent residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

 

When all three algorithms work cooperatively based on a majority vote strategy the resulting residual 

ISI graphs are changed as shown in Figure 3-20.  
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Figure 3-20  Cooperative residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

 

It is clearly shown that LMS algorithm has gained relatively great speed in convergence while the 

other algorithms have also improved when the EWRLS achieves higher speed than QS-2.  In the 

channels examined during this research the author has observed that LMS algorithm usually 
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outperforms other algorithms in spite of its slower convergence. The comparison of the residual ISI 

performance of each algorithm in independent and cooperative modes are given by Figure 3-21, 3-

22, and 3-23 for LMS, RLS, and QS-2 respectively. 

 

 
Figure 3-21  Comparison of LMS algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  
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Figure 3-22  Comparison of RLS algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  

 
Figure 3-23  Comparison of QS-2 algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  
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Channel 3 

The third channel with eleven taps is specified by the impulse response of 

       [ ]       [   ]       [   ]       [   ]      [   ]       [   ]

      [   ]       [   ]       [   ]       [    ]  

The corresponding transfer function is: 

 ( )                                                            

                   

The ten channel zeros are located at: 

                                                                        

       . This channel is also non-minimum phase because the first five zeros are located outside of 

the unit circle. 

When all of the algorithms adapt independently from each other they achieve the residual ISI trends 

of Figure 3-23. The final ISI for LMS, RLS, and QS-2 are about     dB,       dB, and    dB 

respectively. The latter performance measure is of course not satisfactory compared to the others. 
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Figure 3-23  Independent residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

 
 

The results of cooperative adaptation based on majority vote for this channel in graphs of residual 

ISI are shown in Figure 3-24. 
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Figure 3-24  Cooperative residual ISI of LMS (top), EWRLS (middle), and QS-2 (bottom) 

algorithms 

 

In order to inspect the improvements gained by using the proposed diversified method we compare 

the independent and cooperative residual ISI trend for each algorithm in Figure 3-25, 3-26, and 3-27 

for the LMS, RLS, and QS-2 respectively.  
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Figure 3-25  Comparison of LMS algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  

 
Figure 3-26  Comparison of RLS algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  
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Figure 3-27  Comparison of QS-2 algorithm residual ISI for independent mode (red) and 

cooperative mode (blue)  

 

The improvements in performance for the convergence speed of the LMS and EWRLS algorithms 

are clearly observed in Figure 3-25 and 3-26 when some initial acceleration is noticeable for QS-2 

algorithm in Figure 3-27.  
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variable results in terms of the amount of the gain in convergence speed. This case requires future 

work to guarantee robust benefits in the general channel model and incorporating algorithms. 

We have not examined the 5-algorithm system due to the fact that excessive simultaneous 

computations for the adaptation of five different algorithms may not be justified unless for very hard 

channels that resist any other existing blind mode equalization technique. 

The 3-algortihm system is computationally acceptable, in particular when the participating 

algorithms are relatively simple such as LMS, EWRLS, and QS-2 techniques used in section 3.5. As 

shown by the simulation results this case is promising with variable improvement rates. It is the 

author’s intention to augment the proposed methodology to accomplish more consistent performance 

benefit by adding the possible option of choosing different cooperative and congruent algorithms. 

In a practical application includes 3 cooperating algorithms, say forcing the LMS to converge faster 

to its final residual ISI, and the other two algorithms are stopped. Slow variations of the channel can 

be tracked by continuing LMS adaptation. 

Finally, very high speed signal processors with low power consumption warrant the use of multiple 

algorithms in diversified systems even in case of using 5 or more algorithms in one system.  
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Chapter 4: Neural Networks, a Novel Back Propagation Configuration for Wireless 

Channel Equalization 

4.1  Introduction 

 Neural networks are viewed as dense interconnections of elementary computational elements 

known as perceptrons that are simplified models of neurons in the human brain. This model is based 

on our perception and understanding of the biological nervous system. Neural networks also have 

been considered as massively parallel networks composed of many computational elements 

organized in parallel to each other and in turn cascaded to other elements in different layers. Almost 

every introduction to neural networks includes a simplified nervous anatomy to demonstrate the 

resemblance to the human brain. 

Neural nets have great potential applications in the area of speech processing and pattern recognition 

and multi-dimensional signal processing. These applications usually seek high parallelism and high 

computational costs. In recent years the technique of neural nets has been applied to other 

engineering problems including, but not limited to, wireless channel equalization and adaptive 

control. 

Although there are early traces of neural nets in the literature by Widrow (1962) and Stark, et.al. 

(1962), the pioneering works by Rosenblatt (1962) deserve the distinction of being the first formal 

analysis of what was called perceptron analysis. These are actually adaptive linear combiners 

augmented by a nonlinear function block (See Figure 4-1.) Grossberg (1976) and later Carpenter and 

Grossberg (1983) developed adaptive resonance theory and the architecture that became known as 

self-organizing neural nets for pattern recognition. Hopfield (1982) created Hopfield models for the 

class of recurrent (feedback) networks, which in combination of an algorithm called back 

propagation demonstrated significant success in some applications. The development of the early 

neural network systems was taking place at the same time that other adaptive signal processing 
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algorithms, in particular the attractive LMS algorithm, were successfully applied to many scientific 

and engineering problems (See Widrow and Stearns (1985)). Some disappointing experiences with 

this new concept (in addition to the fact that efforts to develop learning rules for neural networks 

with multiple layers were not successful) led to a conundrum in the research of this area for about a 

decade. Particularly, Minsky and Selfridge (1961) showed the inadequacy of perceptron methods, or 

more generally the single-layer network in cases where linear classifications were not possible. They 

suggested the use of Multi-Layer Perceptrons (MLP) that has nonlinear behavior. Minsky also gave a 

treatment of the subject in his 1969 textbook. 
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Figure 4-1 Basic perceptron architecture 

So far, most neural nets have feed forward classifier architecture. A major advancement was made 

by Werbos (1974). Werbos proposed a back propagation learning algorithm which has become the 

most applied algorithm in many applications of neural nets including the signal processing 

application. His work remained unknown until Parker (1985) revitalized the back propagation 

algorithm in his MIT report. After the works by Parker and many others, the multilayer neural nets 

with some modifications to the architecture and the choice of activation function using back 

propagation have gained momentum in the research community. Specially, it has been employed for 

problems of channel equalization and system identification (see Botoca and Budura (2006), Chang, 
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et.al. (2010), Chen and Mars (1991), Fang and Chow (1999), Feng, et.al. (2003), Kechriotis, et.al. 

(1994), Lee and Kim (2003), Li and Er (2008), Mo and Shafai (1994), Rui, et.al. (1999), Sarajedini 

and Hecht-Nielson (1992), Satapathy and Subhushini (2009), Xie and Leung (2005), and Zhang, 

et.al. (2010)). 

Rumelhart, et.al. (1985, 1986) introduced the use of sigmoid function  ( )  
 

      
 in place of the 

signum function (   ( )) that also was known as slicer or hard-limiter to modify the nonlinear 

activation. Overall, the idea of the combination of this back propagation learning algorithm with 

multilayer architecture has demonstrated great achievements in many applications. 

We conclude this section by briefly mentioning some of the salient advantages of neural nets as 

compared to general linear adaptive filtering. 

The first advantage of neural nets is obviously their massive parallel distributed structure that affords 

the network strong computing power. The second and unique advantage is what is known as 

generalization by which the neural nets are capable of learning. In simple words, a trained network 

can generate reasonably correct and expected outputs for the inputs that have not been encountered 

during the training process. Consequently, neural nets are capable of solving relatively complicated 

problems. In some large and hard-to-attack problems several networks are deployed, each having a 

specific task to perform, so that an appropriate structure for each network can be selected and 

configured. 

Haykin (2009) has summarized the important features of common neural networks that are concisely 

given in the following. 

 Nonlinearity: nonlinearity is the prominent feature of neural nets. Although a neural net 

can also be linear in design; however its distributed nonlinearity is used almost exclusively 

in most of the applications. In passing, we mention that nonlinear channels cannot be 



92 
 

equalized adequately by a linear equalizer, and the neural net has becomes an essential 

option. 

 Input-output mapping: supervised learning that is performed in adjusting the synaptic 

connection weights by applying a set of training inputs or examples, and computing the 

network error using the knowledge of the desired (expected) response. If a sufficient number 

of training inputs is exploited, and if the synaptic weights have reached stable and stationary 

values, we can say that the network has created an input-output mapping for the problem 

under investigation. It is an outstanding feature that unlike almost all other channel 

equalization methods no statistical assumptions about the possible input set are made. 

 Adaptivity: neural nets have the capability to adapt their synaptic weights according to 

changes in the environment or inputs. Specifically, they can be retrained to perform an 

ongoing adaptation to respond to minor changes encountered. 

There are other features such as fault tolerance and many more that will not fit in a concise 

introduction. 

 

4.2  Fundamental Theory of Neural Networks 

The credit for introducing the neural networks as we know them today goes to McCulloch and Pitts 

(1943) when they designed a simple model they called “neuron”. Nonetheless, the Rosenblatt 

perceptron (1958) became the main building block for various classes of neural networks that were 

designed and investigated in the second half of the last century. 

The perceptron is a simple network similar to what is known as a linear combiner except for the 

addition of a constant input called bias and hard-limiter (signum function). The latter was replaced 

with other nonlinear functions such as sigmoid or hyperbolic tangent, etc. designated here by  ( ) in 

different configurations and applications (see Figure 4-2). 
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The formulation by which the perceptron output   is computed is a simple summation sometimes 

referred to as activity  , and the application of a nonlinear function. These are given in the following 

equations for the     epoch or step (as the perceptron is being trained adaptively): 

 [ ]  ∑  [ ]  

 

   

                  (   ) 

 [ ]   ( [ ])                                  (   ) 
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Figure 4-2 The perceptron architecture with general nonlinear activation function 

Rosenblatt developed the learning algorithm to adjust (adapt) the free parameters that comprise the 

weights for what are called synaptic connections              for a perceptron with L 

connections. An extra parameter    can be used for the bias input connection that is usually constant 

with      in many designs. The bias is not always included as it might not be necessary for the 

perceptron performance and can be eliminated in certain applications. 

This model was originally applied to the problem of classification of patterns, and so they were also 

called classifiers. They were proved to be successful in pattern classification when the sets of 

different patterns were linearly separable, say by a straight line in two-dimensional space or by a 

hyperplane in L-dimensional space. Rosenblatt (1962) provided the well-known “perceptron 
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convergence theorem” that is also given by others with minor changes (see Haykin (2009), pp. 50). 

The simple perceptron equation consists of a linear combination of inputs or stimuli    and the bias 

that together generate activity   ∑   [ ]  
 
       . In the simple form the perceptron separates 

two classes of the stimuli by a hyperplane with the simple equation: 

∑    

 

   

                                    (   ) 

The final decision in early perceptron applications was made by using a hard-limiter       ( ). 

The synaptic weights    of the perceptron can be iteratively adapted. The adaptation like any other 

adaptive algorithms requires first a method of computing the output error and then a method to make 

an appropriate correction to the weights according to the computed error. 

It is the method designed for these two steps that creates many successful advanced network 

architecture and algorithms. The perceptron created on a single neuron has a very limited 

performance domain. It can separate only two linearly separable classes and is not capable of 

implementing more complicated and nonlinear functions. The network should be expanded to 

comprise more neurons and more layers containing similar neurons. 

The natural option for further examination of neural network performance was to expand the 

network to employ more neurons and more layers comprising many more neurons. Additional 

neurons bring the capability to separate more classes (more than two) and the additional layers 

seemingly removes the linear separability constraint. Benefits come with the cost of more 

computation in addition to the complexity of error and correction formulation. The use of sigmoidal 

function  ( )  
 

      
 and hyperbolic tangent  ( )  

      

      
 were investigated in literature as the 

activation functions replacing hard limiter or threshold  ( )     ( ). 
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4.3  Network Architectures and Algorithms 

In common neural network architectures, the neurons are grouped in the form of layers. Neurons in 

the same layer usually share the same set of inputs or stimuli. Networks with only one layer are 

known as single-layer feed forward (see Figure 4-2). Each neuron in the same layer generates an 

output, together these outputs can be applied to another layer of neurons as stimuli, and thus creating 

a two-layer feed forward networks. In general, adding more layers in general creates multilayer feed 

forward networks (see Figure 4-3). If the final outputs of the network are fed back to the network 

input layer the new configuration is known as recurrent (see Bradley and Mars (1994 and 1995)). It 

also justifies the ‘feed forward” modifier for non-recurrent networks. 

Important parameters and features that distinguish the modern neural net architectures are the choice 

of activation function  ( ), the rule by which the output error in each step or epoch  [ ] is 

determined, and the corresponding correction applied to the weights in each layer in an adaptive 

method. The networks are divided into two categories based on the output error calculations, 

supervised nets in which the exact required or expected output is available to the network, and 

unsupervised or blind nets when this information is not available. The present neural network 

architectures applied to the channel equalization problem are similar to those typically used in 

various other applications in the spirit of the theorem by Hecht-Nielson (1987) that states: “Any 

continuous function in a closed interval can be approximated by back propagation neural network 

with one hidden layer.” 
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Figure 4-3 A multilayer perceptron example of two layer model with N neurons in the input 

and M neurons in the output layer 
 

The Back Propagation Algorithm 

One major reason for the popularity of adaptive supervised training of multilayer perceptrons or 

neural nets in general is the development of back propagation algorithm on recurrent networks. The 

development of back propagation algorithm is credited to Rumelhart and McClelland (1986) in their 

book “Parallel Distributed Processing”. Their development has thwarted the Minsky and Papert 

(1969) argument of multilayer networks deficiency. 

Based on the back propagation algorithm the network operates in two major phases. Phase one is 

forward propagation in which the ultimate output error of the current step is computed based on 

current synaptic weight values in each layer from the very input of the network layer-by-layer toward 

the output. In second phase or back propagation the gradient of error surface with respect to weights 

in each layer is computed from the output of the network backward toward the input layer and is 
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used for updating the weights of each neuron synaptic connections in each layer. This is also the 

kernel of what we know as stochastic approximation (see chapter 2). It can be said that the success of 

the back propagation method has revitalized the study and application of neural networks. 

Radial-Basis Function Networks 

Cover’s theorem (1965) is often referred to as the incentive for designing multi-layer neural 

networks for the case of classes that are not linearly separable. This is in fact a different approach 

compared to back propagation for solving the classification problem of nonlinearly separable 

patterns. The two phase operations are modified so that in the first a transformation is adopted to 

convert a set of nonlinearly separable patterns into a possibly linearly separable set. The justification 

for this attempt is supported by the Cover’s theorem. The second phase is dedicated to find the 

solution to the problem in the least-squares sense.  

The radial-basis functions (RBF) are used for the nonlinear transformation for the sets that possess 

spherical symmetry in relatively high-dimensional inputs and hidden layer networks. 

The RBF are the functions that have spherical symmetry are generally in the form of  (‖    ‖
 
) 

for            , when    are the inputs to the network and the corresponding activation 

function  

 ( )  ∑    (‖    ‖
 
)

   

   

                                   (   ) 

The Gaussian function  ( )     (‖    ‖
 
)   is often tested in many applications (see for 

examples Botoca and Budura (2006), Sarajedini and Hecht-Nielson (1992)). 
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Self-Organizing Maps 

Like many other advanced neural nets, self-organizing nets are also employed in pattern recognition 

and image processing. These nets bear some resemblance to the human brain in sensory systems. The 

self-organizing map is based on a technique known as competitive learning. There is only one 

winner neuron of the output layer or other groups of neurons in competitive learning. The winner 

neuron will be relocated topologically in an ordered manner with respect to other neurons in the 

same layer. 

The concept of neural network has explored many regions of adaptive systems and learning 

processes.  

There are more versions of networks that are not mentioned in this chapter, each demonstrating some 

advantages in certain applications. The use of fuzzy logic in neural nets for example has received 

special attention and several research documents have been published for this case (see Kosko’s 

book (1992): Neural Networks and Fuzzy Systems). 

 

4.4  A Novel Neural Network as a Wireless Channel Equalizer 

 There are many research papers that agree on the fact that linear transversal equalizers are 

not capable of equalizing highly nonlinear channels. Gibson et.al (1989) has explicitly mentioned 

that: “When the channel is non-minimum phase, the decision boundary of equalizer is highly 

nonlinear and deviates markedly from any decision boundary which can be formed by a linear 

transversal equalizer.” 

In searching for a neural network architecture suitable for equalizing an unknown wireless channel a 

reasonable choice would be a multi-layer network and the use of the back propagation algorithm in a 

common gradient descent adaptation. 
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The baseband binary data channel models with the assumptions in chapter 2 are considered. The 

hyperbolic tangent activation function is adequate for binary data system and the bias input 

connection in each neuron is eliminated. 

We decided to try supervised training with the hope of obtaining very fast convergence and 

significant reduction in the training period (see section 4.6), as blind training does not seem 

promising in speed and simplicity (See Zhang, et.al. (2010), Xie and Leung (2005).) 

Figure 4-4 shows the block diagram of the proposed neural network (Kumar and Jalali (2012)). As 

shown in the figure, the sequence of symbols is input to an unknown channel. The output of the 

channel is corrupted by noise. The noisy channel output is inputted to the neural network adaptive 

equalizer through a tapped delay line of length M. The outputs of the tapped delay line are 

segmented into a number of   groups such that each adjacent group may possibly have some amount 

of overlap among their elements with each group of the tapped delay line outputs connected to a 

neuron. Thus the number of neurons   and the total number of synaptic connections is dependent on 

the length of the delay line, the amount of overlap among the various groups and the number of 

elements in each group. The computational complexity is determined by the total number of synaptic 

connections in the network and thus reduced overlap among the various groups’ results in relatively 

reduced computational complexity but may possibly result in relatively reduced convergence rate. 

Consequently, there may be a trade-off between t computational complexity and the rate of 

convergence via the length of the tapped delay line M, the number of neurons S, and the number of 

synaptic connections to each neuron L. 

Each group of the delay line outputs along with its associated neuron has a structure similar to that of 

a linear equalizer except that the nonlinear activation function operating in the neuron replaces the 

decision function of the linear equalizer. 
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Figure 4-4 Proposed neural network equalizer architecture 

Figure 4-5 shows the detailed diagram of the neural network equalizer architecture. In this figure 

 [ ] denotes the sampled noisy channel output that is inputted to the tapped delay line with the 

number of taps equal to   (   )    with   denoting the offset in terms of the indices of the 

tapped delay line outputs connected to the adjacent neurons. The grouping block segments the M 

outputs of the tapped delay line into a number of S groups such that the adjacent group has some 

overlap of (   ) elements among its elements with each group of the tapped delay line outputs 

connected to a neuron. The number of connections to each neuron is equal to L, resulting in   

(   )    total samples fed into the network.  
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Figure 4-5 Detailed block diagram of the proposed neural network based adaptive equalizer 

Thus the first neuron is inputted with  [ ]  [   ]    [     ], the second neuron inputs are 

given by  [   ]  [     ]    [       ], with the last neuron input given by           

 [     ]  [       ]    [     ]. The special case of     corresponds to no 

overlap among the inputs to the various neurons while the case of     corresponds to the case 

where all of the tapped delay line outputs are connected to each neuron as in the previous 

architectures.  
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In terms of the computational complexity of the proposed equalizer, the number of neurons S in the 

input layer is given by   
   

 
  . Thus, for a selected length of the delay line M and the number 

of inputs L to each neuron, the number of neurons S is minimized by maximizing the offset  . 

From the results for the linear equalizer it is known that the performance in terms of the residual ISI 

is increased with an increase in M. Thus, intuitively increasing M would also result in increased 

performance of the neural network-based equalizer. Also, it is expected that a higher value of L 

would result in better performance. Although the performance will also depend upon the number of 

neurons S, the dependence of the performance on S will be relatively less when every neuron is 

processing all or most of the inputs. The number of synaptic connections in the first layer is given by 

     (   ) (
 

 
) and is equal to M for    . In comparison to this, in previous neural network 

equalizer architectures, the number of neurons    is selected independently of M; thus the number of 

synaptic connections is equal to     showing at least in intuitive terms that the proposed 

architecture can have much less computational requirements for similar level of performance. 

Moreover, the previous neural network based equalizer architectures also have hidden layers of 

neurons that further increase the computational requirements. The proposed architecture does not 

have any hidden layer. In the proposed architecture, the absence of hidden layer is compensated by 

the introduction of delay adjustments in the outputs of the neurons in the first layer before being 

connected to the output neuron. The functions  ( )in Figure 4-5 may be the sigmoidal, hyperbolic 

tangent or any other similar function. 

As shown in Figure 4-5, the     neuron output    is delayed by (   )  samples for          . 

Each group of delay line outputs (along with its associated neuron) has a structure similar to that of a 

linear equalizer, except that the nonlinear function operating in the neuron replaces the decision 

function of the linear equalizer. Thus the output of the S neurons may be considered to be different 

versions of the equalized output, except that there is a relative delay among the various outputs. This 
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is in view of the fact that the inputs to the other neurons are the delayed versions of each other. 

Therefore as shown in Figure 4-5, with an introduction of the appropriate delays among the output to 

various neurons, the relative delays introduced by the input tapped delay line are equalized and the 

various neuron outputs have a cumulative effect, achieving a similar effect when different neurons 

all are inputted with exactly the same inputs but with much reduced computational complexity. As 

shown in Figure 4-5, the delayed versions            of the outputs of the neurons            in 

the input layer are inputted to the single neuron in the output layer with weights           . The 

output  [ ] of the neuron in the output layer is input to the decision device whose output   ̂[ ] is 

equal to    ( [ ]) with    ( ) denoting the signum function. During the initial training phase, the 

equalizer error signal is  [ ]   [   ]   [ ] where  [ ] denotes the symbol at the input of the 

channel and   denotes the sum of delays introduced by the channel and the equalizer. After the 

initial phase,  [   ] is replaced by   ̂[ ]  as shown in Figure 4-5. The equalizer error  [ ] is input 

to the adaptive algorithm block that updates the weights of the various neurons in the neural network 

adaptive equalizer. Section 4.5 describes the adaptive learning algorithm for the neural network. 

 

4.5  Learning Algorithm 

For the neural network of Figure 4-5, the nonlinear activity function  ( )is selected to be the 

hyperbolic tangent function     ( ). The equations for the forward propagation of the signal through 

the network are derived for this activity function. The back propagation algorithm is used to 

determine the local and complete gradients required for updating the input and output layer synaptic 

weights as given in the following sections. 
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Forward propagation 

Forward propagation can be performed by starting to compute the    activation functions of the input 

layer neurons, each having   weighted synaptic connections. At the     iteration or epoch of the 

adaptive algorithm, one obtains: 

  [ ]  ∑   [ ] [  (   )     ]

 

   

                        (   ) 

The appropriate activation function employed is the hyperbolic tangent function, thus the outputs 

  ( ) of the neurons in the input layer are given by: 

  [ ]      (  [ ])                                      (   ) 

As may be observed from Figure 4-5 there is no bias or input threshold present for any neuron in the 

input and output layers of the network. The outputs of the first layer are delayed so that they convey 

the information about the channel and the data symbols that belong to the same time slot, in other 

words they are adjusted to be concurrent with respect to the output of the farthest (most delayed) 

neuron in the input layer. These delayed outputs are computed as follows. 

  [ ]    [  (   ) ]                          (   ) 

The signals   [ ]   [ ]     [ ] are inputted to the output layer that possesses only one neuron. It 

may be observed that no hidden layer is incorporated in the neural network of Figure 4-5. The output 

layer activity is computed as   [ ]  ∑   [ ]  [ ]
 
    and using the same activation function as for 

the input layer. Thus the output of the neural network is obtained by   [ ]      ( [ ]) . 

The final estimate for the case of binary data   ̂[ ]  sgn( [ ]) is the estimate of the channel 

delayed input  [ ], i.e., when appropriately converged in supervised mode  ̂[ ]   [   ]  and the 

error  [ ] is applied for the learning algorithm and is given by: 
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 [ ]   [   ]   [ ]    in training mode, 

 [ ]   ̂[ ]   [ ]    in decision-feedback mode. 

The weights of the various synaptic connections in the network are iteratively adjusted on the basis 

of the error  [ ] using the back propagation algorithm as follows. 

Back propagation: Output layer 

The objective function for optimization of the equalizer performance is defined as  [ ]  
 

 
 {  [ ]} 

where  [ ]   ̂[ ]   [ ] is the estimation error and   represents expectation. Notice that in the 

short training mode   [ ]   [   ]   [ ] is the actual error. 

The computation of the total gradient for the update equations of the output layer weight vector is 

summarized in the following:  

  [ ]

   
  { [ ]

  [ ]

   
}                  (   ) 

The application of the output local gradient denoted by    that is defined in the following simplifies 

the equation for complete gradients: 

  [ ]  
  [ ]

  [ ]

  [ ]

  [ ]
                            (   ) 

  [ ]

   
 
  [ ]

  [ ]

  [ ]

  [ ]

  [ ]

   
   ( )  ( )                            (    )   

The local gradient for the output neuron is computed as 

  [ ]   (      
  [ ])   (    [ ])                              (    ) 

Therefore the stochastic gradient algorithm for updating synaptic weights of the output layer is: 
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  [   ]    [ ]     [ ]
  [ ]

   
                     

     [ ]     [ ](   
 [ ])  [ ]                 (    ) 

In the last equation    is the step size or learning rate for the output weight vector update equation. 

Back propagation: Input layer 

In the following, the equations for adaptation of the weights are derived first for the case without the 

delay adjustment. The adaptations equations pertaining to the case with delay adjustment are 

presented subsequently. 

In the first case of no delay adjustment, the inputs to the output layer neuron are given by   [ ]  

  [ ]           and the derivatives of the objective function  [ ] with respect to the weights     

are evaluated as 

  [ ]

     
  { [ ]

  [ ]

    
}            (    ) 

  [ ]

    
 
  [ ]

  [ ]

  [ ]

  [ ]

  [ ]

   [ ]

   [ ]

   [ ]

   [ ]

    
        (    ) 

The local gradients for the input layer neurons   [ ] are defined by the equation in (4-14) that makes 

use of the output layer local gradient   [ ].  

  [ ]  
  [ ]

  [ ]

  [ ]

  [ ]

  [ ]

   [ ]

   [ ]

   [ ]
                 (    ) 

  [ ]    [ ]
  [ ]

   [ ]

   [ ]

   [ ]
                         (    ) 

In (4-16)   [ ]    [ ]    [ ] and      [ ]    [ ]     [ ]    [ ] with 
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   [ ]

   [ ]
          [ ]      

 [ ]                  (    ) 

Thus 

   [ ]

   [ ]
     

 [ ]                           (    ) 

Substitution of (4-18) in (4-16) results in 

  [ ]    [ ]  [ ](    
 [ ])                (    ) 

The last term in (4-14) is given by  

   [ ]

    
  [  (   )     ]              (    ) 

The Equation (4-20) follows directly from (4-5). With the substitution of (4-16) to (4-20) in (4-14), 

one obtains the derivative of   [ ] with respect to     as: 

  [ ]

    
   [ ]  [ ](    

 [ ])  [  (   )     ]        (    )                          

For           and          . 

Further, the output layer local gradient from (4-9) is given as: 

  [ ]   (   
 [ ])                        (    ) 

With the proposed delay adjustments the input signals to the output layer neuron are given by 

  [ ]    [  (   ) ] for          . One starts with the following equation: 

  [ ]

    
   [ ]

  [ ]

   [ ]

   [ ]

   [    ]

   [    ]

    
              (    ) 
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In (4-23)    (   ) . Similar to the first case of no delay adjustments, in this case one also 

obtains    [ ]    [ ]    [ ] for the first partial derivative on the right hand side of (4-23). The 

other partial derivatives in (4-23) are taken as follows: 

   [ ]

   [    ]
          [  (   ) ]       

 (  (   ) )      
 ( )        (    )         

   [    ]

    
   [  (   )      (   ) ]   [  (   )     ]       (    )  

It may be noted that the last expression in (20) is independent of input layer neuron index  , and this 

independence can make the computations somewhat faster. Substitution of (4-24) and (4-25) in 

Equation (4-23) yields: 

  [ ]

    
   [ ]  [ ](    

 [ ])  [  (   )     ]         (    ) 

The stochastic gradient based update equations for adjustment of the synaptic weights for the input 

layer neurons may be generally written as:  

   [   ]     [ ]     [ ]
  [ ]

    
                  (    ) 

The use of (4-26) in Equation (4-27) results in the following adaptive algorithm for the adjustment of 

the weights of the synaptic connections of the input layer in the neural network: 

   [   ]     [ ]     [ ](   
 [ ])  [ ](    

 [ ]) [  (   )     ]     (    )        

For                    . In (4-28) the constant    is the step size or learning rate for input 

layer neurons. 

The simulation results of the following section show that not only the update formula (4-28) is 

somewhat faster because each update equation includes the same input symbol set due to the 
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independence from the neuron index  , but also it makes a very significant difference in the 

convergence time for all  the channels considered for simulations. 

 

4.6  Performance and Simulation Results for the Proposed Network 

In order to evaluate the performance of the neural network equalizer of section 4.4, three different 

non-minimum phase channels are examined. These channels have been used in the previously 

published literature and are considered to be more difficult to equalize. The performance is evaluated 

in terms of the mean square error (MSE) computed by a simple average of the square of the true 

equalization error   [ ]   [   ]   [ ] over a moving window of size 50. 

The first simulated channel has the impulse response: 

  [                                            ] 

with norm ‖ ‖   . The corresponding transfer function is given by: 

 ( )                                                             

The transfer function in this case has zeros located at                                   with 

the phases shown in degrees. Only 40 steps or epochs are used for training including the delay, the 

input layer is selected to have     neurons, each having       synaptic connections, the offset 

   , and the symbol bit energy to noise spectral density ratio 
  

  
      . The step sizes for the 

input and the output layer adaptations are           , that are changed to             after 

the initial  convergence, the overall network delay between the network estimate and the channel 

input data is set to     . 
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 Figure 3 shows the instantaneous actual error   [ ] from the very beginning of the transmission. 

The first 14 network data estimates   ̂[ ] of the network have not been used due to the overall delay 

of the channel and the network. Note however that the azimuth axis for Figures 3–6 show the 

number of symbols including those in the delay period of 14 symbols.  

 

Figure 4-6 Instantaneous error (top) and the bit errors that have occurred during the 

adaptation process (bottom). 

Figure 4-6 indicates the mean square error for this channel simulation over a period of the first 1000 

iterations. 

There are only a total of 6 bit errors in the whole process. The data bit error figure is zoomed in to 

the first 100 steps because no further bit error occurs for another 2000 bits of data exchanged. Figure 

4-7 plots the mean squared error plotted over a period of first 1000 bits. 
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Figure 4-7 Mean Square Error (MSE) averaged over a moving window of 50 steps 

The second channel has been taken from Bradley and Mars (1995) and the impulse response of the 

channel is   [                                     ] with norm ‖ ‖   .  

The corresponding transfer function is given by: 

 ( )                                                  

The transfer function has zeros located at                            ; and thus the transfer 

function is of composite minimum and non minimum phase type. 

In this case 80 steps or epochs have been used for training including the delay; the input layer is 

selected to have     neurons, each having      synaptic connection weights, the offset    , 

and the symbol bit energy to noise spectral density ratio is 
  

  
     . The step sizes for the input 

and output layer adaptations are           , that are changed to             after 

convergence; the overall network delay between the network estimate and the channel input data is 

set to     . 

Figure 4-8 shows the instantaneous actual error   [ ] from the start of the transmission and the data 

error that occurred from the very beginning of the transmission. Obviously the first 15 network data 

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

Mean Square Error of the data estimate

Time index k

M
S

E



112 
 

estimates   ̂[ ] of the network have not been used due to the overall delay. Figure 4-9 plots the mean 

square error for this case. 

 

Figure 4-8 Instantaneous error (top) and the only bit errors that have occurred during the 

adaptation process (bottom). 

 

Figure 4-9 Mean Square Error (MSE) averaged over a moving window of 50 steps 
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There are only a total of 7 bit errors. The data bit error figure is zoomed in the first 100 steps because 

no further bit error occurs for another 2000 bits of data exchanged. 

To show the effect of removing the delay adjustments we use the last example and give the same 

performance graphs when everything else has been kept constant except for the delays. This change 

simplifies equation (4-7) to   [ ]    [ ] ;          . Figure 4-10 shows significant deterioration 

in the performance as seen from   [ ] versus the input symbol number   from the very beginning of 

the transmission and the error   [ ]   [   ]   ̂[ ] versus the symbol number   for the case 

when the delay adjustments have been removed. 

 

Figure 4-10 Instantaneous error (top) and the bit errors for the case without the delay 

adjustments (bottom). 

Figure 4-11 plots the mean square error for this case. 
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Figure 4-11 Mean Square Error (MSE) without the delay adjustments 

Increasing the training period to 100 data bits or steps will still result in a converged equalizer as 

shown in Figure 4-12. It seems that the delays have shortened the training period for this example. 

 

Figure 4-12 Instantaneous error (top) and the bit errors (bottom) for the case without the delay 

adjustments after increasing the training period from 40 to 100 steps. 
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The third channel has been used by Chang, Yang, and Ho [17] and has the impulse response 

  [                    ] with norm ‖ ‖   . 

The corresponding transfer function is given by 

 ( )                          

The final channel is created by the sum   ( )   ( )      
 ( ) with  ( ) given by the above 

equation. Thus the final transfer function turns out to be:  

  ( )                
                                  

The transfer function zeros are located at                      and have relatively wide 

distribution in magnitude. In this case 80 steps or epochs have been used for training including delay; 

the input layer is selected to have     neurons, each having      synaptic connection weights, 

the offset    , and the symbol bit energy to noise spectral density ratio is 
  

  
      . The step 

sizes for the input and output layer adaptations are           , that are changed to        

     after initial convergence; the overall network delay between the network estimate and the 

channel input data    is set to 16. 

Figure 4-13 shows the instantaneous actual error among the channel input data and the network 

output (to the decision device)  [ ] and the data error that occurred from the very beginning of the 

transmission. Obviously the first 16 data estimates   ̂[ ] of the network have not been used due to 

the overall delay of the channel and the network. 
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Figure 4-13  Instantaneous error (top) and the only bit errors that have occurred during the 

adaptation process (bottom) 

There are only a total of 16 bit errors. The data bit error figure is zoomed-in for the first 100 steps 

because no further bit error occurs for another 2000 bits of data exchanged. As may be deduced from 

the simulation results presented here, the proposed equalizer architecture exhibits fast convergence in 

all the cases considered for simulations. In all cases good convergence is achieved within 100 

iterations and, except for the last case, convergence is achieved in about 25 iterations of the 

algorithm. 

Similarly, Figure 4-14 depicts the Mean Square Error in this case. 
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Figure 4-14  Mean Square Error (MSE) averaged over a moving window of 50 steps 

We show the effect of removing the delay adjustments for the last example when all the other 

parameters have been kept constant in the graphs of Figure 4-15. The instantaneous actual error 

  [ ] and the error   [ ]   [   ]   ̂[ ] are shown for this case.  

 

Figure 4-15  Instantaneous error (top) and the data errors (bottom) versus iteration number k. 
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The importance of the time adjustments for the network performance can be seen from the 

significant increase in the number of data errors. Increasing the training steps to larger length did not 

lead to convergence, that is, convergence could not be achieved without the delays for this channel. 

In summary, we have shown that the proposed architecture and the introduction of the delay 

adjustments have shortened the training period for some channels, and for harder channel examples 

have made the convergence possible that otherwise could not be done with commonly used 

configurations even with relatively long training periods. In fact, long training periods defy our goal 

of making the equalization process efficient. 
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4.7  Convergence Analysis 

 The properties of convergence of multi-layer neural nets are mostly unknown. Here we give 

a weak convergence analysis using some convenient assumptions that might provide indications 

about network convergence. Our approach is based on the proposed network and is done by 

investigating one synaptic connection in each layer of neurons with the presumption that all the other 

weights in all layers have already reached their final and correct values. 

First, we conjecture that there are infinitely many solution points in the S-dimensional space for the 

output layer neuron and L-dimensional space for the input layer neurons. This can be seen by a 

simple example. Consider the network of Figure 4-16. For simplicity we use the activation function 

 ( )   ; we also remove the delay adjustments as it seems that they have no impact on the number 

of possible solutions: 

Σ
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Figure 4-16  A simplified and low-dimensional example of two-layer network 

The equations, simplified with convenient assumptions in terms of the weights of the input and the 

output layer neurons, can be written. The network output that is the required optimal value (but not 

unique) are denoted by      : 
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[
  
  
]  [

       
       

] [

  
  
  
]                                (    ) 

      [     ] [
       
       

] [

  
  
  
]             (    ) 

The network weights acting on the arbitrary set of triple inputs are: 

[     ] [
       
       

]  [                           ]              (    ) 

Now suppose a certain known solution is given by [        ], and we need to have 

[                           ]  [       ]                (    ) 

It can be seen that any of the equations        ,              , and         has many 

pairs of solution that must be on the same curve in the parameters space. Replacing the activation 

function with  ( )        does not change this result as the hyperbolic tangent is a one-to-one 

function. 

According to this conjecture it is reasonable to assume that the space of the synaptic weights has 

infinitely many solutions so that any random initial weight vector, with which the adaptation starts, is 

in the neighborhood of one of the solution vectors and hence a local convergence condition suffices 

for the network to take on one of the possible solutions. Moreover, the use of hyperbolic tangent 

relaxes the convergence requirements as we show in the following. 

In the case of binary data input there will be only two cases, the case that the actual and delayed data 

input to the channel is  [   ]     (designated by Case + 1), and the case of  [   ]     

(designated by Case – 1). We consider these cases separately. Starting with the output layer synaptic 

weights updates from Equation (4-12), we postulate that all of the parameters that are actually input 

layer connection weights have already converged to their corresponding solution values: 
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  [   ]    [ ]     [ ](   
 [ ])  [ ]                 (    ) 

                  [ ]   [   ]   [ ]                      (    ) 

                  [ ]   [   ]   [ ]                     (    ) 

Applying the actual (training mode) error to adaptation equation according to the back propagation 

algorithm we obtain 

                   [   ]    [ ]    (   [ ])
 (   [ ])  [ ]                     (    ) 

                  [   ]    [ ]    (   [ ])(   [ ])
   [ ]                     (    ) 

Let the difference between the output layer weights and the exact local solution be denoted as 

  [ ]    [ ]    
  at the     epoch. The last equations can be written in terms of   [ ] as follows 

(by subtracting   
  from each side of the equation) . 

                   [   ]    [ ]    (   [ ])
 (   [ ])  [ ]                     (    ) 

                  [   ]    [ ]    (   [ ])(   [ ])
   [ ]                     (    ) 

When the network parameters and the corresponding functions have converged to a local solution 

they settle at that point in the multidimensional space because either (   [ ])    or (  

 [ ])    in the adaptation equation for Case + 1 and – 1 respectively and no more adjustment will 

be made to the parameters. This of course applies to the first layer outputs after delays namely 

  
            in Equation (4-37) and (4-38). 

We need to compute network general output  [ ] with the assumption that all other weights have 

reached their local solution values except the one that is being analyzed, the     weight in the single 

output neuron   [ ]   
    [ ]. 
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 [ ]      (∑  [ ]  [ ]

 

   

)      (∑  
   
 

 

   

   [ ]  
 )                                       

 
    (∑   

   
  

   )      (  [ ]  
 )

      (∑   
   
  

   )     (  [ ]  
 )
                  (    ) 

We have assumed that the adaptation has reached its local solution except for one parameter or 

weight that is also assumed to be close to the solution point in the S-dimensional space.  Based on 

these assumptions it is fair to consider that |    (∑   
   
  

   )|    and |  [ ]  
 |   . 

Consequently, the following approximations are justified. 

    (  [ ]  
 )    [ ]  

                           (    ) 

                   (∑  
   
 

 

   

)(  [ ]  
 )      [ ]  

                (    ) 

                  (∑  
   
 

 

   

)(  [ ]  
 )      [ ]  

                (    ) 

Notice that keeping the second terms in Equation (4-41) and (4-42) leads to even smaller terms in the 

adaptation equations due to the assumption |  [ ]  
 |    (one can use approximations  

 

   
     

and  
 

   
     to investigate this claim.) Inserting the approximations for the network output in 

both cases we have: 

 [ ]  
    (∑   

   
  

   )    [ ]  
 

      (∑   
   
  

   ) (  [ ]  
 )
     (∑  

   
 

 

   

)   [ ]  
            (    ) 

We use the approximate network output in addition to     (∑   
   
  

   )    for Case + 1 and 

    (∑   
   
  

   )     for Case – 1 in the adaptation equations as follows: 
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Case + 1:     [ ]     [ ]  
         [ ]      [ ]  

  

  [   ]    [ ]    (   [ ]  
 ) (    [ ]  

 )  
                    (    ) 

  [   ]    [ ]       
 [ ]  

       
 [ ]  

                              (    ) 

Case – 1:     [ ]      [ ]  
         [ ]    [ ]  

  

  [   ]    [ ]    (    [ ]  
 )(  [ ]  

 )   
                      (    ) 

  [   ]    [ ]       
 [ ]  

       
 [ ]  

                              (    ) 

Finally, since the contribution of the misadjustment through tanh function to the network output 

 [ ]      (∑   
   
  

      [ ]  
 ) is by the factor   [ ]  

  we multiply both sides of the equations 

by   
  to get: 

             [   ]  
    [ ]  

       
 [ ]  

       
 [ ]  

              (    ) 

             [   ]  
    [ ]  

       
 [ ]  

       
 [ ]  

               (    ) 

Before checking the adaptation trend for each case it might be useful to looks at the hyperbolic 

tangent function. 

 
 

Figure 4-17  A graph of hyperbolic tangent function 
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Case + 1: First we modify Equation (4-47) to the following: 

  [   ]  
    [ ]  

    (  [ ]  
  )

 
[    [ ]  

 ]                     (    ) 

a) If   [ ]  
    then we have   [   ]  

    [ ]  
    because the second term in (4-49) 

is positive. This helps by forcing  [ ]      (∑   
   
  

      [ ]  
 ) closer to   . 

b) If   [ ]  
    that means its contribution is in the opposite direction, pushing  [ ] 

backward from   . In this case the second term in (4-49) is still positive [    [ ]  
 ]    

because we assumed that |  [ ]  
 |   . This updates the misadjustment in the correct 

direction   [   ]  
    [ ]  

  that implies the output  [ ] closer to     Now if   [  

 ]  
    it will follow the case a above, otherwise if   [   ]  

    then the next change 

  [   ]  
    [   ]  

  and the convergence continues in the correct direction. 

Case – 1: Again we modify Equation (4-48) to the following 

  [   ]  
    [ ]  

    (  [ ]  
  )

 
[    [ ]  

 ]                     (    ) 

a) If   [ ]  
    then we have   [   ]  

    [ ]  
    because the second term in (4-50) 

is negative ([    [ ]  
 ]   ). This helps by forcing  [ ]      (∑   

   
  

      [ ]  
 ) 

to get closer to   . 

b) If   [ ]  
     that means that its contribution is in the opposite direction, pushing  [ ] 

backward from   . The second term in (4-50) is still positive [    [ ]  
 ]    because we 

assumed that |  [ ]  
 |   . This updates the misadjustment in the correct direction that is          

  [   ]  
    [ ]  

  that implies the output  [ ] gets closer to     Now if   [  

 ]  
    it will follow the above, otherwise if   [   ]  

    then the next change 

  [   ]  
    [   ]  

  and the convergence continues in the correct direction. 
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The adaptation equations for the input layer neurons become complicated as their corresponding 

gradients involve many free parameters. From Equation (4-28) for updating the     weight of 

synaptic connection of the     neuron in the input layer we have the gradients as: 

  [ ]    [ ](   
 [ ])  [ ](    

 [ ]) [  (   )     ]                    (    ) 

where  [ ]     [ ] for Case + 1, and  [ ]   (   [ ]).  

Although there is a similar term in the gradient (    
 [ ]) having about the same relation to the 

synaptic weights    , a similar path of reasoning cannot follow because the similar assumption 

|  [ ]|  |    (∑    [ ] [  (   )     ]
 
   )|    for nearly converged network cannot be 

made. Moreover, the convergence of the output layer depends on the input layer convergence and not 

the other way around. 

It is the intention of the author to pursue possible approaches to the complete convergence analysis 

of the proposed network or multilayer neural network in general in future research. 
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Chapter 5: Adaptive Simulated Annealing 

5.1  Introduction 

 Every optimization problem should be based on minimization (or maximization) of a cost or 

objective function, which usually is a function of a weight vector or state variable of many 

dimensions. The weight vector needs to be adjusted to some optimum point in its space. The cost 

function in the problem of channel equalization has several uncertainties associated with it (see 

section 2.5 and Equation (2-19) and (2-20)). Other than the channel that is modeled by a linear 

transversal impulse response with slow varying tap gains, there is channel noise and the desired 

output that is unknown in the blind mode case. Furthermore, the cost function is normally 

complicated. Let us assume the binary data input to the channel normalized to {  } and the channel 

that is considered fixed for the period of adaptation, then the cost function is composed of terms of 

the form given in Equation (5-1). The random noise samples    in Equation (5-1) represent channel 

noise and the dependence on the time steps are dropped for clarity in the equation. 

   {       
   

                   }                  (   ) 

 One has to acknowledge that the equalizer weights in Equation (5-1) themselves change at each step 

according to another mathematical equation. If we take the LMS iterative update equation for the 

equalizer weight vector, they will be dependent on the error in each step. In the blind mode an 

estimate of the input data is incorporated that is determined by a nonlinearity of the form 

 ̂       (        )                                                                         (   ) 

Equation (5-2) represents what is also known as slicer, or quantizer, which adds to the complexity of 

the cost function. In either case the cost function behavior or characteristics is difficult to be pictured 

in advance.  It is quite possible that the iterative algorithm becomes trapped in a local minimum of 

the cost function (see Mazo  [10]), some of these local points are not acceptable in terms of their 
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performance measured by residual ISI. A mechanism to catapult the weight vector out of the local 

traps is needed to enhance the performance of the algorithms, lacking a workable plan to attain the 

global minimum or optimum point of the cost function. In evaluating each algorithm performance it 

must be conceded that many possible local stationary points with acceptable and close to global 

optimum residual ISI exist. In fact, that is the reason many simple blind mode equalizer techniques 

are known to achieve an acceptable convergence. Even when an almost-sure convergence to the 

global minimum exists, it is definitely associated with a sophisticated algorithm and costly 

procedure. 

Addition of a zero-mean noise to the adaptive equalization process was introduced by Kumar in 1981 

[8-9]. This process was referred to as simulated annealing in the subsequent literature. Kumar has 

explained additional noise benefits in the statement: “In very intuitive terms the noise sequence 

{ [ ]} and/or { [ ]} compensate for a non-continuous distribution of { [ ]} and thus ensure a priori 

convergence of the adaptive algorithm. It will become apparent later that in the absence and with 

discrete distribution of  { [ ]} one could always find an initial estimate of the equalizer parameters 

which will not cause convergence.” The configuration of [8-9] according to the notation and format 

of this thesis is shown in Figure 5-1. References [8-9] also provide mathematical proof of extension 

of convergence domain with the addition of annealing noise. 
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Figure 5-1 The decision-directed system configuration to include random noise application 
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It can also be said that the additional noise facilitates the release of an entrapped process from the 

local minima with unacceptable performance. White, et. al, in their 1995 paper [14] state: “We 

observe that the noisier the observations are, the faster the algorithm converges. It results from a 

better conditioning of the information matrix.” This observation and many similar ones justify the 

addition of noise. 

In section 3.6 of [15], Widrow and Walach, show that the LMS algorithm converges to the optimum 

point measured by the mean squared error substantiated in a sum of exponentials, which have time 

constants inversely proportional the eigenvalues of the autocorrelation matrix of the received input 

process. It is well-known that the higher eigenvalue spread of the auto-covariance or autocorrelation 

matrix of the channel generates a harder problem with longer adaptation. In Appendix A, we show 

some basic idea that encourages the addition of random noise samples to change the process of 

adaptive equalization behavior with variable results, though positive and promising in many cases. 

The idea of random noise injection (with zero mean) gained momentum in the research community 

in order to solve problems in different areas of interest and has become known as Simulated 

Annealing (the term first time used by Kirkpatrick, et. al in [6] and [7]). Some of the tough problems 

such as the Travelling Salesman Problem (TSP), and the floor planning in particular, optimization of 

the Integrated Circuit layout, are among the class of combinatorial optimization problems often 

tackled by simulated annealing. The theory of Adaptive Simulated Annealing (ASA) is covered in 

[4, 5, 6, 7, 8, 9, 12, and 13] with some interesting applications demonstrated in [1, 2, 3, and 11].  

Van Laarhoven and Aarts [13] explain a required “generation mechanism” in the randomized 

optimization ( a new state is generated using a random transition in a specified way) that generates a 

transition from the current state to another state selected from the current neighborhood. If the new 

state has lower cost it replaces the current one, otherwise another randomized transition is generated 

and examined. They also define the final stopping point by the following method: “the algorithm 
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terminates when a configuration is obtained whose cost is no worse than any of its neighbors.” 

Hence, ASA requires 3 main components, namely a generation mechanism, and method by which to 

evaluate the current cost to make the decision whether to keep or reject the new transition, and of 

course a method to stop the procedure. The second component is the prominent difference between 

Kumar’s proposed system and common ASA implementations. 

 

 

5.2  Adaptive Simulated Annealing in Channel Equalization 

 From the discussion in section 5.1, it is reasonable to seek answers to three important 

questions. What system setup to deploy that includes the random noise (we will call it annealing 

noise) addition point. How to choose noise power in terms of standard deviation, and how to vary 

(decrease) the noise power as the final point is approached. Accurately answering these questions 

requires intensive research and mathematical analysis extending the work of Kumar in [8-9]. Here 

we propose two basic system configurations, one illustrated in Figure 5-1, and an additional one 

characterized by small change in the way the system error is computed in Figure 5-2. 
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Figure 5-2 The alternative system configuration to include additional random noise 
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A preliminary study of the basics of Adaptive Simulated Annealing in wireless channel equalization 

is championed in this chapter. In particular, we apply only low power Gaussian noise samples with 

zero-mean that is kept constant during the adaptation. Experimenting with the similar channels as in 

chapter 3 and 4, we have reached an interesting and promising conclusion summarized in 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

5.3  Simulation Results on Different Channels 

Channel 1 

The first channel is symmetric with five taps (non-minimum phase) specified by the impulse 

response of (introduced in Chapter 3) 

          [ ]         [   ]         [   ]         [   ]         [   ]  

The optimum LS optimum equalizer of the same size as CIR for known CIR produces only        

dB. The application of ASA for EWRLS case with       shows considerable improvement with 

final           dB as seen in Figure 5-3. As may be inferred form Figure 5-3, in the absence of 

ASA, the convergence is very poor with the ISI to signal power of about 2 dB. 

 
Figure 5-3 Comparison of residual ISI for the case of EWRLS 
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Channel 2 

The second channel with eleven taps is specified by the impulse response of 

       [ ]       [   ]       [   ]       [   ]      [   ]       [   ]

      [   ]       [   ]       [   ]       [    ]  

The optimum LS optimum equalizer for known CIR produces       dB. The application of ASA for 

EWRLS algorithm with       shows a variable final residual ISI as seen in Figure 5-4. This result 

is an indicator that the equalizer converges to the different final points in the weight vector space. 

The residual ISI is reduced about 6 dB with ASA compared to that obtained without the ASA after 

5000 iterations. Furthermore, higher variance of the annealing noise shows better convergence.  

 

 
Figure 5-4 Comparison of residual ISI for the case of EWRLS 
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Figure 5-5 depicts the convolution of the equalizer final weight vectors with the channel CIR for 

different annealing noise powers. It is seen that the system converges to different final points with 

varied residual ISI. 

 
Figure 5-5 Comparison of final equalizer convolution with the CIR 
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Channel 3 

The third channel with eleven taps is specified by the impulse response of 

       [ ]       [   ]       [   ]       [   ]      [   ]       [   ]

      [   ]       [   ]       [   ]       [    ]  

The optimum LS optimum equalizer for known CIR gets       dB. The application of ASA for 

EWRLS algorithm with       shows a variable final residual ISI as seen in Figure 5-6. This result 

is again an indicator that the equalizer converges to different final points in the weight vector space. 

 

 
Figure 5-6 Comparison of residual ISI for the case of EWRLS 
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Figure 5-7 shows the convolution of the equalizer final weight vectors with the channel CIR for 

different annealing noise powers. It is seen that the system converges to different final points with 

varied residual ISI. 

 

 
Figure 5-7 Comparison of final equalizer convolution with the CIR 
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Channel 4 

The fourth channel with nineteen taps is specified by the impulse response of 

        [ ]        [   ]        [   ]        [   ]        [   ]

       [   ]        [   ]        [   ]       [   ]

       [   ]       [    ]        [    ]       [    ]

       [    ]        [    ]        [    ]        [    ]

       [    ]         [    ] 

The optimum LS optimum equalizer for known CIR achieves       dB. The application of ASA for 

LMS algorithm with         shows the same final          dB as seen in Figure 5-8. 

Therefore the final points of convergence are the same for the applied noise powers. 

 
Figure 5-8 Comparison of residual ISI for the case of EWRLS 
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Figure 5-9 gives the convolution of the equalizer final weight vectors with the channel CIR. It is seen 

that the system converges to the final point with the same residual ISI, even though there is an 

associated sign inversion.  

 

 
Figure 5-9 Comparison of final equalizer convolution with the CIR 
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For the same channel the ASA technique is applied to the EWRLS algorithm with      . The 

results show a variable residual ISI as seen in Figure 5-10. Therefore there are different final 

converged points based on the different annealing noise power. 

 

 
Figure 5-10 Comparison of residual ISI for the case of EWRLS 

 

Figure 5-11 confirms the varied final converged points offering the convolution of the equalizer final 
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Figure 5-11 Comparison of final equalizer convolution with the CIR 
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Channel 5 

There is yet another channel with five taps and specified by the impulse response of 

          [ ]         [   ]         [   ]         [   ]         [   ]  

The optimum LS optimum equalizer for known CIR achieves only      dB. The application of ASA 

for LMS algorithm with         shows variable convergence speed with the final         dB 

as seen in Figure 5-12. This result is an indicator that the equalizer converges to the same final points 

in the weight vector space with variable convergence speed. 

 

 
Figure 5-12 Comparison of residual ISI for the case of EWRLS 
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For the EWRLS algorithm with       the ASA technique also shows variable convergence speed 

with a final           dB as seen in Figure 5-12.  

 

 
Figure 5-13 Comparison of residual ISI for the case of EWRLS 
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Applying the ASA techniques generate results demonstrating the improvement in the convergence 

speed and the final ISI. However, the final residual ISI is changed only if convergence is made to 

another location of the available local minima. In other words, adding the annealing noise in any of 

the different channel models will not change the performance in terms of final ISI as long as the 

equalizer converges to the same point.  

Another interesting observation was made about the number of local stationary points in each 

algorithm. It has been seen that QS-2 algorithm shows the least number of change in the final 

stationary points. The LMS algorithm comes second, and the EWRLS is first with the highest 

number of change in final adapted point. 

Changing the system model of Figure 5-1 to 5-2 is not associated with significant change in the 

equalizers performance and behavior. 
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Appendix A 

Auto-covariance matrix of a random process     {(   ̅)(   ̅)
 } wof the random 

vector   with zero mean reduces to the autocorrelation matrix     {( )( )
 } with the following 

properties. We are to show that the addition of white noise to the process output can possibly 

improves the eigenvalue spread in a worst case analysis method. With the fair assumption of 

stationary process the autocorrelation matrix is symmetric and also Toeplitz. Furthermore, the main 

diagonal elements are all positive that can be normalized to unity. Symmetry in addition to semi-

definite properties of the autocorrelation matrix leads to real and positive eigenvalues (see Papoulis 

[2]). 

Let us denote the elements in a complex and square matrix order   by {     }           , and 

let   denote the circles with center     and radius    ∑ |   |
 
   
   

 that is  

   {    | |     |    }                                       (   ) 

The Greschgorin theorem states that any eigenvalue of the matrix   belongs to one of the circles    

(see Atkinson [1]). Since the eigenvalues of autocorrelation matrix of a stationary process are real 

and positive, the Greschgorin discs geography should look like the ones in Figure A-1. Notice that 

the disc centers are all equal to diagonal value    . In worst case, the eigenvalue spread is  
    

    
 with 

     and      as shown in Figure A-1. 

Addition of white noise   
   to the output of the process will only affect the diagonal elements to 

new value       
 . The new autocorrelation matrix has the discs geography shown in Figure A-2. In 

Figure A-2 one can see the discs are all moved in the positive direction of real axis by   
 . 

Consequently the new eigenvalue spread in the worst case is 
       

 

       
 .  
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Finally, the behavior of the autocorrelation matrix is likely to improve because its worst case 

eigenvalue spread is smaller. That is 

       
 

       
  

    
    

                                                     (   ) 

 

λmaxλmin

Zi

aii

0

Real Positive 

axis

 

Figure A-1 Greschgorin discs for the autocorrelation matrix of a stationary process 

 

λmaxλmin

Zi

aii+ϭn

0
Real Positive 

axis

 

Figure A-2 Greschgorin discs for the autocorrelation matrix plus the white noise 
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Chapter 6: Concluding Remarks and the Future Research 

 The main problem that is being addressed in this thesis is related the most important issues 

associated with the wireless communication channels, namely Inter-Symbol Interference (ISI) caused 

by multipath nature and the communicators mobility. A complete introduction to the modeling and 

characteristics of this kind of channels are given in Chapter 1. It was also explained in Chapter 2 that 

ISI is causing data errors and hence the main obstacle in the way of reliable and fast wireless digital 

communications. The common methods to eliminate or sufficiently mitigate the effect of distortion 

caused by ISI are collectively known as channel equalization. 

The approach in this thesis is based not only on one methodology but several algorithms and 

configurations that are offered and examined to tackle the ISI problem. There are two main 

categories of channel equalization, supervised and blind modes. We have studied the application of a 

new specially modified neural network requiring very short training period for the proper channel 

equalization in Chapter 4. The demonstrated success in given examples motivated some convergence 

analysis. 

For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the 

concept of multiple “cooperative” algorithms for the cases of two and three cooperative algorithms. 

Several computationally effective algorithms are necessary to implement a diversified-algorithm 

system. The “select absolutely larger equalized signal” versus “majority vote” methods have been 

used in 2- and 3-algoirithm systems respectively, many of the demonstrated results are encouraging 

for further research. 

Chapter 5 involves the application of general idea of simulated annealing to the target problem of 

this thesis in an adaptive. A limited strategy of constant annealing noise is experimented for testing 

the same various simple algorithms as in Multiple Algorithms systems. Convergence to local 

stationary points of the cost function in parameter space is clearly demonstrated and justifies the use 
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of additional noise. The capability of the adding the random noise to release the algorithm from the 

local traps is established in several cases. 

 Each of the methods proposed and investigated invites future research and scholarly work. 

1. The new supervised equalizer system based on the new neural network configuration can be 

augmented by the addition of at least one hidden layer. Additional layer seeks more 

computations for both the forward and the backward propagations however it is possible to 

obtain significant capability in particular for the cases of nonlinear channel models. More 

general convergence analysis for all layers can be attempted in the perspective regardless of 

how challenging this can be. 

2. Adaptive simulated Annealing method has been studied in the limiting cases such as 

constant random noise power and the lack of a plan to adjust the noise power during the 

adaptation. Some practical measures that can represent the unknown channel parameters 

must be proposed for the noise power management. Besides, it is intuitively assumed that 

there should be modified or augmented algorithms to achieve robust and mighty ASA 

process with minimal constraints. 

3. The algorithms with diversified adaptive techniques have been studied with limited number 

and limited variety of cooperating techniques. Although the methodology for the cooperation 

of algorithms can be seen to be final, there are capacities of improvements that require 

scholarly attentions. 
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