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Evolutionary Programming with ¢-Gaussian Mutation for Dynamic
Optimization Problems

Renato Tindés and Shengxiang Yang

Abstract— The use of evolutionary programming algorithms
with self-adaptation of the mutation distribution for dynamic
optimization problems is investigated in this paper. In the
proposed method, the g-Gaussian distribution is employed to
generate new candidate solutions by mutation. A real parameter
q, which defines the shape of the distribution, is encoded
in the chromosome of individuals and is allowed to evolve.
Algorithms with self-adapted mutation generated from isotropic
and anisotropic distributions are presented. In the experimental
study, the ¢-Gaussian mutation is compared to Gaussian and
Cauchy mutation on three dynamic optimization problems.

[. INTRODUCTION

One of the main differences between Evolutionary Al-
gorithms (EAs) and traditional deterministic optimization
techniques is that, in EAs, stochastic operators are used
during the search process. Traditionally, in Evolutionary
Programming (EP) and Evolution Strategies (ES) applied
to real-valued optimization, new candidate solutions are
generated by mutation using multivariate samples taken from
isotropic Gaussian distributions [1]. The use of an isotropic
Gaussian distribution in EAs is interesting mainly because it
maximizes the Boltzmann-Gibbs entropy (and the differential
entropy, i.e., the extension of the Shannon’s concept of infor-
mation entropy to the continuous case) in unconstrained real-
valued search spaces [3]. The isotropic Gaussian distribution
has a finite second moment and does not favor any direction
in the search space.

In recent years, researchers have proposed the use of
mutation distributions with longer tails and infinite second
moment in EAs. For example, in the Fast Evolutionary Pro-
gramming (FEP) [10], the Cauchy distribution is employed.
The use of mutation taken from heavy tail distributions
implies jumps of scale-free sizes, eventually allowing to
reach distant regions of the search space faster. This property
is interesting when EAs are applied to some multimodal
problems or dynamic optimization problems (DOPs) as it
can allow the population to escape faster from local optima.
However, in some problems, as less local candidate solutions
are generated, the convergence to the (local) optima can be
slower. In this way, the choice of the mutation distribution
can be very important for the EA, particularly in DOPs,
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where the use of one or other mutation distribution can result
in a very different performance.

It is important to observe that the use of EP and ES in real-
valued DOPs is interesting because self-adaptation provides
an intrinsic mechanism for adaptation to the changes of the
problem. In [9], the behavior of ES with self-adaptation of
the mutation strength parameter, used to control the spread of
a Gaussian mutation distribution, was investigated in DOPs.

In this paper, the use of EP with self-adaptation of the mu-
tation distribution along the evolutionary process proposed
in [6] is investigated for DOPs. In this strategy, named EP
with g-Gaussian mutation, self-adaptation is employed, not
only to control the mutation strength parameter, but also
to control the mutation distribution. A real parameter that
defines the distribution employed by the mutation operator is
encoded in the chromosome of the individuals and is allowed
to evolve. For this purpose, the ¢g-Gaussian distribution [3] is
employed. The g-Gaussian distribution allows to control the
shape of the distribution by setting a real parameter ¢ and
can reproduce either finite second moment distributions, like
the Gaussian distribution, or infinite second moment distri-
butions, like the Cauchy distribution. The main contribution
of this paper is the investigation of the use of the EP with
¢-Gaussian mutation in DOPs. Additionally, a comparison of
the EP with Gaussian and Cauchy mutations in three dynamic
environments is provided.

The rest of this paper is organized as follows. The EP
algorithm with ¢-Gaussian mutation taken from anisotropic
and isotropic distributions are presented in Section II. The
experimental study with DOPs generated from three station-
ary test functions is presented in Section III. Finally, this
article is concluded in Section IV.

II. EP WITH SELF-ADAPTATION OF THE MUTATION
DISTRIBUTION

In [6], the use of g-Gaussian mutation was proposed in
EP. In an m-dimensional real-valued search space, the new
candidate solution is generated by the mutation operator from
individual x; as follows:

ii:Xi—FCZ, (1)

where ¢ = 1,...,u, z is an m-dimensional random vector
generated from a g-Gaussian distribution with zero mean, and
C is a diagonal matrix with the main diagonal composed by
the elements of vector ¢ = [0(1) o(2)...0(m)]T, which
defines the mutation strength in each coordinate.

The ¢-Gaussian distribution has interesting properties. Dif-
ferently from the Gaussian distribution, which is an attractor
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only for independent systems with a finite second moment,
the g-Gaussian can be used to represent correlated systems
with an infinite second moment too [3]. The parameter ¢
controls the shape of the ¢-Gaussian distribution. The second
order moment is finite for ¢ < 5/3 and the ¢-Gaussian distri-
bution reproduces the usual Gaussian distribution for ¢ = 1.
When ¢ < 1, the ¢g-Gaussian distribution has a compact form,
and decays asymptotically as a power law for 1 < ¢ < 3.
When ¢ = 2, the g-Gaussian distribution reproduces the
Cauchy distribution, while for ¢ = (3 + m)/(1 + m) and
0 < m < oo, it becomes a Student’s ¢-distribution with m
degrees of freedom [4]. In this paper, the generalized Box-
Miiller method proposed in [3] is employed to generate g-
Gaussian random variables for —oco < g < 3.

Based on the mutation strength self-adaptation [1], the
authors in [6] have proposed to add the parameter g; of each
individual ¢ to its chromosome and to multiplicatively update
it as follows:

G = qiexp (1aN(0,1)), 2)

where 7, denotes the standard deviation of the Gaussian
distribution and A(0,1) denotes a sample variable taken
from the Gaussian distribution with zero mean and standard
deviation one. In this way, different distributions can be
reproduced during the evolutionary process.

Two procedures can be used to generate the m-
dimensional random vector z in Eq. 1. In the first, the
g-Gaussian random vector z is generated by sampling m
independent g-Gaussian variables M, (0,1). It is important
to observe that when ¢ is high, this procedure implies that
some directions in the search space are more explored than
others (i.e., the distribution that generates the random vector
z is anisotropic). The use of random variables generated by
sampling independent random variables taken from a heavy
tail distribution can be interesting for optimization problems
with separable evaluation functions, as most of the large steps
occurs close to the coordinate axes [5] and the optimization
can be solved by m one-dimensional optimization processes
parallel to the coordinate axes. However, the performance
of the optimization process can be strongly affected for
non-separable evaluation functions. The EP algorithm with
mutation generated from anisotropic g-Gaussian distribution
is called ¢gGEP in this paper.

In the second approach, based on the works [5] and [3],
the random mutation vector z is generated from an isotropic
q-Gaussian distribution as follows:

z ~ru, 3

where 1 ~ N, (0,1), i.e., a random variable with ¢g-Gaussian
distribution, and u is an uniform random vector obtained
by sampling a random vector with Gaussian distribution and
normalizing it to length one, i.e., u = v/|v| where v is a
random vector with Gaussian distribution and ||v| denotes
the Euclidean norm of the vector v. The EP algorithm with
mutation generated from isotropic g-Gaussian distribution is
called I¢gGEP in this paper.
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The algorithms qGEP and IqGEP are presented in Alg. 1.
The main difference of the EP algorithm presented in Alg. 1
from Gaussian EP and FEP [2] is that, in the proposed
algorithm, the ¢-Gaussian mutation is employed (step 6)
instead of the Gaussian (Gaussian EP), or Cauchy (FEP)
mutation, and a procedure to adapt the ¢ parameter is adopted
(step 95).

Algorithm 1 EP with ¢g-Gaussian mutation.

1: Initialize the population composed of individuals (x;, o;,
g)fori=1,... . pu

2: while (stop criteria are not satisfied) do

3: fori« 1topdo

4 update the mutation strength parameter &;(j) for
j=1tom

5: update the parameter ¢; (Eq. 2)

6: X; < x; + C; z, where z is a random vector gen-

erated from an anisotropic or isotropic g-Gaussian
distribution with parameter G;, and C; = diag(5})
7:  end for
8:  Compute the fitness of the parents (x;, o;, ¢;) and
offspring (X;, 65, §;) fori=1,...,u
9:  Compute the winning function [2] of the population
composed of y parents and p offspring
10:  Select, to compose the new population, the p indi-
viduals with the largest winning function from the
population composed of y parents and p offspring
11: end while

III. EXPERIMENTAL STUDY

In the experiments presented in this work, the dynamic
problem generator with control of rotation of the individuals
[7] is employed to construct DOPs based on three stationary
test problems. The dynamic problem generator is presented
in Section III-A while the three stationary test problems used
here are described in Section III-B. The experimental design
is described in Section III-C, and the results are presented
and analyzed in Section III-D.

Experiments with algorithms qGEP and IqGEP are pre-
sented in this paper (see last section). In all experiments,
each EP algorithm with ¢g-Gaussian mutation distribution is
compared to two other approaches where the parameter ¢ is
fixed. The approaches are defined as follows:

o Algorithms qGEP (anisotropic) and IqGEP (isotropic):
use of one changing ¢ for each individual, i.e., Eq. 2 is
employed.

o Algorithms GEP and IGEP: use of only one fixed
parameter ¢ = 1.0 for all individuals, i.e., step 5 in
Alg. 1 is changed by ¢; = 1.0 and the Gausssian
mutation is reproduced.

o Algorithms CEP and ICEP: use of only one fixed
parameter ¢ = 2.0 for all individuals, i.e., step 5 in
Alg. 1 is changed by ¢; = 2.0 and the Cauchy mutation
is reproduced.
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TABLE 1
TEST FUNCTIONS.

Function f(x) [ Range [ m
fi=2X 2] x € [—100,100]™ | 30
2 = L z2 — cos(2mx;) + X € |—9,
™ (27 — 10 cos(2mz;) 4 10 5,5]™ 10
f3 =301 (yf — 10cos(2my;) + 10), where y = M(x) x € [-5,5]™ 10

In the algorithms qGEP, GEP, and CEP, the mutations
are generated by sampling m independent random variables,
while in the algorithms IqGEP, IGEP, and ICEP, Eq. 3,
where r is respectively taken from g¢-Gaussian, Gaussian,
and Cauchy distributions, is employed to generate the new
candidate solutions. In this way, the EP with g¢-Gaussian
mutation is compared to the EP with Gaussian and Cauchy
mutation in the isotropic and anisotropic versions.

A. Dynamic Problem Generator

In order to evaluate the performance of different EAs
in DOPs, a dynamic problem generator that can generate
DOPs from any continuous encoded stationary problem was
proposed in [7]. Given a stationary problem where the fitness
function is f(x(t)) and x(t) € R™, the DOP is obtained
by periodically moving all the individuals of the population
every 7 generations. The new location of each individual
after the change is obtained by unnormalizing the vector:

z"(t) = A(k)x"(t), ©)

where z”(t) € [-1,1]™, x"(t) € [-1, 1]™ is the normalized
vector x(t), which represents the position of the individual
before the change, and the linear transformation A (k) in
the k& dynamic environment is a rotation matrix composed
by successive simple rotations in random planes. Defining
p = 6/180, where 0 is the rotation angle given in degrees, the
parameter p can be employed to control the degree of change
for the DOP. If p = 0.0, the problem stays stationary, while
if p = 1.0, the extreme changes occur. In this way, the speed
and degree of the environmental change can be controlled
by changing, repectively, the values of 7 and p.

B. Stationary Test Problems

Three stationary problems are selected as test suite for the
algorithms. The DOPs are constructed from these stationary
problems using the dynamic problem generator described in
Section III-A. The test functions, which should be minimized
during the optimization process, are presented in Table I. In
function f3, the matrix M is obtained by the orthogonal-
ization of a random matrix uniformly distributed in the unit
hypersphere.

While the function f; is unimodal, functions fo and f3
are multimodal. Functions fy and f3 are the axis parallel
and rotated Rastrigin functions respectively. The axis parallel
Rastrigin function is separable, while the rotated Rastrigin
function is not separable.
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C. Experimental Design

In order to compare the algorithms, each one was executed
30 times (with 30 different random seeds) for each test
function presented in Table I for different values of 7 and
p. The first two values of 7 (100 and 800) imply changing
the fitness function in an early and a medium stage of the
optimization process respectively. The last value, 7 = 2000,
implies changing the fitness function in a late stage of
the optimization process. Environments with three different
values of p were generated in this paper. These values
represent different change levels: light shifting (p = 0.05),
medium variation (p = 0.3), and severe change (p = 0.7).

For each run of an algorithm, the individuals of the initial
population were randomly chosen. The population size (u)
was set to 100 individuals and the tournament size was set
to 10. The initial mutation strength parameter o;(j) is equal
to 3.0 for the EP algorithms with mutation generated from
anisotropic distributions and, in order to have comparable
results, the initial value of o;(j) is equal to 3.0y/m for
the EP algorithms with mutation generated from isotropic
distributions. The initial ¢g-Gaussian parameter ¢ in qGEP
and IqGEP is equal to 1.0, i.e., the initial g-Gaussian dis-
tribution reproduces the Gaussian distribution. In qGEP and
IqGEP, the minimum and maximum values of the g-Gaussian
parameter ¢ are 0.9 and 2.5 respectively, and 7, = im in
Eq. 2. In all algorithms, the minimum allowed value for the
mutation strength parameter o;(j) is 0.01.

D. Experimental Results

The experimental results of the mean fitness of the best
individual in the last generation before the changes averaged
over 30 runs are presented in tables II and III, respectively,
for the EPs with mutation generated from anisotropic and
isotropic distributions. The statistic comparisons between
the algorithms, which are carried out by t-test with 58
degrees of freedom at a 0.1 level of significance, are also
presented. Figs. 1, 2, and 3 show the averaged results of
fitness, Euclidean norm of the mutation strength parameter
vector, and the mean distribution parameter ¢ of the current
best individual for algorithms GEP, CEP, and qGEP in the
experiments with 7 = 2000. From these tables and figures,
several results can be observed and are analyzed as follows.

One can observe that, in the three approaches (with
Gaussian, Cauchy, and ¢-Gaussian mutations), the mutation
strength parameters generally increase when the environmen-
tal changes occur. Increasing the mutation strength parame-
ters implies that mutation distributions have a larger second
order moment (one can remember that the mutation strength
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TABLE II
RESULTS OF THE MEAN BEST-OF-GENERATION FITNESS BEFORE THE CHANGES AND RELEVANT STATISTICAL COMPARISONS (INSIDE THE
PARENTHESES) FOR THE ALGORITHMS WITH MUTATION GENERATED FROM ANISOTROPIC DISTRIBUTIONS. THE RESULT REGARDING ALG. X IS
SHOWN AS “+7, “—", OR “~” WHEN ALG. QGEP IS, RESPECTIVELY, SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE THAN, OR

STATISTICALLY EQUIVALENT TO ALG. X.

Problem Dynamics Algorithm
‘ T p ‘ GEP CEP qGEP
100  0.05 1.9811E+003 (-) 2.1114E4003 (-)  2.6766E+003
100 0.30 | 6.5480E+003 (~)  4.9329E+003 (-)  6.6921E+003
100 0.70 | 1.0938E+004 (-) 1.0719E+004 (-) 1.3180E+004
fi 800  0.05 0.8334E-001 (-) 1.1454E-001(-) 6.2527E-001
800  0.30 | 2.6604E+001 (+) 0.0177E+001 (-)  0.4696E+001
800  0.70 | 3.9915E+002 (+) 0.0040E+002 (-)  0.4857E+002
2000  0.05 0.2583E-002 (-) 2.6469E-002 (+) 0.2740E-002
2000 0.30 | 0.2871E-002 (-) 2.8524E-002 (+) 0.2971E-002
2000 0.70 | 0.3137E-002 (+) 2.9835E-002 (+) 0.3058E-002
100 0.05 1.8593E+001 (-) 2.7924E+001 (+)  2.1181E+001
100 0.30 | 5.6235E+001 (+)  3.2245E+001 (~)  3.3516E+001
100 0.70 | 6.3172E+001 (+)  3.5776E+001 (+)  3.2575E+001
fa 800  0.05 | 1.2023E+001 (+) 0.2622E+001 (-)  0.3655E+001
800  0.30 | 5.1576E+001 (+) 0.2633E+001 (-)  0.4732E+001
800  0.70 | 7.4204E+001 (+) 0.2642E+001 (-)  0.5017E+001
2000 0.05 | 1.1964E+001 (+)  0.2540E+001 (~)  0.2523E+001
2000  0.30 | 4.3656E+001 (+) 0.2544E+001 (-)  0.2670E+001
2000 0.70 | 4.6781E+001 (+)  0.2543E+001 (~) 0.2594E+001
100 0.05 | 2.6638E+001 (-) 4.0565E+001 (+)  2.9780E+001
100 0.30 | 4.6086E+001 (+)  4.5033E+001 (+)  4.1717E+001
100 0.70 | 4.5310E+001 (+)  4.7300E+001 (+)  4.1751E+001
f3 800  0.05 | 1.5009E+001 (~) 1.5116E+001 (~) 1.4198E+001
800  0.30 | 9.3379E+001 (+)  4.7740E+001 (+)  3.4237E+001
800  0.70 | 1.4862E+002 (+)  0.5633E+002 (+)  0.3036E+002
2000 0.05 | 1.4791E+001 (~) 1.3793E+001 (~)  1.4219E+001
2000 030 | 9.8225E+001 (+)  4.8846E+001 (+)  3.4941E+001
2000 0.70 | 1.4498E+002 (+)  0.6107E+002 (+)  0.2958E+002

TABLE III
RESULTS OF THE MEAN BEST-OF-GENERATION FITNESS BEFORE THE CHANGES AND RELEVANT STATISTICAL COMPARISONS FOR THE ALGORITHMS
WITH MUTATION GENERATED FROM ISOTROPIC DISTRIBUTIONS. THE RESULT REGARDING ALG. X IS SHOWN AS “+”, “—", OR “~” WHEN
ALG. IQGEP IS, RESPECTIVELY, SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE THAN, OR STATISTICALLY EQUIVALENT TO ALG. X.

Problem Dynamics Algorithm
T p IGEP ICEP 1qGEP
100 0.05 | 2.8987E+003 (~)  2.8929E+003 (~)  2.6082E+003
100 0.30 | 6.9995E+003 (~)  8.4478E+003 (+)  7.2625E+003
100 0.70 | 1.2715SE+004 (~)  1.4516E+004 (+)  1.2923E+004
fi 800  0.05 | 1.3799E+001 (~) 3.5996E+001 (~) 2.3717E+001
800  0.30 | 1.0431E+003 (~)  0.7352E+003 (-)  0.9822E+003
800  0.70 | 4.5721E+003 (~) 4.1629E+003 (~) 4.6143E+003
2000  0.05 | 0.0221E-003 (~) 1.1338E-003 (~)  246.97E-003
2000 030 | 0.3424E-001 (~)  0.2052E-001 (~)  2.5674E-001
2000 0.70 | 7.3356E-001 (~)  9.3955E-001 (~)  7.9539E-001
100  0.05 1.9651E+001 (-)  2.2362E+001 (~)  2.1975E+001
100 0.30 | 4.0055E+001 (~)  3.5213E+001 (-)  3.8951E+001
100 0.70 | 4.6373E+001 (+)  3.9093E+001 (~)  4.1714E+001
fa2 800  0.05 | 1.1101E+001 (~)  1.1710E+001 (~)  1.2104E+001
800  0.30 | 5.4840E+001 (+)  4.1870E+001 (~)  3.7298E+001
800  0.70 | 8.9868E+001 (+)  5.2495E+001 (+)  4.1956E+001
2000 0.05 | 1.1678E+001 (~) 1.1113E+001 (~)  1.2203E+001
2000 030 | 6.7978E+001 (+)  3.7464E+001 (~)  3.3995E+001
2000 0.70 | 1.0020E+002 (+)  0.5044E+002 (+)  0.4107E+002
100 0.05 | 2.3642E+001 (~)  2.6707E+001 (+)  2.4608E+001
100 0.30 | 4.1902E+001 (+)  3.8126E+001 (~)  3.6294E+001
100 0.70 | 4.1246E+001 (+)  3.8540E+001 (~)  3.6739E+001
f3 800  0.05 | 1.5027E+001 (~)  1.3414E+001 (~) 1.3806E+001
800  0.30 | 6.3718E+001 (+)  4.8625E+001 (+)  4.3253E+001
800  0.70 | 1.0150E+002 (+)  0.4887E+002 (+)  0.3301E+002
2000  0.05 | 1.3454E+001 (~) 1.4550E+001 (~) 1.4752E+001
2000 030 | 7.9785E+001 (+)  4.8606E+001 (+)  3.8141E+001
2000 0.70 | 1.2311E+002 (+)  0.4622E+002 (+)  0.3461E+002
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parameters define the standard deviation in the Gaussian mu-
tation distribution). When the mutation strength parameters
increase after an environmental change, larger jumps occur
more often, which can help the population to reach faster new
optima. Additionally, in the EP with ¢g-Gaussian mutation, the
parameter ¢ increases after an environmental change, which
results in distributions with heavier tails. In this way, self-
adaptation in EP (or ES) is very interesting to DOPs as it
provides an intrinsic mechanism to adaptation to the changes
of the problem.

Let us now analyze the results of the algorithms with
Gaussian and Cauchy mutations. For the unimodal function
f1, while the algorithms with Cauchy mutation (Alg. CEP
and ICEP) generally present a faster converge, the algorithms
with Gaussian mutation (Alg. GEP and IGEP) provide better
results regarding the best-of-generation fitness before the
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changes, mainly for 7 = 2000. These results can be explained
because, in general, larger steps occur more often when the
Cauchy mutation is used, which allows a faster convergence
in the initial steps, but a slow convergence to the optimum in
a late stage of the optimization process as a smaller number
of candidate solutions (when compared to the algorithms
with Gaussian mutation) are generated near the current
best solution. However, for the multimodal functions, larger
jumps produced by the Cauchy mutation generally allow the
population to escape from local optima (see Figs. 2 and 3),
mainly in the later stages of the evolution where the mutation
strength parameters have converged to small values.

In the experiments with the ¢g-Gaussian mutation, distribu-
tions with heavier tails (higher values of ¢) are used by the
algorithm just after the changes and compact distributions are
used in the later stages after the changes. One can observe
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that the mean value of ¢ in Figs. 1, 2 and 3 reaches a value
higher than 2 (Cauchy distribution) and decreases to a value
close to 1 (Gaussian distribution). In this way, larger steps
occur more often in the generations just after the changes,
which helps the population to escape from local optima or to
converge faster. In the later generations, the distribution with
small values of ¢ increases the local search, which helps the
algorithm to reach the best local optima.

One can observe that a better performance of the EP with
mutation generated from anisotropic Cauchy mutation (CEP)
is generally reached on DOP f,. This fact occurs because
function fy is separable and more larger steps, which are
generally parallel to the coordinate axes, were generated
by the algorithm CEP. However, in the experiments with
function f3, the algorithm qGEP generally reaches a better
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performance, as the function is not separable and the Cauchy
mutation generates a higher number of long jumps parallel
to the coordinate axes.

Table IV presents the statistical comparisons between
algorithms with mutation generated from isotropic and
anisotropic distributions. It is observable that, while the
performance of the algorithm with mutation generated from
anisotropic Cauchy distribution (CEP) generally outperforms
the algorithm with mutation generated from isotropic distri-
bution (ICEP) in problem f5 (separable function), it generally
overperforms ICEP in problem f3 (not separable function).
Similar results are generally reached by the algorithms with
g-Gaussian mutation. Despite a worse performance for larger
values of 7, it is possible to observe that the fitness is
continuously improved when the mutation generated from
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TABLE IV
STATISTICAL COMPARISON OF THE BEST-OF-GENERATION FITNESS IN THE LAST GENERATION BEFORE THE CHANGES FOR THE ALGORITHMS WITH

MUTATION GENERATED FROM ANISOTROPIC OR ISOTROPIC DISTRIBUTIONS. THE RESULT REGARDING ALG. X IS SHOWN AS “+4”, “—”, OR “~” WHEN

ISOTROPIC ALG. X IS, RESPECTIVELY, SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE THAN, OR STATISTICALLY EQUIVALENT TO THE
ANISOTROPIC ALG. X.

Problem Dynamics Algorithm
T p | Alg. IGEP/GEP  Alg. ICEP/CEP  Alg. IqGEP/qGEP
100 0.05 - - ~
100 0.3 ~ - ~
100 0.7 - ~
fi 800  0.05 - - -
800 0.3 - - -
800 0.7 - - -
2000 0.05 + ~
2000 0.3 - + ~
2000 0.7 - - -
100 0.05 ~ + ~
100 0.3 + - -
100 0.7 + - -
f2 800 0.0 ~ - -
800 0.3 ~ - -
800 0.7 - -
2000  0.05 ~ -
2000 0.3 - -
2000 0.7 - - -
100 0.05 + + +
100 0.3 ~ + +
100 0.7 + + +
f3 800  0.05 ~ ~ ~
800 0.3 + ~
800 0.7 + + -
2000  0.05 ~ ~ ~
2000 0.3 + ~ -
2000 0.7 + + -
q-Gaussian isotropic distribution is used (Fig. 4). REFERENCES

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the use of self-adaptation of the mutation dis-
tribution is proposed for DOPs. For this purpose, the isotropic
and anisotropic g-Gaussian distributions are employed in the
mutation operator. In the proposed method, the decision of
choosing which distribution is more indicated for a given
problem and at a given moment of the evolutionary process
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which mutation distribution should be used.
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