255 research outputs found

    An amended MaxEnt formulation for deriving Tsallis factors, and associated issues

    Get PDF
    An amended MaxEnt formulation for systems displaced from the conventional MaxEnt equilibrium is proposed. This formulation involves the minimization of the Kullback-Leibler divergence to a reference QQ (or maximization of Shannon QQ-entropy), subject to a constraint that implicates a second reference distribution P_1P\_{1} and tunes the new equilibrium. In this setting, the equilibrium distribution is the generalized escort distribution associated to P_1P\_{1} and QQ. The account of an additional constraint, an observable given by a statistical mean, leads to the maximization of R\'{e}nyi/Tsallis QQ-entropy subject to that constraint. Two natural scenarii for this observation constraint are considered, and the classical and generalized constraint of nonextensive statistics are recovered. The solutions to the maximization of R\'{e}nyi QQ-entropy subject to the two types of constraints are derived. These optimum distributions, that are Levy-like distributions, are self-referential. We then propose two `alternate' (but effectively computable) dual functions, whose maximizations enable to identify the optimum parameters. Finally, a duality between solutions and the underlying Legendre structure are presented.Comment: Presented at MaxEnt2006, Paris, France, july 10-13, 200

    A New Method for Gray Level Image Thresholding Using Spatial Correlation Features and Ultrafuzzy Measure

    Get PDF
    One of the most recent techniques employed to estimate an optimal threshold of a gray level image for segmentation is ultrafuzzy measures. In this paper, we introduce relative fuzzy membership degree (RFMD) taking spatial correlation among the pixels in the image into account. We also propose a novel thresholding technique by combining two-dimensional histogram, which was determined by using the gray value of the pixels and the local average gray value of the pixels using ultrafuzziness and RFMD. Compared to fuzzy membership degree, RFMD of type-II fuzzy sets and ultrafuzzy measure is able to better segment critical gray level images. It was observed that the outcome is so encouraging in objective and subjective perspectives over the existing method for all varieties of images

    Use of the q-Gaussian mutation in evolutionary algorithms

    Get PDF
    Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Evolutionary programming with q-Gaussian mutation for dynamic optimization problems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe use of evolutionary programming algorithms with self-adaptation of the mutation distribution for dynamic optimization problems is investigated in this paper. In the proposed method, the q-Gaussian distribution is employed to generate new candidate solutions by mutation. A real parameter q, which defines the shape of the distribution, is encoded in the chromosome of individuals and is allowed to evolve. Algorithms with self-adapted mutation generated from isotropic and anisotropic distributions are presented. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on three dynamic optimization problems.This work was supported by Brazil FAPESP under Grant 04/04289-6 and UK EPSRC under Grant No. EP/E060722/01

    Tarification logit dans un réseau

    Full text link
    Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.The network pricing problem consists in finding tolls to set on a subset of a network's arcs, so to maximize a revenue expression. A fixed demand of commuters, going from their origins to their destinations, is assumed. Each commuter chooses a path of minimal "disutility", a measure of discomfort associated with the use of a path and which takes into account fixed costs and tolls. A deterministic modelling of commuter behaviour is mostly found in the literature, according to which positive flow is only assigned to \og shortest\fg\: paths. Even though the determinist pricing model is amenable to global optimization by the use of enumeration techniques, it has often been criticized for its lack of realism. In this thesis, we consider a probabilistic extension of this model involving a logit dicrete choice model. This more realistic model is non-linear and non-concave, but still possesses strong combinatorial features. Our analysis spans three separate articles. In the first we tackle the problem from a theoretical perspective for the case of a single origin-destination pair and develop a first order analysis that exploits the logit assignment analytical properties. We show the validity of simplification rules to the network topology which yield a reduction in the problem dimensionality. This enables us to establish the problem's unimodality for a wide class of topologies. We also establish a parallel with the product-line pricing problem, for which we generalize some of our results. In our second article, we address the problem from a numerical point of view for the case where multiple origin-destination pairs are present. We work out algorithms that exploit both local information and the pricing problem specific combinatorial features. We provide theoretical results which put in perspective the deterministic and probabilistic models, as well as numerical evidence according to which a very simple combinatorial approximation can lead to the best solutions. Also, our experiments clearly indicate that under any reasonable setting, the logit pricing problem is much smoother, and admits less optima then its deterministic counterpart. The third article is concerned with an extension to an heterogeneous demand resulting from a mixed-logit discrete choice model. Commuter price sensitivity is assumed random and the corresponding revenue expression admits no closed form expression. We devise nonlinear and combinatorial approximation schemes for its evaluation and optimization, which allow us to obtain quasi-optimal solutions. Numerical experiments here indicate that the most realistic model yields the best solution, independently of how well the model can actually be solved. We finally illustrate how the output of the model can be used for economic purposes by evaluating the contributions to the revenue of various commuter groups

    Analysis of objects in binary images

    Get PDF
    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented

    On replacement strategies in steady state evolutionary algorithms

    Get PDF
    Steady State models of Evolutionary Algorithms are widely used, yet surprisingly little attention has been paid to the effects arising from different replacement strategies. This paper explores the use of mathematical models to characterise the selection pressures arising in a selection-only environment. The first part brings together models for the behaviour of seven different replacement mechanisms and provides expressions for various proposed indicators of Evolutionary Algorithm behaviour. Some of these have been derived elsewhere, and are included for completeness, but the majority are new to this paper. These theoretical indicators are used to compare the behaviour of the different strategies. The second part of this paper examines the practical relevance of these indicators as predictors for algorithms' relative performance in terms of optimisation time and reliability. It is not the intention of this paper to come up with a "one size fits all" recommendation for choice of replacement strategy. Although some strategies may have little to recommend them, the relative ranking of others is shown to depend on the intended use of the algorithm to be implemented, as reflected in the choice of performance metrics. © 2007 by the Massachusetts Institute of Technology

    Evolutionary n-level hypergraph partitioning with adaptive coarsening

    Get PDF
    Hypergraph partitioning is an NP-hard problem that occurs in many computer science applications where it is necessary to reduce large problems into a number of smaller, computationally tractable sub-problems. Current techniques use a multilevel approach wherein an initial partitioning is performed after compressing the hypergraph to a predetermined level. This level is typically chosen to produce very coarse hypergraphs in which heuristic algorithms are fast and effective. This article presents a novel memetic algorithm which remains effective on larger initial hypergraphs. This enables the exploitation of information that can be lost during coarsening and results in improved final solution quality. We use this algorithm to present an empirical analysis of the space of possible initial hypergraphs in terms of its searchability at different levels of coarsening. We find that the best results arise at coarsening levels unique to each hypergraph. Based on this, we introduce an adaptive scheme that stops coarsening when the rate of information loss in a hypergraph becomes non-linear and show that this produces further improvements. The results show that we have identified a valuable role for evolutionary algorithms within the current state-of-the-art hypergraph partitioning framework
    corecore