
Soft Computing manuscript No.
(will be inserted by the editor)

Use of the q-Gaussian Mutation in Evolutionary
Algorithms

Renato Tinós · Shengxiang Yang

Received: October 21, 2009 / Revised: March 27, 2010, September 21, 2010, and 30 November, 2010 / Accepted: 2 December, 2010

Abstract This paper proposes the use of the q-
Gaussian mutation with self-adaptation of the shape of

the mutation distribution in evolutionary algorithms.

The shape of the q-Gaussian mutation distribution

is controlled by a real parameter q. In the proposed
method, the real parameter q of the q-Gaussian mu-

tation is encoded in the chromosome of individuals

and hence is allowed to evolve during the evolution-

ary process. In order to test the new mutation opera-

tor, evolution strategy and evolutionary programming
algorithms with self-adapted q-Gaussian mutation gen-

erated from anisotropic and isotropic distributions are

presented. The theoretical analysis of the q-Gaussian

mutation is also provided. In the experimental study,
the q-Gaussian mutation is compared to Gaussian and

Cauchy mutations in the optimization of a set of test

functions. Experimental results show the efficiency of

the proposed method of self-adapting the mutation dis-

tribution in evolutionary algorithms.

Keywords Evolutionary algorithms · q-Gaussian dis-

tribution · self-adaptation · evolutionary programming ·
mutation distribution

1 Introduction

Evolutionary algorithms (EAs), which are a class of

stochastic search algorithms inspired by the principles

Renato Tinós
Department of Physics and Mathematics, FFCLRP, University
of São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
E-mail: rtinos@ffclrp.usp.br

Shengxiang Yang
Department of Information Systems and Computing, Brunel Uni-
versity, Uxbridge, Middlesex UB8 3PH, U.K.
E-mail: shengxiang.yang@brunel.ac.uk

of natural evolution, have been successfully applied to a
large number of optimization problems. Many of these

problems are continuous optimization problems and, as

a consequence, several interesting EA variants for real-

valued optimization have been investigated, as evolu-
tion strategy (ES) with adaptive enconding [15], dif-

ferential evolution (DE) [6,27,30], real-coded genetic

algorithms [16,11], memetic algorithms [20,?,25], and

hybrid approaches [42].

Stochastic search algorithms, like EAs, differ from

other optimization algorithms by using random sam-

ples to generate new candidate solutions. Traditionally,

when EAs are applied in real-valued optimization, new
candidate solutions are generated by mutation using

multivariate samples taken from Gaussian distributions

with zero mean [5]. The isotropic Gaussian distribu-

tion, which has a finite second moment, maximizes the
Boltzmann-Gibbs entropy (and the differential entropy,

i.e., the extension of the Shannon’s concept of infor-

mation entropy to the continuous case) in the uncon-

strained real-valued search space [36] and, in this way,

does not favor any direction in the search space. In this
way, the generation of new candidate solutions by muta-

tion does not require the knowledge of any information

about the geometry of the search space.

However, in recent years, researchers have proposed

the use of distributions with longer tails and an infi-

nite second moment in EAs. For example, in the fast

evolutionary programming (FEP) [45], the Cauchy dis-
tribution is employed, while in the evolutionary pro-

gramming (EP) with Lévy mutation (LEP) [18], muta-

tion based on the Lévy distribution is used. The Lévy

distribution is a class of probability distributions with
an infinite second moment, which includes the Cauchy

distribution, and allows to control the tail of the distri-

bution by changing a scalar parameter α.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The use of mutation taken from heavy tail distribu-

tions implies jumps of scale-free sizes, allowing to reach

distant regions of the search space faster. This property

can be interesting when EAs are applied to multimodal

problems or dynamic optimization problems as it can
allow the population to escape faster from local optima.

However, some controversy about the benefits of the use

of distributions with heavy tails in EAs have appeared

in recent years [14]. For example, some researchers ar-
gue that most of the proposed algorithms use heavy

tail distributions that are anisotropic, i.e., where some

directions of the mutation are privileged in the search

space [26]. Moreover, in some fitness landscapes, it can

be difficult to reach a fair region of the search space
from a long jump as the probability to reach a point

with a worse fitness is generally much larger for a long

jump [14].

In this paper, self-adaptation is employed to con-
trol the mutation distribution. In this way, the choice

of a mutation distribution for a given problem and, at

a given moment of the evolutionary process, is made

by the algorithm, and not by the programmer. In the

proposed algorithm, a real parameter that defines the
shape of the distribution employed by the mutation op-

erator is encoded in the chromosome of the individu-

als and is allowed to evolve. For this purpose, the q-

Gaussian probability density function [36] derived from
the Tsallis generalized entropy [39] is employed. The q-

Gaussian distribution allows to control the shape of the

distribution by setting a real parameter q and can re-

produce either finite second moment distributions, like

the Gaussian distribution, or infinite second moment
distributions, like the Cauchy distribution.

The rest of this paper is organized as follows. Re-

lated work and the main contributions of the paper

are presented in Section 2. The q-Gaussian distribu-

tion is briefly introduced in Section 3. In Section 4,
self-adaptation of the mutation distribution in EAs is

proposed. Evolutionary programming algorithms with

mutations generated from anisotropic and isotropic dis-

tributions are presented in Section 5. In Section 6, the
theorical analysis of the q-Gaussian mutation is pro-

vided. In Section 7, the q-Gaussian mutation is used in

a (µ, λ)-ES with restart. The experimental study based

on a suite of benchmark test functions is presented

in Section 8. In the experiments with EP algorithms,
Gaussian, Cauchy and q-Gaussian mutations generated

from anisotropic and isotropic distributions are com-

pared, while in the remaining experiments, a (µ, λ)-ES

with q-Gaussian mutation and restart is compared to
other continuous optimization EAs. Finally, Section 9

concludes this paper with discussions on the relevant

future work.

2 Related work

In this paper, instead of only controlling the mutation

strength parameter that defines the spread of a fixed

mutation distribution like in ESs and EP, the shape of
the mutation distribution is also controlled during the

evolutionary process. There are three main classes of

parameter control in EAs [9]: deterministic, where the

parameters are changed by deterministic rules; adap-
tive, where feedback from the optimization process is

employed for parameter control; and self-adaptive, where

parameters of the EA are encoded in the chromosome

and allowed to evolve. The use of self-adaptation to de-

fine the mutation strength parameters is usual in EP
and ESs. Here, self-adaptation is used to control the

parameter q, that allows to modify the shape of the

q-Gaussian distribution employed to generate random

mutations.

The use of mutations generated from q-Gaussian

distributions in EAs is not new [17,23]. However, in

such algorithms, like in most other algorithms that uses
heavy tail distributions, new candidate solutions are

produced by generating random deviates for each coor-

dinate of the individual, which implies anisotropic dis-

tributions where large steps are generated close to the
coordinate axes. Moreover, in such algorithms, the pa-

rameter q, which defines the shape of the distribution, is

fixed during the searching process or starts with a large

value and decreases during the searching process, like

the temperature control in simulated annealing. That
is, the control is deterministic. In [18], the authors pro-

posed two schemes for LEP: in the first scheme, all off-

spring are generated from a distribution with a fixed α,

and in the second, each parent generates five offspring,
each of which is generated from a distribution with a

different pre-defined value of α. All individuals in LEP

use the same pre-fixed values of α during the whole

evolutionary process.

Control of the mutation probability density function

is not new too. In [7], the mutation probability density

function is generated from a histogram with 101 bars
representing the values of probability between a range

of interest in a one-dimensional space. Self-adaptation

is employed to control the heights of the bars, allowing

to change the shape of the mutation distribution dur-

ing the running of the EA [3]. Experiments indicated
the formation of histograms with a peak in the cen-

ter, suggesting that Gaussian and Cauchy distributions

are good candidates as mutation distributions. How-

ever, the use of histograms is not suitable when the
number of dimensions of the search space is high be-

cause the required number of histograms exponentially

increases with the dimension of the search space. As

3

pointed in [3], the control of the mutation probability

density function by a few control parameters would be

more interesting.

In [8], four types of mutation can occurs: Cauchy,

Lévy, and two types of Gaussian mutation (i.e., the
standard Gaussian mutation and the single-point mu-

tation, where, in each occurrence, only one dimension is

changed). A four-string vector containing the probabil-

ities of choosing each type of mutation is added to the
individual and is modified according to the performance

of each type of mutation.

The solution presented in this paper to control the

shape of the mutation distribution employs only one

parameter for each individual: the q-Gaussian distribu-
tion parameter q. Differently from the strategy used in

[8], the control of the parameter q allows to smoothly

and continuously change the shape of the distribution,

as q is a real parameter and a small change in its value
causes a small change in the shape of the mutation dis-

tribution. In this way, the main contributions of this

paper are: 1) The use of the q-Gaussian mutation gen-

erated from anisotropic and isotropic distributions are

proposed and compared in EP; 2) Self-adaptation is
used to control the parameter q, which allows changing

the shape of the distribution during the solving pro-

cess; 3) Gaussian, Cauchy, and q-Gaussian mutations

generated from anisotropic and isotropic distributions
are compared in a series of experiments based on a suite

of benchmark test functions; 4) An ES with q-Gaussian

mutation is proposed and compared to other continuous

optimization EAs.

3 The q-Gaussian distribution

One of the most interesting properties of the Gaussian

distribution is that it maximizes, under certain con-

straints, the entropy in the form

S =

∫ +∞

−∞
p(x) ln

(

p(x)
)

dx, (1)

where p(x) is the distribution density function. This en-

tropy is known as the Boltzman-Gibbs entropy. While

the Gaussian distribution is an attractor for indepen-

dent systems with a finite second moment, it does not
represent well correlated systems with an infinite sec-

ond moment [36]. In this concern, Tsallis [39] proposed

a generalized entropy form as follows:

Sq =
1−

∫ +∞
−∞ p(x)qdx

q − 1
, (2)

where q ∈ R. Eq. (2) recovers the entropy form given by

Eq. (1) in the limit q → 1. The q-Gaussian distribution

arises when maximizing the generalized entropy form

given by Eq. (2). The q-Gaussian distribution has inter-

esting properties. The parameter q controls the shape

of the q-Gaussian distribution. The second order mo-

ment is finite for q < 5/3 and the q-Gaussian distribu-

tion reproduces the usual Gaussian distribution when
q → 1. When q < 1, the q-Gaussian distribution has

a compact form, and decays asymptotically as a power

law for 1 < q < 3. When q = 2, the q-Gaussian dis-

tribution reproduces the Cauchy distribution, while for
q = (3 + d)/(1 + d) where 0 < d < ∞, it becomes a

Student’s t-distribution with d degrees of freedom [34].

When −∞ < q < 3, the q-Gaussian distribution

density [36] is given by

pq(µ̄q,σ̄q)(x) =

√

Bq

Aq

e−Bq(x−µ̄q)
2

q , (3)

where µ̄q and σ̄q are the q-mean and the q-variance

respectively, Aq is the normalization factor, Bq controls

the width of the q-Gaussian distribution, and e−y
q is the

q-exponential function of −y defined as follows:

e−y
q ≡







(

1 + (q − 1)y
)− 1

q−1

, if 1 + (q − 1)y ≥ 0

0, otherwise
. (4)

When q → 1, the limit of the q-exponential function of
−y, if we write z = (q − 1)y, is given by

lim
q→1

e−y
q = lim

z→0

(

(

1 + z
)

1
z

)−y

. (5)

The limit of the function (1 + z)
1
z is well know and

converges to e when z → 0. Thus, we have

lim
q→1

e−y
q = e−y (6)

i.e., the q-gausssian exponential converges to the expo-

nencial when q → 1.

In Eq. (3), the q-mean µ̄q and the q-variance σ̄q [36]

are respectively defined as follows:

µ̄q ≡
∫

xp(x)qdx
∫

p(x)qdx
, (7)

σ̄2
q ≡

∫

(x− µ̄q)
2p(x)qdx

∫

p(x)qdx
, (8)

and respectively reduce to the usual mean and variance

when q → 1.
In Eq. (3), the normalization factor Aq is given by

Aq =
∫ +∞
−∞ e

−(x−µ̄q)
2

q dx [41] and Bq is given by

Bq =
(

(3− q)σ̄2
q

)−1

. (9)

A random variable x taken from a q-Gaussian dis-

tribution with q-mean µ̄q and q-variance σ̄2
q is here de-

noted by x ∼ Nq(µ̄q, σ̄q). In this paper, the generalized

Box-Müller method proposed in [36], which is very sim-

ple (see its pseudo-code in [36]) and allows to generate

4

−10 −5 0 5 10
0

0.5

1

1.5

2

x 10
4

x

n(
x)

q = 2.8

q = 2.0

q = 1.0

q = −0.5

Fig. 1 Empirical distribution for 500000 observations of a q-
Gaussian random variable x ∼ Nq(0, 1) for: q = −0.5, q = 1.0
(Gaussian), q = 2.0 (Cauchy), and q = 2.8. Only the values for x
between −10 and +10 are shown.

samples from q-Gaussian distributions for −∞ < q < 3,

is employed to generate q-Gaussian random variables

x ∼ Nq(0, 1).

Fig. 1 presents the empirical q-Gaussian distribution

for random variables x ∼ Nq(0, 1) with different values

of q. It can be observed that larger values of q result in

longer tails of the q-Gaussian distribution.

4 Self-adaptation of the mutation distribution

In an m-dimensional real-valued search space, a new

candidate solution is generated by the EA’s mutation

operator from individual xi as follows:

x̃i = xi +C z, (10)

where i = 1, . . . , µ, z is an m-dimensional random vec-

tor generated from a given multivariate distribution

with zero mean, and C is the matrix which defines the

mutation strength in each coordinate j = 1, . . . ,m. In
the most simple case,

C = σI, (11)

where I is the identity matrix and the unique parame-

ter, σ, defines the mutation strength for all components

of xi. There are some cases, however, where it is inter-

esting to define one different parameter σ(j) for each
component of xi. In this way, we have

C = diag(σT). (12)

That is, C is a diagonal matrix with the main di-

agonal composed by the elements of vector σ =

[σ(1) σ(2) . . . σ(m)]T. In the most general situation,
e.g., in the covariance matrix adaptation ES (CMA-

ES) [13], C is a matrix with elements indicating the

correlation between the components of z.

In general, when self-adaptation is used in the stan-

dard EP [45] and in ES [5], the mutation strength pa-

rameter for each offspring i = 1, . . . , µ of the population

is multiplicatively updated. If all elements of the mu-

tation parameter vector are equal (i.e., σi(j) = σi for
j = 1, . . . ,m, see Eq. (11)), then the updated value of

the mutation parameter is given by

σ̃i = σie
τbN (0,1), (13)

where τb denotes the standard deviation of the Gaus-
sian distribution used to generate the change in σi. If

each element of the vector xi has an individual muta-

tion strength parameter, as shown in Eq. (12), σi(j) is

updated according to the following formula

σ̃i(j) = σi(j)e
τbN (0,1)i+τcN (0,1), (14)

where τb denotes the standard deviation of the Gaus-

sian distribution used to generate the random deviate

N (0, 1)i, which is common for all elements of the vec-

tor xi, and τc is the standard deviation of the Gaussian
distribution used to generate the separated random de-

viate N (0, 1) for each element j = 1, . . . ,m.

In EAs, the use of the Gaussian distribution is gen-

erally employed to generate the m-dimensional vector
z [5]. Here, an m-dimensional random vector generated

from the Gaussian distribution is denoted by z ∼ Nm.

A Gaussian random vector z ∼ Nm is generated by

sampling m independent Gaussian variables N (0, 1). It

is important to observe that when the same procedure is
adopted to generate multivariate random samples with

a heavy tail distribution, some directions in the search

space are much more explored than others, i.e., the dis-

tribution is highly anisotropic.
To the best of the authors’ knowledge, all stochas-

tic search algorithms with the q-Gaussian mutation, like

the Generalized Simulated Annealing [40] and the Gen-

eralized Genetic Algorithm [23], make use of anisotropic

q-Gaussian distributions generated by samplingm inde-
pendent q-Gaussian variables. Most mutation operators

for EAs that are based on heavy tail distributions, e.g.,

in Fast Evolution Strategies [44], FEP [45], and LEP

[18], make use of anisotropic distributions generated by
sampling independent random variables too. The use of

random variables generated by sampling independent

random variables taken from a heavy tail distribution

is very interesting for optimization problems with sep-

arable functions, as most of the large steps occur close
to the coordinate axes [26,36] and the optimization can

be solved by m one-dimensional optimization processes

parallel to the coordinate axes. However, the perfor-

mance of the optimization process can be strongly af-
fected for some non-separable functions.

In this paper, we investigate the use of two mul-

tivariate q-Gaussian distributions, the anisotropic q-

5

Gaussian distribution generated by sampling indepen-

dent q-Gaussian random variables (Section 5.1) and the

q-Gaussian distribution generated from isotropic distri-

butions (Section 5.2), to produce new candidate solu-

tions in EAs. As mentioned earlier, the use of the q-
Gaussian distribution allows us to reproduce different

distributions by changing only one real parameter q.

We propose to self-adapt the parameter q, which

defines the shape of the distribution. Based on the mu-

tation strength self-adaptation [5], we propose to mul-

tiplicatively update the parameter q in individual i as
follows:

q̃i = qie
τqN (0,1), (15)

where τq denotes the standard deviation of the Gaus-

sian distribution. In this way, different distributions can

be reproduced during the evolutionary process. How-

ever, it is not possible to identify the separated influ-

ence of a change in σi or qi in the fitness of individual
i if both mutation strength vector and parameter q are

mutated in the same generation for individual i. For

example, a beneficial mutation in σi can be masked in

the fitness of individual i if the parameter q is mutated
to a bad value in the same generation. Here, σi and qi
are not mutated together (i.e., in the same generation)

in each individual. The mutation strength vector σi is

updated for individual i in each generation if a uniform

random number in the range [0, 1] is equal to or larger
than a real parameter rq ∈ [0, 1]. Otherwise, the value

of qi is updated.

5 Evolutionary programming algorithms with

q-Gaussian mutation

In order to test the proposed ideas, an EP algorithm

with the q-Gaussian mutation, called qGEP for the

anisotropic version and IqGEP for the version gener-

ated from isotropic distributions, is proposed and pre-
sented in Algorithm 1. EP was selected to test the q-

Gaussian mutation because it only uses mutation as a

transformation operator, which makes it easier to com-

pare the q-Gaussian mutation to Cauchy and Gaussian

mutation.

There are two main differences of the EP algorithm

presented in Algorithm 1 from the Gaussian EP, FEP
[45], and LEP [18]. Firstly, in the proposed algorithm,

the q-Gaussian mutation is employed (step 10) instead

of the Gaussian (Gaussian EP), Cauchy (FEP), or Lévy

(LEP) mutation. Secondly, a procedure to adapt the q
parameter is adopted in the proposed algorithm, i.e.,

steps 5 to 9 in Algorithm 1. For Gaussian EP, FEP, and

LEP, steps 5, 7, 8, and 9 in Algorithm 1 are removed.

Algorithm 1 EP with q-Gaussian mutation

(qGEP and IqGEP)

1: Initialize the population composed of individuals (xi, σi, qi)
for i = 1, . . . , µ

2: Evaluate the individuals (xi, σi, qi) for i = 1, . . . , µ
3: while (stop criteria are not satisfied) do

4: for i← 1 to µ do

5: if rand(0, 1) ≥ rq then

6: Update the mutation strength parameter σ̃i(j) for
j = 1 to m. Use Eq. (14) for qGEP or Eq. (13) for
IqGEP. In the last case, σ̃i(j) = σ̃i for j = 1 to m

7: else

8: Update the parameter q̃i according to Eq. (15)
9: end if

10: x̃i ← xi + Ci z, where z is a q-Gaussian random vec-
tor generated from anisotropic (qGEP - Section 5.1) or
isotropic (IqGEP - Section 5.2) distributions with pa-

rameter q̃i and Ci = diag(σ̃T

i) (qGEP) or Ci = σ̃iI

(IqGEP)
11: end for

12: Evaluate the offspring (x̃i, σ̃i, q̃i) for i = 1, . . . , µ
13: Compute the winning function [18] of the population com-

posed of µ parents and µ offspring
14: Select, to compose the new population with individuals

(xi, σi, qi), the µ individuals with the largest winning
function from the population composed of µ parents and
µ offspring

15: end while

5.1 EP with q-Gaussian mutation generated from

anisotropic distribution

In an EA with q-Gaussian mutation generated from

anisotropic distribution, the vector z in Eq. (10) is cre-

ated by sampling m independent q-Gaussian random

variables. Each element z(j), j = 1, . . . ,m, of the ran-
dom mutation vector z is generated as follows:

z(j) ∼ Nq(0, 1). (16)

Here, an m-dimensional random vector generated from
the multivariate anisotropic q-Gaussian distribution is

denoted by z ∼ Mm
q .

In order to investigate the contribution of the

scheme of self-adapting the parameter q, the qGEP al-

gorithm is compared, in Section 8, to three other ap-

proaches where the parameter q is fixed, i.e. the shape

of the mutation distribution is fixed during the evolu-
tionary process. For fixed values of q, the q-Gaussian

mutation can reproduce Gaussian and Cauchy muta-

tions. Lévy mutation can be still reproduced, as Lévy

and q-Gaussian distributions are related for some val-
ues of q [31]. In all approaches described here, Eq. (16)

is employed to generate new candidate solutions. The

approaches are defined as follows:

– Algorithm GEP: uses only one fixed parameter q =

1.0 for all individuals. That is, in Algorithm 1, the

initial value of q̃i is equal to 1.0 for i = 1, . . . , µ

6

−20 0 20
−20

−15

−10

−5

0

5

10

15

20

x

y

−20 0 20
−20

−15

−10

−5

0

5

10

15

20

x

y

−20 0 20
−20

−15

−10

−5

0

5

10

15

20

x

y

Fig. 2 Two-dimensional points from: random vector z ∼ Mm
q with anisotropic q-Gaussian distribution and q = 2.0 (left), random

vector z ∼ Nm with Gaussian distribution (center), and q-Gaussian random vector z ∼
√
2Nm

q generated from isotropic distribution
and q=2.0 (right).

and rq = 0. In this way, the Gaussian mutation
generated from sampling m independent Gaussian

random variables is reproduced.

– Algorithm CEP: uses only one fixed parameter q =

2.0 for all individuals. That is, in Algorithm 1, the
initial value of q̃i is equal to 2.0 for i = 1, . . . , µ

and rq = 0. In this way, the anisotropic Cauchy

distribution is reproduced.

– Algorithm EP (q = 1.5): uses only one fixed pa-

rameter q = 1.5 for all individuals. That is, in Al-
gorithm 1, the initial value of q̃i is equal to 1.5 for

i = 1, . . . , µ and rq = 0.

– Algorithm qGEP: uses one changing q for each in-

dividual and rq > 0, i.e., Eq. (15) is employed.

5.2 EP with q-Gaussian mutation generated from

isotropic distribution

Here, the use of q-Gaussian mutations generated from
isotropic distributions is proposed. In [26], a method

to generate the Cauchy random mutation vector from

an isotropic distribution was proposed. For this pur-

pose, the random mutation vector is generated with: 1)

a random direction uniformly distributed on the sur-
face of the m-dimensional unit hypersphere, and 2) an

Euclidean norm obtained from a Cauchy distribution.

Based on the works [26] and [36], we propose to

generate the random mutation vector z as follows:

z ∼ ru, (17)

where r ∼ Nq(0, 1), i.e., a random variable with the

q-Gaussian distribution, and u is an uniform random
vector obtained by sampling a random vector with a

Gaussian distribution and normalizing it to length one,

i.e., u = v/‖v‖ where v ∼ Nm and ‖v‖ denotes the

Euclidean norm of the vector v. In this paper, an m-
dimensional random vector generated from an isotropic

distribution and step length given by a q-Gaussian dis-

tribution is denoted by z ∼ Nm
q .

Figure 2 presents two-dimensional multivariate sam-
ples obtained from an anisotropic q-Gaussian distribu-

tion, a Gaussian distribution, and a q-Gaussian distri-

bution generated as described in this section. It can be

observed that, in the anisotropic q-Gaussian distribu-
tion, larger steps occur more often close to the coordi-

nate axes. This effect is more evident in high dimen-

sional spaces and/or for larger values of q for q < 3.

The EP algorithm with q-Gaussian mutation gener-

ated from isotropic distribution, called IqGEP here, is

compared, in Section 8, to three other approaches where

the parameter q is fixed. In all approaches, Eq. (17) is
employed to generate the new candidate solutions. The

approaches are defined as follows:

– Algorithm IGEP: uses only one fixed parameter q =

1.0 for all individuals. That is, in Algorithm 1, the

initial value of q̃i is equal to 1.0 for i = 1, . . . , µ

and rq = 0. In this way, the Gaussian mutation

generated from an isotropic distribution and with
step length given by the Gaussian distribution is

reproduced.

– Algorithm ICEP: uses only one fixed parameter q =

2.0 for all individuals. That is, in Algorithm 1, the
initial value of q̃i is equal to 2.0 for i = 1, . . . , µ and

rq = 0. In this way, the Cauchy mutation generated

from an isotropic distribution and with step length

given by the Cauchy distribution is reproduced.

– Algorithm IEP (q = 1.5): uses only one fixed param-
eter q = 1.5 all individuals. That is, in Algorithm 1,

the initial value of q̃i is equal to 1.5 for i = 1, . . . , µ

and rq = 0.

– Algorithm IqGEP: uses one changing q for each in-
dividual and rq > 0, i.e., Eq. (15) is employed.

6 Analysis of the q-Gaussian mutation

In this section, the impact of changing the mutation

strength parameter σ and the q-Gaussian distribution

parameter q on the probability of generating a jump σx,

7

where x ∼ Nq(0, 1), in the neighbourhood of a point x∗

is analysed. The analyses presented here are similar to

the analysis of Gaussian and Cauchy mutations pre-

sented in [45].

When µ̄q = 0 and σ̄2
q = 1, the q-Gaussian distri-

bution density for −∞ < q < 3 (see Eq. (3)) is given

by

pq(x) =
1√

3− qAq

e
−x2

3−q

q , (18)

where, considering
(

1 + x2(q − 1)/
√
3− q

)

≥ 0, the

q-exponential is given by

e
−x2

3−q

q =

(

1 +
q − 1

3− q
x2

)
1

1−q

. (19)

We consider that the q-Gaussian mutation is ap-

plied in an EA in the one-dimensional case, i.e. the mu-

tation produces a jump σx, where σ is the mutation

strength parameter and x ∼ Nq(0, 1). For simplicity,
we will consider 1 < q < 3. The probability of reaching

the neighbourhood of a point x∗ from a jump σx, i.e.,

the probability that x∗ − ǫ ≤ σx ≤ x∗ + ǫ, where ǫ > 0

defines the neighbourhood size, is given by

Pq(|σx − x∗| ≤ ǫ) =

∫
x∗+ǫ

σ

x∗
−ǫ
σ

pq(x)dx. (20)

The mean value theorem for definite integrals states

that there is a number δ (0 < δ < 2ǫ), at which the

value of the integral given by Eq. (20) is equal to the
difference between the limits of the integral multiplied

by pq((x
∗−ǫ+δ)/σ). In this way, Eq. (20) can be written

as follows:

Pq(|σx − x∗| ≤ ǫ) =
2ǫ

σ
pq

(

x∗ − ǫ + δ

σ

)

. (21)

Substituting Eqs. (18) and (19) in Eq. (21), we ob-

tain

Pq(|σx−x∗| ≤ ǫ) =
2ǫ

σ
√
3− qAq

(

1+
q − 1

3− q

c2

σ2

)

1
1−q ,(22)

where c = x∗ − ǫ+ δ.

6.1 The impact of changing σ

Taking the derivative of Eq. (22) with respect to σ, we

can write
∂
∂σ

Pq(|σx − x∗| ≤ ǫ) =

2ǫ√
3−qAq

∂
∂σ

(

1
σ

(

1 + q−1
3−q

c2

σ2

)
1

1−q

)

,
(23)

and, then,

∂
∂σ

Pq(|σx−x∗|≤ǫ)= 2ǫ√
3−qAq

(

2qac
2

(q−1)σ4

(

1+qa
c2

σ2

)

q

1−q

− 1
σ2

(

1 + qa
c2

σ2

)
1

1−q

)

,

(24)

where qa = (q − 1)/(3 − q). After some manipulation,

we obtain
∂
∂σ

Pq(|σx− x∗| ≤ ǫ) =

2ǫ√
3−qAqσ2

(

1 + qa
c2

σ2

)
1

1−q

c2−σ2

qac2+σ2 .
(25)

From Eq. (25), we can write for 1 < q < 3

∂

∂σ
Pq(|σx− x∗| ≤ ǫ)

{

> 0 if |c| > σ
< 0 if |c| < σ

. (26)

Eq. (26) states that an increase in the mutation

strength σ results in an increase in the probability of

reaching the point c, which is located in the neighbour-

hood of the point x∗, from a jump σx only if |c| < σ.

In other words, an increase in the mutation strength
is beneficial to reach the neighbourhood of a point x∗

if it is distant (|c| > σ) from the current solution (be-

fore the mutation). A similar result was found for the

Gaussian and Cauchy mutations [45]. The above anal-
ysis also states that the probability changing rate given

by Eq. (25) depends on the value of q.

6.2 The impact of changing q

Taking the derivative of Eq. (22) with respect to q, we

can write

∂

∂q
Pq(|σx − x∗| ≤ ǫ) =

2ǫ

σ

∂

∂q

(

1√
3− qAq

y

)

, (27)

where

y =

(

1 +
q − 1

3− q

c2

σ2

)
1

1−q

(28)

is the q-exponential given by Eq. (19) at the point x =

c/σ. We now analyse the derivative of the q-exponential

y given by Eq. (28). Applying the natural logarithm in

both sides of Eq. (28) and taking the derivative on q,
we have

∂y

∂q
= y

∂

∂q

(

1

1− q
ln

(

1 +
q − 1

3− q

c2

σ2

)

)

. (29)

After some manipulation, we can write

∂y

∂q
=

1

q − 1
p

1
1−q

(

ln(p)

q − 1
− 2

(3− q)2
c2

σ2
p−1

)

, (30)

where

p = 1 +
q − 1

3− q

c2

σ2
, (31)

i.e., y = p
1

1−q . In Eq. (30), p ≥ 1 for 1 < q < 3. In this

way, we can write

∂y

∂q

{

> 0 if a > b
< 0 if a < b

, (32)

8

−8 −6 −4 −2 0 2 4 6 8

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

c

q

+ +

−−

Fig. 3 Positive (gray) and negative (white) regions of the deriva-
tive of the q-exponential given by Eq. (28) for σ = 3.

where a = ln(p)
q−1 and b = 2

(3−q)2
c2

σ2 p
−1. While |a| > |b|

for small values of |c| (until the value of c where a = b),
|a| < |b| for larger values of |c| as lim|c|→∞ a = +∞ and

lim|c|→∞ b = 2
(3−q)(q−1) .

Figure 3 shows the regions where the derivative of

the q-exponential given by Eq. (28) is positive or neg-
ative for σ = 3 and |c| ≤ 10. When the derivative is

positive, increasing (or decreasing) q by a small value

implies increasing (or decreasing) the value of the q-

exponential at the point c, while the opposite occurs
for a negative derivative. It can be observed that the

location c where the derivative changes its sign moves

according to the value of q. The larger the value of q, the

farther the locations of |c| where the derivative changes
its sign. Fig. 3 (and Eq. (30)) also suggests that values
of q close to 3 are not interesting as the location where

the derivative changes its sign is very far away from the

current solution.

Using the derivative of the q-exponential given by
Eq. (28), we can now write, after some manipulations,

the derivative of Eq. (22) with respect to q (see Eq. (27))

∂
∂q
Pq(|σx− x∗| ≤ ǫ) =

2ǫp
1

1−q

Aqσ
√
3−q(q−1)

(

(q−1)(Aq−(3−q)A′

q)

(3−q)Aq
+ a− b

)

.
(33)

As the first term inside the parenthesis does not depend

on c, the analysis is similar to that one presented before

for the q-exponential given by Eq. (30). Eq. (33) indi-

cates where a small change in the value of q is beneficial
to increase the probability of reaching the neighbour-

hood of a point x∗ from a jump σx. In other words,

an increase in the value of q is beneficial to reach the

neighbourhood of a point x∗ if it is distant (at a location
where the derivative given by Eq. (33) is positive) from

the current solution (before the mutation). Otherwise,

the value of q should be decreased.

Algorithm 2 Restart (µ,λ)-ES with q-Gaussian muta-

tion (RqGES)

1: Initialize the population composed of individuals (xk, σk, qk)
for k = 1, . . . , µ

2: Evaluate the individuals (xk, σk, qk) for k = 1, . . . , µ
3: while (stop criteria are not satisfied) do

4: if the best fitness found in the last gs generations did not
change then

5: if λ ≤ λmax then

6: λ = 2λ and µ = 2µ.
7: end if

8: Restart the population
9: end if

10: Use recombination to generate the individuals (x̃i, σ̃i, q̃i)
for i = 1, . . . , λ from the individuals (xk, σk , qk) for k =
1, . . . , µ

11: for i← 1 to λ do

12: if rand(0, 1) ≥ rq then

13: Update the mutation strength parameter σ̃i using
Eq. (13).

14: else

15: Update the parameter q̃i according to Eq. (15)
16: end if

17: x̃i ← x̃i+Ci z, where z is a q-Gaussian random vector
generated from isotropic distribution with parameter q̃i
and Ci = σ̃iI

18: end for

19: Evaluate the offspring (x̃i, σ̃i, q̃i) for i = 1, . . . , λ
20: Select, to compose the new population with individuals

(xk, σk, qk), the µ individuals with best fitness from the
population composed of the offspring (x̃i, σ̃i, q̃i) for i =
1, . . . , λ

21: end while

7 Restart q-Gaussian evolution strategy

In Section 5, EP algorithms with q-Gaussian mutation

were presented. However, it is important to observe that

the proposed self-adapted q-Gaussian mutation can be

used in other EAs. In this section, the q-Gaussian mu-
tation is proposed in a (µ, λ)-ES with recombination.

The proposed algorithm, called RqGES, is presented in

Algorithm 2.

Besides mutation, like in the EP algorihtms pre-

sented in Section 5, the proposed RqGES employs an

intermediate recombination with ρ = 2, i.e., two parents
are randomly chosen from the parent population and

are mixed to generate an offspring. The intermediate re-

combination is applied to the variables (xi) and param-

eters (σi and qi). After recombination, the q-Gaussian

mutation generated from isotropic distribution is used.
In multimodal problems, larger population sizes can be

useful to help the population escaping from local op-

tima. In this way, following the scheme proposed in [1],

the population is restarted with a larger number of in-
dividuals if a convergence criterion is met. Here, like in

[1], the population is increased by a factor of 2 until a

maximum allowed size λmax.

9

Table 1 Test functions, where the vector x∗ is the global optimum and the range is for each element of x.

Prob. Name f(x∗) Range Properties1

f1 Shifted Sphere Function -450 [-100,100] U, S
f2 Shifted Schwefel’s Prob. 1.2 -450 [-100,100] U, NS
f3 Shifted Rotated High Conditioned

Elliptic Function -450 [-100,100] U, NS, R
f4 Shifted Schwefel’s Prob. 1.2 with Noise -450 [-100,100] U, NS, N
f5 Schwefel’s Prob. 2.6 with

Global Optimum on Bounds -310 [-100,100] U, NS, B
f6 Shifted Rosenbrock’s Function 390 [-100,100] M, NS
f7 Shifted Rotated Griewank’s

Function without Bounds -180 [-∞,∞] M, NS, R
f8 Shifted Rotated Ackley’s Function

with Global Optimum on Bounds -140 [-32,32] M, NS, R
f9 Shifted Rastrigin’s Function -330 [-5,5] M, S
f10 Shifted Rotated Rastrigin’s Function -330 [-5,5] M, NS, R
f11 Shifted Rotated Weierstrass’ Function 90 [-0.5,0.5] M, NS, R
f12 Schwefel’s Prob. 2.13 -460 [-π, π] M, NS
f13 Shifted Expanded Griewank’s

plus Rosenbrock’s Function -130 [-3,1] M, NS
f14 Shifted Rotated Expanded

Schaffer’s F6 Function -300 [-100,100] M, NS
f15 Hybrid Composition Function 120 [–5,5] M, SO
f16 Rotated Version of Hybrid

Composition Function f15 120 [–5,5] M, NS, R
f17 Function f16 with Noise 120 [–5,5] M, NS, R, N
f18 Rotated Hybrid Composition Function 1 10 [–5,5] M, NS, R
f19 Rotated Hybrid Composition Function 1

with Narrow Basin Global Optimum 10 [–5,5] M, NS, NB
f20 Rotated Hybrid Composition Function 1

with Global Optimum on Bounds 10 [-5,5] M, NS, B
f21 Rotated Hybrid Composition Function 2 360 [–5,5] M, NS, R
f22 Rotated Hybrid Composition Function 2

with High Condition Number Matrix 360 [-5,5] M, NS, B
f23 Non-Continuous Rotated Hybrid

Composition Function 2 360 [-5,5] M, NS, B
f24 Rotated Hybrid Composition Function 3 260 [–5,5] M, NS, R
f25 Rotated Hybrid Composition Function 3

without Bounds 260 [-∞,∞] M, NS, R
1 U: unimodal, M: multimodal, S: separable, NS: non-separable, SO: separable near x∗,

R: rotated, N: with noise in fitness, B: with x∗ on bounds, NB: narrow basin for x∗

8 Experimental study

In order to investigate the performance of the pro-

posed algorithms, twenty five benchmark functions as
described in [35] are selected as the test suite in our

experiments. The test functions, which should be min-

imized, are presented in Table 1 and are used with the

same parameters as described in [35].

In the test suite, functions f1 to f5 are unimodal

and the remaining functions are multimodal. Functions

f15 to f25 are hybrid composition functions [35]. Such

functions are composed of basic functions, which re-
sults in hybrid composite functions with different basic

function properties, and are given by

f(x) =

10
∑

i=1

(

wi

(

f ′
i

(

Mi(x−oi)/λi

)

+biasi

)

)

+fbias,(34)

where f ′
i(.) is the normalized i-th basic function, Mi,

λi, and wi are the linear transformation matrix, the
compress rate, and the weight value for each function

fi(.) respectively, oi defines the position of the local

and global optima, biasi defines which optimum is the

global optimum, and fbias is the bias in the function

value. For example, function f15 is composed of five ba-
sic functions: Rastrigin, Weierstrass, Griewank, Ackley,

and Sphere. See [35] for details and parameters.

The functions presented in Table 1 allow compar-

ing the three types of mutation operators described in

this paper, i.e., Gaussian, Cauchy, and q-Gaussian mu-

tations, on problems with different properties. For ex-
ample, while some functions in Table 1 are separable,

others are non-separable. Some important properties of

the functions are presented in the last column of Table

10

1. The comparison of Gaussian, Cauchy, and q-Gaussian

mutations on EP is performed in Section 8.2.

The functions presented in Table 1 also allow com-

paring the results of the algorithms with other EAs
found in the literature. The comparison of RqGES,

which presented better performance than qGEP and

IqGEP, and other EAs for continuous optimization is

performed in Section 8.3. In the following section, the
design of all experiments presented in this paper is de-

scribed.

8.1 Experimental design

In order to compare the EP algorithms with different
types of mutation, each one was executed 25 times for

each test function presented in Table 1 with m = 10

and m = 30 [35]. The same was done for RqES, but also

with m = 50. For each run of an algorithm, the indi-
viduals of the initial population were randomly chosen

with uniform distribution in the range of each function

(see Table 1), except for the experiments with functions

f7 and f25, where the populations were respectively ini-

tialized in the ranges [0, 600]m and [2, 5]m. The number
of fitness evaluations was set to 10000m. In the EP algo-

rithms, the population size was set to 100 individuals

and the tournament size in the winning function [18]

for selection was set to 10. In RqGES, the initial λ was
set to 50, λmax = 200, the initial µ was set to 15, and

gs = 120.

As suggested by the theoretical and empirical work

[5], the parameters τb and τc are defined by τb = 1√
2m

and τc =
1√
2
√
m
. Here, we propose to define the param-

eter τq as follows:

τq =
1√
2m

. (35)

The initial mutation strength parameter σi(j) was

set to 0.4|xmax − xmin|/
√
m for the algorithms with

anisotropic mutation distributions, as employed in [22],

and 0.4|xmax−xmin| for the algorithms with mutations
generated from isotropic distributions, where xmin and

xmax are respectively the minimum and maximum al-

lowed values of each element of the solution in the initial

population. The initial q-Gaussian parameter q in algo-

rithms with q-Gaussian mutation was set to 1.0 (value
where the Gaussian distribution is reproduced). In the

algorithms with q-Gaussian mutation, rq = 0.8 and the

minimum and maximum values of the q-Gaussian pa-

rameter q were set to 0.8 and 0.8e respectively, i.e., val-
ues respectively smaller and higher than the values of

q where the Gaussian and Cauchy mutations are repro-

duced. Experiments, not presented here, using the EP

algorithm with different parameter settings (e.g., with

the minimum and maximum values of the q-Gaussian

parameter q respectively set to 0.5 and 0.5e) showed

similar results to those presented in the following sec-

tion.

8.2 Experimental results: evolutionary programming

8.2.1 Experimental results on qGEP

The experimental results of the fitness error f(xbest)−
f(x∗), where f(xbest) is the best value of fitness found

during the run, averaged over 25 runs in the experi-

ments with anisotropic mutation distributions for m =
10 and m = 30 are presented in Tables 2 and 3, re-

spectively. Figure 4 shows the convergence of the mean

best-of-generation fitness error in the experiments with

m = 30 for functions f9 and f10.

In Tables 4 and 5, the statistic comparison regarding
the fitness error of the best individual found during each

run is carried out by the Wilcoxon Signed Rank Test

[12]. Tables 4 and 5 show the p-value of the Wilcoxon

Signed Rank Test for each function, which indicates
the significance for testing the null hypothesis that the

difference between the matched samples of the results

regarding Alg. A and Alg. B comes from a distribu-

tion with median equal to zero. For each problem fi,

the result regarding the comparison Alg. A - Alg. B is
shown, in parentheses, as “=” when the values of the

median of Alg. A and Alg. B are equal. When the val-

ues of the median are different but the p-value is higher

than 0.05, i.e., the test indicates that the hypothesis
that the median of the difference between the results

are zero cannot be rejected at the 5% level, the result

is respectively shown as “+” when the median of Alg. A

is smaller than that of Alg. B and “−” when the me-

dian of Alg. A is higher than that of Alg. B. Otherwise,
when the result is statistically significant, the result is

respectively shown as “s+” or “s−” when the median

of Alg. A is smaller or higher than the median of Alg. B.

In the last line of Tables 4 and 5, following the
method proposed in [12], the comparison Alg. A - Alg. B

regarding the results of all functions is presented, where

the p-values of the Wilcoxon Signed Rank Test are ob-

tained comparing the vectors with the mean results

(shown in Tables 4 and 5) obtained for each function by
Alg. A and Alg. B, respectively. In the second parenthe-

ses, the values in the last line also indicate the difference

between the number of times (functions) that the me-

dian of Alg. A is smaller than the median of Alg. B (i.e.,
the number of “+” and “s+” in the respective column)

and the number of times (functions) that the median

of Alg. B is smaller than the median of Alg. A (i.e., the

11

Table 2 Experimental results of the error of the best fitness in
each run obtained for algorithms GEP, CEP, EP (q = 1.5), and
qGEP on the test functions with m = 10.

Prob GEP CEP EP (q = 1.5) qGEP
f1 median 1.25E-10 4.83E-10 1.87E-10 9.32E-11

mean 1.31E-10 4.71E-10 1.89E-10 9.06E-11
std 3.88E-11 1.04E-10 4.83E-11 2.45E-11

f2 median 8.07E-06 1.46E-04 4.54E-05 4.12E-07

mean 2.44E-04 8.52E-02 5.06E-03 1.95E-02
std 9.37E-04 4.18E-01 2.41E-02 9.36E-02

f3 median 2.40E+05 5.14E+05 2.61E+05 2.36E+05

mean 2.71E+05 5.92E+05 3.01E+05 2.79E+05
std 1.93E+05 3.73E+05 1.92E+05 2.41E+05

f4 median 1.02E+01 5.75E+00 3.30E+00 3.70E-02

mean 4.04E+01 2.06E+01 4.23E+01 2.48E-01
std 6.90E+01 3.32E+01 9.90E+01 4.17E-01

f5 median 1.76E-01 3.58E-04 5.35E-04 4.11E-04
mean 7.25E+01 8.78E-01 1.43E+01 4.90E+00
std 1.88E+02 3.11E+00 5.12E+01 2.32E+01

f6 median 5.70E+00 1.63E+01 5.16E+00 8.21E+00
mean 5.08E+01 1.33E+02 2.23E+01 6.19E+01
std 7.01E+01 2.81E+02 3.94E+01 1.55E+02

f7 median 7.26E-01 4.73E-01 6.95E-01 8.11E-02

mean 1.90E+00 9.36E-01 1.08E+00 1.09E-01
std 4.56E+00 1.30E+00 1.20E+00 7.65E-02

f8 median 2.04E+01 2.04E+01 2.03E+01 2.03E+01

mean 2.03E+01 2.03E+01 2.03E+01 2.03E+01
std 8.68E-02 7.99E-02 6.88E-02 7.95E-02

f9 median 1.29E+01 4.97E+00 1.49E+01 8.95E+00
mean 1.49E+01 6.77E+00 1.54E+01 8.24E+00
std 7.96E+00 6.09E+00 5.79E+00 2.70E+00

f10 median 2.09E+01 2.09E+01 2.19E+01 1.09E+01

mean 2.36E+01 2.23E+01 2.12E+01 1.21E+01
std 1.14E+01 1.07E+01 9.28E+00 5.05E+00

f11 median 4.43E+00 4.24E+00 4.99E+00 3.12E+00

mean 4.24E+00 4.08E+00 5.15E+00 3.07E+00
std 1.15E+00 1.42E+00 1.12E+00 1.08E+00

f12 median 2.58E+02 2.10E+02 5.95E+01 3.59E+01

mean 1.17E+03 4.83E+02 5.82E+02 3.41E+02
std 2.07E+03 6.58E+02 1.34E+03 7.39E+02

f13 median 1.09E+00 7.49E-01 1.09E+00 9.11E-01
mean 1.18E+00 6.88E-01 1.20E+00 9.76E-01
std 4.84E-01 2.89E-01 4.54E-01 3.21E-01

f14 median 3.46E+00 3.28E+00 3.29E+00 2.68E+00

mean 3.27E+00 3.21E+00 3.27E+00 2.71E+00
std 4.64E-01 4.36E-01 3.29E-01 4.64E-01

f15 median 4.31E+02 4.30E+02 4.43E+02 4.16E+02

mean 3.80E+02 3.57E+02 4.10E+02 4.18E+02
std 1.11E+02 1.31E+02 1.00E+02 1.20E+01

f16 median 1.44E+02 1.37E+02 1.40E+02 1.18E+02

mean 1.45E+02 1.46E+02 1.45E+02 1.21E+02
std 2.65E+01 2.92E+01 2.65E+01 1.63E+01

f17 median 1.43E+02 1.51E+02 1.38E+02 1.22E+02

mean 1.41E+02 1.49E+02 1.41E+02 1.23E+02
std 2.08E+01 2.44E+01 2.69E+01 1.60E+01

f18 median 7.90E+02 4.85E+02 8.00E+02 3.55E+02

mean 6.81E+02 5.63E+02 6.97E+02 4.80E+02
std 2.28E+02 2.06E+02 2.19E+02 2.26E+02

f19 median 8.00E+02 5.04E+02 6.79E+02 3.48E+02

mean 7.14E+02 5.70E+02 6.55E+02 4.39E+02
std 2.37E+02 2.05E+02 2.08E+02 2.09E+02

f20 median 8.00E+02 4.25E+02 6.37E+02 4.07E+02

mean 7.15E+02 4.87E+02 6.35E+02 4.94E+02
std 2.15E+02 1.84E+02 1.97E+02 2.23E+02

f21 median 9.08E+02 5.00E+02 5.00E+02 5.00E+02

mean 8.26E+02 6.39E+02 6.75E+02 6.27E+02
std 3.16E+02 2.68E+02 2.42E+02 2.20E+02

f22 median 7.68E+02 7.78E+02 7.67E+02 7.42E+02

mean 7.65E+02 7.91E+02 7.58E+02 7.45E+02
std 1.02E+02 3.93E+01 1.01E+02 2.04E+01

f23 median 9.64E+02 5.59E+02 7.21E+02 5.59E+02

mean 9.12E+02 7.38E+02 8.39E+02 7.08E+02
std 2.75E+02 2.89E+02 2.84E+02 2.64E+02

f24 median 2.00E+022.00E+02 2.00E+02 2.00E+02

mean 2.00E+02 2.32E+02 2.00E+02 2.00E+02
std 0.00E+00 1.59E+02 0.00E+00 0.00E+00

f25 median 4.11E+02 4.10E+02 4.10E+02 4.06E+02

mean 4.12E+02 4.11E+02 4.11E+02 3.98E+02
std 1.01E+01 5.78E+00 9.57E+00 4.15E+01

Table 3 Experimental results of the error of the best fitness
obtained for algorithms GEP, CEP, EP (q = 1.5), and qGEP on
the test functions with m = 30.

Prob GEP CEP EP (q = 1.5) qGEP
f1 median 3.10E-09 3.17E-08 5.54E-09 4.33E-09

mean 3.16E-09 3.09E-08 5.75E-09 4.53E-07
std 3.52E-010 3.71E-09 1.05E-09 1.82E-06

f2 median 7.30E+02 2.77E+02 4.04E+02 2.04E+02

mean 7.02E+02 4.94E+02 6.27E+02 3.96E+02
std 5.19E+02 6.13E+02 5.59E+02 5.61E+02

f3 median 5.62E+06 6.41E+06 4.47E+06 4.17E+06

mean 5.86E+06 6.28E+06 5.36E+06 4.32E+06
std 2.75E+06 2.53E+06 3.26E+06 2.34E+06

f4 median 1.06E+04 1.14E+04 1.11E+04 1.72E+03

mean 1.31E+04 1.31E+04 1.38E+04 2.37E+03
std 8.21E+03 6.45E+03 7.95E+03 1.81E+03

f5 median 7.53E+03 6.80E+03 7.42E+03 3.56E+03

mean 7.28E+03 6.71E+03 7.52E+03 3.80E+03
std 1.58E+03 1.34E+03 1.67E+03 1.39E+03

f6 median 1.13E+02 7.56E+01 8.02E+01 8.38E+01
mean 1.88E+02 2.16E+02 1.04E+02 2.33E+02
std 2.81E+02 3.50E+02 1.02E+02 3.21E+02

f7 median 2.08E+01 2.00E+00 1.79E+01 1.13E+00

mean 2.89E+01 2.88E+00 2.45E+01 4.15E+00
std 2.20E+01 1.76E+00 2.19E+01 8.35E+00

f8 median 2.09E+01 2.10E+01 2.10E+01 2.10E+01
mean 2.09E+01 2.09E+01 2.09E+01 2.09E+01
std 5.19E-02 4.21E-02 5.69E-02 5.01E-02

f9 median 9.45E+01 1.10E+01 8.76E+01 3.58E+01
mean 9.34E+01 1.16E+01 8.56E+01 3.75E+01
std 2.72E+01 3.48E+00 1.94E+01 1.19E+01

f10 median 1.05E+02 9.35E+01 1.03E+02 5.31E+01

mean 1.11E+02 9.72E+01 9.68E+01 5.40E+01
std 2.86E+01 2.34E+01 2.24E+01 1.72E+01

f11 median 2.29E+01 2.00E+01 2.07E+01 1.32E+01

mean 2.26E+01 1.97E+01 2.14E+01 1.37E+01
std 3.31E+00 2.62E+00 2.61E+00 1.98E+00

f12 median 2.42E+04 1.98E+04 2.58E+04 1.69E+04

mean 3.14E+04 2.54E+04 3.30E+04 2.10E+04
std 2.36E+04 2.04E+04 2.75E+04 1.17E+04

f13 median 7.86E+00 2.48E+00 8.55E+00 3.36E+00
mean 8.25E+00 3.03E+00 1.03E+01 3.29E+00
std 2.81E+00 1.13E+00 5.24E+00 8.48E-01

f14 median 1.19E+01 1.20E+01 1.20E+01 1.22E+01
mean 1.19E+01 1.19E+01 1.19E+01 1.22E+01
std 6.33E-01 5.43E-01 5.63E-01 3.67E-01

f15 median 4.42E+02 3.02E+02 4.08E+02 4.07E+02
mean 4.70E+02 3.12E+02 4.24E+02 4.32E+02
std 6.26E+01 1.05E+02 3.95E+01 6.27E+01

f16 median 1.22E+02 1.07E+02 1.35E+02 6.79E+01

mean 1.32E+02 1.18E+02 1.41E+02 7.89E+01
std 6.34E+01 3.29E+01 6.57E+01 3.03E+01

f17 median 1.62E+02 1.14E+02 1.50E+02 7.91E+01

mean 1.86E+02 1.33E+02 1.55E+02 9.21E+01
std 9.40E+01 7.53E+01 4.12E+01 3.47E+01

f18 median 9.45E+02 9.16E+02 9.38E+02 9.12E+02

mean 9.48E+02 9.19E+02 9.39E+02 9.14E+02
std 2.17E+01 8.09E+00 1.43E+01 6.45E+00

f19 median 9.41E+02 9.16E+02 9.33E+02 9.13E+02

mean 9.44E+02 9.19E+02 9.36E+02 9.15E+02
std 1.95E+01 9.32E+00 1.48E+01 7.53E+00

f20 median 9.38E+02 9.13E+02 9.38E+02 9.11E+02

mean 9.44E+02 9.16E+02 9.40E+02 9.14E+02
std 1.84E+01 6.38E+00 1.61E+01 6.97E+00

f21 median 5.00E+02 5.00E+02 5.00E+02 5.00E+02

mean 6.57E+02 7.17E+02 6.65E+02 5.37E+02
std 2.86E+02 2.95E+02 2.78E+02 1.02E+02

f22 median 9.30E+02 8.76E+02 9.05E+02 8.84E+02
mean 9.27E+02 8.81E+02 9.10E+02 8.85E+02
std 3.47E+01 3.41E+01 3.00E+01 3.02E+01

f23 median 8.97E+02 5.34E+02 7.95E+02 5.40E+02
mean 9.12E+02 6.96E+02 8.26E+02 6.24E+02
std 1.51E+02 2.64E+02 1.78E+02 1.74E+02

f24 median 6.09E+02 9.74E+02 2.00E+02 2.00E+02

mean 5.83E+02 7.91E+02 4.81E+02 2.43E+02
std 3.91E+02 3.39E+02 3.66E+02 1.60E+02

f25 median 2.53E+02 2.20E+02 2.46E+02 2.25E+02
mean 4.19E+02 2.21E+02 3.05E+02 2.30E+02
std 3.92E+02 4.15E+00 2.21E+02 2.06E+01

12

0 500 1000 1500 2000 2500 3000
10

1

10
2

10
3

generation

f

f
9

0 500 1000 1500 2000 2500 3000
10

1

10
2

10
3

generation

f

f
10

Fig. 4 Mean f(xbest
g) − f(x∗), where xbest

g is the best-of-generation individual and x∗ is the global optimum, in the experiments
with functions f9 and f10 with m = 30 for the algorithms: GEP (solid line), CEP (dashed line), EP (q = 1.5) (dotted line) and qGEP
(dash-dotted line).

Table 4 Statistical comparison of algorithms GEP, CEP, EP (q = 1.5), and qGEP regarding the error of the best fitness on the test
functions with m = 10. The p-value of the Wilcoxon Signed Rank Test regarding the comparison Alg. A - Alg. B is presented. When
the median of Alg. A is smaller or higher than the median of Alg. B, the result is respectively shown in parentheses as “+” or “−”.
When the result is statistically significant, an “s” is added. In the last line, the difference between the number of “+” and “−” of each
column is still shown in the second parentheses.

Prob CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
f1 1.23E-05 (s-) 2.40E-04 (s+) 1.23E-05 (s+) 1.23E-05 (s+)
f2 2.83E-02 (s-) 9.46E-01 (+) 3.67E-01 (+) 8.82E-01 (+)
f3 2.47E-03 (s-) 7.78E-01 (+) 2.66E-04 (s+) 3.67E-01 (+)
f4 2.11E-01 (+) 5.76E-05 (s+) 1.13E-04 (s+) 4.03E-04 (s+)
f5 3.22E-03 (s+) 2.30E-02 (s+) 3.67E-01 (−) 4.12E-01 (+)
f6 7.98E-01 (−) 4.59E-01 (−) 3.97E-01 (+) 5.81E-01 (−)
f7 4.43E-01 (+) 1.23E-05 (s+) 2.26E-05 (s+) 1.77E-05 (s+)
f8 8.19E-01 (+) 8.40E-01 (+) 6.38E-01 (+) 9.25E-01 (+)
f9 1.40E-04 (s+) 2.35E-03 (s+) 7.14E-02 (−) 3.03E-05 (s+)
f10 6.96E-01 (=) 1.62E-04 (s+) 3.11E-04 (s+) 1.30E-03 (s+)
f11 9.25E-01 (+) 7.33E-04 (s+) 4.53E-03 (s+) 5.76E-05 (s+)
f12 3.00E-01 (+) 4.80E-02 (s+) 4.50E-02 (s+) 6.77E-01 (+)
f13 1.74E-04 (s+) 5.11E-02 (+) 1.72E-03 (s-) 2.47E-02 (s+)
f14 3.00E-01 (+) 8.91E-04 (s+) 1.19E-03 (s+) 2.96E-04 (s+)
f15 4.59E-01 (+) 4.76E-01 (+) 9.04E-01 (+) 6.53E-02 (+)
f16 7.78E-01 (+) 6.02E-04 (s+) 2.70E-03 (s+) 2.70E-03 (s+)
f17 3.53E-01 (−) 1.19E-02 (s+) 5.45E-04 (s+) 1.38E-02 (s+)
f18 6.53E-02 (+) 2.70E-03 (s+) 1.71E-01 (+) 1.01E-04 (s+)
f19 2.64E-02 (s+) 3.18E-04 (s+) 5.11E-02 (+) 1.43E-03 (s+)
f20 6.02E-04 (s+) 1.89E-03 (s+) 7.53E-01 (+) 8.14E-03 (s+)
f21 5.09E-02 (+) 1.66E-02 (s+) 6.69E-01 (=) 4.66E-01 (=)
f22 5.10E-01 (−) 2.16E-04 (s+) 4.03E-04 (s+) 1.57E-03 (s+)
f23 5.34E-02 (+) 8.22E-03 (s+) 5.01E-01 (=) 1.26E-01 (+)
f24 1.00E+00 (=) 1.00E+00 (=) 1.00E+00 (=) 1.00E+00 (=)
f25 8.19E-01 (+) 6.65E-04 (s+) 1.43E-03 (s+) 2.96E-04 (s+)

f1 − f25 9.46E-02 (+),(+11) 5.60E-03 (s+),(+22) 3.00E-03 (s+),(+16) 5.88E-04 (s+),(+21)

number of “−” and “s−” in the respective column). For

example, the result 5.60E-03 (+s,+22) in the last line,

third column of Table 4 indicates that the p-value of the
Wilcoxon Signed Rank Test regarding the comparison

between qGEP and GEP is 5.60E-03, which means that

the result is statistically significant (“s+”). The result

also indicates that the difference between the number

of times that the median of qGEP is smaller than the
median of GEP and the number of times that the me-

dian of qGEP is higher than the median of GEP is 22.

The analysis of the experimental results shown here is

presented in Section 8.2.3.

8.2.2 Experimental results on IqGEP

The experimental results of the fitness error averaged

over 25 runs in the experiments with mutation gen-

erated from isotropic distributions for m = 10 and

m = 30 are respectively presented in Tables 6 and 7.
Figure 5 shows the convergence of the mean best-of-

generation fitness error in the experiments with m = 30

for functions f9 and f10. In Tables 8 and 9, the statistic

comparison regarding the fitness error is carried out by
the Wilcoxon Signed Rank Test. Tables 10 and 11 show

the p-value of the Wilcoxon Signed Rank Test regarding

the comparison between the isotropic and anisotropic

13

Table 5 Statistical comparison of algorithms GEP, CEP, EP (q = 1.5), and qGEP regarding the error of the best fitness on the test
functions with m = 30.

Prob CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
f1 1.23E-05 (s-) 1.73E-02 (s-) 6.53E-02 (+) 5.81E-01 (+)
f2 3.96E-02 (s+) 3.96E-02 (s+) 1.92E-01 (+) 2.64E-02 (s+)
f3 7.78E-01 (−) 2.30E-02 (s+) 3.70E-02 (s+) 1.04E-01 (+)
f4 8.19E-01 (−) 1.39E-05 (s+) 1.77E-05 (s+) 1.23E-05 (s+)
f5 1.74E-01 (+) 2.00E-05 (s+) 9.04E-05 (s+) 2.54E-05 (s+)
f6 5.10E-01 (+) 4.27E-01 (+) 4.43E-01 (−) 2.11E-01 (−)
f7 2.54E-05 (s+) 2.66E-04 (s+) 5.44E-02 (+) 3.64E-04 (s+)
f8 3.67E-01 (−) 6.77E-01 (−) 5.27E-01 (−) 6.57E-01 (+)
f9 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s-) 1.39E-05 (s+)
f10 4.50E-02 (s+) 1.23E-05 (s+) 2.86E-05 (s+) 1.39E-05 (s+)
f11 8.08E-04 (s+) 1.23E-05 (s+) 2.00E-05 (s+) 1.23E-05 (s+)
f12 1.35E-01 (+) 1.66E-01 (+) 9.89E-01 (+) 6.15E-02 (+)
f13 1.23E-05 (s+) 1.39E-05 (s+) 1.92E-01 (−) 1.23E-05 (s+)
f14 9.68E-01 (−) 2.83E-02 (s-) 2.30E-02 (s-) 8.75E-02 (−)
f15 3.62E-05 (s+) 4.53E-03 (s+) 1.43E-03 (s-) 9.54E-01 (+)
f16 4.76E-01 (+) 2.66E-04 (s+) 4.93E-04 (s+) 1.40E-04 (s+)
f17 1.19E-03 (s+) 3.62E-05 (s+) 3.82E-03 (s+) 6.45E-05 (s+)
f18 1.23E-05 (s+) 2.00E-05 (s+) 6.93E-02 (+) 2.86E-05 (s+)
f19 1.40E-04 (s+) 1.39E-05 (s+) 1.50E-01 (+) 6.45E-05 (s+)
f20 1.39E-05 (s+) 4.07E-05 (s+) 1.83E-01 (+) 3.22E-05 (s+)
f21 1.00E+00 (=) 4.69E-02 (=) 6.84E-03 (=) 2.34E-02 (=)
f22 7.33E-04 (s+) 6.65E-04 (s+) 8.82E-01 (−) 3.82E-03 (s+)
f23 1.19E-03 (s+) 9.04E-05 (s+) 7.37E-01 (−) 1.08E-03 (s+)
f24 1.01E-01 (−) 1.12E-03 (s+) 1.20E-04 (s+) 1.25E-02 (=)
f25 1.39E-05 (s+) 3.64E-04 (s+) 1.10E-02 (s-) 6.65E-04 (s+)

f1 − f25 3.62E-02 (s+),(+12) 1.02E-04 (s+),(+18) 1.84E-02 (s+),(+6) 3.55E-04 (s+),(+19)

algorithms. Table 12 summarizes the results regarding
the comparison among qGEP, IqGEP, and other inves-

tigated algorithms for different groups of functions. In

Table 12, the results regarding the comparison Alg. A

- Alg. B indicate the difference between the number of

times (functions) that the median of Alg. A is smaller
than the median of Alg. B (i.e., the number of “+” and

“s+” for the group of functions in the respective tables)

and the number of times (functions) that the median

of Alg. B is smaller than the median of Alg. A (i.e., the
number of “−” and “s−” for the group of functions in

the respective tables). The analysis of the experimental

results shown here is presented in Secion 8.2.3.

8.2.3 Analysis

Some observations can be made from the experimental
results presented in the tables and figures shown in last

sections. They are described and analyzed below.

First, it is observable that the algorithms with the

Gaussian mutation, i.e., GEP and IGEP, generally have

a better performance than those with the Cauchy muta-

tion, i.e., CEP and ICEP, on unimodal functions (lines

for functions f1 − f5 in column 2 of Tables 4, 5, 8, and
9). Similar results of comparing long tail and Gaus-

sian distributions in the minimization of unimodal func-

tions were reported in the literature [18,45]. In an uni-

modal function, long jumps, which often occur when the
Cauchy mutation is employed, generally cause a degra-

dation in the performance of the algorithm at the later

stage of the evolution because less offspring are gen-

erated to explore the local neighborhood. For all func-
tions and algorithms, the norm of the mutation strength

parameter vector generally remains large in the initial

stage of the evolution, allowing a faster convergence in

the initial steps, and decays to small values in later

generations.

It can also be observed that the performance of the
proposed algorithms (i.e., qGEP and IqGEP) is gen-

erally better than that of the algorithms with Cauchy

mutation (i.e., CEP and ICEP), and is, in general, equal

to or better than that of the algorithms with Gaussian

mutation (i.e., GEP and IGEP) on the unimodal func-
tions (lines for functions f1 − f5 in Tables 4, 5, 8, and

9). These results can be explained because, in general,

the q-Gaussian mutation generates less long jumps than

the Cauchy mutation and more long jumps than the
Gaussian mutation for q ≥ 1. However, when q < 1,

the q-Gaussian distribution is more compact than the

Gaussian distribution, which implies shorter jumps.

Second, while the algorithms with Gaussian muta-

tion (i.e., GEP and IGEP) generally outperform the al-

gorithms with Cauchy mutation (i.e., CEP and ICEP)

on the unimodal functions, they are generally outper-
formed on the multimodal functions, especially on the

highly multimodal functions, e.g., functions f9 and f10.

These results indicate that the long jumps generated

by the Cauchy mutation are advantageous for the in-
dividuals to escape from local optima, especially in the

later stage of the evolution when the mutation strength

parameters have converged to small values.

14

Table 6 Experimental results of the error of the best fitness
obtained for algorithms IGEP, ICEP, IEP (q = 1.5) and IqGEP
on the test functions with m = 10

Prob IGEP ICEP IEP (q = 1.5) IqGEP
f1 median 4.45E-14 9.74E-14 6.47E-14 2.69E-12

mean 4.60E-14 9.61E-14 6.51E-14 3.03E-07
std 1.57E-14 3.45E-14 2.10E-14 1.31E-06

f2 median 6.82E-13 1.69E-12 7.13E-13 1.92E-09
mean 6.90E-13 1.96E-12 9.02E-13 1.40E-05
std 4.06E-13 1.07E-12 5.61E-13 6.01E-05

f3 median 2.16E+05 2.39E+05 2.04E+05 2.14E+05
mean 3.00E+05 2.82E+05 2.28E+05 2.51E+05
std 2.59E+05 1.74E+05 1.96E+05 1.70E+05

f4 median 1.50E-12 3.75E-12 2.90E-12 1.53E-08
mean 2.26E-12 8.21E-11 5.85E-12 3.71E-03
std 2.48E-12 3.49E-10 8.91E-12 9.01E-03

f5 median 8.30E-06 1.29E-05 9.85E-06 1.54E-01
mean 8.61E-06 1.28E-05 1.06E-05 1.30E+00
std 2.88E-06 4.71E-06 3.16E-06 2.55E+00

f6 median 1.44E+02 3.02E+01 9.69E+01 8.18E+00

mean 9.77E+02 1.55E+03 4.22E+02 1.90E+02
std 2.05E+03 3.00E+03 8.06E+02 3.95E+02

f7 median 1.38E-01 1.82E-01 1.33E-01 7.39E-02

mean 1.45E-01 2.52E-01 1.92E-01 7.80E-02
std 8.19E-02 1.87E-01 1.29E-01 2.88E-02

f8 median 2.03E+01 2.04E+01 2.04E+01 2.03E+01

mean 2.03E+01 2.04E+01 2.03E+01 2.03E+01
std 6.37E-02 6.73E-02 8.27E-02 6.68E-02

f9 median 1.89E+01 1.89E+01 2.19E+01 1.29E+01

mean 1.81E+01 1.91E+01 2.07E+01 1.41E+01
std 6.40E+00 6.76E+00 7.49E+00 4.98E+00

f10 median 1.79E+01 1.89E+01 2.29E+01 1.29E+01

mean 1.88E+01 2.10E+01 2.31E+01 1.25E+01
std 7.28E+00 8.96E+00 9.66E+00 4.48E+00

f11 median 3.60E+00 3.45E+00 2.84E+00 1.77E+00

mean 3.36E+00 3.75E+00 3.07E+00 1.58E+00
std 1.39E+00 1.45E+00 1.28E+00 1.08E+00

f12 median 3.50E+01 2.08E+02 2.54E+01 3.06E+01
mean 1.71E+03 1.00E+03 1.23E+03 8.05E+02
std 2.86E+03 1.76E+03 2.80E+03 1.43E+03

f13 median 9.26E-01 1.01E+00 1.16E+00 8.13E-01

mean 1.05E+00 1.04E+00 1.19E+00 8.89E-01
std 3.86E-01 4.32E-01 5.10E-01 3.12E-01

f14 median 3.11E+00 3.12E+00 3.06E+00 2.66E+00

mean 3.05E+00 3.13E+00 3.06E+00 2.66E+00
std 4.86E-01 3.05E-01 3.58E-01 4.47E-01

f15 median 4.11E+02 4.29E+02 4.05E+02 2.50E+02

mean 3.35E+02 3.48E+02 3.50E+02 3.10E+02
std 1.14E+02 1.22E+02 1.02E+02 1.11E+02

f16 median 1.40E+02 1.36E+02 1.33E+02 1.19E+02

mean 1.38E+02 1.42E+02 1.33E+02 1.19E+02
std 2.00E+01 2.03E+01 1.32E+01 1.24E+01

f17 median 1.36E+02 1.37E+02 1.37E+02 1.18E+02

mean 1.39E+02 1.44E+02 1.34E+02 1.17E+02
std 1.63E+01 2.39E+01 1.68E+01 1.07E+01

f18 median 8.00E+02 3.56E+02 4.72E+02 3.00E+02

mean 6.19E+02 5.26E+02 5.77E+02 4.25E+02
std 3.00E+02 2.73E+02 2.74E+02 2.28E+02

f19 median 8.00E+02 3.72E+02 8.00E+02 3.00E+02

mean 6.02E+02 5.05E+02 6.11E+02 4.95E+02
std 2.80E+02 2.58E+02 2.75E+02 2.68E+02

f20 median 4.25E+02 8.00E+02 8.00E+02 3.00E+02

mean 6.05E+02 6.22E+02 6.26E+02 5.58E+02
std 2.79E+02 2.86E+02 2.67E+02 2.76E+02

f21 median 5.00E+02 5.00E+02 5.00E+02 5.00E+02

mean 7.14E+02 6.25E+02 5.54E+02 5.74E+02
std 2.55E+02 2.08E+02 2.32E+02 2.05E+02

f22 median 7.49E+02 7.54E+02 7.50E+02 7.47E+02

mean 7.43E+02 7.67E+02 7.40E+02 7.38E+02
std 9.57E+01 2.85E+01 9.38E+01 9.44E+01

f23 median 5.59E+02 5.59E+02 5.59E+02 5.59E+02

mean 7.80E+02 7.70E+02 7.37E+02 6.69E+02
std 2.70E+02 2.57E+02 2.55E+02 1.87E+02

f24 median 2.00E+02 2.00E+02 2.00E+02 2.00E+02

mean 2.12E+02 2.00E+02 2.00E+02 2.00E+02
std 6.00E+01 0.00E+00 0.00E+00 9.88E-05

f25 median 4.06E+02 4.06E+02 4.06E+02 4.05E+02

mean 4.05E+02 4.05E+02 4.05E+02 4.25E+02
std 4.02E+00 4.52E+00 3.98E+00 1.56E+02

Table 7 Experimental results of the error of the best fitness
obtained for algorithms IGEP, ICEP, IEP (q = 1.5) and IqGEP
on the test functions with m = 30

Prob IGEP ICEP IEP (q = 1.5) IqGEP
f1 median 1.87E-13 3.75E-13 2.51E-13 1.97E-07

mean 1.92E-13 3.74E-13 2.54E-13 3.02E-03
std 3.75E-14 8.30E-14 5.58E-14 1.31E-02

f2 median 1.95E-03 1.12E-02 3.28E-03 3.17E-04

mean 3.71E-03 1.57E-02 6.34E-03 1.09E-02
std 4.24E-03 1.47E-02 8.76E-03 5.09E-02

f3 median 2.65E+06 2.09E+06 2.45E+06 2.69E+06
mean 2.59E+06 2.72E+06 2.76E+06 2.55E+06
std 1.42E+06 1.30E+06 1.61E+06 1.01E+06

f4 median 5.47E+02 3.96E+02 5.14E+02 4.90E+00

mean 6.76E+02 6.76E+02 8.75E+02 1.28E+01
std 5.99E+02 6.71E+02 8.95E+02 2.00E+01

f5 median 5.08E+03 5.39E+03 5.75E+03 3.43E+03

mean 5.31E+03 5.29E+03 5.61E+03 3.49E+03
std 1.44E+03 1.49E+03 1.27E+03 1.08E+03

f6 median 2.70E+02 5.81E+02 3.11E+02 1.15E+03
mean 9.53E+02 3.05E+03 3.81E+03 3.49E+03
std 2.03E+03 4.65E+03 5.07E+03 4.90E+03

f7 median 3.69E-02 3.44E-02 2.95E-02 2.28E-02

mean 3.64E-02 3.78E-02 3.06E-02 3.33E-02
std 1.36E-02 3.79E-02 1.68E-02 4.37E-02

f8 median 2.09E+01 2.09E+01 2.09E+01 2.09E+01

mean 2.09E+01 2.09E+01 2.09E+01 2.09E+01
std 4.42E-02 6.94E-02 7.84E-02 5.73E-02

f9 median 1.17E+02 1.18E+02 1.27E+02 9.47E+01

mean 1.27E+02 1.26E+02 1.28E+02 1.05E+02
std 3.80E+01 2.71E+01 3.70E+01 3.11E+01

f10 median 1.25E+02 1.16E+02 1.23E+02 8.98E+01

mean 1.23E+02 1.14E+02 1.26E+02 9.58E+01
std 2.85E+01 2.73E+01 3.88E+01 2.44E+01

f11 median 1.81E+01 2.06E+01 1.73E+01 1.64E+01

mean 1.85E+01 2.04E+01 1.81E+01 1.65E+01
std 2.75E+00 3.00E+00 2.79E+00 2.82E+00

f12 median 3.95E+04 2.30E+04 3.32E+04 2.94E+04
mean 3.60E+04 3.28E+04 4.55E+04 3.11E+04
std 2.45E+04 3.83E+04 4.33E+04 2.21E+04

f13 median 5.97E+00 5.43E+00 5.73E+00 6.63E+00
mean 6.54E+00 5.96E+00 6.05E+00 6.43E+00
std 2.20E+00 2.06E+00 1.72E+00 1.85E+00

f14 median 1.25E+01 1.26E+01 1.25E+01 1.20E+01

mean 1.25E+01 1.26E+01 1.24E+01 1.21E+01
std 4.25E-01 3.90E-01 4.13E-01 4.34E-01

f15 median 5.02E+02 4.55E+02 5.00E+02 4.03E+02

mean 4.81E+02 4.63E+02 4.79E+02 4.41E+02
std 8.94E+01 6.38E+01 6.95E+01 5.60E+01

f16 median 1.56E+02 1.49E+02 1.59E+02 1.30E+02

mean 1.71E+02 1.66E+02 1.62E+02 1.39E+02
std 6.87E+01 6.15E+01 4.50E+01 6.51E+01

f17 median 1.55E+02 1.55E+02 1.70E+02 1.20E+02

mean 1.65E+02 1.63E+02 1.66E+02 1.31E+02
std 5.16E+01 6.98E+01 4.32E+01 3.28E+01

f18 median 9.16E+02 9.19E+02 9.17E+02 9.12E+02

mean 9.18E+02 9.19E+02 9.23E+02 9.12E+02
std 7.11E+00 7.93E+00 1.41E+01 3.75E+00

f19 median 9.20E+02 9.18E+02 9.17E+02 9.10E+02

mean 9.19E+02 9.20E+02 9.17E+02 9.11E+02
std 8.50E+00 7.93E+00 5.72E+00 2.99E+00

f20 median 9.16E+02 9.18E+02 9.17E+02 9.11E+02

mean 9.19E+02 9.21E+02 9.18E+02 9.12E+02
std 7.51E+00 8.21E+00 6.68E+00 3.98E+00

f21 median 5.00E+02 5.00E+02 5.00E+02 5.00E+02

mean 5.66E+02 5.62E+02 6.03E+02 5.62E+02
std 1.66E+02 1.80E+02 2.40E+02 1.26E+02

f22 median 8.93E+02 9.06E+02 8.97E+02 8.84E+02

mean 8.90E+02 9.06E+02 8.97E+02 8.90E+02
std 2.66E+01 3.66E+01 2.37E+01 2.40E+01

f23 median 5.53E+02 5.45E+02 5.44E+02 5.34E+02

mean 6.17E+02 5.97E+02 5.79E+02 5.86E+02
std 1.55E+02 1.37E+02 1.15E+02 1.38E+02

f24 median 2.00E+02 2.00E+02 2.00E+02 2.00E+02

mean 2.41E+02 2.31E+02 2.62E+02 2.00E+02
std 2.07E+02 1.57E+02 2.15E+02 3.61E-03

f25 median 2.12E+02 2.12E+02 2.12E+02 2.11E+02

mean 2.12E+02 2.53E+02 2.12E+02 2.11E+02
std 4.40E-01 2.04E+02 9.98E-01 2.34E+00

15

0 500 1000 1500 2000 2500 3000
10

1

10
2

10
3

generation

f

f
9

0 500 1000 1500 2000 2500 3000
10

1

10
2

10
3

generation

f

f
10

Fig. 5 Mean f(xbest
g)−f(x∗), in the experiments with functions f9 and f10 with m = 30 for the algorithms: IGEP (solid line), ICEP

(dashed line), IEP (q = 1.5) (dotted line), and IqGEP (dash-dotted line).

Table 8 Statistical comparison of algorithms IGEP, ICEP, IEP (q = 1.5) and IqGEP regarding the error of the best fitness on the
test functions with m = 10

Prob ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)
f1 3.62E-05 (s-) 1.23E-05 (s-) 1.23E-05 (s-) 1.23E-05 (s-)
f2 1.26E-04 (s-) 1.23E-05 (s-) 1.57E-05 (s-) 1.23E-05 (s-)
f3 7.37E-01 (−) 5.10E-01 (+) 3.82E-01 (+) 3.67E-01 (−)
f4 3.28E-04 (s-) 1.23E-05 (s-) 5.13E-05 (s-) 1.23E-05 (s-)
f5 1.19E-03 (s-) 1.23E-05 (s-) 1.23E-05 (s-) 1.23E-05 (s-)
f6 7.98E-01 (+) 5.82E-03 (s+) 2.64E-01 (+) 1.28E-01 (+)
f7 1.73E-02 (s-) 4.03E-04 (s+) 2.86E-05 (s+) 6.45E-05 (s+)
f8 5.10E-01 (−) 7.16E-01 (+) 4.76E-01 (+) 6.00E-01 (+)
f9 6.00E-01 (=) 2.14E-02 (s+) 2.64E-02 (s+) 2.70E-03 (s+)
f10 3.17E-01 (−) 1.08E-03 (s+) 4.93E-04 (s+) 1.33E-04 (s+)
f11 6.38E-01 (+) 1.08E-03 (s+) 2.54E-05 (s+) 3.28E-04 (s+)
f12 5.30E-01 (−) 2.11E-01 (+) 3.97E-01 (+) 9.89E-01 (−)
f13 5.63E-01 (−) 1.04E-01 (+) 1.66E-01 (+) 6.31E-03 (s+)
f14 6.38E-01 (−) 4.93E-03 (s+) 4.03E-04 (s+) 1.89E-03 (s+)
f15 5.10E-01 (−) 1.58E-01 (+) 1.58E-01 (+) 8.27E-02 (+)
f16 3.67E-01 (+) 1.89E-03 (s+) 8.09E-05 (s+) 1.08E-03 (s+)
f17 4.93E-01 (−) 5.13E-05 (s+) 4.57E-05 (s+) 2.47E-03 (s+)
f18 3.38E-01 (+) 1.71E-03 (s+) 1.31E-01 (+) 9.46E-03 (s+)
f19 3.89E-01 (+) 1.17E-01 (+) 8.21E-01 (+) 2.61E-02 (s+)
f20 9.10E-01 (−) 3.22E-01 (+) 3.48E-01 (+) 7.84E-03 (s+)
f21 1.04E-01 (=) 2.66E-02 (=) 4.35E-01 (=) 7.74E-01 (=)
f22 4.58E-01 (−) 2.53E-01 (+) 1.16E-01 (+) 3.17E-01 (+)
f23 9.04E-01 (=) 2.18E-01 (−) 2.10E-01 (−) 4.32E-01 (−)
f24 1.00E+00 (=) 8.75E-01 (=) 2.50E-01 (=) 2.50E-01 (=)
f25 1.28E-01 (+) 5.11E-02 (+) 6.85E-03 (s+) 6.85E-03 (s+)

f1 − f25 7.97E-01(−),(-9) 4.41-04 (s+),(+13) 4.41-04 (s+),(+13) 2.64E-02 (s+),(+9)

The proposed algorithms (qGEP and IqGEP) gener-

ally outperform the algorithms with Gaussian mutation

on the multimodal functions, especially on the highly
multimodal (e.g., functions f9 and f10) or hybrid func-

tions (functions f15 - f20).

The good performance of the proposed algorithms

on multimodal functions can be explained because

higher values of the parameter q were eventually em-

ployed to allow longer jumps (see Fig. 6, where the dis-
tribution parameter q of the current best individual on

the first run of two experiments is plotted against the

generation index). On the multimodal functions, after

the initial stage, the evolution generally occurs in steps.
It can be observed that such steps are generally coin-

cident with larger changes in the value of q in Fig. 6,

which indicates that jumps in individuals with higher

values of q, or in individuals where the value of q has in-

creased, were eventually beneficial. Similar results can

be observed in the minimization of other multimodal
functions.

These results indicate that an eventual increase in

the value of q in the proposed algorithms can lead to

longer jumps (when compared to those produced by

Gaussian mutation), which can be advantageous to the

evolution since they allow the population to escape from
local optima, especially in later stages of the evolu-

tion when the mutation strength parameters are gen-

erally small. For the algorithms with mutation gener-

ated from isotropic distributions, the computed mean
change in the best-of-generation fitness generated by

advantageous mutations is generally higher for IqGEP

on all functions, even when the final fitness is smaller for

16

Table 9 Statistical comparison of algorithms IGEP, ICEP, IEP (q = 1.5) and IqGEP regarding the error of the best fitness on the
test functions with m = 30

Prob ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)
f1 1.39E-05 (s-) 1.23E-05 (s-) 1.23E-05 (s-) 1.23E-05 (s-)
f2 8.08E-04 (s-) 3.82E-03 (s+) 2.16E-04 (s+) 1.57E-03 (s+)
f3 5.27E-01 (+) 9.25E-01 (−) 7.16E-01 (−) 6.96E-01 (−)
f4 7.37E-01 (+) 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+)
f5 6.96E-01 (−) 8.09E-05 (s+) 1.40E-04 (s+) 1.77E-05 (s+)
f6 7.36E-02 (−) 4.50E-02 (s-) 3.82E-01 (−) 6.38E-01 (−)
f7 7.57E-01 (+) 1.28E-01 (+) 3.82E-01 (+) 3.97E-01 (+)
f8 7.37E-01 (+) 9.46E-01 (+) 9.25E-01 (−) 6.93E-02 (−)
f9 9.89E-01 (−) 2.47E-02 (s+) 2.47E-02 (s+) 3.03E-02 (s+)
f10 1.09E-01 (+) 1.08E-03 (s+) 3.03E-02 (s+) 8.04E-03 (s+)
f11 6.15E-02 (−) 2.30E-02 (s+) 1.19E-03 (s+) 1.60E-02 (s+)
f12 1.04E-01 (+) 4.76E-01 (+) 5.27E-01 (−) 2.01E-01 (+)
f13 3.39E-01 (+) 9.04E-01 (−) 4.93E-01 (−) 4.93E-01 (−)
f14 3.53E-01 (−) 7.42E-03 (s+) 1.43E-03 (s+) 2.06E-03 (s+)
f15 5.45E-01 (+) 1.64E-02 (s+) 2.01E-01 (+) 3.91E-03 (s+)
f16 7.98E-01 (+) 1.86E-02 (s+) 6.85E-03 (s+) 9.26E-02 (+)
f17 8.19E-01 (−) 4.53E-03 (s+) 5.44E-02 (+) 9.80E-04 (s+)
f18 8.40E-01 (−) 1.89E-03 (s+) 1.13E-04 (s+) 5.45E-04 (s+)
f19 5.45E-01 (+) 1.74E-04 (s+) 1.40E-04 (s+) 6.45E-05 (s+)
f20 5.27E-01 (−) 5.45E-04 (s+) 1.26E-04 (s+) 2.47E-03 (s+)
f21 1.00E+00 (=) 8.17E-02 (−) 1.77E-01 (−) 3.95E-01 (−)
f22 1.28E-01 (−) 9.04E-01 (+) 9.80E-02 (+) 2.88E-01 (+)
f23 1.83E-01 (+) 1.72E-03 (s+) 1.38E-02 (s+) 5.44E-02 (+)
f24 1.00E+00 (=) 2.81E-01 (=) 1.95E-01 (=) 5.78E-01 (=)
f25 1.10E-02 (s-) 2.06E-03 (s+) 5.76E-05 (s+) 1.19E-03 (s+)

f1 − f25 6.59E-01 (−),(-1) 5.88-04 (s+),(+14) 5.25-04 (s+),(+10) 2.41E-04 (s+),(+12)

Table 10 Statistical comparison of the EP algorithms with mutation generated from anisotropic or isotropic distributions regarding
the best fitness on the test functions with m = 10

Prob IGEP - GEP ICEP - CEP IEP (q = 1.5) - EP (q = 1.5) IqGEP - qGEP

f1 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 7.78E-01 (+)
f2 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 8.04E-03 (s+)
f3 8.40E-01 (+) 8.91E-04 (s+) 3.24E-02 (s+) 4.43E-01 (+)
f4 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 1.74E-04 (s+)
f5 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 2.06E-03 (s-)
f6 4.16E-03 (s-) 1.74E-01 (−) 1.57E-03 (s-) 2.53E-01 (+)
f7 2.54E-05 (s+) 4.46E-04 (s+) 1.26E-04 (s+) 1.74E-01 (+)
f8 5.81E-01 (+) 6.77E-01 (−) 6.77E-01 (−) 7.37E-01 (−)
f9 1.06E-01 (−) 6.45E-05 (s-) 2.22E-02 (s-) 1.56E-04 (s-)
f10 1.26E-01 (+) 6.19E-01 (+) 9.57E-01 (−) 8.61E-01 (−)
f11 3.03E-02 (s+) 6.38E-01 (+) 4.57E-05 (s+) 4.03E-04 (s+)
f12 3.53E-01 (+) 5.63E-01 (+) 7.16E-01 (+) 5.27E-01 (+)
f13 4.12E-01 (+) 3.82E-03 (s-) 8.19E-01 (−) 2.42E-01 (+)
f14 8.75E-02 (+) 6.00E-01 (+) 2.83E-02 (s+) 7.78E-01 (+)
f15 1.50E-01 (+) 9.89E-01 (+) 5.82E-03 (s+) 1.57E-03 (s+)
f16 2.76E-01 (+) 8.82E-01 (+) 1.15E-01 (+) 6.77E-01 (−)
f17 6.00E-01 (+) 5.27E-01 (+) 5.27E-01 (+) 2.01E-01 (+)
f18 2.78E-01 (−) 5.92E-01 (+) 1.58E-01 (+) 1.77E-01 (+)
f19 9.26E-02 (+) 3.00E-01 (+) 5.30E-01 (−) 7.94E-01 (+)
f20 4.80E-02 (s+) 2.62E-02 (s-) 7.37E-01 (−) 6.61E-01 (+)
f21 1.03E-01 (+) 5.76E-01 (=) 1.47E-01 (=) 4.96E-01 (=)
f22 1.99E-02 (s+) 7.42E-03 (s+) 1.28E-01 (+) 2.31E-01 (−)
f23 4.55E-02 (s+) 8.39E-01 (=) 2.27E-01 (+) 7.17E-01 (−)
f24 1.00E+00 (=) 1.00E+00 (=) 1.00E+00 (=) 2.50E-01 (=)
f25 1.39E-05 (s+) 1.13E-04 (s+) 3.62E-05 (s+) 8.71E-03 (s+)

f1 − f25 8.13E-02 (+),(+18) 1.70-01 (+),(+12) 1.38E-02 (s+),(+9) 4.47E-01 (+),(+9)

the other two algorithms. For IqGEP, when the mean

changes in the fitness generated by advantageous mu-

tations are analysed for different intervals of q after the
middle of the evolutionary process (i.e., when the pop-

ulation has converged to local optima in most of the

runs with multimodal functions), an interesting result

can be observed. When these values are interpolated by

a linear function, while the resulting line has a negative
inclination for the unimodal functions (with exception

of function f3, where the inclination is close to zero),

indicating that smaller values of q generally result in

higher changes in the fitness function, the resulting line
generally has a positive inclination for the multimodal

functions, i.e., the selection of higher values of q resulted

in higher changes in the fitness function.

When the performance of the algorithms with q-

Gaussian mutation is statistically compared to that of

the algorithms with Cauchy mutation on the multi-

17

Table 11 Statistical comparison of the EP algorithms with mutation generated from anisotropic or isotropic distributions regarding
the best fitness on the test functions with m = 30

Prob IGEP - GEP ICEP - CEP IEP (q = 1.5) - EP (q = 1.5) IqGEP - qGEP

f1 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 1.30E-03 (s-)
f2 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+)
f3 2.40E-04 (s+) 5.13E-05 (s+) 1.08E-03 (s+) 2.70E-03 (s+)
f4 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+)
f5 6.45E-05 (s+) 2.06E-03 (s+) 1.89E-03 (s+) 6.19E-01 (+)
f6 1.02E-02 (s-) 4.03E-04 (s-) 7.33E-04 (s-) 9.80E-04 (s-)
f7 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+) 1.23E-05 (s+)
f8 1.83E-01 (+) 3.47E-02 (s+) 2.06E-03 (s+) 6.15E-02 (+)
f9 2.26E-03 (s-) 1.23E-05 (s-) 6.45E-05 (s-) 1.23E-05 (s-)
f10 7.80E-02 (−) 7.80E-02 (−) 5.35E-03 (s-) 2.26E-05 (s-)
f11 5.45E-04 (s+) 3.82E-01 (−) 2.26E-03 (s+) 1.26E-04 (s-)
f12 4.76E-01 (−) 7.98E-01 (−) 3.26E-01 (−) 2.42E-01 (−)
f13 1.73E-02 (s+) 2.54E-05 (s-) 1.57E-04 (s+) 1.39E-05 (s-)
f14 2.26E-03 (s-) 2.66E-04 (s-) 4.93E-03 (s-) 3.39E-01 (+)
f15 9.54E-01 (−) 1.57E-04 (s-) 2.96E-03 (s-) 7.61E-01 (+)
f16 2.47E-02 (s-) 2.70E-03 (s-) 7.36E-02 (−) 1.23E-05 (s-)
f17 6.19E-01 (+) 8.04E-03 (s-) 2.11E-01 (−) 1.94E-04 (s-)
f18 2.26E-05 (s+) 6.38E-01 (−) 5.45E-04 (s+) 6.93E-02 (+)
f19 2.26E-05 (s+) 4.27E-01 (−) 1.77E-05 (s+) 3.47E-02 (s+)
f20 7.22E-05 (s+) 1.49E-02 (s-) 1.23E-05 (s+) 3.39E-01 (+)
f21 1.48E-01 (=) 7.71E-02 (=) 4.32E-01 (=) 3.43E-02 (s-)
f22 1.57E-03 (s+) 8.71E-03 (s-) 1.83E-01 (+) 4.93E-01 (+)
f23 2.86E-05 (s+) 7.78E-01 (−) 1.13E-04 (s+) 8.04E-03 (s+)
f24 4.27E-04 (s+) 1.32E-04 (s+) 1.61E-02 (=) 9.84E-01 (=)
f25 1.23E-05 (s+) 2.16E-04 (s+) 1.23E-05 (s+) 1.23E-05 (s+)

f1 − f25 4.87E-02 (s+),(+10) 9.03-01 (−),(-6) 1.37E-01 (+),(+7) 9.54E-01 (+),(+4)

Table 12 Comparison of the EP algorithms for different groups of functions. The difference between the number of “+” and “−” for
the results presented in Tables 4-11 for each group of functions is shown.

CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
m = 10 -1 +5 +4 +5

Unimodal m = 30 -1 +4 +5 +5
(f1 − f5) ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)

m = 10 -5 -4 -4 -5
m = 30 -1 +1 +1 +1

CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
m = 10 +12 +17 +13 +16

Multimodal m = 30 +13 +15 +1 +14
(f6 − f25) ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)

m = 10 -4 +16 +16 +14
m = 30 0 +13 +9 +11

CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
m = 10 +6 +10 +8 +9

Composition Functions m = 30 +8 +10 +2 +9
(f15 − f25) ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)

m = 10 0 +7 +7 +7
m = 30 -1 +8 +8 +8

CEP - GEP qGEP - GEP qGEP - CEP qGEP - EP (q = 1.5)
m = 10 0 +2 +2 +2

Noise m = 30 0 +2 +2 +2
(f4 and f17) ICEP - IGEP IqGEP - IGEP IqGEP - ICEP IqGEP - IEP (q = 1.5)

m = 10 -2 0 0 0
m = 30 0 +2 +2 +2

modal functions, it can be observed that the proposed

algorithms generally present a better or statistically

similar performance (Tables 4, 5, 8, and 9). The better
performance of the algorithm qGEP is the result of a

better compromise between long and local jumps of the

candidate solutions as the tail of the mutation distri-

bution is self-adapted in qGEP. The use of q-Gaussian

mutation is advantageous in noisy functions, too. It can
be observed that the performance of the proposed al-

gorithms is better, when compared to other algorithms

(Tables 4, 5, and 9), with the exception in isotropic al-

gorithms on the function f4 with m = 10 , which is

composed by adding noise to the unimodal function f2.

Following the method proposed in [12], we can ob-

serve that the performance of the algorithms with q-
Gaussian mutation is significantly better (with the ex-

ception for IqGEP when compared to IGEP and ICEP

in the experiment with m = 10, where the performance

of IqGEP is better, but not statistically significant)
than the performance of all other algorithms when all

functions are considered (last lines in Tables 4, 5, 8, and

9).

18

100 200 300 400 500 600 700 800 900 1000

10
2

generation

f

f
10

100 200 300 400 500 600 700 800 900 1000
1

1.5
2

generation

q

100 200 300 400 500 600 700 800 900 1000
0

10

20

generation

||
σ

||

100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

generation

d
f,

 d
q

Fig. 6 f(xbest
g)− f(x∗), distribution parameter q, and norm of

the mutation strength parameter vector for the current best in-
dividual in the last run of IqGEP on function f10 with m = 10.
The last graphic shows the differences dq (solid line), between
the values of q in two consecutive generations, and df (dashed
line), between the values of fitness errors in two consecutive gen-
erations, both in the range -0.5 to 0.5.

Finally, the algorithms with mutations generated

from isotropic distributions present a better perfor-

mance than the algorithms with anisotropic mutations

on the unimodal functions (see Tables 10 and 11). The
performance of the mutations generated from isotropic

distributions is better than the anisotropic mutations

on more multimodal functions with m = 10 than with

m = 30. In the functions where the anisotropic muta-
tions present a better performance, good solutions can

be found in the subspace formed by the points close

to the coordinate axes (Fig. 2) and the optimization

can be done mainly by coordinate-wise search steps.

Such results agree with the conjecture presented in [14]
and affirm that anisotropic mutation distributions with

longer tails are interesting on those multimodal func-

tions with the low dimensional space where most of the

longer jumps occur and better optima than the cur-
rent best local solution may be located. When Cauchy

and q-Gaussian mutations generated from isotropic dis-

tributions are employed, it is more difficult to reach a

fair region of the search space from a long jump, espe-

cially when m = 30, as the number of points that can
be reached exponentially increases with the size of the

jump. That is, the sub-space that is more explored by

the algorithm is much larger when mutation generated

from isotropic distributions with longer tails are used.

However, mutation generated from isotropic distri-

butions with longer tails are generally better than the

anisotropic mutation distributions on functions with

heavy influence of the crossed component terms in the

function evaluation, and where better optima are not

located in the subspace explored by the anisotropic al-

gorithm. These facts can be observed when the results
of the experiments with the axis parallel Rastrigin func-

tion (f9), which is separable, and the rotated Rast-

rigin function (f10), where crossed component terms

present a heavy influence in the function evaluation,
are analyzed (Figs. 4 and 5). While the anisotropic

Cauchy mutation presents a better performance than

the q-Gaussian mutation on function f9, they present

a worse performance on function f10. On the other

hand, IqGEP presents a better performance than ICEP
on both functions. In the experiments on function f9,

larger jumps to points close to the coordinate axes are

advantageous for the population to escape from local

optima. In the algorithms ICEP and IqGEP, where the
mutations are generated from isotropic distributions,

such jumps are rare, while they are common in the

anisotropic algorithms CEP and qGEP. However, such

jumps are less advantageous on f10, where better op-

tima are located far away from the coordinate axes. As
the search space is much larger, it is more difficult to

reach fair regions, though such regions can be eventu-

ally reached by longer jumps produced by ICEP and

IqGEP. In general, for larger spaces, it would be more
difficult to reach such fair regions if there are only a few

of them. It is important to observe that these results de-

pend on the fitness space, its size, and the number and

size of the regions where better optima are located.

8.3 Comparison of restart q-Gaussian evolution

strategy to other continuous EAs

The experimental results of the error of the best fitness

averaged over 25 runs in the experiments with RqGES
for m = 10, m = 30, and m = 50 are presented in

Tables 13, 14, and 15. When the results of the RqGES

are compared to those obtained by IqGEP, the benefits

of using recombination and the restart scheme are clear,
mainly on multimodal functions. The results for the

fitness errors of RqGES can also be compared to those

obtained for continuous optimization EAs applied to

the problems described in Table 1.

In order to test the performance of RqGES against
other EAs, the results obtained are compared to those

obtained by the algorithms presented in the Special Ses-

sion on Real Parameter Optimization for the 2005 IEEE

Congress on Evolutionary Computation [35]: BLX-
GL50 [10], BLX-MA [21], CoEVO [28], DE [32], DMS-

L-PSO [19], EDA [46], G-CMA-ES [1], K-PCX [33], L-

CMA-ES [2], L-SADE [29], and SPC-PNX [4]. Their re-

19

Table 13 Experimental results of the error of the best fitness
obtained for algorithm RqGES on the test functions with m = 10.

Prob median mean std
f1 1.27E-08 3.77E-08 7.80E-08
f2 2.38E-08 3.76E-08 5.58E-08
f3 1.19E+05 1.55E+05 9.45E+04
f4 2.84E-08 6.29E-08 8.39E-08
f5 1.11E-04 1.05E-04 3.07E-05
f6 1.02E+02 8.23E+02 2.06E+03
f7 1.81E-08 1.40E-03 3.64E-03
f8 2.04E+01 2.04E+01 5.95E-02
f9 1.99E+00 1.49E+00 1.14E+00
f10 1.92E+00 1.72E+00 1.21E+00
f11 7.59E-03 1.69E-01 3.83E-01
f12 6.39E+01 1.05E+03 2.15E+03
f13 1.07E+00 1.09E+00 2.90E-01
f14 2.90E+00 2.91E+00 2.63E-01
f15 1.03E+02 1.98E+02 1.56E+02
f16 9.40E+01 9.37E+01 7.20E+00
f17 9.35E+01 9.59E+01 1.31E+01
f18 8.00E+02 6.77E+02 2.71E+02
f19 8.00E+02 5.88E+02 2.87E+02
f20 8.00E+02 6.41E+02 2.85E+02
f21 8.00E+02 8.45E+02 2.08E+02
f22 7.67E+02 7.70E+02 1.62E+01
f23 9.71E+02 9.45E+02 1.22E+02
f24 2.00E+02 2.12E+02 6.00E+01
f25 4.03E+02 3.47E+02 9.39E+01

Table 14 Experimental results of the error of the best fitness
obtained for algorithm RqGES on the test functions with m = 30.

Prob median mean std
f1 3.65E-07 1.54E-06 5.31E-06
f2 1.77E-06 1.74E-06 4.29E-07
f3 8.55E+05 9.43E+05 3.22E+05
f4 6.71E-02 4.58E-01 8.53E-01
f5 2.41E+03 2.31E+03 5.57E+02
f6 2.29E+02 1.75E+03 2.74E+03
f7 1.12E-06 2.69E-03 4.36E-03
f8 2.10E+01 2.10E+01 3.76E-02
f9 9.95E+00 9.74E+00 3.71E+00
f10 9.95E+00 9.24E+00 3.09E+00
f11 3.71E+00 3.60E+00 1.92E+00
f12 4.23E+03 8.90E+03 1.03E+04
f13 3.03E+00 3.26E+00 7.49E-01
f14 1.25E+01 1.24E+01 3.22E-01
f15 3.70E+02 3.37E+02 9.37E+01
f16 4.43E+01 1.77E+02 1.78E+02
f17 3.07E+01 1.04E+02 1.14E+02
f18 9.09E+02 8.99E+02 3.01E+01
f19 9.07E+02 8.94E+02 3.54E+01
f20 9.09E+02 9.04E+02 2.20E+01
f21 5.00E+02 5.71E+02 2.18E+02
f22 8.92E+02 8.91E+02 6.12E+00
f23 5.34E+02 5.59E+02 1.29E+02
f24 2.00E+02 2.00E+02 7.40E-04
f25 2.00E+02 2.00E+02 2.13E+00

sults for the problems presented in Table 1 for m = 10

were avalaible in the respective papers1. Eight of those

algorithms presented results for m = 30 and two algo-

rithms also for m = 50. For all algorithms, the same

maximum number of fitness evaluations and number of
runs presented in Section 8.1 were considered. When

the results for all functions of the algorithms presented

1 Tables with the results and other relevant information about
the Real Parameter Optimization Competition of the 2005
IEEE Congress on Evolutionary Computation can be found at ¡a
href=”http://sci2s.ugr.es/EAMHCO”¿http://sci2s.ugr.es/EAMHCO/¡/a¿.

Table 15 Experimental results of the error of the best fitness
obtained for algorithm RqGES on the test functions with m = 50.

Prob median mean std
f1 4.50E-06 7.21E-03 1.76E-02
f2 1.85E-03 2.16E-03 1.08E-03
f3 1.13E+06 1.13E+06 3.09E+05
f4 6.82E+02 7.85E+02 5.64E+02
f5 6.18E+03 6.38E+03 1.33E+03
f6 3.91E+02 6.74E+02 8.36E+02
f7 2.89E-06 1.43E-02 4.73E-02
f8 2.11E+01 2.11E+01 3.49E-02
f9 5.37E+01 5.89E+01 2.73E+01
f10 2.39E+01 2.40E+01 6.88E+00
f11 1.28E+01 1.28E+01 3.62E+00
f12 3.64E+04 4.31E+04 3.73E+04
f13 5.45E+00 5.63E+00 7.70E-01
f14 2.18E+01 2.18E+01 2.13E-01
f15 4.00E+02 3.53E+02 1.02E+02
f16 2.67E+01 4.99E+01 7.72E+01
f17 2.12E+01 3.20E+01 3.37E+01
f18 9.00E+02 9.00E+02 3.20E-02
f19 9.00E+02 8.81E+02 9.29E+01
f20 9.00E+02 8.83E+02 9.37E+01
f21 1.17E+03 8.79E+02 3.43E+02
f22 9.37E+02 9.34E+02 1.17E+01
f23 5.40E+02 6.57E+02 2.44E+02
f24 2.00E+02 2.00E+02 6.53E-02
f25 2.09E+02 3.20E+02 3.07E+02

in the special session were compared, G-CMA-ES was

pointed as the algorithm with the best average perfor-

mance [12].

Figures 7, 8, and 9 show the mean of the error
f(xbest) − f(x∗) (error between the best fitness found

during the run and the fitness at the global optimum)

for the test functions, respectively, with m = 10, m =

30, and m = 50 for the algorithms (including RqGES).

The results shown in those figures were obtained in the
respective papers (see last paragraph) and in Tables

13, 14, and 15 for RqGES. The results for RqGES with

different values of m are still presented in Figure 10.

Tables 16, 17, 18 present the rank (for the per-

formance regarding the mean best fitness error) for
RqGES when compared to the results of other algo-

rihtms. A rank i means that RqGES was the i-th best

algorithm. When k algorithms present the same mean

best fitness error values, the mean between the maxi-
mum and minimum rank for such group is considered

and a “t” is indicated in the table (e.g., when RqGES

and another algorithm presented the best performance,

the rank was set to 1.5t).

Tables 19, 20, and 21 present the statistical com-

parison of RqGES to the other algorithms regarding
the results of two groups of functions (f1 − f25 and the

hybrid composition functions f15− f25), as in [12]. The

p-value of the Wilcoxon Signed Rank Test presented in

the tables is obtained comparing the vectors with the
mean results obtained for each function for RqGES and

Alg. A. The values in the second parentheses indicate

the difference between the number of times (functions)

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

problem

f

BLX−GL50
BLX−MA
CoEVO
DE
DMS−L−PSO
EDA
G−CMA−ES
K−PCX
L−CMA−ES
L−SADE
SPC−PNX
RqES

Fig. 7 Mean of f(xbest)− f(x∗) on the test functions with m = 10. The termination error value 10−8 is adopted as the low limit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

problem

f

BLX−GL50
BLX−MA
CoEVO
DE
G−CMA−ES
K−PCX
L−CMA−ES
SPC−PNX
RqES

Fig. 8 Mean of f(xbest)− f(x∗) on the test functions with m = 30.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

problem

f

G−CMA−ES
L−CMA−ES
RqES

Fig. 9 Mean of f(xbest)− f(x∗) on the test functions with m = 50.

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

problem

f

m=10
m=30
m=50

Fig. 10 Mean of f(xbest) − f(x∗) for RqGES on the test functions with m = 10, m = 30, and m = 50.

Table 16 Rank of the mean of the fitness error of RqGES (when
compared to 11 algorithms: BLX-GL50, BLX-MA, CoEVO, DE,
DMS-L-PSO, EDA, G-CMA-ES, K-PCX, L-CMA-ES, L-SADE,
and SPC-PNX) on the test functions with m = 10.

Prob f1 f2 f3 f4 f5 f6 f7 f8 f9
Rank 12 12 12 8 8 12 3 10t 8
Prob f10 f11 f12 f13 f14 f15 f16 f17 f18
Rank 3 1 12 10 6 3 3 1 7
Prob f19 f20 f21 f22 f23 f24 f25
Rank 7 6 11 10 11 7 2

Table 17 Rank of the mean of the fitness error of RqGES (when
compared to 8 algorithms: BLX-GL50, BLX-MA, CoEVO, DE,
G-CMA-ES, K-PCX, L-CMA-ES, and SPC-PNX) on the test
functions with m = 30.

Prob f1 f2 f3 f4 f5 f6 f7 f8 f9
Rank 8 6 8 2 7 9 4 8 4
Prob f10 f11 f12 f13 f14 f15 f16 f17 f18
Rank 3 1 4 4 2 4 6 2 4
Prob f19 f20 f21 f22 f23 f24 f25
Rank 3 5 7 5 6 2.5t 1

Table 18 Rank of the mean of the fitness error of RqGES (when
compared to 2 algorithms: G-CMA-ES and L-CMA-ES) on the
test functions with m = 50.

Prob f1 f2 f3 f4 f5 f6 f7 f8 f9
Rank 3 3 3 1 3 3 3 3 2
Prob f10 f11 f12 f13 f14 f15 f16 f17 f18
Rank 2 2 1 3 1 3 2 1 1
Prob f19 f20 f21 f22 f23 f24 f25
Rank 1 1 2 3 2 1 2

that the mean of the error for RqGES is smaller than

the mean of the error for Alg. A and the number of

Table 19 Statistical comparison of RqGES to other algorithms
regarding the mean of the fitness error on the test functions with
m = 10.

Alg. f1 − f25 f15 − f25
RqGES - BLX-GL50 2.99E-02 (s-),(-12) 2.06E-01 (−),(-5)
RqGES - BLX-MA 9.25E-01 (−),(-1) 2.06E-01 (+),(+5)
RqGES - CoEVO 4.43E-01 (+),(+5) 1.75E-01 (+),(+5)

RqGES - DE 1.10E-01 (−),(-8) 3.20E-01 (−),(-3)
RqGES - DMS-L-PSO 4.93E-01 (−),(-3) 8.98E-01 (+),(+3)

RqGES - EDA 5.45E-01 (−),(-3) 7.65E-01 (+),(+1)
RqGES - G-CMA-ES 5.81E-03 (s-),(-15) 6.54E-02 (−),(-5)

RqGES - K-PCX 3.39E-01 (+),(+3) 9.77E-03 (s+),(+9)
RqGES - L-CMA-ES 5.45E-01 (−),(-5) 7.65E-01 (−),(-1)
RqGES - L-SADE 4.43E-01 (−),(-1) 7.65E-01 (+),(+1)
RqGES - SPC-PNX 1.58E-01 (−),(-5) 1.75E-01 (−),(-3)

Table 20 Statistical comparison of RqGES to other algorithms
regarding the mean of the fitness error on the test functions with
m = 30.

Alg. f1 − f25 f15 − f25
RqGES - BLX-GL50 9.89E-01 (−),(-1) 1.00E+00 (+),(+1)
RqGES - BLX-MA 7.32E-01 (=),(0) 8.46E-01 (=),(0)
RqGES - CoEVO 1.57E-03 (s+),(+19) 9.77E-04 (s+),(11)

RqGES - DE 4.75E-01 (+),(+8) 1.93E-01 (+),(+6)
RqGES - G-CMA-ES 4.93E-01 (−),(-5) 8.98E-01 (+),(+1)

RqGES - K-PCX 8.61E-01 (−),(-1) 3.65E-01 (+),(+3)
RqGES - L-CMA-ES 9.68E-01 (−),(-5) 9.66E-01 (−),(-3)
RqGES - SPC-PNX 3.17E-01 (+),(+4) 4.92E-01 (=),(0)

Table 21 Statistical comparison of RqGES to other algorithms
regarding the mean of the fitness error on the test functions with
m = 50.

Alg. f1 − f25 f15 − f25
RqGES - G-CMA-ES 8.82E-01 (−),(-5) 3.65E-01 (+),(+3)
RqGES - L-CMA-ES 3.97E-01 (+),(+1) 4.65E-01 (+),(+3)

22

times (functions) that the mean of the error for Alg. A

is smaller than the mean of the error for RqGES. A

negative value indicates that Alg. A presented smaller

mean (when compared to RqGES) on more functions.

One can observe that, for the experiments with m =
10, the performance of RqES was significantily worse

than the performance of BLX-GL50 and G-CMA-ES

for the group f1 − f25, while it was significantily better

than the performance of K-PCX for the group f15−f25
(Table 19). For the experiments withm = 30, RqES was

significantily better than CoEVO in both groups (Table

20). In general, RqES presented better performance for

high dimension and multimodal functions.

It can be observed (Tables 16, 17, and 18 and Fig-
ures 7, 8, and 9) that RqGES presents good results on

the functions with noise (functions f4 and f17). In the

multimodal function f17, RqES was the best algorithm

for m = 10 and m = 50, while it was the second best
algorithm for m = 30 (one can observe in figures 8,

and 9 that the performance of RqGES, differently for

the other algorithms, did not deteriorated from func-

tion f16 to function f17, obtained by adding noise to

function f16). In the unimodal function f4, RqES is
the best algorithm for m = 50 and the second best for

m = 30. RqGES presents the best results on function

f11 (with the exception for m = 50 where RqGEs is the

second best algorithm), which is differentiable only on
a set of points [35]. The properties of function f11 can

also explain the better results of RqGES on the hybrid

composition functions where function f11 was used.

Such properties (noise and rugged landscapes) can

represent obstacles for algorithms that intensivelly ex-
plore local information about the search landscape to

guide the optimization process, like some of the best

EAs used in continuous optimization problems. The

good performance of RqGES on such problems can be

explained by the eventual use of higher values of q to
produce larger jumps on the search landscape. How-

ever, eventual large jumps makes RqGES to generate

less candidate solutions, when compared to other algo-

rithms, close to the best found solutions, which explains
the worse performance of RqGES on the unimodal func-

tions (with exception for function f4). Besides, RqGES

does not employ additional mechanisms to explore lo-

cal information about the search space, what explains

the worse performance, when compared to the best al-
gorithms, in unimodal and multimodal functions where

such information is useful to guide the optimization pro-

cess.

On function f25, higher values of q were useful
too, as the global optimum is outside the inicialization

range. It can also be observed that RqGES has a good

performance on rotated functions, e.g., f10, because the

q-Gaussian mutation is generated from an isotropic dis-

tribution. One can observe, in figures 8 and 9, that

RqGES is the only algorithm where the performance

did not deteriorate when function f9 was rotated to

generate function f10. In the figures, one can observe
that the error for f10 is higher than for f9 for all algo-

rithms, except for RqGES.

9 Conclusion and future work

The use of self-adaptation is proposed in this paper

to control not only the mutation strength parameter,
but also the mutation distribution for EAs. For this

purpose, self-adapted q-Gaussian mutations generated

from anisotropic and isotropic distributions are em-

ployed. The q-Gaussian distribution allows to smoothly
change the shape of the mutation distribution by set-

ting a real parameter q and can reproduce either fi-

nite or infinite second moment distributions. In the pro-

posed method, the real parameter q of the q-Gaussian

distribution, which defines the shape of the distribution
employed by the mutation operator, is encoded in the

chromosome of the individual and is allowed to evolve.

In the proposed method, the decision of choosing
which distribution is more indicated for a given prob-

lem and at a given moment of the evolutionary process

is made by the algorithm. This property can be ob-

served in the experimental results presented in Section
8, where the proposed q-Gaussian mutation generally

presents a performance similar to or better than the

Gaussian mutation when the Gaussian mutation is bet-

ter than the Cauchy mutation and generally presents a

performance similar to or better than the Cauchy mu-
tation when it is better than the Gaussian mutation.

Generally speaking, the experimental results indicate

the efficiency of the proposed self-adaptation scheme.

In this paper, EP was selected to compare the Gaus-

sian, Cauchy, and q-Gaussian mutations because it only

uses mutation as a transformation operator. In this way,

it is easier to analyse the influence of each type of mu-
tation operators. In fact, the q-Gaussian mutation can

be used in other types of EAs. The results for the EP

with q-Gaussian mutaion can be improved if recombi-

nation and other heuristics are used, which was shown

by the experimental results of the restart q-Gaussian
ES presented in this paper. RqGES presented compet-

itive performance when compared to some of the best

EAs for real-parameter optimization. The possible use

of the q-Gaussian mutation in ESs with adaptive en-
conding [15], which is a form of applying the represen-

tation changes given by the covariance matrix adapta-

tion (CMA) in the continuous domain, is a relevant

23

future work. Other future works include the investi-

gation of other control methods for the q parameter

(including self-organization [38]), and the use of the q-

Gaussian mutation for dynamic optimization problems

[43], like the optimization of synaptic weights in evolu-
tionary neural networks in dynamic environments [37].

Acknowledgements The authors would like to thank the
anonymous Associate Editor and reviewers for their thoughtful
suggestions and constructive comments. This work was supported
in part by FAPESP and CNPq in Brazil and in part by the Engi-
neering and Physical Sciences Research Council (EPSRC) of the
U.K. under Grant EP/E060722/1 and Grant EP/E060722/2.

References

1. A. Auger and N. Hansen. A restart CMA evolution strategy
with increasing population size. In Proc. of the 2005 IEEE
Congress on Evolutionary Computation, pp. 1769–1776, 2005.

2. A. Auger and N. Hansen. Performance evaluation of an ad-
vanced local search evolutionary algorithm. In Proc. of the 2005
IEEE Congress on Evolutionary Computation, pp. 1777–1784,
2005.

3. T. Bäck. Self-adaptation. In T. Bäck, D. B. Fogel, and
Z. Michalewicz, editors, Evolutionary computation 2: advanced
algorithms and operators. Institute of Physicis Publishing,
2000.

4. P. J. Ballester, J. Stephenson, J. N. Carter, K. Gallagher.
Real-parameter optimization performance study on the CEC-
2005 benchmark with SPC-PNX. In Proc. of the 2005 IEEE
Congress on Evolutionary Computation, pp. 498–505, 2005.

5. H.-G. Beyer and H. S. Schwefel. Evolution strategies: a com-
prehensive introduction. Natural Computing, vol. 1, no. 1,
pp. 3–52, 2002.

6. S. Das, A. Abraham, U. K. Chakraborty, and A. Konar. Differ-
ential evolution using a neighborhood-based mutation operator.
IEEE Trans. on Evol. Comput., 13(3): 526–553, 2009.

7. M. W. Davis. The natural formation of gaussian mutation
strategies in evolutionary programming. In Proc. of the 3rd
Annual Conf. on Evolutionary Programming. World Scientific,
1994.

8. H. Dong, J. He, H. Huang, and W. Hou. Evolutionary pro-
gramming using a mixed mutation strategy. Information Sci-
ences, vol. 177, no. 1, pp. 312–327, 2007.

9. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter
control in evolutionary algorithms. IEEE Trans. on Evol. Com-
put., vol. 3, no. 2, pp. 124–141, 1999.

10. C. Garćıa-Mart́ınez and M. Lozano. Hybrid real-coded ge-
netic algorithms with female and male differentiation. In Proc.
of the 2005 IEEE Congress on Evolutionary Computation,
pp. 896–903, 2005.

11. C. Garćıa-Mart́ınez, M. Lozano, F. Herrera, D. Molina, and
A. M. Sánchez. Global and local real-coded genetic algorithms
based on parent-centric crossover operators. European Journal
of Operational Research, 185(3): 1088–1113, 2008.

12. S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 Special
Session on Real Parameter Optimization. Journal of Heuris-
tics, vol. 15, pp. 617–644, 2009.

13. N. Hansen and A. Ostermeier. Completely derandomized
self-adaptation in evolution strategies. Evol. Comput., vol. 9,
no. 2, pp. 159–195, 2001.

14. N. Hansen, F. Gemperle, A. Auger, and P. Koumoutsakos.
When do heavy-tail distributions help? Proc. 9th Int. Conf. on
Parallel Problem Solving from Nature, Lecture Notes in Com-

puter Science, vol. 4193, pp. 62–71, 2006.

15. N. Hansen. Adaptive encoding: how to render search coordi-
nate system invariant Proc. 10th Int. Conf. on Parallel Prob-
lem Solving from Nature, Lecture Notes in Computer Science,
vol. 5199, pp. 205–214, 2008.

16. F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-
coded genetic algorithms: operators and tools for the behavioral
analysis. Artificial Intelligence Reviews, 12(4): 265–319, 1998.

17. M. Iwamatsu. Generalized evolutionary programming with
levy-type mutation. Computer Physics Communications,
147(1-2): 729–732, 2002.

18. C. Y. Lee and X. Yao. Evolutionary programming using
mutations based on the levy probability distribution. IEEE
Trans. on Evol. Comput., 8(1): 1–13, 2004.

19. J. J. Liang and P. N. Suganthan. Dynamic multi-swarm
particle swarm optimizer with local search. In Proc. of the
2005 IEEE Congress on Evolutionary Computation, pp. 522–
528, 2005.

20. M. Lozano, F. Herrera, N. Krasnogor, and D. Molina.
Real-coded memetic algorithms with crossover hill-climbing.
Evol. Comput., 12 (3): 273–302, 2004.

21. D. Molina, F. Herrera, and M. Lozano. Adaptive local search
parameters for real-coded memetic algorithms. In Proc. of the
2005 IEEE Congress on Evolutionary Computation, pp. 888–
895, 2005.

22. E. Mezura-Montes and C. A. C Coello. An improved diversity
mechanism for solving constrained optimization problems using
a multimembered evolution strategy. In Proc. of the 2004 Ge-
netic and Evol. Comput. Conf. (GECCO-2004), pp. 700–712,

2004.

23. M. A. Moret, P. G. Pascutti, P. M. Bisch, M. S. P. Mundim,
and K. C. Mundim. Classical and quantum conformational
analysis using generalized genetic algorithm. Physica A: Sta-
tistical Mechanics and its Applications, 363(2): 260–268, 2006.

24. Q. H. Nguyen, Y. S. Ong, and M. H. Lim. A probabilistic
memetic framework. IEEE Trans. on Evol. Comput., 13(3):
604–623, 2009.

25. N. Noman, and H. Iba. Accelerating differential evolution
using an adaptive local search. IEEE Trans. on Evol. Comput.,
12(1): 107–125, 2008.

26. A. Obuchowicz. Multidimensional mutations in evolutionary
algorithms based on real-valued representation. Int. Journal of
Systems Science, 34(7): 469–483, 2003.

27. K. V. Price, R. M. Storn, and J. A. Lampinen. Differential
evolution: a practical approach to global optimization. Springer
Verlag, 2005.

28. P. Poš́ık. Real-parameter optimization using the mutation
step co-evolution. In Proc. of the 2005 IEEE Congress on
Evolutionary Computation, pp. 872–879, 2005.

29. A. K. Qin, and P. N. Suganthan. Self-adaptive differential
evolution algorithm for numerical optimization. In Proc. of the
2005 IEEE Congress on Evolutionary Computation, pp. 1785–
1791, 2005.

30. A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential
evolution algorithm with strategy adaptation for global numer-
ical optimization. IEEE Trans. on Evol. Comput., 13(2): 298–
417, 2009.

31. P. N. Rathie and S. Da Silva. Shannon, Lévy, and Tsallis: A
Note. Applied Mathematical Sciences, 2(28): 1359–1363, 2008.

32. J Rönkkönen, S. Kukkonen, and K. V. Price. Real-parameter
optimization with differential evolution. In Proc. of the 2005
IEEE Congress on Evolutionary Computation, pp. 506–513,
2005.

24

33. A. Sinha, S. Tiwari and K. Deb. A population-based, steady-
state procedure for real-parameter optimization. In Proc. of the
2005 IEEE Congress on Evolutionary Computation, pp. 514–

521, 2005.
34. A. M. C. Souza and C. Tsallis. Student’s t- and r-
distributions: unified derivation from an entropic variational
principle. Physica A: Statistical Mechanics and its Applica-
tions, 236(1-2): 52–57, 1997.

35. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,
A. Auger, and S. Tiwari. Problem definitions and evaluation
criteria for the CEC 2005 special session on real parameter opti-
mization. Technical Report, Nanyang Technological University,
2005.

36. W. Thistleton, J. A. Marsh, K. Nelson, and C. Tsallis, “Gen-
eralized Box-Muller method for generating q-Gaussian random
deviates,” IEEE Trans. on Information Theory, vol. 53, no. 12,
pp. 4805–4810, 2007.

37. R. Tinós and A. C. P. L. F. Carvalho. Use of gene dependent
mutation probability in evolutionary neural networks for non-
stationary problems. Neurocomputing, 70(1-3): 44–54, 2006.

38. R. Tinós and S. Yang. Self-organizing random immigrants
genetic algorithm for dynamic optimization problems. Genetic
Programming and Evolvable Machines, 8(3): 255–286, 2007.

39. C. Tsallis. Possible generalization of boltzmann-gibbs statis-
tics. Journal of Statistical Physics, 52: 479–487, 1988.

40. C. Tsallis and D. A. Stariolo. Generalized simulated anneal-
ing. Physica A:, 233(1-2): 395–406, 1996.

41. S. Umarov, C. Tsallis, and S. Steinberg. On a q-central
limit theorem consistent with nonextensive statistical mechan-
ics. Milan Journal of Mathematic, 76(1): 307–328, 2008.

42. J. A. Vrugt, B. A. Robinson, and J. M. Hyman. Self-adaptive
multimethod search for global optimization in real-parameter
spaces. IEEE Trans. on Evol. Comput., 13(2): 243–259, 2009.

43. H. Wang, S. Yang, W. H. Ip, and D. Wang. Adaptive
primal-dual genetic algorithms in dynamic environments. IEEE
Trans. on Syst., Man, and Cybern., Part B: Cybern., 39(6):
1348–1361, 2009.

44. X. Yao and Y. Liu. Fast evolution strategies. Control and
Cybernetics, 26(3): 467–496, 1997.

45. X. Yao, Y. Liu, and G. Lin. Evolutionary programming made
faster. IEEE Trans. on Evol. Comput., 3(2): 82–102, 1999.

46. B. Yuan and M. Gallagher. Experimental results for the
special session on real-parameter optimization at CEC 2005: A
simple, continuous EDA. In Proc. of the 2005 IEEE Congress
on Evol. Comput., pp. 1792–1799, 2005.

