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Abstract 

The bit error rate (BER) performance of a pulse position modulation (PPM) scheme for non 

line-of-sight (LOS) indoor optical links employing channel equalization based on the artificial 

neural network (ANN) is reported in the paper. Channel equalization is achieved by training a 

multilayer perceptrons (MLP) ANN. A comparative study of the unequalized „soft‟ decision 

decoding and the „hard‟ decision decoding along with the neural equalized „soft‟ decision 

decoding is presented for different bit resolutions for optical channels with different delay 

spread. We show that the unequalized „hard‟ decision decoding performs the worst for all 

values of normalized delayed spread becoming impractical beyond normalized delayed spread 

of 0.6. However, „soft‟ decision decoding with/without equalization displays relatively 

improved performance for all values of the delay spread. The study shows that for a highly 

diffuse channel the signal-to-noise ratio (SNR) requirement to achieve a BER of 10
-5

 for the 

ANN based equalizer is ~ 10 dB lower compared with the unequalized „soft‟ decoding for 16-

PPM at a data rate of 155 Mbps.  Our results indicate that for all range of delay spread, neural 

network equalization is an effective tool of mitigating the ISI. 

  



1. Introduction 

With current communication systems the bandwidth per end-user is limited at most to a few 

Mbps, because of the bottleneck imposed by the use of copper cables or radio frequency (RF) 

wireless links at the last mile. Although, higher RF frequencies (beyond 60 GHz) have been 

suggested to overcome the bandwidth bottleneck per user, the cost is too high and therefore 

may not be adopted by many users [1, 2].  Dropping fibre cable to homes is one solution, but is 

costly.  One alternative solution would be to offer wireless links in the optical domain that 

could readily be linked to the high-speed optical fibre backbone link. Optical wireless (OW) 

systems (indoor and outdoor) offer all the advantages of optical fibre based systems plus rapid 

installation at a low cost and localised radiation resulting in no interference in adjacent 

cells/rooms. Compared with the RF based systems, OW offers a huge unregulated bandwidth at 

a single wavelength without resorting to the frequency reuse [1, 3, 4]. In fact the same 

wavelength could be used in a number of cells in the same geographical area with very little or 

no inter-channel interference. The cell size could be precisely defined in any shape for 

particular applications, a unique characteristic in OW systems.  

 

However, in contrast to the RF system, OW links lacks mobility, blocking, eye and skin safety, 

ease of connectivity and suffers (only the non-line of sight (LOS)) from multipath induced 

inter-symbol-interference (ISI) similar to the RF links. Eye and skin safety could be improved 

by (i) operating at a higher wavelength of 1550 nm, where the laser beams are absorbed by the 

cornea and lens and do not focus on the retina [5], which is also compatible with third 

transmission window of the back-bone fibre optic links, and (ii) employing more power 

efficient modulation techniques.  LOS link is the most power and bandwidth efficient since the 

optical power is highly concentrated and there is no loss or pulse dispersion due to multipath 

[6]. However, a LOS link requires precise alignment and suffers from blocking related link 

loss, thus limiting its application to a specific environment where there is no blocking at all. 

The coverage area in LOS links can be increased by broadening the transmitted beam to 

support mobility at the expense of power efficiency as in [7, 8], or by using non-LOS links.  

 

Blocking can be mitigated to an extent at the cost of increased system complexity by 

employing a cellular concept [9].  Diversity techniques adopted at both the receiver and 

transmitter have also been used to reduce or eliminate the link loss due to blocking [10]. 

Blocking probability can also be reduced by adopting multiple inputs multiple outputs (MIMO) 



systems, or a power efficient solution known as the data transmission with cycle emission, 

where  light is emitted at different time slot in a cyclic fashion [8]. Mobility could be improved 

by utilizing a wide beam angle optical transmitter. In non-LOS links with no requirement for 

alignment, the existence of multipath links between the transmitter and the receiver eliminates 

the shadowing effect and blocking probability, but at the cost of increased path loss, reduced 

bandwidth and increased ISI compared with the LOS links [6, 9, 11, 12]. 

 

Although in OW systems the combination of intensity modulation and direct detection 

(IM/DD) prevents multipath fading, ISI still constitutes a major system impairment especially 

at high bit rates in an indoor environment [12-14]. In dispersive environment, the maximum 

likelihood sequence detection (MLSD) technique has been shown to give the optimum result; 

however, its complexity and delay prohibit its use in many applications [15]. A number of sub-

optimum equalization techniques have been developed to combat the effect of ISI. In [16-18] 

equalization schemes for OW indoor links employing on-off-keying (OOK), PPM, and digital 

pulse interval modulation (DPIM) have been reported. The equalizers incorporated are mostly 

based on the digital finite impulse response (FIR) filters. Such equalizers are classified as a 

linear equalizer (without feedback) and a decision-feedback equalizer (DFE). In [17]  it has 

been shown that a symbol rate zero-forcing DFE (ZF-DFE)  outperforms a chip-rate ZF-DFE. 

This is because a complete PPM symbol, rather than a few slots, is being used as the feedback 

signal.   

 

The adaptive equalization is a preferred method in a non-stationary environment. The equalizer 

attains the channel parameters in a supervised manner and adjusts its parameter based on the 

desired response within a given environment. In the traditional approach using the FIR filters, 

the filter coefficients are adjusted by transmitting a training sequence. The rationale behind 

using FIR filters is that by making the impulse response equal to the inverse of the channel, the 

filter will nullify the adverse effect of the channel at the receiver. More recently the 

equalization problem has been defined as a classification problem and ANN has been utilized 

as a classification tool [19-22]. In fact, both the linear and adoptive (using DFE) equalizers 

belong to a class of ANNs [23]. However, the classification capability of a linear equalizer is 

limited to a hyperplane decision boundary, which is a non-optimum classification strategy 

especially with respect to the time varying channel [24].  The optimum strategy would be to 

have a hyper-surface boundary for the classification. ANN with multiple layers of neurons is 

one of the best tools for implementing such a strategy. On the other hand adaptive processing, 



universal approximation and self-organizing capabilities as well as adoptability to a non-

Gaussian channel have made the ANN an appropriate tool for non-linear signal processing 

[25]. In fact, realization of an inverse filter is a more complex task than the pattern 

classification [23]. It has been reported that the adaptive DFE based on the ANN offers 

significantly superior BER performance compared to the conventional DFE for a severe 

amplitude distorted co-channel system [26] and non-linear channels [27].  

 

Both the multilayer perceptrons (MLP) as well as the radial basic function (RBF) have been 

utilized for equalization [19, 20, 23, 27-29]. In comparison with the MLP, RBF requires a 

larger number of hidden nodes at lower values of  SNR [29]. The cascaded MLP and RBF 

outperform both the MLP and RBF in terms of the BER performance [28]. ANN has been used 

in a number of communication fields including non-linear channel modelling, coding, decoding 

and error correcting codes, and non-linear signal processing to name a few [30].  

 

To the best of our knowledge no work has been reported on the performance of the PPM 

system employing the neural equalization, which is the subject of this paper. Here, we have 

adopted ANN based „soft‟ decision decoding to recover the original transmitted data. The 

paper is organised as follows: In Section 2 the PPM is introduced as a block code and 

algorithm for „soft‟ decoding is presented. In Section 3, the ANN is introduced as an 

alternative adaptive equalizer to the FIR filter followed by description of the ANN based 

equalization scheme for PPM with a „soft‟ decision decoding. Finally the simulation results for 

the BER performance are given in Section 5 and conclusions are presented in the Section 6. 

 

2. PPM as a Block Code 

A PPM is a baseband modulation technique most commonly used in optical communications 

(fibre optics as well as free space optics) because of unparallel power efficiency compared to 

any other baseband modulation technique. In the PPM, each set of M-bit input word 
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LX )1,0()0.....000,1,0,....0( contains a single pulse of one time slot duration Ts 

= M/(LRb) and L-1 empty slots, where Rb is the data bit rate. The position of the pulse is 

indicated by the binary representation of m. PPM with a duty cycle of M
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 and a peak-to-

average power ratio of M achieves the best power efficiency but at the cost of increased 



bandwidth requirement compared to other pulse modulation schemes.  A PPM signal can be 

written as: 
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 is the average transmitted optical power, Tf is the symbol period, 

]........,,,[ 110 Lccc is the PPM code word. For the same bit rate, PPM requires L/M more 

bandwidth and a lower average power by a factor of (0.5LM)
0.5

 compared to the OOK. 

  

Considering the optimum single detection scheme using a matched filter and a threshold level 

detector, the slot error rate Pse for the PPM system can be approximated to [31]: 
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where R is the photodetector responsivity, and 0N  is the one-sided power spectral density and 

the error function,   .  

 

As each symbol contains L slots, the probability of symbol error is   . 

If we consider all symbols to be equally likely, then the probability of symbol error may be 

converted into a corresponding bit-error rate by the following [15]:  
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 In the diffuse channel, it is not easy to approximate the error probability of equalized system. 

Instead, the upper bound and the lower bound are calculated by averaging the error 

probabilities by randomly chosen transmitted sequence [32]. 

 

In addition to the power efficiency, PPM symbols have built-in error detection capability. 

Since PPM can be considered as a block code with a Hamming distance of one, both the „hard‟ 

decision decoding and the „soft‟ decision decoding schemes can be applied. Although the later 

is computationally complex compared to the former, it offers SNR gain of more than 1.5 dB in 

a LOS link and higher gains in non-LOS Links [6]. In PPM employing a simple L-input 

comparator, „soft‟ decision decoding is carried out by finding a correlated matrix with the 

highest average amplitude.  Consider a block code with N possible combinations (N = L for 



PPM).  Following the similar approach taken in [33] and taking into consideration that optical 

system has no negative energy, the received sequence  rj is given by: 

 
0 isbit   if             

1 isbit  if    

thjjnjr

 thjjnEjr
,   (4) 

where nj represents the zero mean white Gaussian noise, and E is the energy per bit and j = 1, 

… N.  The decoding aims to find N dimensional vector with elements given by:  
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where cij denotes the bit in the j
th

 position of the i
th

 code word and i ={1,…, N}. Hence  cij = {0, 

1 } depending upon the bit corresponding to 0 and 1 respectively. Since a PPM symbol 

contains only one pulse, the value of CMi depends only on the non-zero bit of the i
th

 code word. 

Hence the „soft‟ decoding can be carried out by assigning “1” to the bit with highest amplitude 

and “0” to the remaining bits.  To clarify the concept, consider 4-PPM with received symbol r 

= {r1, r2, r3, r4}. Then CM is given by: 

      (6) 

Since the values  for i = j, selecting a codeword corresponding to the maximum value 

of CMi is equivalent to assigning “1” to the bit with the highest amplitude. 

 

 

3. Artificial Neural Network Adaptive Equalizer 

Fundamentally, the problem of adaptive equalization can be formulated as a classification 

problem [24, 34], and modern classifying tools like ANN can be utilised.  ANN is more 

suitable for channel equalization because of highly parallel structure, adaptability and learning 

capability. Since there is no need for channel inversion then ANN equalization can be 

implemented in any channel.  The functional unit of ANN is a neuron. A neuron cannot 

perform a complicated task on its own, but when combined and interconnected in some 

predefined manner, the composed ANN create a powerful tool for difficult tasks including 

nonlinear signal processing, adaptive learning, solution of nonlinear equations to name a few. 

Haykin [25] has pointed out the rationale behind using ANNs instead of the traditional signal 

processing tools, the most importantly being the nonlinearity, universal approximation, 

adaptability to change its free parameter  based on the environmental changes. 



 

Figure 1 shows the block diagram of a single hidden layer feedforward ANN, where the output 

of a neuron is given by:  
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where wk is the weight associated with input xk to the neuron, f  is the activation function, and 

„b‟ is the bias to the  ANN. The bias can be considered as an input with a constant weight of 

one. The sigmoid function and the linear function are the common activation functions used in 

ANN for a classification purpose, though other activation functions like the linear and 

threshold functions are also used [35].  

 

The MLP may have more than one hidden layer, Fig. 1(b). The neurons in each layer are 

connected to the every other neurons in adjust layers. The signal flows in feedforward manner, 

hence is called feedforward MLP. The activation function in the hidden layer can be sigmoid or 

linear. The two outer layers, which receive inputs from or provide outputs to the external 

environment are called the input layer and output layer, respectively according to their 

function. For equalization, ANN is trained in supervised manner by providing input-output sets 

and adjusting free parameters, the weights and the bias, to minimise the error between the 

actual output y(n) and target output d(n). There are different training algorithms, the most 

popular being the backpropagation (BP) learning in which the weights in n
th

 iteration are 

updates as: 

 
 

(8) 

 

where  is the weight from the hidden node i to the node j,  is the learning rate 

parameter and  is an error function. The target of training algorithm is 

to reduce the value of   E(n)  for  each iteration until it reaches a constant value.  

 

The equalizer structure based on the ANN is shown in Fig. 2. Like traditional equalizers, the 

received signal u(n) is passed through tap delay lines (TDL) of length L, where L depends on 

the channel delay spread. The free parameters (weight and bias) of the ANN are adjusted 

according to the channel condition by transmitting a training sequence. MLP as well as the 

radial basis function network and the recurrent ANN have been proposed and applied for 



channel equalization, details of which can be found in [20, 23, 24, 34, 36] and references 

therein. This study is limited to the equalization using the feedforward MLP with BP training 

algorithm. 

 

 

4. PPM System with AAN Equalization 

The block diagram of neural equalized PPM is given in Fig. 3. M-bit binary data sequence {bj} 

passed through a serial-to-parallel converter is converted into an L-PPM sequence {xj}. PPM 

symbols are then passed to a transmitter filter with a unit-amplitude rectangular impulse 

response P(t) of one time slot duration Ts. The resulting continuous time signal X(t) is 

transmitted through the optical channel with impulse response of h(t). The noise signal n(t) is 

modelled as the additive white Gaussian (AWGN) and it is independent of X(t). The channel is 

assumed to be time invariant and the model for diffuse indoor optical wireless link adopted 

here is based on the well known Ceiling bounce model with an impulse response given by [37] 

: 
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where H is the height of the ceiling above the transmitter and receiver, c is the velocity of light 

and u(t) is a unit step function. The parameter a = 2H/c is related to the root mean square (rms) 

delay spread Drms given by:  
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For a more realistic channel model with multiple reflections, “a” needs to be modified. For the 

unshadowed and the shadowed channels the expressions for a is given by [37]: 

  (11) 

 , (12) 

where s is defined as the ratio of the horizontal transmitter-receiver separation to the TR 

diagonal, the latter is defined as the length of the segment of the line between the transmitter 

and the receiver. 

 



The multipath channel is characterised by Drms and the optical path loss H(0), contributing to 

ISI and signal attenuation respectively. Here H(0) is assumed to be negligible and is therefore 

normalized to unity. The delay spread contributing to the ISI is usually normalized to Ts given 

as:  

 DT =Drms/Ts. (13) 

  

The received optical signal tntStZ )( , where )()()( thtXtS , is first converted to its 

electrical equivalent, which is then passed through the matched filter with impulse response r(t) 

= P(-t) matched to the transmitted pulse. The discrete-time equivalent impulse response of the 

cascaded system truncated to have j time slots is given by: 

 
sjTtj trthtPC )()()( . (14) 

 

The output from the filter is sampled at the end of each slot at the slot rate, and the sampled 

output sequence uj is applied to the ANN for classification (Fig. 3). The estimated PPM 

sequence { jx̂ } at the output of the ANN is passed through a serial-to-parallel converter prior 

to being applied to the „soft‟ decision decoder to regenerated the PPM symbols. Finally, a PPM 

decoder will recover the input data binary sequence { jb̂ }.  In the case of the „hard‟ decision 

decoding, a PPM symbol is generated by keeping the first pulse in the decoded PPM symbol 

and setting the rest to zero.  

 

In this work, a feed-forward back propagation ANN with 36 neurons in the 1
st
 layer and a 

single neuron in the 2
nd

 layer is used. The transfer functions adopted for the 1
st
 and 2

nd
 layers 

are the tan-sigmoid and the log-sigmoid, respectively. To estimate the channel parameters, 

ANN is trained by transmitting a predefined 1.2 kbits binary data sequence at a regular 

interval. The scaled conjugate gradient algorithm [38] is adopted to adjust the ANN weights 

and biases. The learning duration and the number of iteration required to adjust the ANN 

parameters depend on the complexity of the learning task. Here the aim is not to optimize the 

learning task but to let the ANN to estimate the new channel parameters by sending a learning 

sequence of a certain length. Once the ANN is fully trained, the detection process of the 

received signal will commence. 

 



A Monte Carlo simulation is carried out using 1000 PPM symbols per packet. The simulation 

is stopped if the number of erroneous bits received is at least 100 for BER >10
-3

. However, 

because of long computational time, the number of erroneous bits is limited to 10 for BER < 

10
-3

. In this work, we compare the input bit sequence bj and output bits sequence 
jb̂  to 

evaluate the error performance rather than the conventional way of comparing the input and 

output PPM symbol sequences. Hence, BER is used as the measure of performance evaluation.  

 

5. Results and Discussion 

Using the simulation parameters given in Table 1, the system performance is investigated. 

Equations (2) and (3) are used to plot the BER for the LOS link with „hard‟ decision decoding. 

The simulated BER is obtained using the procedure shown in Fig. 4 using Matlab.  

 

Figure 5 depicts the normalised discrete impulse responses of diffuse channel with and without 

equalization at Drms = 5 ns. Note that the impulse response is normalised by diving values in 

each sampling instant by where  is the sampling instant and the channel delay 

is removed in the ceiling bounce model by shifting the time origin by 2H/c. Though, pulse 

spreading depends only on the channel parameter, i.e. Drms, whereas the ISI depends on both 

h(t) and Rb. The impulse response of a cascaded system (i.e. convolved response of the channel 

and the ANN equalizer) as in Fig. 5(b) shows a response similar to the ideal case, where the 

ANN has effectively compensated for the channel impairments (pulse spreading). The high 

amplitude in the impulse response in Fig. 5(b) is due to normalization. Note, practically it is 

not possible to obtain an ideal response even with an equalizer because of numerous factors 

such as the channel noise and the time varying channel parameters.  In [39] it has been shown 

that for the ceiling bounce channel model both the ANN and linear FIR digital filter equalizers 

display identical BER performance for the „hard‟ decision decoding. Hence in this work we 

report only the performance comparison of the „hard‟ decision decoding and the unequalized 

and ANN based equalizer with the „soft‟ decision decoding. 

 

Figure 6 illustrates the BER performance curves against the SNR for ANN equalized and 

unequalized 8-PPM for  diffuse links employing „soft‟ decision decoding scheme  at a data rate 

of 155 Mbps for Drms value of 1 and 5 ns.  Also presented for comparisons are the simulated 

BER curves for the LOS link with „hard‟ and „soft‟ decision decoding and  predicted results for 

„hard‟ decoding using (2) and (3), showing a good agreement with the simulation. As reported 



in [40, 41] and confirmed by our simulations the ambient light does not affect BER 

performance in LOS and dispersive channel with „soft‟ decision decoding at high data rate of 

155 Mbps. Thus, it is not taken into consideration. As can be seen at BER of 10
-5

, LOS link 

with the „soft‟ decision decoding displays the best performance offering a SNR gain of ~3 dB 

compared to the LOS with the „hard‟ decoding. For the diffuse channel, the unequalized „hard‟ 

decision decoding displays the least desirable performance. The unequalized „hard‟ decision 

BER performance for a highly dispersive channel (i.e. Drms = 5 ns) displays a higher error rate 

thus it is of no practical use. The „soft‟ decision decoding with no equalization offers a much 

improved performance compared to the „hard‟ decoding for LOS and diffuse cases. In „soft‟ 

decoding, signals with the largest cross correlation between the received vector r and possible 

transmitted signal vector as in (5) is selected, thus providing the optimum performance in LOS 

links. In diffuse links with matched filter and threshold detection ISI induced noise is still a 

problem particularly at high values of DT. Using an equalizer with „soft‟ decoding capability 

(the optimum detection) reduced the effect of ISI, thus leading to improved performance. The 

„soft‟ decision decoding scheme offer ~ 4.5 dB SNR gain at BER of 10
-5

 at Drms of 1 ns 

compared to the „hard‟ decision decoding. The gain increases for higher values of Drms.  

Compared to LOS links („soft‟ decoding), additional SNR of ~2 dB and ~15 dB are required to 

achieve a BER of 10
-5 

for a diffuse channel with Drms of 1 ns and 5 ns, respectively without 

incorporating any equalizer. The BER performance of equalized case with „soft‟ decoding 

displays a striking improvement compared to unequalized „hard‟ and „soft‟ cases. The 

performance gain using equalization increases as the channel becomes more dispersive. For 

example, for Drms value of 5 ns, equalized „soft‟ scheme requires ~ 8 dB low SNR than the 

unequalized „soft‟ decoding to achieve the same BER of 10
-5

.  

 

Figure 7 illustrates the SNR required to achieve a BER of 10
-5 

at a data rate of 155 Mbps for a 

range of  DT from 0 to 4 for all three cases being investigated;  unequalized „hard‟ decoding,  

unequalized „soft‟ decision decoding and equalization with  „soft‟ decision decoding for 4, 8 

and 16-PPM . It is evident that BER performance of unequalized „hard‟ decision decoding is 

very susceptible to DT [42]. There is an exponential increment in the SNR requirement to 

achieve a BER of 10
-5

 with increase DT. High values of SNR penalties (> 20 dB) are incurred 

for the DT > 0.5, thus making the „hard‟ decoding impractical for highly diffuse channel. 

Whereas the system employing the „soft‟ decision decoding (equalized and unequalized) shows 

much more resistance to the channel spreading with the ANN equalized „soft‟ decoding 

offering the best performance for all values of DT.  There is a linear increment in the SNR 



requirement for both the unequalized and equalized „soft‟ decoding schemes with the latter 

offering much improved SNR gain as channel gets more dispersive. Compared to the 

unequalized „hard‟ decision decoding, the SNR requirement to achieve a BER of 10
-5

 for 16-

PPM with the DT of 0.6 is 9 and 10.5 dB lower for unequalized „soft‟ and ANN equalized „soft‟ 

decoding, respectively. At the normalized Drms > 0.6 both SNR power penalties for the 

unequalized „soft‟ and ANN equalized decoding are considerably lower compared with the 

unequalized „hard‟ decoding.  For example, at DT of 3, the unequalized „hard‟ decision 

decoding is no longer feasible as SNR requirement is impractical whereas „soft‟ decision 

decoding without/with an equalizer requires only 18 and 10 dB higher SNR compared to the 

LOS case. This result shown clearly demonstrates the potential of ANN based equalizer with 

the „soft‟ decoding for dispersive environment. As expected, higher SNR penalties are incurred 

for lower orders of PPM. 

 

6. Conclusion 

The paper has proposed ANN based equalizer with „soft‟ decision decoding as an alternative 

tool to mitigate the multipath induced ISI equalization for indoor optical wireless links. The 

unequalized/equalized performance of „soft‟ and „hard‟ decision decoding for 4, 8 and 16-PPM 

for a range delay spread at the data rate of 155Mbps was evaluated using the Monte Carlo 

simulation. It was shown that the unequalized „hard‟ decision decoding performed the worst 

for all values of normalized delayed spread becoming impractical beyond normalized delayed 

spread of 0.6. However, „soft‟ decision decoding with/without equalization displayed relatively 

improved performance for all values of the delay spread. For a highly diffuse channel (i.e. 

normalized delay spread of 3) the SNR power penalty for the ANN based equalizer is 10 dB 

lower compared with the unequalized „soft‟ decoding for 16-PPM at a data rate of 155 Mbps.  

The results show that for all range of delay spread, neural network equalization is an effective 

tool of mitigating the ISI. The practical implementation of the ANN based equalizer is the 

subject of further study. 
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Table 1: Simulation parameters 

Parameters Values 

NN number of layers 2 

NN number of neurons 1
st
  

layer 36 

NN number of neurons 

2
nd

 layer   1 

NN activation function tan-sigmoid, log-sigmoid 

NN training algorithm 

 

Scaled conjugate gradient 

algorithm 

NN Minimum error 1
-30

 

NN Minimum gradient 1
-30

 

Data  rate Rb  155 Mbps 

Bit resolution M 2, 3, & 4 

Packet length 1000 symbols of M-bit 

NN training length 200 symbols of M-bit 

Channel normalised delay 

spread 

0 ─ 4 

Background noise current 

Ib  

200 μA 

Photodetector 

responsivity R 

1 A/W 
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Fig. 2: ANN based channel equalizer structure. 
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Fig. 1. (a) A neuron and (b) a neural network with an input, an output and a hidden 

layer. 



 

 

 

Fig. 4: The flowchart for simulating the BER of PPM given in the system block diagram (Fig. 

2) 
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Fig. 6: The BER performance against the SNR for equalized (ANN based) and the unequalized 

8-PPM for LOS and diffuse links at a data rate of 155 Mbps utilizing both „hard‟ and „soft‟ 

decision decoding. 

 

 

 

 

 

 



 

Fig. 7: The SNR requirement against the normalized Drms for PPM link for a data rate 

of 155 Mbps, a range of M and a BER of 10
-5 

for equalized „soft‟ decision decoding 

and unequalized „soft/hard decision decoding. 


